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Quantum phase transitions are central to our understanding of why matter at very low tem-
peratures can exhibit starkly different properties upon small changes of microscopic parameters.
Accurately locating those transitions is challenging experimentally and theoretically. Here we show
that the antithetic strategy of forcing systems out of equilibrium via sudden quenches provides
a route to locate quantum phase transitions. Specifically, we show that such transitions imprint
distinctive features in the intermediate-time dynamics, and results after equilibration, of local ob-
servables in quantum-chaotic spin chains. Furthermore, we show that the effective temperature in
the expected thermal-like states after equilibration can exhibit minima in the vicinity of the quan-
tum critical points. We discuss how to test our results in experiments with Rydberg atoms, and
explore nonequilibrium signatures of quantum critical points in models with topological transitions.

I. INTRODUCTION

Quantum phase transitions are key to our perception
of quantum matter across fields in physics, from quark-
gluon plasma and neutron stars to quantum magnets and
high-temperature superconductors [1, 2]. At those tran-
sitions different quantities in completely different systems
can exhibit universal behavior. This is something that we
understand thanks to the development of the renormal-
ization group theory. Among the challenges that remain
for each specific system is to (if possible) find experimen-
tally where quantum phase transitions occur, as well as
theoretically predict their locations using simplified mod-
els. Quantum simulators promise to overcome the latter
challenge by experimental means, as they provide pristine
and controllable realizations of theoretical models [3, 4].

Quantum simulators also provide access to real-time
dynamics. This is something that can be used to explore
unique aspects of crossing a quantum phase transition in
real time. For example, recently a Rydberg-atom quan-
tum simulator was used to probe the Kibble-Zurek mech-
anism of universal defect production for slow parameter
sweeps [5]. On the theoretical side, recent works have
provided evidence that nonequilibrium quantum evolu-
tion can be used to probe quantum phase transitions in
integrable systems [6, 7], in prethermal states for mod-
els close to integrability [8], or through out-of-time-order
correlators [9]. However, identifying real-time signa-
tures of quantum phase transitions in generic (quantum-
chaotic) many-body systems has remained a challenge.
In this work we show that generic quantum matter can

exhibit dynamical signatures of quantum phase transi-
tions by the antithetic strategy of forcing these systems
out of equilibrium and therefore beyond the ground-state
manifold. We find that the intermediate-time dynam-

ics of local observables and of the entanglement entropy
exhibit distinct features after quantum quenches in the
anisotropic next-nearest neighbor Ising (ANNNI) chain
upon tuning the quench parameter across an underlying
quantum phase transition. Specifically, we find that the
derivatives of local observables with respect to the quench
parameter develop prominent dips/peaks in the vicinity
of the quantum phase transition. We determine the quan-
tum real-time evolution by means of the infinite-Time
Evolved Block Decimation (iTEBD), which provides nu-
merically exact results for the transient to intermediate-
time dynamics in the thermodynamic limit [10–12].

In order to access the long-time (asymptotic) prop-
erties of the considered quantum-chaotic system after
the expected thermalization, we employ a numerical
linked cluster expansion (NLCE) for thermal equilibrium
states [13]. We again find distinct signatures of the
quantum phase transition in derivatives of the correla-
tion functions. Also, the effective temperature exhibits
a marked minimum as function of the quench param-
eter in the close vicinity of the quantum phase transi-
tion. Since the considered one-dimensional system does
not support singular behavior after equilibration, upon
assuming that eigenstate thermalization occurs [14–17],
these prominent features are not associated with nonan-
alytic properties (in contrast to the integrable systems
studied in Refs. [6, 7]), but nevertheless represent dis-
tinct signatures of quantum phase transitions. Finally,
we discuss similar phenomena for quantum phase tran-
sitions involving topologically different quantum states.
We also discuss how our findings can be tested in current
experiments with Rydberg atoms.
The presentation is organized as follows. In Sec. II,

we introduce the Hamiltonian of the ANNNI chain, and
introduce the protocol used to probe the ferromagnetic
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IX. NUMERICAL CALCULATIONS

A. Infinite Time-Evolving Block Decimation

In this section, we briefly outline details about
the infinite-time evolving block decimation (iTEBD)
method. The iTEBD algorithm is based on the infinite
matrix-product state (iMPS) representation, which can
efficiently represent many-body wave functions with the
accuracy controlled by the bond dimension χ (the error
decreases rapidly with increasing χ). A general quantum
state |Ψ〉 on a chain with L sites can be written in the
following MPS form [10, 11]:

|Ψ〉 =
∑

s1,...,sL

A[1]s1A[2]s2 . . . A[N ]sL |s1, . . . , sL〉, (16)

where, A[n]sn is a χn−1×χn dimensional matrix and |sn〉
with sn = 1, . . . , d is a basis of local states at site n. For
any arbitrary state |Ψ〉 represented in this product basis
|s1〉 ⊗ . . .⊗ |sL〉, one can write:

|Ψ〉 =
∑

s1,...,sL

cs1...sL |s1, . . . , sL〉.

