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Quantum phase transitions are central to our understanding of why matter at very low tem-
peratures can exhibit starkly different properties upon small changes of microscopic parameters.
Accurately locating those transitions is challenging experimentally and theoretically. Here we show
that the antithetic strategy of forcing systems out of equilibrium via sudden quenches provides
a route to locate quantum phase transitions. Specifically, we show that such transitions imprint
distinctive features in the intermediate-time dynamics, and results after equilibration, of local ob-
servables in quantum-chaotic spin chains. Furthermore, we show that the effective temperature in
the expected thermal-like states after equilibration can exhibit minima in the vicinity of the quan-
tum critical points. We discuss how to test our results in experiments with Rydberg atoms, and
explore nonequilibrium signatures of quantum critical points in models with topological transitions.

I. INTRODUCTION

Quantum phase transitions are key to our perception
of quantum matter across fields in physics, from quark-
gluon plasma and neutron stars to quantum magnets and
high-temperature superconductors [1, 2]. At those tran-
sitions different quantities in completely different systems
can exhibit universal behavior. This is something that we
understand thanks to the development of the renormal-
ization group theory. Among the challenges that remain
for each specific system is to (if possible) find experimen-
tally where quantum phase transitions occur, as well as
theoretically predict their locations using simplified mod-
els. Quantum simulators promise to overcome the latter
challenge by experimental means, as they provide pristine
and controllable realizations of theoretical models [3, 4].

Quantum simulators also provide access to real-time
dynamics. This is something that can be used to explore
unique aspects of crossing a quantum phase transition in
real time. For example, recently a Rydberg-atom quan-
tum simulator was used to probe the Kibble-Zurek mech-
anism of universal defect production for slow parameter
sweeps [5]. On the theoretical side, recent works have
provided evidence that nonequilibrium quantum evolu-
tion can be used to probe quantum phase transitions in
integrable systems [6, 7], in prethermal states for mod-
els close to integrability [8], or through out-of-time-order
correlators [9]. However, identifying real-time signa-
tures of quantum phase transitions in generic (quantum-
chaotic) many-body systems has remained a challenge.

In this work we show that generic quantum matter can
exhibit dynamical signatures of quantum phase transi-
tions by the antithetic strategy of forcing these systems
out of equilibrium and therefore beyond the ground-state
manifold. We find that the intermediate-time dynam-

ics of local observables and of the entanglement entropy
exhibit distinct features after quantum quenches in the
anisotropic next-nearest neighbor Ising (ANNNI) chain
upon tuning the quench parameter across an underlying
quantum phase transition. Specifically, we find that the
derivatives of local observables with respect to the quench
parameter develop prominent dips/peaks in the vicinity
of the quantum phase transition. We determine the quan-
tum real-time evolution by means of the infinite-Time
Evolved Block Decimation (iTEBD), which provides nu-
merically exact results for the transient to intermediate-
time dynamics in the thermodynamic limit [10-12].

In order to access the long-time (asymptotic) prop-
erties of the considered quantum-chaotic system after
the expected thermalization, we employ a numerical
linked cluster expansion (NLCE) for thermal equilibrium
states [13]. We again find distinct signatures of the
quantum phase transition in derivatives of the correla-
tion functions. Also, the effective temperature exhibits
a marked minimum as function of the quench param-
eter in the close vicinity of the quantum phase transi-
tion. Since the considered one-dimensional system does
not support singular behavior after equilibration, upon
assuming that eigenstate thermalization occurs [14-17],
these prominent features are not associated with nonan-
alytic properties (in contrast to the integrable systems
studied in Refs. [6, 7]), but nevertheless represent dis-
tinct signatures of quantum phase transitions. Finally,
we discuss similar phenomena for quantum phase tran-
sitions involving topologically different quantum states.
We also discuss how our findings can be tested in current
experiments with Rydberg atoms.

The presentation is organized as follows. In Sec. II,
we introduce the Hamiltonian of the ANNNI chain, and
introduce the protocol used to probe the ferromagnetic



to paramagnetic quantum phase transition via dynamics
following quantum quenches. The results obtained for
dynamics after the quenches are presented in Sec. III,
while the results after thermalization are presented in
Sec. IV. Combining results from the dynamics and ther-
malization, in Sec. V we report the estimated phase di-
agram for the ferromagnetic to paramagnetic quantum
phase transition for a wide range of parameters of the
ANNNI chain. In Sec. VI, we discuss the feasibility of
testing our results experimentally, while in Sec. VII we
discuss the applicability of our protocol to detect topo-
logical quantum phase transitions. In Sec. VIII, we sum-
marize our results and discuss their implications.

II. ANNNI HAMILTONIAN AND
QUENCH PROTOCOL

The ANNNI chain is a very well studied spin model
(see, e.g., Ref. [18]). Its Hamiltonian in a chain with L
sites can be written as

L L L
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When mapped onto a fermionic Hamiltonian using
Jordan-Wigner transformation [19], the next-nearest-
neighbor term (with strength k) maps onto a four-
fermion interaction. At T' = 0, this model has a rich
(and still partly controversial) phase diagram in the x-T
plane. The quantum phase transition line from the ferro-
magnetic to the paramagnetic phase, which occurs as the
antiferromagnetic next-nearest neighbor coupling x > 0
crosses a critical value for a fixed |T'| < 1, is a second or-
der phase transition (see, e.g., Ref. [20]). In the quadrant
(k > 0, T' > 0), this line is well described using second
order perturbation theory, with the critical parameters
satisfying (see Fig. 11) [20]:
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To probe this ferromagnetic to paramagnetic quantum
phase transition at a fixed value of I', we generate a fam-
ily of Hamiltonians H (k). We then generate a family
of nonequilibrium states via quenches with H (). The
protocol (straightforward to generalize to other models)
consists of following steps (see Fig. 1):

(i) The initial state is fixed to be the ground state
|&(kr)) of H(kr), where k1 is deep in the ferro-
magnetic phase.

