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ARTICLE INFO ABSTRACT

Keywords: Cold spray deposition exploits the phenomenon of impact bonding for solid-state consolidation of metallic mi-
Cold spray croparticles. However, the particle interfaces in the deposits are susceptible to crack propagation under me-
Splats

chanical stresses, which results in inferior ductility. In this work, we seek to develop insights into splat-substrate
interface bonding by in-situ micromechanical investigations. A miniaturized mechanical testing approach is
reported here, which relies on micromachining, targeted indentation, and real-time scanning electron micro-
scopy to probe deformation and failure at buried interfaces. Investigations at the “single splat length scale”
enabled us to distinguish deformation mechanisms associated with 6061Al splats with globular and pancake-
shaped morphologies. We observed a transition from mechanical interlocking to metallurgical bonding with
an increase in the degree of particle flattening during deposition. The mechanically interlocked splats debond
from the substrate via crack propagation and splat sliding. On the other hand, metallurgically bonded splats do
not fail under indentation stresses exceeding 380 MPa; instead, displaying shear band propagation and pile-up
mechanisms. A four-fold enhancement in the critical stress for crack propagation in mechanically-interlocked
splats is achieved after a two-step annealing-aging heat-treatment cycle. We demonstrate that interface
bonding plays a more dominant role than the inherent plasticity of splats in influencing bulk deposits’ ductility,
underscoring the importance of interface engineering in cold sprayed materials.

In-situ indentation
Interface bonding
Deformation mechanisms

1. Introduction

The phenomenon of impact-bonding has gained renewed scrutiny
due to growing interest in metal additive manufacturing [1-5]. Cold
spray, a solid-state consolidation process, involves accelerating
micron-sized powder particles to supersonic velocities followed by se-
vere plastic deformation as they encounter a substrate [6]. The plastic
strains at the interacting surface of microparticles during impact can
exceed 1000 % [7], leading to significant flattening and forming
pancake-shaped structures called splats [8]. Mechanical interlocking
and metallurgical bonding are believed to be the two key bonding
mechanisms at splat-substrate and splat-splat interfaces [9]. The nature
of bonding depends on the impact velocity [10-12], the density, and the
hardness of microparticles with respect to the substrate [13,14], oxide
coating on microparticles [15,16], and the roughness of the substrate

[9]. Metallurgical bonding is stronger and desirable, owing to the atomic
level contact and chemical interactions between the elements [17,18].
High particle impact velocities (>Vcriricqr) lead to jetting and surface
oxide removal [19], enabling clean metal-to-metal contact for chemical
bonding [20]. Therefore, meeting the velocity threshold for jetting is a
crucial consideration while selecting cold spray parameters [21].
However, jetting is localized to the interacting particle surface periph-
ery, leading to non-homogeneous bonding [22]. Moreover, ultrashort
timescales and modest temperatures (compared to other thermal spray
techniques [23]) limit the extent of interface diffusion possible. The
resulting micro-cracks at splat-substrate and splat-splat interfaces can
have deleterious effects on cold sprayed deposits’ mechanical proper-
ties. Sundararajan and co-workers reported a loss in elastic modulus of a
wide range of cold-sprayed metals, such as Cu, Zn, Ti, Ta, Nb, and
stainless steel compared to their bulk counterparts [24]. A strong
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negative correlation between coating modulus and inter-splat crack
density was noticed, with a considerable ~40 % modulus loss even at a
low inter-splat crack density of less than 10 %. Cold sprayed deposits are
characterized by high flow stresses due to work hardening during
deposition [25], but they display arrested ductility. Rokni et al. reported
~3 % strain to fracture during a micro tensile investigation of 6061Al
deposits, which is merely one-third the failure strain of a 6061Al-T6
alloy [26]. Weakly-bonded interfaces become preferred sites for crack
nucleation and propagation under external mechanical loading [27,28],
responsible for arrested plasticity and premature failure in cold-sprayed
deposits. This is particularly problematic for applications where fatigue
resilience is important. Gavras and co-workers reported the threshold
for crack propagation (AKy) in as-sprayed 6061Al coating was merely
60 % of the threshold for the rolled alloy [29]. Post-spray heat-treatment
has been reported to be advantageous to eliminate micro-cracks and
promote bonding [24,30], augmenting mechanical properties of de-
posits [31-33]. However, inter-particle cracking, although arrested after
heat-treatment, remains a cause of concern [26,34].

