
Single-particle eigenstate thermalization in quantum-chaotic quadratic Hamiltonians
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We study the matrix elements of local and nonlocal operators in the single-particle eigenstates
of two paradigmatic quantum-chaotic quadratic Hamiltonians; the quadratic Sachdev-Ye-Kitaev
(SYK2) model and the three-dimensional Anderson model below the localization transition. We
show that they display eigenstate thermalization for normalized observables. Specifically, we show
that the diagonal matrix elements exhibit vanishing eigenstate-to-eigenstate fluctuations and that
their variance is proportional to the inverse Hilbert space dimension. We also demonstrate that the
ratio between the variance of the diagonal and the off-diagonal matrix elements is 2, as predicted by
the random matrix theory. We study distributions of matrix elements of observables and establish
that they need not be Gaussian. We identify the class of observables for which the distributions are
Gaussian.

I. INTRODUCTION

Whether isolated quantum many-body systems ther-
malize after being taken far from equilibrium has fasci-
nated researchers since the early days of quantum me-
chanics [1]. It has been experimentally demonstrated in
several ultracold-gas quantum simulators that they do
under certain conditions [2–5]. On the theory side, we
have learned that thermalization occurs generically in
many-body interacting (quantum-chaotic) systems, and
that quantum chaos can be identified, among other ways,
by the following properties of the many-body eigenener-
gies and eigenstates of the Hamiltonian: (i) the statistics
of energy levels agrees with the predictions of the random
matrix theory (RMT) [6–17], (ii) the matrix elements of
observables in energy eigenstates comply with the eigen-
state thermalization hypothesis (ETH) [18–24], and (iii)
the structure of energy eigenstates is chaotic [15] as man-
ifested by, e.g., a maximal volume-law entanglement en-
tropy [25–33].

While the matrix elements of observables have been
widely studied computationally in lattice models in
many-body eigenstates of quantum-chaotic Hamiltoni-
ans [16, 21, 34–59], we are not aware of parallel studies in
single-particle eigenstates of quantum-chaotic quadratic
Hamiltonians. We stress that we refer to Hamiltonians of
interacting systems for which the many-body spectrum
exhibits quantum chaos as quantum-chaotic interacting
Hamiltonians, and to quadratic Hamiltonians for which
the single-particle spectrum exhibits quantum chaos as
quantum-chaotic quadratic Hamiltonians [60]. Exam-
ples of quantum-chaotic quadratic models in a lattice in-
clude the three-dimensional Anderson model below the
localization transition [61–66] and the quadratic SYK2
model [60, 67, 68]. For the latter, the agreement with
the RMT predictions is guaranteed by construction. Our
goal in this work is to explore the properties of matrix
elements of observables in single-particle eigenstates of
quantum-chaotic quadratic Hamiltonians, as well as to

identify similarities and differences with the properties
of matrix elements of observables in many-body eigen-
states of quantum-chaotic interacting systems.

We focus on the previously mentioned examples of
quantum-chaotic quadratic Hamiltonians; the quadratic
SYK2 model in its Dirac fermion formulation and the
three-dimensional (3D) Anderson model below the lo-
calization transition. We study the matrix elements
of observables in the single-particle energy eigenstates
{|α〉}, where Ĥ|α〉 = Eα|α〉 and Eα is the eigenenergy
corresponding to |α〉. We show that properly normal-
ized observables [with a unit Hilbert-Schmidt norm, see
Eq. (5)] exhibit eigenstate thermalization. Specifically,
we show that: (i) For the diagonal matrix elements,
the average eigenstate-to-eigenstate fluctuations decrease
∝ 1/

√
V while the variance decreases ∝ 1/V , where

V is the number of lattice sites and hence the dimen-
sion of the single-particle Hilbert space. Similar scalings
are observed in quantum-chaotic interacting systems af-
ter replacing V → D, where D is the dimension of the
many-body Hilbert space [38, 41, 43, 45, 46, 48–50, 54–
57, 69]. (ii) The ratio between the variance of diagonal
and off-diagonal matrix elements is 2, as predicted by the
RMT [22]. Such a ratio has been observed in quantum-
chaotic interacting systems [45, 48, 54, 58].

