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The ability to assemble colloidal particles with well-controlled 
shapes and material properties1–10 has been studied as an 
excellent model for exploring how matter organizes in mate-

rials science1,2, condensed-matter physics3,6 and biophysics11. Unlike 
nanoparticles, microscale particles cannot easily self-assemble into 
high-quality crystals1. To direct the colloidal assembly of microscale 
particles, various methods including the use of specific surface 
functionalities5, such as DNA linkers and attractive ‘patches’1, 
different liquid solvents10, complex anisotropic particles6 or the 
modification of colloids using phototactic7, electric8 and magnetic9 
mechanisms, have been reported. However, these approaches pos-
sess challenges, such as synthetic difficulties associated with spe-
cific colloidal shapes1 or materials5, poor control and tunability of 
interactions1,6, and can be ultra-difficult to generalize. Additionally, 
these colloid manipulation approaches5–10 cannot be directly applied 
to cell manipulation applications to understand cell–cell interac-
tions or build ordered biological structures. Thus, a more versatile 
method that can precisely manipulate both colloid materials and 
cells, without any surface treatment or modification of the particles’ 
material properties, into desired formations is needed and has not 
been previously reported.

Acoustic tweezers, the acoustic analogue of the optical twee-
zers11, eliminate the need for optical tables, high-powered lasers 
and complicated and time-consuming optical alignment, and 
offer a contact-free, highly biocompatible approach for perform-
ing particle manipulation. However, current standing wave-based 
acoustic tweezers12,13 and the recently developed acoustic force 
spectroscopy method14,15 can only trap and manipulate particles 
as a group, limiting their ability to control individual particles for 
precise colloidal assembly selectively. To overcome this limitation, 

phased array transducers16 and acoustic hologram17 methods have 
been developed to manipulate millimetre-scale particles individu-
ally. However, these methods cannot be used to select single cells 
(roughly 10 μm diameter) or micrometre-scale colloidal particles 
due to their millimetre-level spatial resolution. Additionally, all the 
methods above, either by adjusting the phase16,18,19 or by moving 
the transducer20, have difficulty with the precise assembly of colloi-
dal matter and with reversible cell–cell pairing and separation due 
to the steady-state nature of the acoustic wavefield12,21 and/or the 
imprecision of acoustic streaming22,23 or vortex generation24.

Herein, we present HANDS particle manipulation. Different from 
applications in the quantum field25–28, such as delicate nanomechani-
cal waveform generation27,28 by harmonic acoustics for photon emis-
sion in solid-state, we applied time-effective Fourier-synthesized 
harmonics to achieve HANDS manipulation for the generation of 
reconfigurable acoustic lattices and spatial control of particles and 
cells suspended in liquid (Fig. 1a and Supplementary Fig. 1). With 
the gentle and dexterous HANDS platform, we have achieved the 
formation, reconfiguration and precise rotational control of col-
loidal crystals or soft condensed matter (Fig. 1b, top). We can also 
actively control the lattice constant (Fig. 1b, bottom) by the fre-
quency or amplitude modulation of multi-harmonic waves (Fig. 1c  
and Supplementary Fig. 2) to pair two target cells selectively 
with tuneable intercellular distances (Fig. 1d and Supplementary  
Video 1) or collectively manipulate an array of colloidal clusters or 
cells (Fig. 1e). We can control cells with more than 100 pairs in a sus-
pension for reversible pairing and separation in a high-throughput, 
precise, programmable and repeatable (>1,000 cycles) manner, all 
of which are challenging for using existing colloid assembly5–10 or 
single-cell manipulation methods29–33.
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Results
Assembly and dynamic control of colloidal crystals. This dex-
terous HANDS platform assembled colloidal crystal monolayers 
with high precision and dynamic rotational control. As shown 
in Fig. 2a, the three-dimensional (3D) colloidal crystal assembly  