(ii) We suddenly change (quench) k; — k at t = 0, and
study the unitary time evolution of the system un-

der the time-independent Hamiltonian H(k), i.e.,
[(t, k)) = exp[—iH (k)t]|¥(k1)) (we set h=1).
(iii) We compute expectation values of observables

O(t, ) = ($(t, 7)|Ol(t, ).
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FIG. 1. Schematic representation of our quench protocol,

superimposed on a schematic ground-state phase diagram of
the ANNNI chain.

(iv) For a fixed value of ¢, we study how O(t, k) changes
with k, focusing on the behavior in the vicinity of
K¢, Where k. is the critical value of k for the tran-
sition given the selected value of T.

III. QUANTUM DYNAMICS

We study the time evolution of observables after quan-
tum quenches in an infinite ANNNI chain using iTEBD
(see Appendix IX) [10-12]. Following the protocol intro-
duced in Sec. IT (see Fig. 1), we fix I' (we take I' = 0.2)
and then fix x; so that the initial state is a ground state
of the ANNNTI chain deep in the ferromagnetic phase (we
take k7 = 0). In our iTEBD calculations, we introduce a
very small (~ 107%) longitudinal field to pin one of the
two degenerate maximally polarized ground states. The
critical value of x for the ferromagnetic to paramagnetic
quantum phase transition for I' = 0.2 is k. ~ 0.41.

We first focus on the dynamics of two local observ-
ables, the nearest and next nearest neighbor longitudinal
correlators

1 L
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In Fig. 2, we show results for the time evolution of CY
[Fig. 2(a)] and CF [Fig. 2(b)] for six values of x after the
quench. The dynamics of both longitudinal correlators is
qualitatively similar for the values of x shown. Their de-
crease with time speeds up as k increases about k.. How
the closeness to k. affects the dynamics is better seen by
plotting the correlations for fixed times ¢ after the quench
as functions of & [step (iv) in the protocol introduced in
Sec. IT]. This is done in Fig. 3, where we show results for
C? [Fig. 3(a)] and CF [Fig. 3(b)]. At all times reported,
CYT and CF decrease rapidly with increasing the value of
k for k 2 k.. In addition, with increasing time, the de-
crease in the correlators becomes more prominent when
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FIG. 2. Time evolution of (a) CT and (b) C5 for six values of
k after quenches starting from the ground state of the ANNNI
Hamiltonian with I' = 0.2 and x; = 0.
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FIG. 3. Ferromagnetic to paramagnetic quantum phase tran-
sition in the ANNNI chain as revealed via real time dynamics
of local observables. (a) CT and (b) C% at different times plot-
ted as functions of x after the quench (the legend is the same
for both observables). (Insets) Derivative with respect to s of
the results shown in the main panels. The initial state is the
ground state of the ANNNI Hamiltonian with I' = 0.2 and
1 = 0. The vertical dashed lines mark the critical x. ~ 0.41.

K =~ k.. This is apparent in the insets, where we show
the derivative of the correlators. They develop sharper
dips close to k. as the evolution time increases.

In Refs. [6, 7] it was proved that following the same
protocol discussed here but for noninteracting models (or
models mappable to them) results in nonanalytic behav-
ior of local observables at the quantum phase transition
in the limit ¢ — oo (after having taken the thermody-
namic limit first). While this is not the case in the
quenches in generic models studied here (see Sec. IV),
the prominent features seen in Fig. 3 at finite times are
promising for an experimental determination of s..

We also studied the dynamics of the half chain entan-
glement entropy Sy/2 = —Tr[py/21np; /5], where py /5 is
the density matrix of the half chain (obtained by tracing
out the other half). This is a nonlocal observable that
is expected to increase linearly with time in quantum-
chaotic systems [21]. In Fig. 4(a), we plot the time evolu-
tion of Sy, for six values of k. As for the local operators
in Fig. 2(a), the change of S;/, with time speeds up as x
increases about k.. Figure 4(b) shows S/, at fixed times
t after the quench plotted vs k, and the inset in Fig. 4(b)
shows the derivative with respect to x of the results in
the main panel. Like the local operators in Fig. 3, the
behavior of the half chain entanglement entropy carries
a marker of the quantum phase transition.
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FIG. 4. Ferromagnetic to paramagnetic quantum phase tran-
sition in the ANNNI chain as revealed via real time dynamics
of the half-chain entanglement entropy S;/. (a) Time evo-
lution of Sy, for six values of k. (b) Si/2 at different times
plotted as a function of k. (Inset) Derivative with respect to
K of the results shown in the main panel. The initial state for
the dynamics is the ground state of the ANNNI Hamiltonian
with I' = 0.2 and x; = 0. The vertical dashed lines mark the
critical k. ~ 0.41.



A. Changing xr

In Fig. 5, we show the derivative of C¥ with respect
to k at a fixed time after the quench, plotted as a func-
tion of k, for different values of x; in the initial ground
state. We recall that as k; departs from k., for k7 < ke,
the ground state of the system is deeper in the ferro-
magnetic phase. The results in Fig. 5 show that starting
deeper in the ferromagnetic phase results in a slightly
shallower dip in dC¥/dk, while its position remains un-
changed. This might be expected as the departure of
k1 from k. increases the magnitude of the quench, and
hence increases the final energy density, thereby blunting
the signature of the quantum phase transition. This is
consistent with the results in Sec. IV C, where we dis-
cuss the effect that the increase in the magnitude of the
quench has in observables after thermalization.
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FIG. 5. Results for dC¥ /dk, as those in the inset in Fig. 3(a),
obtained at a fixed time ¢t = 15 after the quench for different
values of kr (=-0.2, 0, 0.2) in the initial ground state. The
vertical dashed line marks the critical x. ~ 0.41.