Our prior study on in-situ strain evolution in the cold sprayed 6061Al
subjected to four-point bending revealed the coatings do not deform as a
single rigid body [35]. Instead, individual splats experience different
degrees of plastic strain, activating the splat sliding mechanism [36,37].
The non-homogeneous strain distribution was particularly pronounced
for coatings with higher inter-splat porosity, suggesting splat sliding is a
product of inferior interface bonding. We presented visual evidence of
these tensions in the microstructure by conducting in-situ indentation
creep tests inside the scanning electron microscope (SEM) as a function
of temperature [38]. It was observed that thermo-mechanical stresses
during indentation are concentrated along the splat boundaries, leading
to crack initiation, propagation, and splat delamination. Therefore, it is
pertinent to examine the adhesion, deformation, and failure character-
istics at interfaces to overcome the challenges described above with cold
sprayed deposits’ mechanical properties. The bulk of work in the liter-
ature on interface-related mechanical phenomena relies on post-failure
imaging of deposits [26,27,39]. There are some limitations associated
with this approach. First, it’s challenging to isolate interfacial phe-
nomena, such as inter-splat cracking, from intrinsic characteristics like
the plastic deformation of particles. Secondly, the mechanistic under-
standing is primarily qualitative, and there is a lack of information on
the critical stresses required to activate different deformation and failure
mechanisms. Given the fact that splats are the building blocks of cold
sprayed deposits, interface bonding is an essential consideration to
develop high-performance deposits. The adhesion of coatings on sub-
strates is routinely characterized by various tests, such as tensile pull-off,
three-lug shear, and collar-pin pull-off test [26,40]. While these tests are
essential to developing coatings with high adherence to the substrate,
they do not provide a precise understanding of bonding mechanisms at
the single splat length scale. This information deficit limits our current
understanding of how different bonding modes contribute to cold
sprayed deposits’ mechanical properties.

A significant impediment to single splat testing is the miniature
sample size (um-sized particles), difficult to resolve for targeted me-
chanical loading. Another challenge is that the splat-substrate interfaces
are buried and hidden from view, preventing direct observation of
deformation and failure phenomena. In this work, we report a miniature
mechanical testing approach based on in-situ indentation of micro-
machined splats inside the SEM, permitting real-time imaging of
deformation mechanisms activated at the interface. This method har-
nesses the multi-axial stress field beneath the indenter probe [41] to
trigger interface deformation and failure. We examined the effect of
varying plastic strain (extent of particle deformation/flattening) during
supersonic impact and post-spray heat-treatment on the nature of
bonding at splat-substrate interfaces. The findings in this work will pave
the way for devising interface engineering strategies to develop cold
sprayed deposits with superior mechanical properties.
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2. Experimental section
2.1. Cold spray and post-deposition heat-treatment

Gas atomized 6061A1 powder particles with an average size of 38.7
pm (Valimet, CA, USA) were used in this work. Splats with two distinct
morphologies, globular (Fig. 1a) and pancake-shaped (Fig. 1b), were
deposited on a clean, polished 6061Al (T6) substrate using a high-
pressure CGT 4000 cold spray system (CGT Technologies, Munich,
Germany). A custom-developed steel screen with tiny holes (~1 mm
radius) was placed in front of the substrate to achieve discrete splat
deposition. Two sets of processing conditions were used to obtain the
morphologies mentioned above: (a) air as the carrier gas with a pressure
and temperature of 6.2 MPa and 451 °C at the gun, respectively, and (b)
Helium as the carrier gas with pressure and temperature of 3.45 MPa
and 384.3 °C, respectively. The selection of these spray conditions is
based on a prior article by the authors, where the role of processing
gases on coating microstructure was examined [35]. The deposition was
performed with a single pass to avoid coating build-up. Fig. S1 in the
supporting information shows the successful deposition of splats.