can be formed in acoustic wells by applying standing surface 
acoustic waves (SAWs) in both the x and y directions. Here, 
acoustic wells are acoustic potential fields established in a fluidic 
medium. Where the acoustic radiation force is a minimum, this 
location functions as a node for trapping objects12. The colloidal  
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Fig. 1 | Fourier synthesis of harmonic acoustic waves of HANDS to create soft flexible lattices for colloidal crystals or cell–cell pairing and separation. 
a, Schematic of HANDS manipulation with Fourier-synthesized harmonic acoustic waves. b, Top, a colloidal crystal with controllable particle numbers 
and conformation can be assembled. Bottom, large area patterning with a tuneable lattice constant can be generated for colloidal clusters or single cells. 
c, The modulation of frequency and amplitude of harmonic waves can generate soft lattices and reconfigurable colloidal crystal or tuneable patterning 
of single particles or cells. d, Fluorescent imaging showing selective pairing of two U937 cells among six cells by localized modulation of the intercellular 
distance. The positions of the cells are indicated by the fluorescent intensity profile (averaged from five cell groups). Scale bars, 10 μm. e, Comparison of 
two patterned colloidal clusters with equal trapping spacing and tuneable trapping spacings, as analytically simulated and experimentally generated using 
HANDS manipulation. Colloidal clusters are formed with 2 μm fluorescent polystyrene particles in each trapping acoustic wells. Scale bars, 20 μm.
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assemblies are vertically focused by switching from the stand-
ing SAWs to time-effective Fourier-synthesized harmonic SAWs 
(Supplementary Fig. 1), and we can create a two-dimensional 
(2D) colloidal crystal monolayer from the initial cluster of 
trapped microparticles (Fig. 2b). With HANDS manipulation, 
we directly formed numerous colloidal crystal monolayers using 
2-μm diameter polystyrene particles (Fig. 2c). By tuning the fre-
quencies and amplitudes of the five‐component harmonic SAWs 
(such as f2 to f6 illustrated in Fig. 1c and Supplementary Fig. 2), 
the shapes and sizes of the harmonic acoustic wells can be modu-
lated, which enables the generation of diverse crystal monolayers 
with different numbers of particles. Due to the secondary acoustic 
radiation forces generated by the scattering of the acoustic field 
between the particles3, the monolayer assemblies can be stabi-
lized as close-packed colloidal crystals. HANDS manipulation 
can also spin the entire colloidal crystal assembly by applying a 
phase difference (Δφ = φx − φy) between the x and y direction har-
monic SAWs. This acoustic-induced rotation allows us to create 
various colloidal crystals from the initial cluster by further shap-
ing the colloidal assemblies with the stabilized monolayer patterns 
(Supplementary Fig. 3 and Supplementary Video 2). Additionally, 
the rotational direction of an assembly can be easily tuned by 
changing the phase difference of the applied harmonic SAWs.  

As illustrated in Fig. 2d and Supplementary Video 3, a positive 
phase difference (Δφ > 0) results in a clockwise rotation and a neg-
ative phase difference (Δφ < 0) causes a counterclockwise rotation 
for a ten-particle cluster monolayer. After the further quantitative 
study, we demonstrated that the rotational speed of the colloidal 
assembly is linear with respect to the phase difference, and this 
speed can be proportionally tuned by varying the amplitudes of the 
applied excitations (Fig. 2e).

Next, we investigated the spin speed of the colloidal monolay-
ers with different numbers of particles (from n = 2 to n = 10) and 
configurations (four monolayer configurations with n = 6). Under 
the same excitation, we observed that the spin speed of the assem-
blies is strongly correlated with the colloidal crystal configurations 
rather than with the particle numbers. As shown in Fig. 2f and 
Supplementary Video 4, for all the investigated different configu-
rations of six-particle clusters, the highest spin speed is achieved 
by a flower-shaped arrangement with the rotational symmetry 
of order five. This observation suggests that clusters with higher 
orders of rotational symmetry tend to have a faster spin speed. It 
also demonstrates the capability of HANDS manipulation for dif-
ferent crystal configurations of the colloidal crystal monolayer 
by varying the spin speeds. With this capability for precise par-
ticle assembly, we can use HANDS manipulation to explore the  
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Fig. 2 | Creation of colloid crystal monolayers with cluster and spin dynamics studies via HANDS manipulation. a, Schematic of colloidal clusters being 
trapped in acoustic wells by applying SAWs in the x and y directions. b, Illustration of the generation of colloidal crystal monolayer by vertical focusing 
of particles with applied harmonic SAWs. c, Fluorescent imaging of colloidal crystal monolayers using 2 μm polystyrene particles formed by HANDS 
manipulation. Scale bar, 5 μm. d, Illustration of the spin directions, controlled by the phase difference (Δφ = φx − φy) between X-SAWs and Y-SAWs.  
Scale bar, 5 μm. e, Characterization of the spin speed as a function of the phase difference at different excitation signal amplitudes ranging from 4 to 8 V.  
f, Comparison of the spin speed of colloidal crystal monolayers with different particle numbers and configurations.
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fundamental soft condensed-matter physics behind colloidal inter-
actions and assembly.