IV. RESULTS AFTER THERMALIZATION

Because of the linear growth of the entanglement en-
tropy seen in Fig. 4, the iTEBD technique only allows
one to study dynamics at short and intermediate times.
To explore the fate of observables after thermalization,
we use a numerical linked cluster expansion (NLCE) [13].
We broaden the class of initial states to explore how ini-
tial nonzero temperatures modify the behavior of observ-
ables after thermalization.

Here we consider more general quenches within the
ANNNI Hamiltonian involving initial states p; that are
thermal equilibrium states of the initial Hamiltonian

H(kr). For an initial temperature Ty, g has the form

e~ A (1) /Tt
Tele BR/T1]

pr=

: (4)

4

When T7 = 0, pr is the ground state of ﬁ(m). As in
the previous section, we quench k; — &, while I" is kept
unchanged (I' = 0.2). In Secs. IVA and IVB we fix
k1 = 0. In Sec. IV C, we explore what changes when k7 is
varied within the ferromagnetic phase (k7 < k. =~ 0.41).

Since the energy after the quench is the only conserved
quantity, at sufficiently long times in the thermodynamic
limit, observables are expected to be described by a Gibbs
ensemble [17]

o~ H1(%)/T(w)

- 5
Tr[e*H(”)/T(N)] ( )

pcE(K)

with a temperature T'(x) > 0 (which is nonzero even
when T7 = 0) determined by the energy E(k) set by the
initial state pr, as dictated by:

Trlpce (k) H (k)] = Tr[prH (k). (6)

We use the numerical linked cluster expansion (NLCE)
technique introduced in Refs. [13] to study the thermal
expectation values of observables in the thermodynamic
limit (see Appendix IX for details). All the NLCE re-
sults for the ANNNI chain are obtained using 15 orders
of the maximally connected cluster expansion introduced
in Refs. [22]. To gauge how well the series has converged,
we estimate the convergence error for an observable by
computing the relative difference between the last two or-
ders (14 and 15) of the NLCE [22]. We only report results
whose convergence error for the energy is less than 107°.
T'(k) is obtained by numerically matching the energies in
the left and right side of Eq. (6). Both energies are evalu-
ated using NLCE to 15 orders, and T'(k) is computed by
enforcing that their relative difference is less than 107!
(see Ref. [22]). For observables other than the energy,
we only report results whose convergence errors are less
than 5 x 1075 (except for the entropy, for which we set
the cut off to be 7x 107°). Those errors are small enough
to be unimportant for the discussions that follow.

A. Observables

As mentioned before, in the thermodynamic limit at
sufficiently long times after the quench, thermalization
is expected to occur in the nonintegrable systems con-
sidered here [17]. Next we study the expected thermal
equilibrium results that observables O reach after equili-
bration following the quench.

In the space of all possible thermal equilibrium ensem-
bles parameterized by the coordinates (7, k), the initial
state pr sets a trajectory T'(k) determined by Eq. (6).
One can then write

d0 _ar (00 (90 .
de  dr \OT ), ok ) '
Since O(T, k) is an analytic function whenever T' > 0,

and since dT'/dk is expected to be a smooth function of
k (we discuss this in Sec. IV B), then dO/dx must be



FIG. 6. The nearest (next nearest) neighbor longitudinal
spin-spin correlation per site C¥ (C5), see Eq. (3), evalu-
ated in thermal equilibrium using NLCE following quenches
k1 = 0 — &, with Tr = 0, 0.1, 0.5, and 1.0. We also show
C? and C7 in the ground state of H (k) (dotted lines) com-
puted using iTEBD. The main panels in (a) and (b) show
dC1/drk and dCs/dk, respectively, while the corresponding
insets show CT and C3. The vertical dashed lines mark the
critical k. ~ 0.41.

a smooth function of x after equilibration following the
quench. Still, for observables that are indicators of the
quantum phase transition in nonintegrable systems (e.g.,
order parameters and related observables), (00/9T),
and (00/0k)r can be large if T is low when & is close to
ke (we show the latter to be the case for our quenches in
Sec. IV B). This means that, even in thermal equilibrium,
it is possible to have prominent (but smooth) features in
dO/dr as observed at intermediate times in the previous
section. In integrable systems, in which all possible states
after equilibration are described by generalized Gibbs en-
sembles that are parameterized by extensive numbers of
quantities [23, 24], nonanalytic behavior is possible and
has in fact been observed in Refs. [6, 7].

In Fig. 6, we show the thermal equilibrium results ob-
tained for the nearest C{ and next nearest Cj neigh-
bor longitudinal spin correlations per site [see Eq. (3)]
as functions of x after the quench, as well as their ex-
pectation values in the ground state of H(k) computed
with iTEBD. The main panels show dC'3)/dk, while the
insets show C(2)(k), for various initial temperatures 77
and in the ground state (dotted lines, computed with
iTEBD). In the ground state, C¥ and C§ are nearly one
in the ferromagnetic phase and exhibit a rapid decrease
when crossing the quantum phase transition (prominent
minima can be seen in dC(y)/dk at k), i.e., they serve
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FIG. 7. The transverse spin magnetization (m®) and the
von-Neumann entropy (s), per site (see text), evaluated using
NLCE in thermal equilibrium following quenches k1 =0 — &
with Tt = 0, 0.1, 0.5, and 1.0. The main panels in (a) and (b)
show dm”®/dk and ds/dk, respectively, while the correspond-
ing insets show m* and s. In (a), we also show results for m?
in the ground state of H(k) (dotted lines) computed using
iTEBD. The vertical dashed line marks the critical x. ~ 0.41.