For the matrix elements of an observable Ô in the
single-particle eigenstates of quantum-chaotic quadratic
Hamiltonians, the ETH ansatz [20, 22] can be written as

〈α|Ô|β〉 = O(Ē)δαβ + ρ(Ē)−1/2F(Ē, ω)Rαβ , (1)

where Ē = (Eα + Eβ)/2, ω = Eβ − Eα, O(Ē) and
F(Ē, ω) are smooth functions of their arguments, and
ρ(Ē) = δN/δE|Ē is the single-particle density of states at
energy Ē. The latter typically scales as V . The distribu-
tion of matrix elements is described by the random vari-
able Rαβ , which has zero mean and unit variance. For ob-
servables studied in quantum-chaotic interacting models
on a lattice, the distribution of matrix elements has been
found to be Gaussian [42, 47, 49, 51, 52, 55, 57, 70–72].
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Here we show that the distribution of matrix elements
for observables in single-particle eigenstates of quantum-
chaotic quadratic models need not be Gaussian. One of
our goals is to identify which classes of single-particle
observables exhibit Gaussian versus non-Gaussian distri-
butions, and to understand the origin of the difference
with their many-body counterparts in quantum-chaotic
interacting Hamiltonians.

The presentation is organized as follows. In Sec. II,
we introduce the models and observables under inves-
tigation. We define two “versions” of each observable:
(i) the traditionally known version, which is measured
in experiments involving many-particle systems, and (ii)
the version that has a unit Hilbert-Schmidt norm in
the single-particle Hilbert space (the normalized ver-
sion). In Sec. III, we study the behavior of diagonal and
off-diagonal matrix elements of these observables in the
single-particle eigenstates of the Hamiltonians of interest.
We focus on how they behave as functions of the single-
particle energy eigenvalues (diagonal matrix elements)
and their differences (off-diagonal matrix elements). Sec-
tion IV is devoted to the study of the eigenstate-to-
eigenstate fluctuations of the diagonal matrix elements,
and the variances (and the ratios thereof) of the diagonal
and off-diagonal matrix elements. In Sec. V we discuss
the distributions. We contrast one-body observables that
exhibit non-Gaussian distributions to those that exhibit
Gaussian ones. A summary and discussion of our results
is presented in Sec. VI.

II. MODELS AND OBSERVABLES

We consider two quadratic models in a lattice with V
sites. The models are particle-number conserving and
we only study the single-particle sector, so the particle
statistics plays no role. The first model is the quadratic
Sachdev-Ye-Kitaev model in the Dirac fermion formula-
tion (in short, the Dirac SYK2 model). We construct its
Hamiltonian as a random matrix drawn from the Gaus-
sian orthogonal ensemble in the position basis,

ĤSYK2 =

V
∑

i,j=1

Aij ĉ
†
i ĉj , (2)

where the diagonal (off-diagonal) elements of the sym-
metric matrix A are real random numbers that are nor-
mally distributed with zero mean and 2/V (1/V ) vari-

ance. The operator ĉ†i (ĉi) creates (annihilates) a particle
at site i. In the thermodynamic limit, the mean single-
particle energy is 〈ĤSYK2〉 = 1

V Tr{ĤSYK2} = 0 and the

variance is 〈Ĥ2
SYK2〉 = 1. Since the single-particle den-

sity of states forms a Wigner semicircle distribution, for
which the ratio between the maximal value and the stan-
dard deviation is 2, we expect the single-particle eigenen-
ergies of ĤSYK2 to approximately belong to the interval
Eα ∈ [−2, 2].

The second model is the 3D Anderson model on a cubic
lattice,

ĤA = −t
∑

〈i,j〉

ĉ†i ĉj +
W

2

V
∑

i=1

εiĉ
†
i ĉi , (3)

where t ≡ 1 is the hopping integral between nearest
neighbor sites (defined as 〈i, j〉), {εi} are independent
and identically distributed random numbers drawn from
a uniform distribution in an interval [−1, 1], and W
is the disorder strength. We assume periodic bound-
ary conditions. The indices in Eq. (3) are defined as
i = x + (y − 1)L + (z − 1)L2 with (x, y, z) standing for
the Cartesian coordinates of sites, each belonging to the
set [1, ..., L] with L = V 1/3.