Reversible pairing and separation of single colloids. In addition 
to dynamic rotational control of close-packed colloidal crystals, 
we can also dynamically modulate the distance between individ-
ual colloids or cells with subwavelength manipulation resolution. 
This subwavelength manipulation resolution is achieved with a 
time-effective Fourier-synthesized acoustic potential field (see 
Supplementary Notes 1 and 2 for further details) that was real-
ized by sequentially applying nanosecond pulsing of SAWs, f1 and 
f2, with a time-division multiplexing method (Supplementary Fig. 
1a,b) during a period T. By modulating the time-division Δt1, Δt2 
and their ratio κ, spectrum trapping occurs (Supplementary Fig. 
1c) and enables positional tuning to precisely manipulate objects 
in a half-wavelength range of applied SAWs. On the basis of our 
analytical simulations (Supplementary Fig. 1d), this spectrum 
trapping method can provide spatial control with nanometre pre-
cision. By shaping the acoustic potential field on demand34,35, we 
can actively control the configuration of an acoustic-well array. As 
shown in Fig. 3a, a mesh-like arrangement of connected acoustic 
wells can be generated by using the same frequency to excite stand-
ing SAWs in the x and y directions. By switching from the second 
harmonic (fx2 = fy2 = 80.0MHz) to base (fx1 = fy1 = 40.0MHz) fre-
quencies, the lattice constant of the acoustic-well array changed 

from (
√

2/4)λ1 to (
√

2/2)λ1, causing the reconfiguration of the pat-
tern from single-colloid trapping (Fig. 3a, left) to pair (Fig. 3a, right 
and Supplementary Video 5). Specifically, at higher harmonics, each 
colloid occupies an acoustic well. However, the number of acous-
tic wells is reduced with a decrease in frequency, which forces the 
colloids to settle the same acoustic well at lower harmonics. When 
using harmonics (fx1 = 39.8MHz) in the x direction that are slightly 
shifted from the harmonics ( fy1 = 40.0MHz) in the y direction, a 
dot-like array of isolated acoustic wells can form a uniform rect-
angular pattern that enables repeatable switching between trap-
ping of a single colloid (Fig. 3b, left) and pairing (Fig. 3b, right). 
Notably, via dynamic switching among nanosecond pulsing har-
monics, a time-effective Fourier-synthesized acoustic potential 
field can be formed (Fig. 3c). Furthermore, the generated harmonic 
acoustic wells can be programmed with tuneable sizes and spacings 
between neighbouring wells. To demonstrate the dynamic pattern-
ing capability of HANDS manipulation, we created customized 
colloid patterns that form the shapes of the letters, ‘O’, ‘D’ and ‘K’, 
respectively, via modulating the five‐component harmonic SAWs 
(Supplementary Fig. 2).

By dynamically and reversibly switching between the single- 
colloid trapping and pairing modes (Fig. 3b), repeatable (operat-
ing for more than 1,000 pairing cycles, Supplementary Video 6) 
and high-throughput (>100 pairs simultaneously, Supplementary 
Fig. 4 and Supplementary Video 7) studies can be performed. We  
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characterized the separation force during this reversible pairing pro-
cess for polystyrene particles with an average diameter of 9.51 μm. 
As shown in Fig. 3d, we experimentally measured the force–time 
curves, and the peak separation force is calculated to range from 1.6 
to 19.5 pN with variable excitation amplitudes. Note that the separa-
tion force scales with the square of the SAW excitation amplitudes 
(Fig. 3e). The separation force applied on cells can also be calculated 
(Supplementary Notes 3–6). The time for particles to be fully sepa-
rated was approximately 12 ms when using an 8 V SAW excitation 
signal. Combining this short exposure time with the piconewton 
separation forces decreases the likelihood that this acoustic manip-
ulation method would interfere with cell sample measurements.