The nature of bonding at the splat/substrate interface was tailored by
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Fig. 1. SEM images showing splats with globular (a) and pancake-shaped (b)
morphologies, and (c) schematic representation of indentation-based test
method to probe interfacial deformation behavior at the single splat
length scale.
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a two-step heat-treatment cycle, consisting of solution treatment and
aging treatment, using standard T6 conditions for 6061Al alloy [42].
The solution treatment was performed at 530 °C for 50 min (followed by
water quenching), while aging was carried out at 160 °C for 18 h (fol-
lowed by air cooling).

2.2. In-situ test method

The adhesion of plasma-sprayed splats has been reported by the
nanoscratch technique, which harnesses force exerted by a moving
indenter probe to de-bond and displace a splat from its original location
[43,44]. However, scratch-based methods are challenging to implement
for cold sprayed interfaces since metallic microparticles are embedded
inside the substrate due to severe plastic deformation in the interaction
zone. The interlocked interfaces resist de-bonding due to
scratch-induced forces. We observed scratch-loading results in plastic
deformation and/or wear of splats (shown in Supplementary Video V1,
Fig. S2). To overcome this challenge, we developed a novel test method
based on targeted indentation of the substrate at the periphery of splats.
Indentation loading results in a multi-axial stress-state beneath the tip
[45]. Our approach harnesses the stress-field’s horizontal component
(Figp) to induce localized interface debonding, schematically shown in
Fig. 1c. The in-situ indenter used for these investigations (Picoindenter,
Hysitron PI 87, Bruker, USA) is equipped with a lateral load sensor to
measure the horizontal forces, in addition to the normal forces typically
captured during indentation. The tests were performed in displacement
control mode, with the maximum penetration depth of the same order of
magnitude as the size of splats (~10 pm) to trigger interface de-bonding.
A 60 s hold step was programmed prior to indentation for thermal drift
correction. A diamond conospherical probe with a 1 pm radius was used
for these investigations. The testing was performed inside an SEM (JEOL
JIB-4500, Tokyo, Japan), which allowed us to identify, resolve and test
micron-sized splats. Real time imaging enabled the correlation of the
lateral force readings with splat debonding/deformation mechanisms.
An upward of 20 splat specimens were tested for each
processing/post-processing condition. The splats were sectioned by
focused ion beam (FIB) milling prior to in-situ indentation to be able to
visualize the underlying mechanisms governing interfacial deformation
and debonding.

3. Results

Fig. 2a demonstrates an in-situ indentation experiment performed on
a globular splat. Targeted substrate loading near the splat periphery
resulted in the splat’s horizontal displacement away from the probe. The
horizontal component of the multi-axial stress field beneath the tip
pushes the splat in the negative x-direction. However, there is a resis-
tance against splat displacement initially due to interface bonding be-
tween the splat and the substrate. The opposition against splat
displacement is exerted in the form of interfacial shear stress in the
positive x-direction (illustrated in Fig. 1c). There is a build-up of stress
until a critical lateral force (F,), after which the interface succumbs to
the externally applied load, and the splat is displaced from its original
position. By capturing horizontal force readings using a lateral force
sensor, we were able to quantify the load required to trigger splat
sliding. Fig. 2b shows the lateral force variation as a function of normal
displacement (tip penetration). There is a point of maxima in the force
curve, which we refer to as the critical point for failure initiation. The
splat displacement event is characterized by a drop in the lateral force
value (negative slope), which can be ascribed to the release of stress
built up at the interface up to the critical point. Supplementary Video V2
demonstrates indentation-induced sliding of a globular splat. Interest-
ingly, we did not observe the splat displacement phenomenon when the
same experiment was repeated for the pancake-shaped splats (Supple-
mentary Video V3). Instead, there was local plastic deformation around
the point of tip penetration.
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Fig. 2. (a) In-situ imaging of indentation-induced splat displacement, and (b)
lateral force vs. normal displacement plot for identifying critical shear force for
activating splat sliding in a globular splat.