The localization transition in the 3D Anderson model
occurs at Wc ≈ 16.5 [73]. Unless otherwise specified,
we focus on W = 1, which is well below the localization
transition, so that we have a quantum-chaotic quadratic
model [60]. (Results for the 3D Anderson insulator at
W � 16.5 are also briefly discussed, and reported in Ap-
pendix A.) As for the ĤSYK2, the mean single-particle

energy in the thermodynamic limit is 〈ĤA〉 = 0, and the
variance is a constant that does not scale with the volume
of the system (specifically, 〈Ĥ2

A〉 = 6 + W 2/12 [66]). At
weak disorder, the single-particle eigenenergies lie to a
good approximation within the free fermion bandwidth,
Eα ∈ [−6, 6]. The single-particle density of states evolves
with increasing W from the 3D free fermion distribution
at W = 0 towards the box distribution at W = ∞, see,
e.g., Ref. [74]. The 3D Anderson model has been widely
studied in the literature, in particular from the perspec-
tive of its transport properties, spectrum fluctuations,
and the structure of its single-particle eigenfunctions (see,
e.g., Refs. [66, 74–76] for reviews).

In the single-particle sector of the Hilbert space, the
Hamiltonians (2) and (3) can be written in a general form

Ĥ =
∑V

i,j=1 Hij |i〉〈j|, where Hij = 〈i|Ĥ|j〉 and {|i〉}
is the single-particle site-occupation basis. The V × V
matrix H, with matrix elements Hij , is diagonalized by
a unitary V × V matrix U, with matrix elements Uiα =
〈i|α〉. The resulting diagonal matrix D = U

†
HU has

matrix elements Dαβ = Eαδαβ .

Note that we refer to the models under consideration
as quantum-chaotic quadratic since the statistical prop-
erties of their single-particle spectra agree with the RMT
predictions [61–66]. This type of quantum chaos is some-
times referred to as single-particle quantum chaos. In
contrast to previous studies of these models, our focus is
on the expectation values of observables Ô in the single-
particle energy eigenstates {|α〉} of the Hamiltonians in
Eqs. (2) and (3).

Throughout the presentation, observables Ô (i.e., using
underlined letters) are traceless

〈Ô〉 =
1

V
Tr{Ô} = 0, (4)
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and normalized

||Ô||2 ≡ 1

V
Tr{Ô2} = 1, (5)

namely, they have a unit Hilbert-Schmidt norm (also
known as the Frobenius norm). The normalized coun-
terparts of observables are important for the compari-
son of the numerical results reported here to those for
quantum-chaotic interacting systems, because the ETH
ansatz in Eq. (1) is written having normalized observ-
ables in mind [49, 50]. In contrast, we label the exper-
imentally measured one-body observables using letters
that are not underlined. Most of them, such as the ones
in Eqs. (6)-(8), have a unit Hilbert-Schmidt norm in the
many-body Hilbert space. This is not the case in the
single-particle Hilbert space.

We focus on the following observables: (i) The site
occupation

n̂i = ĉ†i ĉi, n̂i =
1√

V − 1
(V n̂i − 1) . (6)

Without loss of generality, we fix i = 1 and replace n̂1 →
n̂ and n̂1 → n̂ to simplify the notation. (ii) The next-
nearest neighbor correlation

ĥij = ĉ†i ĉj + ĉ†j ĉi, ĥij =

√

V

2
ĥij . (7)

We fix i = 1, coordinates (1,1,1), and j = 2 + L, co-
ordinates (2,2,1), such that the correlations are mea-
sured along the diagonal within a plane, and replace

ĥ1,2+L → ĥ and ĥ1,2+L → ĥ. (iii) The occupation of
the zero quasi-momentum state

m̂0 =
1

V

V
∑

i,j=1

ĉ†i ĉj , m̂0 =
1√

V − 1
(V m̂0 − 1) . (8)

We note that for local Hamiltonians, such as the
3D Anderson model, the site occupation and the next-
nearest neighbor correlation are local operators, while the
occupation of the zero quasi-momentum state is nonlo-
cal. We also highlight that the experimentally measured

observables n̂, ĥ, m̂0 and their normalized versions n̂, ĥ,
m̂0 differ by multiplicative factors that depend on the
number of lattice sites V . In addition, we note that the
expectation values of these observables in single-particle
energy eigenstates are expected to vanish when V → ∞,
because the average site occupation vanishes as 1/V .

