
Emergent eigenstate solution for generalized thermalization

Yicheng Zhang,1 Lev Vidmar,2, 3 and Marcos Rigol1

1Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia

3Department of Physics, Faculty of Mathematics and Physics,

University of Ljubljana, SI-1000 Ljubljana, Slovenia

Generalized thermalization is a process that occurs in integrable systems in which unitary dy-
namics, e.g., following a quantum quench, results in states in which observables after equilibration
are described by generalized Gibbs ensembles (GGEs). Here we discuss an emergent eigenstate con-
struction that allows one to built emergent local Hamiltonians of which one eigenstate captures the
entire generalized thermalization process following a global quantum quench. Specifically, we study
the emergent eigenstate that describes the quantum dynamics of hard-core bosons in one dimension
(1D) for which the initial state is a density wave and they evolve under a homogeneous Hamiltonian.

Much progresses has been made in the field of nonequi-
librium quantum dynamics in the past two decades [1–5].
One of the focuses in this field has been understanding
how to describe isolated quantum systems after equilibra-
tion. In addition to being of fundamental interest, this
is of relevance to experiments with ultracold quantum
gases [6–15]. Thanks to both experimental and theoreti-
cal studies, we now know that after equilibration observ-
ables in generic (nonintegrable) quantum systems can be
described using traditional ensembles of statistical me-
chanics while in integrable systems they can be described
using generalized Gibbs ensembles [16–23]. This is theo-
retically understood in the context of eigenstate thermal-
ization for generic systems [3, 24–26] and of generalized
eigenstate thermalization for integrable systems [27–29].
The actual dynamics of observables between their initial
values and the equilibrated ones is in general nonuniver-
sal and needs to be studied in a case by case basis.

A different focus in the field of nonequilibrium quan-
tum dynamics has been the realization of exotic states
of matter, specially those that may not be accessible
in equilibrium. This is a topic on which periodic driv-
ing has been the main focus of attention [30], e.g., to
realize nontrivial topological states [31–36]. A special
class of quantum quenches (geometric quenches) has
also been used to created exotic states in strongly in-
teracting one-dimensional bosonic systems. For exam-
ple, to produce dynamical quasicondensation at finite
momentum [37, 38] as well as expanding bosonic gases
with fermionic momentum distributions [39–41]. Sur-
prisingly, the latter far-from-equilibrium states exhibit
power-law correlations and low entanglement typical of
gapless ground states in one dimension. Those states
were recently shown to be eigenstates (and specifically
ground states) of emergent local Hamiltonians [42, 43].

In this work we tackle a question that bridges the
two focuses mentioned above, namely, is it possible for
an eigenstate of an emergent local Hamiltonian to de-
scribe the entire path to (generalized) thermalization
after a global quantum quench? In contrast to the
states generated by geometric quenches in Refs. [37–41],
those that result in (generalized) thermalization exhibit

a rapid growth of entanglement; their entanglement en-
tropy grows linearly in time [44–48]. Since the evolution
time t after the quench enters the emergent Hamiltonian
as a parameter, this means that the desired eigenstate
must have an entanglement entropy that is proportional
to a Hamiltonian parameter.
To introduce the emergent local Hamiltonians, let us

consider a quantum quench (at t = 0) from Hamil-

tonian Ĥ(0) → Ĥf [both local, namely, they are ex-
tensive sums of operators with support on O(1) sites],

for an initial state |ψ0〉 that is an eigenstate of Ĥ(0).

At t > 0, |ψ(t)〉 = exp(−iĤf t)|ψ0〉 is an eigenstate

of M̂(t) = exp(−iĤf t)Ĥ(0) exp(iĤf t) (we set ~ ≡ 1).

M̂(t) is in general highly nonlocal, and can be written as

M̂(t) = Ĥ(0) +

∞
∑

n=1

(−it)n

n!
Ĥn , (1)

where Ĥn = [Ĥf , [Ĥf , · · · , [Ĥf , Ĥ(0)]···]] is a nested n-

order commutator. If Ĥn vanishes for n = O(1) then

M̂(t) is a local operator (as per our definition above).