Doing repeated Schmidt decomposition on the state |Ψ〉,
one can get the form for the coefficients cs1...sL :

cs1...sL =
∑

s1,...,sN

Γ[1]s1Λ[1]Γ[2]s2Λ[2] · · ·Λ[L−1]Γ[L]sL ,

(17)
where Γ′s are rank-3 tensors, and Λ′s are positive, real,
square-diagonal matrices. After doing the tensor con-
tractions, the structure obtained can be readily identified
with a Matrix Product State as in equation (16).
The size of the tensors χi required to represent a state

can be shown to be related to the von Neumann entropy
Si of the partition 1 . . . i : i + 1 . . . L, as Si ≤ 2 lnχi. If
the entropy is area-law (as is the case for ground states
of one-dimensional gapped systems), χi remains finite in
the thermodynamic limit.
Using the iTEBD algorithm, one can evaluate the time

evolution of a quantum state:

|ψ(t)〉 = Û(t)|ψ(0)〉, (18)

and use the imaginary time evolution Û(τ) = exp(−Ĥτ)

to find the ground state of the Hamiltonian Ĥ. Using
the Trotter-Suzuki decomposition to the first order, one
can write

e(Â+B̂)δ = eÂδeB̂δ +O(δ2), (19)

where Â and B̂ are operators, and δ is a small parameter.
To use this expression, we write the Hamiltonian as a

sum of two-site operators of the form Ĥ =
∑

i ĥ
[i,i+1]

and decompose it as a sum

Ĥ = Ĥodd + Ĥeven

=
∑

i odd

ĥ[i,i+1] +
∑

i even

ĥ[i,i+1]. (20)

The terms within one partition act on different sites

and thus commute with each other: [ĥ[i,i+1], ĥ[i
′,i′+1]] =

[ĥ[2i−1,2i], ĥ[2i
′
−1,2i′]] = 0.

One can approximate the time evolution operator for
a very small time slice δt � 1, to the first order, using
(19), as:

Û(δt) ≈

[

∏

i odd

Û [i,i+1](δt)

][

∏

i even

Û [i,i+1](δt)

]

, (21)

where

Û [i,i+1](δt) = e−i δt ĥ[i,i+1]

. (22)

To determine the suitable δ, one can successively make
it smaller to achieve convergence. We used the bond-link
dimension χ = 4000 to ensure convergence for the longest
real-time dynamics results and the time steps used is
δ = 0.01. The time evolution in equation (18) is ob-

tained by applying the operators e−iĤoddδ and e−iĤevenδ

iteratively to the initial state |ψ(0)〉, which has been pre-
viously decomposed in the form of an MPS. After the
application of each operator at sites i and i+1 the decom-
position (17) is updated, involving at each step only the
transformation of the tensors Γ[i], λ[i] and Γ[i+1] [11, 12].
For a translational invariant infinite chain, the state

can be written in the form of equation (17), where Γ[i]

and λ[i] are independent of i. Thus, given that the time
evolution is generated by two-site operators, only the ten-
sors ΓA, ΓB , λA, and λB have to be updated, where
ΓA = Γ[2i],ΓB = Γ[2i+1], λA = λ[2i], and λB = λ[2i+1].
In our case, in which we also have a next-nearest neigh-

bor interaction, one can group the sites (merge two neigh-
boring site to one) and proceed with the same algorithm
where the local Hamiltonian is now 16×16 instead of 4×4.

B. Numerical linked cluster expansion

For lattice models in the thermodynamic limit (L →
∞), NLCE allows one calculate the expectation value of

extensive observables Ô per site, O = 〈Ô〉/L, as a sum
over contributions from all connected clusters c that can
be embedded on the lattice:

O =
∑

c

M(c)×WO(c). (23)

where WO(c) is the weight of cluster c, and M(c) is the
number of ways per site in which one can embed c on the
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