We study another local operator that does not suffer
from the latter drawback, namely, the “kinetic energy”
operator. Having a cubic lattice in mind, it can be writ-
ten in the following form,

T̂ = −
∑

〈i,j〉

(

ĉ†i ĉj + ĉ†j ĉi

)

, T̂ =
1√
6
T̂ , (9)

where 〈i, j〉 stands for nearest neighbor sites. We note

that T̂ and T̂ differ by a system-size independent mul-
tiplicative factor, and their expectation values in single-
particle energy eigenstates do not need to vanish in the
limit V → ∞.

We stress that we only study one-body observables.
In the single-particle sector (in systems with a particle
number conservation), the matrix elements of multi-body
observables can either be written in terms of matrix ele-
ments of one-body observables or they vanish.

For brevity, we will denote the matrix elements of ob-
servables in single-particle energy eigenstates as

Oαβ ≡ 〈α|Ô|β〉. (10)

In what follows we drop the“single-particle” prefix as our
focus is on the single-particle sector, while we keep the
“many-body” prefix when many-body states are consid-
ered.

III. STRUCTURE OF MATRIX ELEMENTS

A. Diagonal matrix elements

We first study the diagonal matrix elements of observ-
ables in all eigenstates of the 3D Anderson and Dirac
SYK2 models. Our goal is to unveil how they behave as
functions of the energy when increasing the number of
lattice sites. Since we are dealing with a single particle
in an increasingly large lattice, we multiply the matrix

elements of n̂, ĥ, and m̂0 by V to ensure that the scaled
matrix elements are of order 1. The quantitative analysis
of the eigenstate-to-eigenstate fluctuations and variances
of the diagonal matrix elements is carried out in Sec. IV
(for the normalized observables).

In Fig. 1, we show results for the 3D Anderson model
(left column) and for the Dirac SYK2 model (right col-
umn). For the Dirac SYK2 model, the diagonal matrix el-
ements are structureless and the eigenstate-to-eigenstate
fluctuations of OααV do not significantly change with
increasing system size (see Sec. IV). This signals that
the fluctuations of the traditional and normalized observ-
ables, like their expectation values, vanish in the thermo-
dynamic limit. Another interesting aspect of the Dirac
SYK2 model is the striking similarity between the matrix
elements of n̂V and m̂0V , see Figs. 1(b) and 1(f). This
can be easily understood because those operators are oc-
cupation operators in two different spaces, and the base
kets of those two spaces can be equivalently considered
as random vectors in the eigenbasis of ĤSYK2 [22].

The diagonal matrix elements of observables in the
3D Anderson model, in contrast, may exhibit nontrivial
structures. For example, hααV has a quadratic struc-
ture, see Fig. 1(c), which may be understood [50] as be-

ing a consequence of a nonzero projection of ĥV onto
the square of the Hamiltonian. Particularly interesting
is the structure of (m0)ααV in Fig. 1(e). The ground-
state matrix element dominates the spectrum, i.e., its
value is several orders larger than these of excited-states
matrix elements [note the logarithmic scale in Fig. 1(e)],
and (m0)ααV appears to be an exponentially decaying
function of a single-particle eigenenergy Eα. This is a
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FIG. 1. Diagonal matrix elements of the observables (a),(b) n̂,

(c),(d) ĥ, and (e),(f) m̂0 as functions of the eigenenergies Eα.
Results are shown for the 3D Anderson model (left column)
and the Dirac SYK2 model (right column). Each panel shows
results for two system sizes V = 163 and 363 with 20 (for V =
163) and 3 (for V = 363) different Hamiltonian realizations.
The points are half-transparent, which means that the darker
the color, the more overlapping points.

consequence of the proximity of the W = 1 case consid-
ered to the translationally-invariant free fermion point
at W = 0. The large value of the ground-state matrix
element will impact the analysis of fluctuations and dis-
tributions of normalized observables in Secs. IV and V,
respectively.

