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We propose a method for the detection of a change point in a sequence
{Fi} of distributions, which are available through a large number of observa-
tions at each i ≥ 1. Under the null hypothesis, the distributions Fi are equal.
Under the alternative hypothesis, there is a change point i∗ > 1, such that
Fi = G for i ≥ i∗ and some unknown distribution G, which is not equal to
F1. The change point, if it exists, is unknown, and the distributions before
and after the potential change point are unknown. The decision about the ex-
istence of a change point is made sequentially, as new data arrive. At each
time i, the count of observations, N , can increase to infinity. The detection
procedure is based on a weighted version of the Wasserstein distance. Its
asymptotic and finite sample validity is established. Its performance is illus-
trated by an application to returns on stocks in the S&P 500 index.

1. Introduction. We propose a method for sequential detection of a change point in a se-
quence of distributions. Such sequences occur in many applications. Plentiful examples arise
in economics and finance, including income distributions and various return distributions.
We have been motivated by cross-sectional market returns, which form perhaps the most ex-
tensively studied sequence of distributions. Mathematically, we are dealing with sequences
{Fi}, {Qi} and {fi} of respectively cumulative distribution, quantile or density functions,
each offering an equivalent data model. The problem we consider is as follows. Under the
null hypothesis, at each time period i ≥ 1, the distributions Fi are equal. Under the alterna-
tive hypothesis, there is a change point i∗ > 1, such that Fi = G for i ≥ i∗ and some unknown
distribution G, which is not equal to F1. The change point, if it exists, is unknown, and the
distributions before and after the potential change point are unknown. The decision about the
existence of a change point must be done sequentially, as new data become available. Precise
formulation is presented in Section 2.

The problem we consider is different from the well-studied problem of sequential detection
of a change in distribution based on only a single scalar observation at each time period i.
This problem was studied, in Pollak (1985), Yakir (1997) and Polunchenko and Tartakovsky
(2010), among others. Their work focuses on mini-max optimality. In our setting, we have a
very large number of observations at every time i, rather than just one. Our theory includes
asymptotic analysis as the number of observations in each period tends to infinity. It thus falls
to the broad domain of the analysis of high-dimensional time series.

In applications, none of the mathematical models, be it the distribution or the quantile
function, is directly accessible. The data available at each time instant i are scalar observa-
tions Xi,j . We focus on the detection of change in the quantile function. The justification
for using the quantile function is discussed in the following. The large sample theory, as the
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number of observations Xi,j in each period i tends to infinity, is quite complex. It connects to
profound results on the asymptotic behavior of the empirical quantile function, which were
established over the last three decades.

Before discussing our theory in greater detail, we note that change point analysis has seen
renewed interest over the last decade, mainly due to the need to create change point detection
tools suitable for complex, non-Euclidean data structures and high-dimensional and func-
tional data. Discussing, or even listing, dozens of relevant contributions is not possible, so we
merely list a few, admittedly subjectively selected, recent contributions which contain further
references. Bardsley et al. (2017) and Gromenko, Kokoszka and Reimherr (2017) offer dif-
ferent perspectives on change point analysis of functional data. Jirak (2015), Barigozzi, Cho
and Fryzlewicz (2018) and Chen, Wang and Samworth (2020) study change point detection
in high-dimensional time series. Dubey and Müller (2020) propose a method of change point
detection suitable for general metric spaces and provide a good discussion of change point
detection for complex data structures, including networks. Special challenges arise when
multiple change points might be present, Li and Jin (2018) discuss them and propose a novel
solution. These papers, with the exception of Chen, Wang and Samworth (2020), deal with
detecting change points in a historical sample. Sequential change point detection in complex
structures has attracted a great deal of attention in engineering literature, focusing on practical
aspects, but profound mathematical theory also exists; see, for example, Xie and Siegmund
(2013). The recent work of Padilla et al. (2019) is closely related. It is concerned with de-
tecting a change point if a sequence of densities, {fi}, assuming each density is available
through a fine histogram obtained from a very large and unknown number of observations
Xi,j . Their approach is to find a method with a minimal detection delay under a constraint on
the rate of false alarms in a specified time window. Mathematically, the constraint is imposed
on the expected number of false alarms. In our approach, we follow the paradigm of Chu,
Stinchcombe and White (1996), introduced in the context of economic data, and impose a
constraint on the probability of a false alarm, which has essentially the same interpretation as
the size of a Neyman–Pearson test. Our theoretical and empirical analysis includes the effect
of the estimation in the training sample. Because of this and the emphasis on type I error,
our approach is not directly comparable to that of Padilla et al. (2019). Since no parametric
assumptions are imposed, our approach is also completely different from methods based on
likelihood ratios whose theoretical justification is based on mini-max optimality.

The main advance over existing work that uses the paradigm of Chu, Stinchcombe and
White (1996) is that we handle monitoring for a change point in a sequence of distributions
available indirectly trough a large number of observations at every time point. Previous work
has considered only sequences of scalars arising from various models. To accommodate this
more complex setting, we must choose a function describing the distribution and based on it
construct a suitable detector. Theory needed to provide an asymptotic justification is much
more complex than in the scalar case. We conclude this section with highlighting some of
these points.

Each mathematical model for the distribution of scalar observations, that is, the cumulative
distribution, quantile and density function, is subject to well-known constraints. Of these
three objects, the quantile function is subject to least constraints. It enters directly into the
definition of the Wasserstein distance,

d2(G,F ) =

∫ 1

0

(

G−1(t) − F−1(t)
)2

dt,

between two cumulative distribution functions G and F . The above distance is also known
as the Kantorovich–Wasserstein or L2-Wasserstein distance. Panaretos and Zemel (2019)
provide a survey of its applications to statistics and data science. It is used in the context
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of functional data analysis of densities in Petersen and Müller (2016) and in a broad setting
in Panaretos and Zemel (2016), to name relatively recent contributions. We work with a
more general version of this distance. The Lebesgue measure dt is replaced by w(t) dt . The
weight function is needed to accommodate various types of tail behavior of the observations
Xi,j , as the count of observations indexed by j increases. In specific applications, various
weight functions can be used to emphasize either the center of the distributions or the extreme
tails.