From the experiment demonstrated in Fig. 2, we can only observe the
horizontal movement of the splat. It is unclear what transpires beneath
the splat leading up to the displacement event. To unravel the mecha-
nisms activated due to indentation loading, we sectioned the splats by
focused ion beam machining (Fig. 3a), exposing the splat/substrate
interface (Fig. 3b, c). There is a noticeable variation in the nature of
bonding for air-sprayed globular splats. While some of the splats were
characterized by intimate contact, others had incomplete bonding,
micro-cracks, and even prominent porosity (shown in Fig. 3b). Contrary
to this, He-sprayed pancake-shaped splats always displayed intimate
bonding without any discernible gaps or micro-cracks (Fig. 3c). These
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Fig. 3. (a) FIB milling to section the splats and SEM imaging of exposed splat-substrate interfaces revealing the nature of bonding in globular (b) and pancake-shaped

(c) splats.

dissimilarities arise due to the difference in the sonic velocity (v) in the
two gases, governed by the relationship, v = \/yRT/A [46], where y is
the specific heat ratio of the gas, A is the carrier gas’s molecular weight,
T is temperature, and R is the universal gas constant. Helium gas has a
higher specific heat ratio and lower molecular weight, favorable for
superior sonic velocity. Therefore, particles sprayed with He as the
carrier gas are accelerated to higher velocities before impact, which

results in severe plastic deformation of microparticles and produces
intimate splat-substrate bonding. On the other hand, particles sprayed
using air as the carrier gas impact the substrate with lower velocity, and
hence, the interface bonding is incomplete. The differences in interface
bonding seen for air-sprayed splats (Fig. 3b) can be attributed to the
variations in microparticle diameter (d), which has a negative correla-
tion with the critical impact velocity, V.,xd™ [21], exponent n being
0.19 for Al [47]. Smaller-sized particles possess lower kinetic energy,
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resulting in arrested adiabatic heating and interface softening, leading to
relatively inferior bonding (compared to larger splats). Additionally,
variations in individual microparticles’ velocity are expected depending
on their relative location in the spray stream. Minor differences in
impact velocity may produce significant variations in interface bonding
if the impact conditions are very close to the critical velocity.

We again performed indentation loading of the substrate near the
machined splats’ edge after exposing the interface. Fig. 4a demonstrates
the buildup of stress at the interface during indentation loading, even-
tually leading to debonding and displacement of the splat from its
original position. In some cases, splat displacement was preceded by
crack initiation, advancement, and deflection events (Fig. 4b). The
tortuous crack propagation is indicative of “interlocking” between the
splat and the substrate. In the interlocking mechanism, there is physical
interpenetration between the splat and the substrate. These inter-
penetrating networks disrupt a propagating crack, delaying splat de-
bonding (Supplementary Videos V4). The critical stress required for
activating splat sliding (o5) can be estimated based on the critical shear
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force value (shown in the force plot in Fig. 2b) and the area of contact
between the splat and the substrate (Ajners):

F. cr
A interf

O = (€]
Assuming the spherical microparticles transform to half-ellipsoids
upon impact [11], the resulting splat/substrate contact area can be
expressed as, Amey = 7nd?/2, d being the diameter of the original
spherical particles. Calculations based on Eq. (1) revealed a bimodal
distribution of o5, shown in Fig. 4c. While splats with intimate interface
were characterized by o5 ~1600 kPa, incompletely or poorly bonded
splats were susceptible to splat sliding at stresses as low as 450 kPa.