Next, we investigated selective manipulation for single cell–cell 
pairings. Individual U937 cells (marked with different colours in 
Fig. 3f) were trapped in four adjacent acoustic wells. By switch-
ing the frequency of the harmonic standing SAWs between 39.8 
and 79.6 MHz in the x direction, while keeping the frequency  

constant at 40.0 MHz in the y direction, two pairs of U937 cells can 
be periodically brought into contact and then separated in the x 
direction (Fig. 3f, top). To perform reversible cell–cell pairing in 
the y direction, we swapped the applied excitations in the x and y 
directions (Fig. 3f, bottom) and demonstrated that each cell could 
be paired with cells from different directions (Supplementary 
Video 8). Furthermore, we can selectively pair U937 cells while 
keeping neighbouring cells intact by modulating the synthesized 
six‐component harmonic SAWs (Fig. 1d). In summary, with our 
non-invasive HANDS particle manipulation platform, we can 
reversibly pair cells in a high-throughput manner and can also 
selectively target any two neighbouring cells by simply modifying 
the applied multi-harmonic waves.

High-throughput quantification of cell-to-cell adhesion. The 
ability to distinguish variations in cell–cell adhesion29,30 is a sub-
stantial quantitative capability for any single-cell manipulation and 
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analysis technique. However, existing techniques, such as atomic 
force microscopy29, micropipette aspiration30 and optical tweezers31, 
typically require direct physical contact with the cells. They can 
only probe one cell pair each time, which is time-consuming and 
labour-intensive for any practical assay. With the ability to simul-
taneously perform repeated and reversible cell–cell pairing (Fig. 
4a) in a large array in suspension, we conducted cell–cell adhe-
sion assays with our HANDS platform on various cell lines. We 
first investigated whether HANDS manipulation could distinguish 
adhesion differences between adherent THP-1 macrophages (M1 
THP-1) and non-adherent THP-1 monocytes (M0 THP-1). Here, 
THP-1 macrophages are differentiated from THP-1 monocytes with 
phorbol-12-myristate-13-acetate (PMA) as a stimulus36. As shown 
in Fig. 4b, top, non-adherent M0 THP-1 cells begin their retrac-
tion period immediately after a 2-s contact signal is deactivated 
since their intrinsic adhesion forces are not adequate to balance 
the acoustic separation forces. Conversely, M1 THP-1 cells cannot 
be immediately separated due to the significantly increased adher-
ence with the PMA stimulation. The cell–cell distance trace for M1 
THP-1 cells is a flat line for the period immediately after contact 
signal deactivation (Fig. 4b, bottom). This is due to the force clamp 
(the balance between the separation force and the adhesion force), 
and we define the duration of this force clamp period as the adhe-
sion lifetime (t1). Using this value, we can distinguish differences in 
adhesion forces between cell types consistently and quantitatively. 
Additionally, we varied the applied contact signal duration tcs (0.5–
2.5 s) to investigate variations in adhesion lifetimes (Supplementary 
Fig. 5a–f). Both heatmaps of the adhesion lifetimes (Supplementary 
Fig. 5a,b) and histogram of the adhesion frequency (Fig. 4c, defined 
here as the percentage of adhesion lifetime events per cell pair for 
50 contact and separation cycles) present that the adhesion strength 
of M1 THP-1 cells increased with the duration of the applied con-
tact signal. A western blot analysis (Supplementary Fig. 5g) with 
a high expression of the intercellular adhesion molecule ICAM-1 
confirmed that there should be a higher cell–cell adhesion strength 
in the M1 THP-1 cells than that in the M0 THP-1 cells. Altogether, 
these results support that the HANDS manipulation can success-
fully measure and distinguish adhesion differences between adher-
ent and non-adherent cells.