In Fig. 2, we show the diagonal matrix elements of
the kinetic energy T̂ from Eq. (9). They are linearly de-
pendent on the eigenenergies in the 3D Anderson model
[Fig. 2(a)], while (as expected) there is no structure in
the Dirac SYK2 model [Fig. 2(b)]. The linear dependence
in the 3D Anderson model originates from the nonzero
projection of T̂ onto the Hamiltonian HA from Eq. (3),

which is the sum of T̂ and onsite disorder. A detailed
inspection of Tαα as a function of Eα in small systems,
see Fig. 2(a1), reveals a fine structure beyond this lin-
ear dependence, which becomes less pronounced with in-
creasing system size. When studying the variances of
the diagonal matrix elements in the next sections, we
subtract the moving average, Tαα → Tαα − Tαα, where
Tαα is the arithmetic mean of closest diagonal matrix
elements about α. The relation between Tαα and Eα

after the subtraction of the moving average is shown in
Fig. 2(a2). Note that the eigenstate-to-eigenstate fluctu-
ations of Tαα, both in the 3D Anderson [Fig. 2(a)] and
Dirac SYK2 [Fig. 2(b)] models, decrease with increasing

FIG. 2. Diagonal matrix elements of T̂ vs. the eigenenergies
Eα. Results are shown for (a) the 3D Anderson model and
(b) the Dirac SYK2 model. Each panel shows results for two
system sizes V = 163 and 363 with 10 (for V = 163) and
3 (for V = 363) different Hamiltonian realizations. The in-
set (a1) is a close-up of the main panel including 200 (for
V = 163) and 2000 (for V = 363) diagonal matrix elements
from the center of the spectrum. The inset (a2) shows the
same matrix elements as (a1) after the moving average Tαα

is removed. For the target eigenstate α, the moving average
Tαα is computed using the matrix elements of 20 closest eigen-
states. The points used to show the diagonal matrix elements
are half-transparent.

system size.

B. Off-diagonal matrix elements

We next focus on the structure of the square of the off-
diagonal matrix elements. They are multiplied by an ap-
propriate power of V , such that the scaled coarse-grained
matrix elements are V -independent, i.e., we study O2

αβV
2

where Ô = n̂, ĥ and m̂0, and T 2
αβV . We restrict the

pairs of eigenstates |α〉, |β〉 to a narrow energy window ∆
around a target energy Ētar, |(Eα+Eβ)/2−Ētar| < ∆/2.
We take the target energy to be the mean energy of the
entire spectrum, and the width to be ∆ = (EV −E1)/100
(E1 and EV are the ground state and the highest excited
state energies, respectively). Even though Ētar is very
close to zero in finite systems (and Ētar = 0 in the ther-
modynamic limit), we calculate both Ētar and ∆ numer-
ically for each Hamiltonian realization.

Figure 3 shows the density plots of the logarithms
of off-diagonal matrix elements, log10[(m0)2αβV

2] and

log10(T 2
αβV ), as functions of the energy difference ω =

|Eα − Eβ |. To smooth out fluctuations, we carry out an
average over 20 different Hamiltonian realizations, and
denote the realization averaged results as 〈〈...〉〉. The cor-
responding density plots for the site occupation n̂ and the

next-nearest neighbor correlation ĥ are shown in Fig. 12
of Appendix B. Figures 3 and 12, as well as a detailed in-
spection of individual off-diagonal matrix elements (not
shown), demonstrates that the off-diagonal matrix ele-
ments are dense, i.e., there is no set comprising a consid-
erable number of off-diagonal matrix elements that are
zero (or below numerical precision). This is similar to
what is observed in quantum-chaotic interacting systems.
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A simple illustration of the latter case is the function
v = g(u) = u2, for which u = ±√

v = g−1
1,2(v) so

|dg−1
1,2(v)/dv| = 1/(2

√
v). Using Eq. (D9) one gets

Pv(y) =
1

2
√
y
Pu(

√
y) +

1

2
√
y
Pu(−√

y) . (D10)

If Pu is a Gaussian function as in Eq. (D5), one gets

Pv(y) =
1√
y

1√
2πσ2

exp
(

− y

2σ2

)

, (D11)

which is also known as the chi-square distribution χ2
k with

degree k = 1.
Application. The distribution Pnαα

(x) of the diagonal
matrix elements nαα in Eq. (D1) is derived using first
Eq. (D11) followed by Eq. (D8), and results in Eq. (17)
in the main text.