as indicators of the quantum phase transition. (They
also serve as indicators of the ferromagnetic to paramag-
netic quantum phase transition in the integrable trans-
verse field Ising model, see Appendix X.) This zero-
temperature behavior is the precursor of the behavior of
CY and CF observed in the insets for low initial 77, which,
in turn, produces the prominent minima in dC)/dk
near k. observed in the main panels. Figure 6 shows
that the position of the minima drift away from k., and
they become shallower, with increasing T7. Note that the
results for Ty = 0 and 77 = 0.1 overlap in the plots.
Qualitatively similar results were obtained for other lo-
cal observables, such as the transverse magnetization per
site m* = ), 07 /L, shown in Fig. 7(a), and for the (von-
Neumann) entropy per site s = —tr(pgg In par)/L of the
thermal state pgr(x), shown in Fig. 7(b). In the ground
state, m* increases rapidly when transitioning from the
ferromagnetic to the paramagnetic phase, as shown in
Fig. 7(a) (dotted lines, computed with iTEBD). Hence,
m? serves as an indicator of the quantum phase tran-
sition, and its behavior at zero temperature is the rea-
son there are prominent maxima in dm?*/dk near k. for
quenches at low T7. (See Appendix X for ground-state
results of m* across the ferromagnetic to paramagnetic
quantum phase transition in the integrable transverse
field Ising model.) The entropy, on the other hand, is
strictly zero at zero temperature, i.e., it does not change



at the phase transition [the entanglement entropy does
change, as shown in Fig. 4(b)]. However, as we show in
Sec. IV B, when T7 is low, the temperature after quench
increases rapidly when x crosses x. and this produces the
rapid increase of s seen in Fig. 7(b).

B. Temperature

Let us now show that d7T'/dk is a smooth function of
%. The ANNNI Hamiltonian can be written as H(k) =
Hy + nf/, so that keeping the initial state p; fixed and
changing k after the quench results in E(k) being a linear
function of k

E(r) = (Telpr o] ) + i (Telpr V1) ®8)

with a slope A = dE(k)/dk = Tr[p;V].
As in the previous section for dO/dk, for the energy
one can write

dE _dT (OE\ (9 -
de  dr \OT ), ok )7’
where (0E/0T), = Cy(T) is the specific heat. Combin-
ing Eqgs. (8) and (9), we have that

- (5)
ok T(x)

dT'(k)
PGS N 10)

All functions in the r.h.s. of Eq. (10) are smooth, and
Cy|T(x)] > 0, because T'(x) > 0 after the quench. This
shows that T'(k) is also a smooth function. Next, we use
numerical calculations to explore whether quenches k; —
K spanning across k. produce temperatures T'(k) with
signatures of the quantum phase transition, as shown to
be the case in Sec. IV A for local observables.

Figure 8 shows T'(k) for quenches with k; = 0 — &
for various initial temperatures 77, including the ground
state of H(ky). For very low initial temperatures T; <
0.1, the temperatures T'(k) after the quench are essen-
tially indistinguishable from those for 77 = 0. This ex-
plains why all the results reported in Sec. IV A are in-
distinguishable for 77 = 0 and 77 = 0.1. For those very
low Ty, the temperatures T'(k) exhibit a low-temperature
minimum in the vicinity of k. (at x,, ~ 0.39, for which
T(km) ~ 0.06). At Tt = 0.5, a temperature at which
T'(k) after the quench departs from the T7 = 0 result, a
minimum in 7T'(k) still remains visible close to k.. The
locus of minima in T'(x), shown as a dotted line for a
large number of 77, makes apparent that the minima re-
main close to k. as long as Tt remains low (77 < 1.0). At
higher initial temperatures, the minima depart from k.
indicating that the information about k. is washed out.

Overall it is remarkable that, due to the presence of
the phase transition (and the corresponding closing of
the gap above the ground state), when quenching to the
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FIG. 8. NLCE results for the temperature of the Gibbs en-
semble describing observables after equilibration, following
quantum quenches k1 = 0 — « within the ANNNI Hamil-
tonian, for initial thermal states at temperatures 77 = 0.0,
0.1, 0.5, 1.0, and 2.0. For those initial temperatures, minima
in T'(k) occur at ki, ~ 0.391, 0.391, 0.392, 0.379, and 0.306,
respectively. The locus of minima [km,T(km)] for a large
number of initial temperatures 77 is also shown. The vertical
dashed lines mark the critical x. ~ 0.41.

same (ordered) side of the critical point, the effective tem-
perature decreases as the size of the quench increases and
K approaches the critical point. This trend sharply re-
verses as  crosses the critical point. Examining Eq. (10)
in the context of our numerical results allows us to un-
derstand why a minimum develops near k. at very low
(Tt £0.1) and low (77 < 1.0) initial temperatures. At

~ ~

the minimum, we have that

‘" (%>T7 ()

where we defined the intensive counterparts of the exten-
sive quantities in Eq. (10) as a = A/L and e = E//L.
The main panel in Fig. 9 shows (de/0k)r vs k at dif-
ferent temperatures [inset Fig. 9(a) shows e vs & at the
same temperatures]. For T' = 0, we also show iTEBD re-
sults (the NLCE results do not converge close to k = k).
Notice that, in the region in which the NLCE results
converge to the precision mentioned in the introduc-
tion of this section, they are indistinguishable from the
iTEBD ones. The iTEBD results for (Je/0k)r—o exhibit
a rapid decrease about k. [resulting in a singularity in
(0%e/0Kk?)r—0 at ke, as shown in inset Fig. 9(b)], reflect-
ing the nonanalytic behavior of the energy at the (second
order) quantum phase transition. That rapid decrease
leaves its signature in the low-temperature behavior of
(0e/IK)T>0, and this is what makes possible for Eq. (11)
to be satisfied close to k. for low initial temperatures.
In Fig. 9, a = (070,5)s,/L is shown as a horizontal
line for 77 < 0.1. For those very low initial temperatures,
a is very close to 1 (a ~ 0.99) since sy = 0 is deep in the
ferromagnetic phase, and Fig. 9 shows that the condition
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FIG. 9. Thermal equilibrium energy per site e and its deriva-
tives at different 7'. The main panel shows (de/0k)r, inset (a)
shows e versus k at constant temperature, and inset (b) shows
(0%¢/0k?)r. Results are shown for different values of T (the
main panel and the insets share the legend). The solid (black)
curve (T = 0) shows the iTEBD results for the ground state,
while the other curves show NLCE results. Also depicted in
the main panel is a = (0707, 2)5,/L = 0.99 for T; < 0.1. The
vertical dashed lines mark the critical x. ~ 0.41.