In addition to cell surface proteins, cell–cell adhesion strength 
could also be affected by other intrinsic properties of cells, such as 
the actin cytoskeleton organization37. Thus, we applied the HANDS 
platform to examine and quantify the variation of cell–cell adhe-
sion strength caused by perturbations in the organization of the 
actin cytoskeleton. We first explored the adhesion differences in 
MCF-7 cells with and without a Cytochalasin D (CytoD) treat-
ment (Supplementary Fig. 5h). The CytoD treatment affects the 
organization of the cytoskeletal network and inhibits actin polym-
erization in cells38,39. Previous experiments have demonstrated that 
actin polymerization regulates the rapid cell–cell adhesion during 
cell migration37. Without the CytoD treatment (CytoD−), the his-
togram of the adhesion lifetimes for MCF-7 cells shows a bimodal 
distribution of short (tshort) and long (tlong) lifetimes with average val-
ues of 0.30 ± 0.15 and 0.82 ± 0.15 s, respectively, as determined by a 
Gaussian fit (Fig. 4d). In sharp contrast, CytoD+ MCF-7 cells had 
a lower fraction (34.2 versus 62.3%) of long lifetimes than CytoD− 
MCF-7 cells, which indicates a reduction in adhesion strength after 
CytoD treatment (Fig. 4e).

Since intercellular adhesion forces are critical information about 
cell–cell attachment and detachment, we also investigated the capa-
bility of HANDS manipulation to quantify the variations in cell 
adhesion forces among different cell lines (Supplementary Fig. 5i). 
MDA-MB-231 and human embryonic kidney 293T (HEK293T) 
cells were tested following the same protocol as used with the 
MCF-7 cells. Compared with CytoD− MCF-7 cells (Fig. 4d), 
MDA-MB-231 cells show a lower fraction (41.5 versus 62.3%) of 

long adhesion lifetimes (Fig. 4f), which suggests a lower cell adhe-
sion than CytoD−MCF-7 cells. Additionally, the adhesion lifetimes 
of HEK293T cells show an almost equally populated bimodal dis-
tribution with similar short (46.4%) and long (53.6%) lifetime sub-
populations (Fig. 4g). For each cell line tested above, the bimodal 
Gaussian distribution in the lifetime enables a detailed comparison 
of the fractions of short and long lifetimes. In Fig. 4h, the adherent 
cells are compared on the basis of their fractions of lifetime sub-
populations, and the average lifetime fraction ratio RL/S (the ratio of 
the long lifetime fraction to the short lifetime fraction) is calculated 
for each cell type. This average lifetime fraction ratio could be used 
as an indicator for indirectly measuring the differences in cell–cell 
adhesion behaviour and strength. Notably, the adhesion strength 
decreased (as indicated by RL/S decreasing from 1.65 to 0.71) as the 
metastatic potential increased for the human breast cancer cell lines 
from MCF-7 to MDA-MB-231, which is consistent with measure-
ments taken by micropipette aspiration and static methods40.

Discussion
With our HANDS platform, we have demonstrated reversible, dex-
terous (such as pairing and separating) formation of colloidal crys-
tals and precise manipulation of single cells in a high-throughput, 
dynamic, selective, accurate manner, analogous to tactile human 
hands. We achieved this by using intelligent modulation of har-
monic acoustic waves to generate time-effective Fourier-synthesized 
acoustic potential fields. The HANDS platform can precisely handle 
soft matter to generate colloidal crystal monolayers with prescribed 
particle numbers and rotational speeds without using surface treat-
ment or modifying their material properties. HANDS can also 
perform reversible cell–cell pairing and separation to accurately 
measure the values of intercellular adhesion forces, with a through-
put 100 times higher than available single-cell manipulation tech-
niques, such as atomic force microscopy, micropipette aspiration or 
optical tweezers. By simply modifying the applied multi-harmonic 
waves, we can reversibly pair cells in a high-throughput manner or 
selectively pair any two neighbouring cells. With its soft yet power-
ful, precise yet high-throughput particle manipulation mechanism, 
the HANDS platform provides a practical solution to provide deeper 
insights into intercellular adhesion forces, predict cancer metastasis 
and establish a platform for personalized medicine via precision 3D 
biomaterial synthesis for organoid engineering. The ability to cre-
ate flexible lattices will revolutionize the discovery of colloidal and 
photonic crystals, providing a deeper understanding of soft matter 
and bring together non-living and living matter.
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Methods
Device fabrication and experiment set-up. A schematic and a photo of one 
HANDS device are shown in Supplementary Fig. 1a. To fabricate the device, two 
orthogonal pairs of segmented interdigital transducers (see Supplementary Note 
1 for further details), with a 10-nm-thick Cr adhesion layer and an 80-nm-thick 
Au conductive layer, were deposited onto a 128° Y-cut lithium niobite (LiNbO3) 
piezoelectric substrate (Precision Micro-Optics) using standard photolithography, 
e-beam evaporation and lift-off techniques19. Each pair of segmented interdigital 
transducers can generate harmonic standing SAWs of any order (from the specified 
base frequency up to the Nth harmonic). In the centre of two orthogonal pairs 
of interdigital transducers, a 400 × 400 × 20 μm3 polydimethylsiloxane (PDMS) 
chamber, fabricated using soft lithography techniques from a silicon mould, was 
bonded to the LiNbO3 substrate. To enhance the bonding between the LiNbO3 
substrate and the PDMS chamber, the LiNbO3 substrate was immersed in a 5% 
(3-aminopropyl)triethoxysilane (APTES, Sigma-Aldrich) aqueous solution at 
90 °C for 20 min. After rinsing with deionized water and drying the substrate, the 
APTES coated LiNbO3 and PDMS chamber can be firmly affixed using an oxygen 
plasma-activated surface treatment.