2. Product distribution of normal random variables

Let u and u′ be two independent random variables with
the corresponding PDFs Pu(x) and Pu′(x′) [x and x′ are
possible outcomes of u and u′, respectively], and let v =
uu′ be the product of these two variables. The product
distribution of the latter is denoted as Pv(y) and can be
obtained as

Pv(y) =

∫ ∞

−∞

∫ ∞

−∞

Pu(x)Pu′(x′)δ(xx′ − y)dxdx′

=

∫ ∞

−∞

1

|x|Pu(x)Pu′(y/x)dx . (D12)

If Pu and Pu′ are both normal distributions with the same
variance, then the product distribution Pv is

Pv(y) =
1

2πσ2

∫ ∞

−∞

1

|x| exp

(

−x2 + y2/x2

2σ2

)

dx

=
1

πσ2
K0

( |y|
σ2

)

, (D13)

where K0 is the modified Bessel function of the second
kind.

Applications. The distribution Pnαβ
(x) of the off-

diagonal matrix elements nαβ in Eq. (D2) is derived us-
ing first Eq. (D13) followed by Eq. (D7), and results in
Eq. (18) in the main text. Similarly, the distribution
Phαα

(x) of the diagonal matrix elements hαα in Eq. (D3)
is derived using identical steps, and results in Eq. (19) in
the main text.

3. Sum distributions

Let u and u′ be two independent random variables
with the corresponding PDFs Pu(x) and Pu′(x′), and let
v = u + u′ be the sum of these two variables. The sum

distribution of the latter is denoted as Pv(y) and can be
obtained by the convolution

Pv(y) =

∫ ∞

−∞

Pu(x)Pu′(y − x)dx . (D14)

A convenient way of calculating the sum distribution
is through the so-called characteristic functions, i.e.,
the Fourier transforms of the PDFs. Let Rw(q) be
the Fourier transform of Pw(z), defined as Rw(q) =
∫∞

−∞
eiqzPw(z)dz. Since the Fourier transform of Pv(y)

from Eq. (D14) can be expressed as a product of two
Fourier transforms, Rv(q) = Ru(q)Ru′(q), one can calcu-
late Pv using the relation

Pv(y) = FT−1 [Ru(q)Ru′(q)] . (D15)

If the distributions Pu and Pu′ are identical and given
by the modified Bessel function of the second kind from
Eq. (D13), then their characteristic function is Ru(q) =

1/
√

1 + q2σ4, and the sum distribution is

Pv(y) =
1

2π

∫ ∞

−∞

exp (−iqy)
1

1 + σ4q2
dq

=
1

2σ2
exp

(

−|y|
σ2

)

. (D16)

Application. The distribution Phαβ
(x) of the off-

diagonal matrix elements hαβ in Eq. (D4) is derived us-
ing first Eq. (D16) followed by Eq. (D7), and results in
Eq. (20) in the main text.

Appendix E: Distributions of matrix elements of

observables ĝ

In Sec. V B we showed that the matrix elements of the
operator T̂ exhibit a Gaussian distribution. Below we
consider the operator ĝ from Eq. (24), which is defined
in a general form using κij as the coupling between the
sites i and j. In particular, we study two instances of the
operator ĝ that can be viewed as independent realizations
of the Dirac SYK2 and the 3D Anderson Hamiltonians.
We show that in both cases the distributions of matrix
elements are Gaussian.

1. An independent realization of the

SYK2 Hamiltonian

We first consider the case in which the coefficients
κij in ĝ (24) are normally distributed random variables
with a variance of diagonal matrix elements that is twice
that of off-diagonal ones. We consider a single realiza-
tion of those coefficients (defining a single observable ĝ
that can be seen as an independent realization of the
SYK2 Hamiltonian, but traceless and properly normal-
ized) and carry out averages over different Hamiltonian
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