(0e/O0k)r = a is satisfied at x = 0.39 for 7" = 0.05 and at
k = 0.37 for T' = 0.1. Those two temperatures approx-
imately bound the range of effective temperatures after
the quench for s close to k. when T7 < 0.1, see Fig. 8.
This explains why the minimum in T'(x) vs k occurs very
close to k. for Tt < 0.1. Increasing the initial temper-
ature beyond 77 = 0.1 increases T but also reduces the
value of a. This results in the minimum remaining close
(and actually slightly approaching) x. in Fig. 8 when T
departs from 0.1 but still remains low (77 < 1.0). Since
the slope of (Je/Ok)r at the crossing point near k. is
negative, it follows from Eq. (10) that the extremum in

T'(k) near k. is a minimum.

C. Changing «;

Motivated by the results discussed in Sec. IIT A, we
explore next what happens to the thermal equilibrium
results after equilibration when one changes x; within
the ferromagnetic regime, keeping 77 = 0 fixed. In
Fig. 10(a), we show T'(k) vs K for k; = —0.2, 0, and
0.2. As expected from the fact that the initial state re-
mains a nearly perfect ferromagnet, the minima in T'(k)
close k. are robust to the choice of initial x;. However
the minimum value of T'(x) attained decreases as k1 ap-
proaches k.. As a result, the signature of the presence
of a quantum critical point in observables after thermal-
ization becomes sharper as k; — k.. This is apparent in
Fig. 10(b) in which we plot dCT /dk.

Note that in Fig. 10(a) there is a singularity in T'(x)
at k = 0.2 for k; = 0.2, as well as at kK = 0 for k; = 0.
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FIG. 10. (a) Equilibrium temperature T'(x) and (b) dCT /dk
in thermal equilibrium, after quenches k1 — & from initial
ground states of H(kr) for three different values of x;. The
vertical dashed lines mark the critical k. ~ 0.41.

These are trivial consequences of performing no quench,
which means that the system remains in the ground state.
The fact that |dT'/dk| — oo at those points follows from
Eq. (10) due to specific heat C,(T — 0) — 0 in the
denominator. These singularities have no consequence in
the expectation values of observables.

V. PHASE DIAGRAM

Here we combine results obtained for C¥ at inter-
mediate times after the quench (from iTEBD calcula-
tions), and after equilibration (from NLCE calculations),
to identify, in the (x,I") plane, the phase boundary sepa-
rating the ferromagnetic and paramagnetic phases in the
ground state. We estimate k. by carrying out quenches
k; = 0 — k& for different values of T' (T is not changed
during the quench). Qualitatively similar results were
obtained for other local observables such as C§ and m?*
and are not reported here.

In the main panel of Fig. 11, we show k. extracted from
the extrema of dC¥ /dk obtained using iTEBD results at
t = 25 after quenches starting from the ground state, and
NLCE thermal equilibrium results after quenches start-
ing from the ground state (I; = 0) and from an ini-
tial temperature 77 = 0.3. As I increases, the NLCE
convergence errors are higher for quenches starting from
the ground state. This occurs because the critical point
gets closer to k; = 0 and the effective temperature after
the quench becomes too small (see Fig. 10 and related
discussion). This is the reason no NLCE points are re-
ported for quenches with I' > 0.4 and 77 = 0. On the
other side of the phase diagram, when I' is small, the
quenches in x result in fewer excitations (I' — 0 becomes
the classical Ising chain) thereby bringing the thermal
equilibrium ensemble about k. close to the ground-state
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FIG. 11. Phase boundary for the ground-state quantum phase
transition separating the ferromagnetic and paramagnetic
phases in the (x,I") plane. Unbiased results for the boundary
were obtained using ground-state iTEBD [iTEBDgs in the
legend, obtained locating the singularity in (9%e/0k*)7—0]
and are closely followed by the predictions of second order
perturbation theory (continuous line). The phase boundary
is well described by k. estimated from the extrema of dCT /dk
obtained in finite-time iTEBD calculations after the quench
(for t = 25) and in the (expected) long-time thermal results
obtained using NLCE. In all quenches Ky = 0 — k, I is not
changed during the quench, and we show results for 77 = 0
(iTEBD and NLCE), and for 77 = 0.3 (NLCE).

critical point. This also affects the NLCE convergence,
resulting in no NLCE data points for I' < 0.2. The re-
sults in Fig. 11 show that both the intermediate-time
and (expected) long-time extrema follow very closely the
phase boundary calculated using iTEBD for the ground
state [locating the singularity in (9%e/0k?)r—¢], which is
well described by the second order perturbation theory
results.