To actuate the HANDS device, two independent time-division multiplexed 
excitations, which were generated by radio-frequency signal generators (N9310A 
and E4422B, Keysight) or a dual-channel function generator (AFG3102C, 
Tektronix) and amplified by power amplifiers (30W1000B, Amplifier Research), 
were applied to the two orthogonal pairs of interdigital transducers, respectively. 
The frequency, amplitude, pulsing period and timing sequence of the excitations 
can all be programmed via the MATLAB controlled function generator. During 
the experiments, the signals were monitored by an oscilloscope (MSOX2024A, 
Keysight) in real-time. The HANDS device was operated under an inverted 
microscope (Eclipse Ti, Nikon). A ×40/0.95-NA (numerical aperture) objective 
lens (CFI, Nikon) was used to focus an image onto a CMOS camera (DS-Qi2, 
Nikon) for long-term video recording or a fast camera (FASTCAM Mini AX200, 
Photron) for high-frame-rate video recording, depending on the experiment. For 
all experiments under the microscope, a polarizer chip was used to eliminate the 
double image caused by reflections from the LiNbO3 surface.

Device operation. Before sample loading, a 5% Pluronic F-127 (Sigma-Aldrich) 
aqueous solution was injected into the chamber through 0.28-mm (0.011-inch) 
inner-diameter polyethylene tubing (Warner Instruments) to coat the microfluidic 
chamber. Then, PBS was injected to flush the tubing and chamber for 10 min.  
After loading colloids or cells into the microfluidic chamber, programmed 
harmonic signals, generated from both the x and y directions, were applied 
to all the interdigital transducers to manipulate the colloids and cells. All cell 
manipulation experiments were conducted in 30 min after cells were loaded into 
the microfluidic chamber.

Cell culture and chemical perturbations. Human breast cancer cell lines 
(MDA-MB-231 (ATCC-HTB26) and MCF-7 (ATCC-HTB22)) and human 
embryonic kidney cell line (HEK293T (ATCC-CRL11268)) were cultured in 
DMEM (Gibco), containing 10% foetal bovine serum (FBS) (Gibco) and 1% 
penicillin-streptomycin (Mediatech) in 100-mm tissue culture dishes (Falcon). 
Human monocytic leukaemia cell line (THP-1 (ATCC-TIB202)) was cultured  
in RPMI 1640 supplemented with 2-mercaptoethanol (0.05 mM, Sigma-Aldrich), 
10% FBS and 1% penicillin-streptomycin. Human myeloid leukaemia cell line 
(U937 (ATCC-CRL1593.2)) was cultured in RPMI 1640 supplemented with  
10% FBS and 1% penicillin-streptomycin with T-25 flasks (Thermo Fisher 
Scientific). All cell lines were obtained from ATCC and maintained in a cell 
incubator (Heracell VIOS 160i, Thermo Fisher Scientific) at 37 °C and  
a CO2 level of 5%.