It was shown in Supplementary Video V3 that the pancake-shaped
splat could not be displaced during indentation loading. This was a
consistent observation during the in-situ testing of multiple splats. To
understand where the mechanical work done during tip penetration is
expended, we sectioned these splats by FIB milling and repeated
indentation testing to observe the interfacial mechanisms. In striking
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Fig. 4. Real-time SEM imaging of interface failure in globular splats reveals stress-concentration and splat sliding (a) and tortuous crack propagation (b) mechanisms
during indentation. A bimodal distribution of critical stress for activating splat sliding in air-sprayed splats is shown in (c).
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contrast to air-sprayed splats, the plastic flow was the prominent
deformation mechanism here (Supplementary Videos V5 and V6).
Fig. 5a shows the nucleation and propagation of shear bands across the
splat due to indentation loading. Interestingly, despite the intense
shearing, the interface resists cracking and splat detachment. The
absence of cracking and the activation of plastic flow around the
interface indicates metallurgical bonding between the splat and the
substrate. Unlike the physical interlocking mechanism, metallurgical
bonding requires the formation of chemical bonds. Therefore, pancake-
shaped splats display superior resistance to detachment and displace-
ment during indentation loading. The shear banding is accompanied by
material pile-up due to tip penetration (Fig. 5b). It was shown in Fig. 1b
that pancake-shaped splats are embedded inside the substrate due to
high sonic velocity in lighter Helium gas. As a result, a significant
portion of mechanical work during indentation is expended in gouging
out the deposited micro-particle, resulting in pronounced pile-up (Sup-
plementary Video V6). There were rare instances when microcracking
was observed at the interface. Supplementary Video V7 demonstrates
the crack formation was localized. Unlike globular splats, interfaces in
pancake-shaped splats do not provide the path of least resistance for
crack propagation. This is evident from Fig. 5c¢, where we see limited
cracking without splat detachment and displacement.
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These findings underscore the importance of intimate interfaces to
prevent de-bonding and splat sliding. Post-spray heat-treatment has
been reported to heal pores and micro-cracks in metallic coatings [24,
35]. To develop mechanistic insights into the effect of heat-treatment on
interface bonding at the single splat length scale, we subjected the
globular splats to the solution treatment-aging cycle described in Section
2.1. The heat-treated splats were characterized by intimate interfaces
without micro-cracks or major pores (Fig. 6a) unlike as-sprayed speci-
mens which displayed prominent signs of incomplete bonding (Fig. 3b).
In-situ adhesion tests revealed some splats were displaced during tip
penetration (Supplementary Video V8), while others resisted
de-bonding and splat sliding (Supplementary Video V9). Mechanisms
such as stress concentration followed by splat sliding, partial crack
opening, and pure plastic deformation were observed at the splat/sub-
strate interface (Fig. 6b, 6¢, 6d). The plastic deformation mechanism, in
particular, is in stark contrast to as-sprayed splats, which primarily
demonstrated interfacial cracking followed by splat detachment. The
prevalence of plastic deformation mechanism hints towards partial
metallic bonding due to heat treatment. In the cases where the splat was
displaced, the critical stress for splat sliding was calculated to be 4.1
MPa (£600 kPa), which is over four times the average critical stress
recorded for as-sprayed splats (Fig. 4c). These findings support the

Shear Band
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Fig. 5. Real-time SEM micrographs reveal the activation of shear band propagation (a), material pile-up (b), and limited crack opening (c) in pancake-shaped splats

during in-situ indentation.
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Fig. 6. In-situ SEM micrographs showing intimate splat-substrate bonding (a),
splat sliding mechanism (b), localized crack opening (c), and pure plastic
deformation (d) in heat-treated globular splats.
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potency of heat-treatment for significantly improving interface bonding
at the single splat length scale.

4. Discussion

The in-situ investigations in this work unravel a wide diversity of
deformation mechanisms at splat/substrate interfaces. These mecha-
nisms can be categorized into two broad classes, namely brittle failure
and plastic response. Crack propagation, crack opening, and splat sliding
fall under brittle failure; shear band propagation and material pile-up
represent plastic deformation. Interestingly, when plasticity is domi-
nant, the splat and the substrate deform as a single unit. Contrary to this,
brittle failure involves detachment and displacement of the splat from its
original position while the substrate exhibits plastic deformation. These
differences in interface deformation modes suggest variation in the na-
ture of bonding between the splat and the substrate. Metallic bonding
and mechanical interlocking have been reported as the possible bonding
mechanisms between cold sprayed coatings and substrates [48,49]. The
metallic bonding is facilitated by clean metal-to-metal contact due to the
fragmentation of the outer oxide shell on microparticles upon supersonic
impact on the substrate [50]. On the other hand, the mechanical inter-
locking mechanism is attributed to the interfacial instabilities during
deposition, resulting in interfacial waves, roll-ups, and vortices [48].
Additionally, the formation of lips on the substrate due to particle
impact also leads to physical interlocking at the interface [9]. Since
metallic bonding involves forming chemical bonds, the
indentation-induced stresses should exceed the theoretical shear
strength (¢ > 77) of Al to detach and displace the splat from the sub-
strate. On the other hand, mechanical interlocking does not involve
atom-level interactions, and therefore, splat de-bonding and sliding
should be possible to activate at lower shear stresses (¢ < 774). The
air-sprayed globular splats displayed a critical splat sliding stress ~1
MPa (Fig. 4c), which is 2 orders of magnitude lower than the theoretical
shear strength of 6061Al (~207 MPa). This implies that globular splats
do not form metallic bonds during supersonic impact. Pancake-shaped
splats, on the other hand, resisted debonding within the instrument’s
load limit. Shear band propagation in the interface region indicates a
preference for yielding over splat sliding. The tensile yield stress (o7) for
the 6061 substrate is reported to be around 200 MPa [26]. The corre-
sponding indentation yield stress (o7) can be determined using Tabor’s
relationship:

(] _

F 2
or

where F is a scaling factor. The most widely accepted value of F is around
3 [51]. Weaver and co-workers recently revisited the scaling factor’s
derivation for a conospherical tip by carefully performing micro-
indentation experiments that considered early data points when the
elastic-to-plastic transition occurs. The authors determined F’s value to
be around 1.9 when a 6061Al alloy is indented using a conospherical
probe [52]. Substituting the values of F and o7 to Eq. (2) above, we
obtain the indentation yield stress of 380 MPa for the pancake-shaped
splat/substrate interface region. The local stresses near the interface
should exceed the yield stress to initiate shear band propagation during
indentation, seen in Fig. 5a. Since we did not notice splat detachment
during shear band propagation, we can infer that the critical stress
required to activate splat sliding in pancake-shaped splats exceeds the
indentation yield stress. Therefore, we can conclude that metallic
bonding is the key interface bonding mechanism in pancake-shaped
splats.

The differences in the nature of bonding between globular (air-
sprayed) and pancake-shaped (He-sprayed) splats can be understood by
considering two mechanical effects during supersonic impact, namely,
strain hardening and material softening. While the hardening behavior
is due to the high strain rates involved during impact, material softening
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occurs due to adiabatic heating at the splat/substrate interface [53]. The
increase in interface temperature (T) is proportional to the plastic
deformation (¢) of impacting particles, evident from the internal energy
balance equation, dT = ode/pc, where o is the flow stress, p is the mass
density, and c is the specific heat [54]. Therefore, pronounced adiabatic
interface heating is expected for He-sprayed splats due to significantly
higher plastic strain (¢). The shear strength of microparticles falls to
near-zero values due to thermal softening, which leads to the ejection of
material jet upon impact [2]. The jetting event leads to the fragmenta-
tion of oxide shells on the outer surface of microparticles [55], enabling
clean metal-to-metal contact for metallic bonding [19]. Recently, it has
been argued that jetting can occur without thermal softening. A mech-
anism based on impact-induced shock has been proposed, stating that
the release of pressure at the particle edge leads to jet formation [3].
Increasing the impact velocity results in a higher plastic strain at the
interface and consequently pronounced localized tension that leads to
jetting. Given the advantage of low-density Helium gas for achieving
higher impact velocities, conditions are suitable for metallic bonding. A
close look at the SEM micrograph in Fig. S3 confirms the formation of a
ring of jet-like morphology around a He-sprayed particle. Contrary to
this, air spray conditions adopted in this work are not sufficient to form
strong metallic bonds. The key lesson learnt from these in-situ in-
vestigations is that the morphology evolution during supersonic impact
is directly tied with the nature and strength of splat/substrate bonding.
There is a transition from interlocking to metallurgical bonding as the
plastic strain (¢) during particle impact increases.

We also demonstrated the efficacy of heat treatment in augmenting
the adhesion and altering the deformation mechanisms at the single
splat length scale. Heat-treatment has two independent effects on cold
sprayed microstructures: (i) reduction of dislocation density within the
splat [27] and (ii) solid-state diffusion between the splat and the sub-
strate [17]. These phenomena should lead to enhanced ductility and
interface failure resistance. In-situ measurements confirmed a jump in
critical stress for splat sliding from under 1 MPa to over 4 MPa due to
heat treatment. However, this value is significantly smaller than the
theoretical shear strength of 6061Al (~207 MPa), indicating diffusion
during heat treatment is not entirely successful in forming metallic
bonds. It was mentioned before that impact and jetting lead to frag-
mentation and ejection of the oxide layer on Al particles. However, some
of the oxide debris can accumulate and get trapped at the interface [15,
56]. Especially, relatively lower plastic strains when employing air as
the carrier gas can suppress jetting, inhibiting oxide removal. These
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oxide fragments hinder pure metal-to-metal contact and obstruct ther-
mal diffusion between the splat and the substrate. As a result, complete
metallurgical bonding does not take place despite prolonged heat
treatment. Nevertheless, the observed four-fold enhancement in the
critical stress value after the solution treatment and the aging cycle is
promising. It underscores the suitability of heat treatment as a potent
tool for solving bonding issues in cold sprayed deposits. A dedicated
study on quantification of adhesion strength as a function of
heat-treatment conditions will provide further insights into the diffusion
time- and length scales desirable for stronger splat-substrate and
splat-splat bonding.