VI. EXPERIMENTAL TESTS

It is a central aspect of this work that the reported sig-
natures of the quantum phase transitions in the ANNNI
model are accessible in state-of-the-art quantum simula-
tor platforms with Rydberg atoms. The ANNNI Hamil-
tonian (1) can be straightforwardly realized using us-
ing Rydberg dressing in ultracold atoms in optical lat-
tices [25, 26]. Rydberg-dressed atoms exhibit a soft-core
interaction potential J; ; = Jo/[1 + (R;j/R.)®], which
is approximately constant below a threshold distance
R, between two atoms and decays quickly beyond the
threshold R, (in a R;J-G fashion as a function of dis-
tance R;; = ali — j|, where a is the lattice spacing
between the involved spins) [25]. Realizing approxi-
mately the ANNNI model with such a soft-core inter-
action potential requires to choose the tunable threshold
R, such that (Ri7i+3/Rc)6 > (RLZ‘.:,_Q/RC)E)‘, (RM_H/RC)G

so that Ji,i+3 ~ Jo(Ri,iJrg/Rc)_ﬁ < Jit1,Jiv2. In such
a regime only nearest and next-nearest neighbor cou-
plings have to be taken into account, while further dis-
tant ones can be neglected. The relative strength of
nearest and next-nearest neighbor interactions, quanti-
fied by k = Ji,i+2/']i,i+1 = [1 + (a/RC)G]/[l + (QQ/RC)G]
in Eq. (1), can also be varied by tuning R, relative to the
lattice spacing a with the only limitation that k < 1. As
the targeted quantum critical point x. =~ 0.41 < 1, the
reported signatures therefore lie within the tunability of
the couplings. Let us note that the interaction in the ex-
periment would be of antiferromagnetic nature and not
directly of the type required in Eq. (1). However, by per-
forming a rotation of — —oj’ on every other lattice site,
e.g., even ones, the Hamiltonian in Eq. (1) maps onto a
purely antiferromagnetic spin model and therefore to the
one which can be realized experimentally. Furthermore,
transverse fields can be straightforwardly generated, im-
plying that the full Hamiltonian can be modeled with
high accuracy.

It remains to clarify whether also the dynamics of this
system can be accessed in the desired regimes, which we
now answer in the affirmative. First, Rydberg-dressed
atom systems with a large number of spins (L ~ 200)
were already created in Ref. [25]. The trapping poten-
tial for the ultracold quantum gas only has a minor im-
pact when considering Rydberg dressing, it affects the
preparation of the initial condition by limiting the maxi-
mal number of spins which can be controllably initial-
ized [25]. Specifically, the fully polarized initial con-
dition we are considering in our work can be prepared
with high fidelity as demonstrated in Ref. [26]. Hence,
the main point that remains to be addressed is the co-
herence time, i.e., whether it is possible to identify the
proposed signatures before decoherence sets in. In a re-
cent experiment with Rydberg-dressed atoms time scales
Jt 2 10 were achieved, where J denotes the strength of
the nearest-neighbor couplings. Consequently, the time
scales discussed in Sec. III are in the experimentally ac-
cessible regime. We note that also the desired spin-spin
correlation functions in Eq. (3) can be measured in the
aforementioned experimental systems [26].

VII. TOPOLOGICAL TRANSITIONS

A final question we address next is how generally
one can use the previously introduced protocol to locate
quantum phase transitions in one-dimensional models.
Given the results obtained and insights gained within the
ANNNI chain (notice that in Fig. 11 we report results for
an entire phase boundary), we expect this protocol to be
widely applicable to one-dimensional models with tradi-
tional quantum phase transitions. A different question is
whether such signatures in local quantities can be used to
locate topological quantum phase transitions, as shown
for noninteracting models in Ref. [7] (non-local quantities
can, of course, retain such information in the noninter-
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FIG. 12. Signatures of the Néel to Haldane quantum phase
transition in the anisotropic XXZ chain. Derivatives with
respect to A of (a) CT [see Eq. (3)] and (b) CT [see Eq. (14)]
at different fixed times after the quench, and of the results
in the ground state (black solid line). The gray vertical line
shows the critical A, ~ 1.183

acting case — see, e.g., [27, 28]). In what follows, we
report results from a preliminary exploration of dynam-
ics after quantum quenches about topological transitions
in two quantum-chaotic models.

First, we explore the quantum phase transition from
the Néel to the symmetry protected topological “Hal-
dane” phase in the spin-1 anisotropic (XXZ) Heisenberg
chain model. The Hamiltonian for this model reads

L
Hxxz =) (§f§f+1 +87SY ., + ASiZSerl) , o (12)

p
where S7Y* denote the , y and z components of the
spin-1 operator at site ¢. Four different phases occur in
this model when one changes the anisotropy parameter
A (see, e.g., Refs. [29, 30] and references therein). Here
we focus on the transition that occurs upon decreasing
A from A > 1, a limit in which Hxxz reduces to the
spin-1 Ising antiferromagnet. With decreasing A, the
ground state of Hxxz undergoes a quantum phase tran-
sition from the antiferromagnet to the Haldane phase at
A, =~ 1.183. The Haldane phase is a topological phase,
protected by any one of the following three global symme-
tries: Doy spin rotation, time-reversal, and bond centered
inversion [31]. This transition is of second order, and

belongs to the 2D Ising universality class [32, 33].

In Fig. 12, we show ground state results for dC¥/dA,

where
1 L
Cf = 2 (8755, (13)
i=1
and for dC7/dA, where
1
Cf = i2 Z<Sf i’z+1>= (14)
i=1

plotted as functions of A. As for the local observ-
ables shown in Fig. 6 for the ANNNI model, dC¥/dA
in Fig. 12(a) [dCf/dA in Fig. 12(b)] exhibits a sharp
maximum (minimum) at the transition point. We expect
this maximum (minimum) to be the precursor of a peak
(dip) close to A, after the quantum dynamics generated
following the protocol introduced in Sec. II. To test this,
we take as initial state the ground state at large Ay = 2
and quench A across the neighborhood of A.. Due to
the high computational cost of the iTEBD calculations
for the spin-1 anisotropic Heisenberg chain, we are only
able to study dynamics at short times (¢ < 7) after the
quench. Still, for these short times, Fig. 12(a) [Fig. 12(b)]
shows that a peak (dip) appears to develop in dC¥/dA
(dC%/dA) about a A* greater than, but close to, the
transition point A.. As t increases those peaks sharpen
and move toward A.. This suggest that our protocol can
be used to locate this phase transition.