We then call Ĥ(t) ≡ M̂(t) the emergent local Hamilto-
nian, of which |ψ(t)〉 is an eigenstate [42]. In the context
of geometric quenches, in which confining potentials are
turned off, this description has allowed to understand
and characterize low-entanglement far-from-equilibrium
states [42, 43, 49], and emergent Hamiltonians can be
used to speed up quasi-adiabatic transformations [50].
Our interest here are global quenches that produce

highly entangled far-from-equilibrium states. We focus
on 1D lattice systems with open boundary conditions, as
described by the hard-core boson Hamiltonian:

Ĥ = −J

L/2−1
∑

l=−L/2+1

(b̂†l b̂l+1 +H.c.) + V

L/2
∑

l=−L/2+1

(−1)lb†l b̂l ,

(2)

where b̂†l (b̂l) are the boson creation (annihilation) oper-

ators at site l (they satisfy b̂
†
l b̂

†
l = b̂lb̂l = 0), J (V ) is

the hopping (local alternating potential) strength, and L
(even) is the number of lattice sites. We set J ≡ 1, and
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their applicability remain to be explored. In the con-
text of geometric quenches, emergent eigenstate solutions
have been provided for a wide range of trapped hard-core
boson and spinless fermion systems in the ground state
and at nonzero temperature [42, 43, 50], and for domain
walls in spin-1/2 XXZ chains [42]. Our results here open
the door to using emergent eigenstate solutions to ex-

plore global quenches, which due to the high entangle-
ment they produce are much more challenging to study
computationally than geometric quenches.
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U. Schollwöck, J. Eisert, and I. Bloch, Probing the relax-
ation towards equilibrium in an isolated strongly corre-
lated one-dimensional Bose gas, Nat. Phys. 8, 325 (2012).

[9] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Wein-
mann, A. J. Daley, and H.-C. Nägerl, Quantum quench in
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Ĥ
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For the quantum quench considered in this work, one
can write the operator M̂(t) in Eq. (1) in the main text as

M̂(t) = Ĥ(t) + B̂(t), where Ĥ(t) is the emergent Hamil-

tonian given by Eq. (4) in the main text, and B̂(t) is the
boundary operator. Using the notation in Eq. (1), the
emergent Hamiltonian has the form

Ĥ(t) = Ĥ
(0)
SF − it Ĥ1 , (S1)

where Ĥ1 = [Ĥf
SF, Ĥ

(0)
SF ], and the boundary operator can

be written as

B̂(t) =
∞
∑

n=2

(−it)n

n!
B̂n , (S2)

where B̂2 = [Ĥf
SF, Ĥ1] and

B̂n+1 = [Ĥf
SF, B̂n] , (S3)

for n ≥ 2. The operator Ĥ1 equals

Ĥ1 =

L/2−1
∑

l=−L/2+1

(ĉ†l+1ĉl − ĉ
†
l ĉl+1) , (S4)

such that Eq. (S1) becomes Eq. (4) in the main text.

Here we discuss the structure of the boundary terms
B̂n, which cause the deviation of the emergent eigenstate
solution from the exact quantum dynamics [42]. We first

evaluate B̂2:

B̂2 = [Ĥf
SF, Ĥ1] = 2

(

n̂−L/2+1 − n̂L/2

)

, (S5)

where n̂l = ĉ
†
l ĉl. Equation (S5) shows that B̂2 is the

difference of site-occupations at the boundary sites. For

the next two Bn operators (for n = 3 and 4), we have

B̂3 = [Ĥf
SF, B̂2] = 2i

(

ĵ
(1)
−L/2+1 + ĵ

(1)
L/2−1

)

, (S6)

and,

B̂4 = [Ĥf
SF, B̂3] = 2

[

ĥ
(2)
−L/2+1 + 2

(

n̂−L/2+1 − n̂−L/2+2

)

−ĥ
(2)
L/2−2 + 2(n̂L/2−1 − n̂L/2)

]

, (S7)

where we define the generalized current operator ĵ
(m)
l ,

and the generalized kinetic energy operator ĥ
(m)
l , with

support on m+ 1 sites, as:

ĵ
(m)
l = (iĉ†l+mĉl +H.c.), (S8)

ĥ
(m)
l = (ĉ†l+mĉl +H.c.), (S9)

We note that B̂3 and B̂4 only contain one-body opera-
tors that at most connect the boundary sites with their
nearest and next-nearest neighbor sites, respectively.
Calculating B̂n for arbitrary values of n involves com-

puting the following commutators:

[Ĥf
SF, ĵ

(m)
l ] = −i

[(

ĥ
(m+1)
l − ĥ

(m+1)
l−1

)

+
(

ĥ
(m−1)
l − ĥ

(m−1)
l+1

)]

, (S10)

[Ĥf
SF, ĥ

(m)
l ] = i

[(

ĵ
(m+1)
l − ĵ

(m+1)
l−1

)

+
(

ĵ
(m−1)
l − ĵ

(m−1)
l+1

)]

, (S11)

and

[Ĥf
SF, n̂l] = i

(

ĵ
(1)
l − ĵ

(1)
l−1

)

. (S12)

One can see from Eqs. (S10)–(S12) that B̂n only contains
one-body operators, and that their maximum support
extends n− 1 sites from the boundaries.
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