The differences in adhesion and deformation behavior at the single
splat length scale significantly impact bulk deposits’ mechanical
response. Fig. 7 compares the findings in this work (micro-scale defor-
mation) with an earlier study on the flexural characterization of 6061Al
coatings (macro-scale response) prepared using identical processing
conditions [35]. The preferential activation of shear band propagation
and pile-up in He-sprayed (pancake-shaped) splats translates to ductile
behavior in the coating. Contrary to this, air-sprayed coatings demon-
strate brittle-style failure, with catastrophic delamination of the coating
from the substrate. This observation agrees with the interfacial crack
propagation, splat detachment, and splat sliding mechanisms seen dur-
ing in-situ adhesion measurements (Fig. 4). In the literature on cold
sprayed alloys, cold sprayed materials’ low ductility is often attributed
to severe work hardening caused by powder particles’ supersonic impact
[7,31]. However, the comparison of deformation behavior shown in
Fig. 7 indicates otherwise. Even though He-sprayed splats and coatings
experience higher plastic strains during deposition, they display supe-
rior ductility. This implies tailoring interface bonding is a more helpful
strategy than tweaking the inherent plasticity of splats to control de-
posits’ ductility. This assertion is supported by recently reported
micromechanical investigations highlighting that impact velocity and
post-spray heat-treatment do not affect the intrinsic flow stress of cold
sprayed 6061Al splats [57]. The authors attributed this observation to
dislocation saturation in Al splats, whereby the annihilation rate bal-
ances the dislocation multiplication rate due to dislocation cross-slip in
FCC metals. The current work provides fundamental mechanistic in-
sights into the role of processing and post-processing conditions in
tuning the splat-substrate interfaces. Future studies will be devoted to
understanding the mechanics of interfaces between two splats.

Fig. 7. A comparison of deformation mechanisms at the single splat scale with bulk deposits illustrates the importance of interface bonding to achieve superior

ductility.

(The snapshots showing failure behavior of coatings are reproduced from the authors’ earlier work [35])
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5. Conclusion

We investigated the deformation and failure mechanisms associated
with 6061Al splats deposited on 6061Al substrates. A novel in-situ test
method is proposed, which harnesses the multi-axial stress field beneath
an indenter probe to trigger interface de-bonding and splat sliding. The
splats were sectioned by FIB milling to expose the buried interface,
followed by in-situ indentation loading inside the SEM to capture the
deformation mechanisms in real-time. Two sets of splat specimens with
distinct morphologies were examined: (i) air-sprayed globular splats
with limited flattening, and (ii) He-sprayed pancake-shaped splats with
severe deformation. The effect of heat treatment on interface deforma-
tion was also evaluated. The key conclusions drawn from this work are:

e There is a transition from mechanical interlocking to metallurgical
bonding at the splat/substrate interface with increasing particle
flattening during cold spray deposition.

e Mechanically interlocked globular splats de-bond from the substrate
via crack propagation and splat sliding mechanisms.

e Metallurgically bonded pancake splats resist debonding against
indentation stresses exceeding 380 MPa, and the shear band propa-
gation mechanism dominates the interface deformation.

e A two-step heat treatment, consisting of solution-treatment and
aging, augmented the critical stress for splat sliding by a factor of 4.

e Plasticity-dominated deformation at interfaces translates to superior
ductility in bulk deposits, underscoring the importance of interface
engineering for preventing brittle failure seen in cold sprayed
materials.

The in-situ approach described in this work provides a glimpse into
the mechanics of interfaces at the single splat length scale for the first
time. The current investigations were limited to splat/substrate in-
terfaces. The future work will focus on understanding deformation and
failure mechanisms at splat/splat interfaces created during coating
build-up.
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