In the spin-1 anisotropic (XXZ) Heisenberg chain
model, like in the ANNNI model, to locate the phase
transition using our protocol we rely on the rapid change
of local correlations close to the transition point. Next,
we study a model in which at the transition point in equi-
librium, due to a symmetry, there is a vanishing change
in local correlations. The question then is whether this
can also be detected in the quantum dynamics and used
to locate the transition point.

The model is the bond-alternating Heisenberg
model [34]

H =

-

(G2i—102; + 102i02i41) (15)

i=1

where g; are the Pauli matrices (periodic boundary con-
dition implied). This model exhibits a topological tran-
sition between two dimerized phases at n. = 1, which
can be located using a nonlocal string order parameter.
Because of the invariance (up to a rescaling) of Hamil-
tonian (15) under 7 — 1/7, one can see that in ther-
mal equilibrium local correlations are symmetric about
7. = 1. This means that, so long as the correlations de-
pend on 7, they must exhibit a maximum or a minimum
at n. = 1. In Fig. 13 we show that this is indeed the case
for CT and C%, defined in Eq. (3), in the ground state.
At 1. = 1, CT exhibits a minimum in Fig. 13(a), and C§
exhibits a maximum in Fig. 13(b). Next, we explore the
fate of those extrema in the quantum dynamics.
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FIG. 13. Behavior of local operators, (a) C7 and (b) C3,
about the topological transition at n. = 1 in the bond-
alternating Heisenberg chain. The main panels display results
of the short-time dynamics (obtained using iTEBD) following
quantum quenches, see text for details about the quenches,
as well as in the ground state (obtained using iTEBD). The
insets show the expected long-time thermal equilibrium re-
sults after the quenches evaluated using NLCE to 15 orders
(NLCE-15) and 16 orders (NLCE-16), as well as the longest-
time result reported in the main panel. All the results exhibit
extrema close to the critical point.

We quench the parameter 7 following our protocol in
Sec. II, namely, taking the initial state to be the ground
state of Hamiltonian (15) for n = 0.5 and studying the
time evolution under Hamiltonian (15) with different val-
ues of . Figure 13 shows that extrema occur at n* close
to 7, both in the short-time dynamics (studied using
iTEBD, and shown in the main panels) and after ther-
malization (studied using NLCE, and shown in the in-
sets). We note that the position * of the minimum in
C? (maximum in CF) relative to 1. depends on whether
the initial state chosen is the ground state for n! greater
or smaller than 7.. The minimum (maximum) develops
at n* < n, for n! < 1., as seen in Fig. 13(a) [Fig. 13(b)],
and would develop at n* > 5, for n’ > n.. This is also
a result of the invariance (up to a rescaling) of Hamilto-
nian (15) under n — 1/7n. Hence, our protocol can also
be used in this model for which the transition is located
directly using the local observables, as opposed to the
earlier models for which it was located using derivatives
of the local observables.
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VIII. SUMMARY AND DISCUSSION

In summary, we have shown that local observables
can be used to locate the ferromagnetic to paramag-
netic quantum phase transition in the ANNNI chain (a
nonintegrable model) both at intermediate times after a
quench and at long times after thermalization. The ini-
tial states for our quenches were chosen to be ground
states of the ANNNI chain deep in the ferromagnetic
phase. We explored the effect that changing the magni-
tude of the quench and starting from initial finite temper-
ature states has in many of our conclusions, and showed
that our conclusions are robust against those changes.
We also discussed potential experimental tests, as well
as the applicability of our protocol to detect topological
quantum phase transitions.

More generally, the fact that intermediate-time dy-
namics, following quenches whose initial states are
ground states far from a quantum phase transition,
provide a way to locate the quantum phase transition
is promising for experiments with ultracold quantum
gases [3, 4] and ions [35, 36]. In those experiments, it
is usually straightforward to prepare ground states far
away from quantum phase transitions but it is much more
challenging to prepare them close to the transitions. The
latter is needed to locate the quantum critical point via
traditional measurements of the system in equilibrium.
Also, not needing to wait long times to observe signa-
tures of the quantum phase transition in the dynamics
after the quench is important because, due to heating and
other undesirable effects, keeping the dynamics coherent
in the experiments becomes increasingly challenging as
the evolution time increases.
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IX. NUMERICAL CALCULATIONS
A. Infinite Time-Evolving Block Decimation

In this section, we briefly outline details about
the infinite-time evolving block decimation (iTEBD)
method. The iTEBD algorithm is based on the infinite
matrix-product state (iIMPS) representation, which can
efficiently represent many-body wave functions with the
accuracy controlled by the bond dimension x (the error
decreases rapidly with increasing x). A general quantum
state |¥) on a chain with L sites can be written in the
following MPS form [10, 11]:

ZA“A

~»SL

. A[N]PE|s1, ..., 80), (16)

where, A[n]*" is a x,,—1 X X»n dimensional matrix and |s,, )
with s, =1,...,d is a basis of local states at site n. For
any arbitrary state |¥) represented in this product basis
[s1) ® ... ® |s1), one can write:

Z Csyosp|S1s- -5 SL).
S814...5SL

Doing repeated Schmidt decomposition on the state |},
one can get the form for the coefficients c,

Copsy, = TWstANIDERIs2 AR

815--3SN

AlL=1p[L)se

(17)
where I's are rank-3 tensors, and A’s are positive, real,
square-diagonal matrices. After doing the tensor con-
tractions, the structure obtained can be readily identified
with a Matrix Product State as in equation (16).