M0 phase THP-1 cells were differentiated into macrophages (M1 phase 
THP-1) via incubation with 50 ng ml−1 phorbol-12-myristate 13-acetate 
(PMA, Sigma-Aldrich) for 48 h and subsequent incubation in RPMI 1640 cell 
culture medium for another 48 h. For cell–cell adhesion measurement, MCF-7, 
MDA-MB-231 and HEK293T cells were firstly detached from 100-mm tissue 
culture dishes with a 12-min treatment in TrypLE (Gibco) and incubated at 37 °C. 
After cell washing and resuspension, the cells were incubated in DMEM for 1 h 
with 100 mm low attachment tissue culture dishes (Falcon). CytoD+ MCF-7 cells 
were incubated under the same conditions but pretreated with 10 μg ml−1 CytoD 
(Thermo Fisher Scientific). Before loading cells into the microfluidic chamber, cells 
were washed and resuspended in PBS. For all wash and resuspension steps, cells 
were centrifuged at 800 r.p.m. for 5 min.

Intercellular distance trace plot. To obtain the intercellular distance trace plot 
from reversible cell–cell pairing, we monitored cell pairs with a microscope and 
recorded videos focused on regions of interest using a CMOS camera. As shown 
in Supplementary Fig. 4c and Supplementary Video 7, 12 pairs of U937 cells with 
50 contact and separation cycles were obtained in 6 min. By processing the regions 
of interest video with ImageJ, we measured the intercellular distance between the 
two opposite ends of a cell–cell pair. Two representative intercellular distance trace 
plots are shown in Supplementary Fig. 4d.

Adhesion lifetime measurement. The adhesion lifetime, t1, is defined as the time 
difference between the deactivation of the contact signal and the beginning of 
retraction for the cell pair (Fig. 4b):

tl = tc − tcs − tr + tic, (1)

where tc is the cell–cell contact duration, tcs is contact signal duration, tr is 
retraction time and tic is initial contact time. The contact duration tc is measured 
directly from the duration between initial and final cell–cell contact. The contact 
signal duration tcs is the excitation duration of base frequency for cell–cell pairing, 
which can be programmed into the signal generator. For Fig. 4b,d–h, the contact 
signal duration tcs is 2 s. For Fig. 4c, the contact signal duration varied from 0.5 to 
2.5 s with a 0.5 s interval. The retraction time tr is 0.49 s, which is an average value 
calculated from non-adhesion M0 THP-1 cells of 250 pairing cycles. For each cell 
pairing cycle, the initial contact time, tic, is defined as the time difference between 
the activation of base frequency excitation and initial cell–cell contact. The  
initial contact time indicates the travelling time from original single-cell trapping 
position to cell–cell pairing position and it is measured directly through the 
recorded video.

Adhesion lifetime analysis with varied contact signal duration. For M0 THP-1 
and M1 THP-1, we obtained the lifetime data by varying the contact signal 
duration from 0.5 to 2.5 s with a 0.5-s interval. We repeatedly tested five cell pairs 
with over 50 contact-separation cycles, for each pair and each contact duration, 
respectively, to obtain the adhesion lifetime data. With these data, the lifetime 
heat map with varied contact signal duration can be obtained. Each value of the 
heat map pixel represents the number of lifetimes (Ni

lt) among its lifetime range: 
[ i−1

W tss, i
W tss]. Here, heat map parameters, such as the separation signal duration 

and lifetime range number, are given as tss = 5 s and W = 30, respectively, with 
integer i = 1, …, 30. The adhesion frequency Pa is calculated using:

Pa =
W∑

i=1

Ni
lt

Ntot
, (2)

where Ntot = 250.

Adhesion lifetime analysis among different adhesion cell lines. For each cell 
line, the adhesion lifetime events were collected from five cell pairs with a total of 
250 contact and separation cycles. The lifetime distribution was analysed using a 
histogram (Fig. 4d–g), and fitted using a double Gaussian kernel function:

P =
2∑

i=1

Ai
σ i
√

2π e
−
(tl−t

avg
i )2

2σ2i , (3)

where P is the frequency (%) of lifetimes per 250 events for an analysed cell line. 
tavgi , σi andAi (i = 1, 2) are the mean lifetime, the standard deviation and the weight 
of the ith subpopulation, respectively. To classify the short versus long lifetimes, we 
used the average of two fitted mean lifetimes as the threshold: tth = 0.5(tavg1 + tavg2 ). 
For the short lifetime, P1 is defined as the frequency of lifetimes that t1 < tth; and for 
the long lifetime, P2 is the frequency of lifetimes that t1 ≥ tth. The fraction of short or 
long lifetime subpopulation can then be calculated as Pi/(P1 + P2).
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