The size of the tensors x; required to represent a state
can be shown to be related to the von Neumann entropy
S; of the partition 1...4: i+ 1...L, as S; < 2Iny,. If
the entropy is area-law (as is the case for ground states
of one-dimensional gapped systems), y; remains finite in
the thermodynamic limit.

Using the iTEBD algorithm, one can evaluate the time
evolution of a quantum state:

&) = U(0)|w(0)), (18)

and use the imaginary time evolution U(7) = exp(—H7)
to find the ground state of the Hamiltonian H. Using
the Trotter-Suzuki decomposition to the first order, one
can write

e AHB = A0BY L 0(52), (19)
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where A and B are operators, and ¢ is a small parameter.
To use this expression, we write the Hamiltonian as a
sum of two-site operators of the form H = 3, hlhi+1]
and decompose it as a sum

H= IA{odd + ]:Ieven

IR SN0

i odd i even

The terms within one partition act on different sites
and thus commute with each other: [RlHi+1 pli%+1]] =
[;L[zi—l,%] E[Qi/—l,Qi/]] = 0.

One can approximate the time evolution operator for
a very small time slice §t < 1, to the first order, using

(19), as

U(6t) ~

H U17,+1] (St]

i odd

IT o1 54 (21)

7 even
where

U[i,i+1](5t) _ idt iz[“*l]. (22)

To determine the suitable §, one can successively make
it smaller to achieve convergence. We used the bond-link
dimension y = 4000 to ensure convergence for the longest
real-time dynamics results and the time steps used is
d = 0.01. The time evolution in equation (18) is ob-
tained by applying the operators e~ *7edad and e=evend
iteratively to the initial state [¢/(0)), which has been pre-
viously decomposed in the form of an MPS. After the
application of each operator at sites ¢ and i+1 the decom-
position (17) is updated, involving at each step only the
transformation of the tensors T}, Al and T+ 11, 12].

For a translational invariant infinite chain, the state
can be written in the form of equation (17), where I'l!
and Al are independent of i. Thus, given that the time
evolution is generated by two-site operators, only the ten-
sors T4, T'B. A and AP have to be updated, where
T4 — F[Zi]7FB _ F[2i+1], 2 = )\[21’]7 and \B = A[2i+1]

In our case, in which we also have a next-nearest neigh-
bor interaction, one can group the sites (merge two neigh-
boring site to one) and proceed with the same algorithm
where the local Hamiltonian is now 16 x 16 instead of 4x4.

B. Numerical linked cluster expansion

For lattice models in the thermodynamic limit (L —
o0), NLCE allows one calculate the expectation value of

extensive observables O per site, @ = (O)/L, as a sum
over contributions from all connected clusters ¢ that can
be embedded on the lattice:

(’)ZM

where Wo(c) is the weight of cluster ¢, and M (c) is the
number of ways per site in which one can embed ¢ on the

x Wo(c). (23)



lattice. Wo(c) is computed for each cluster ¢ using the
inclusion exclusion principle:

Wol(c) = (O)e = Y _ Wols), (24)

sCe

where (O). is the expectation value of O in the cluster
¢, and the sum runs over all connected sub-clusters of c.

For the smallest cluster co, Wo(co) = (O)e,-

For each cluster, (O), = Tr[p°O], where ¢ is the rele-
vant density matrix in the cluster. For the initial state p°
is of the form Eq. (4), and for the thermal state used to
describe observables after equilibration p¢ is of the form
Eq. (5), with their respective Hamiltonians restricted to
the cluster ¢. (O), is calculated numerically using full
exact diagonalization.

We use the maximally connected expansion introduced
in Ref. [22], in which each cluster ¢ contains all possible
bonds between the sites as per the specific Hamiltonian
considered. The order of the NLCE is then the number
of lattice sites of the largest cluster ¢ considered in the
sum (23). The series is convergent when errors in con-
secutive orders vanish exponentially fast with increasing
order.

For the thermal equilibrium results in the bond-
alternating Heisenberg model in Sec. VII [Fig. 13], we cal-
culate (O), separately for the bond-alternating Hamilto-
nian and its reflected configuration in ¢ and average them.
This extra step is necessary to restore the translational
invariance assumed to build the NLCE used. For this
model, in order to calculate the temperatures of the ther-
mal equilibrium ensembles used to describe observables
after thermalization, we use energies after the quench
that are obtained using iTEBD. With those energies, the
temperatures are obtained using a 16-order NLCE calcu-
lation. The convergence errors in the calculation of the
energy are smaller than 5 x 10~ for all parameters con-
sidered (they are much smaller than 5 x 10~ for most
parameters considered).
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X. TRANSVERSE-FIELD ISING CHAIN

The transverse field Ising chain (TFIM) is probably the
most studied exactly solvable (integrable) model in the
context of quantum phase transitions [1, 18]. Its Hamil-
tonian reads

L L
H=-) ool —TY of. (25)
A A

It is the noninteracting limit (x = 0) of our ANNNI
Hamiltonian [Eq. (1)].

In Fig. 14, we report ground state results for Cy(g)
and m, [Fig. 14(a)], and their derivatives [Fig. 14(b)],
across the ferromagnetic to paramagnetic phase transi-
tion, which occurs in this model at I' = 1.

1.0f -
0.8F
0.6
0.41
0.21
0.0 _;

—1r dC¥/dT
—__ dCg/dr
—-— dm?/dl

0.0 0.5 1.0 1.5 2.0

FIG. 14. Ground-state results for (a) Cf(y), and m:, and (b)
their derivatives, as functions of the strength of the transverse
magnetic field.
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