Suppressing the index i, denote by FN the empirical distribution function of Xj , 1 ≤ j ≤

N , and by QN the corresponding quantile function. To establish asymptotic validity of our
monitoring procedure, we must study the asymptotic behavior of the first three moments of

d2
w(Fn,F ) =

∫ 1−1/(2N)

1/(2N)

(

QN (t) − Q(t)
)2

w(t) dt,

where Q is the population quantile function. The reason for it is explained in Section 2,
the corresponding results are presented in Supplementary Material (Horváth, Kokoszka, and
Wang (2021)). There is nontrivial interplay between the behavior of Q as t → 0 and t → 1
and the behavior of the weight function w at these end points. Related results are proven
in del Barrio et al. (1999), del Barrio, Giné and Matrán (1999) and del Barrio, Giné and
Utzet (2005). They pertain to weak convergence rather than the convergence of moments.
For example, del Barrio et al. (1999) establish limiting behavior of RN = S−2

N d2(Fn,H),
where H is the subspace spanned by the normal distributions, and SN is the sample variance
of the Xj . Their results are motivated by normality tests of the Shapiro–Wilk type, so they
assume that the Xj are normal. In that case, N(RN − aN ) converges to a functional of the
Brownian bridge, B(t), 0 ≤ t ≤ 1; see their Theorem 2. The centering constants have the
form

aN =
1

N

∫ N/(N+1)

1/(N+1)

t (1 − t)

φ2(�−1(t))
dt.

We obtain convergence of moments for general classes of distributions. For example, for the
first moment we obtain

NEd2
w(Fn,F ) →

∫ 1

0

t (1 − t)

f 2(Q(t))
w(t) dt

for weight functions w matching the behavior of the quantile function Q at the end points
of the interval [0,1]. In the above formulas, φ is the standard normal density and f is the
common density of the Xj in our setting. In a recent paper, Berthet and Fort (2020) ob-
tained almost sure laws for the Wasserstein metric assuming normal observations. Csörgő
and Horváth (1993) provide several results for Lp norms of the difference between empirical
and theoretical quantiles using the weight functions w(t) = 1 and w(t) = 1/Q′(t). It is hoped
that our fairly general results (basically an arbitrary quantile function Q) might prove use-
ful in theoretical work relying on the convergence of general Wasserstein distances between
empirical and population distributions.

The remainder of the paper is organized as follows. In Section 2, we rigorously formulate
the monitoring (sequential detection) problem, describe our procedure and state results estab-
lishing its asymptotic validity. Section 3 is dedicated to an empirical study of cross-sectional
returns of the constituent stocks in the S&P 500 index. It illustrates the practical usefulness
of our method. Finite sample performance is investigated in Section 4. The Supplementary
Material contains the proofs of the results stated in Section 2.
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2. Assumptions and main results. We assume that at time i we have N observations
Xi,1,Xi,2, . . . ,Xi,N . Throughout this paper, we assume that the following assumption holds.

ASSUMPTION 2.1. The random variables Xi,j , 1 ≤ i < ∞, 1 ≤ j ≤ N are independent.

We wish to test the null hypothesis:

H0 : Xi,j ,1 ≤ i < ∞,1 ≤ j ≤ N are identically distributed.

We assume that over the initial M time points the distribution is constant. This is formal-
ized in the following assumption.

ASSUMPTION 2.2. There is M ≥ 1 such that the Xi,j , 1 ≤ i ≤ M , 1 ≤ j ≤ N are identi-
cally distributed.

Assumption 2.2 means that H0 always holds for the training sample. Under the alternative
the distribution of the observations changes at time M + k∗, where k∗ is the unknown time
of change:

HA :Xi,j ,1 ≤ i < M + k∗,1 ≤ j ≤ N are identically distributed,

Xi,j ,M + k∗ ≤ i < ∞,1 ≤ j ≤ N are identically distributed

but the distribution of X1,1 differs from that of XM+k∗,1.

If k∗ = 1, then the distribution of the observations changes immediately after the training
sample. In our model, at time i, we have an independent and identically distributed random
sample. Under the null hypothesis, the common distribution of the observations remains the
same. Under the alternative hypothesis, at an unknown time M + k∗ the distribution of the
sample changes to a different one.

Our detection method is based on the quantiles (order statistics). For any i ≥ 1, let

Xi;1,N ≤ Xi;2,N ≤ · · · ≤ Xi;N,N

denote the order statistics of Xi,j , 1 ≤ j ≤ N . Following Csörgő and Révész (1981) (cf. also
Csörgő and Horváth (1993)), we define the quantile function at time ith as

Qi,N (t) = Xi;j,N if (j − 1)/N ≤ t < j/N, j = 1,2, . . . ,N.

We will use the average quantile function of the training sample defined by

Q̄M(t) =
1

M

M
∑

i=1

Qi,N (t), 0 ≤ t < 1.

We measure the deviation from the average quantile function of the training sample by

(1) ξi,N =

∫ 1−1/(2N)

1/(2N)

{

Qi,N (t) − Q̄M(t)
}2

w(t) dt, 1 ≤ i < ∞,

where w ≥ 0 is a weight function. If w(t) = 1, then
√

ξi,N is the Kantorovich–Wasserstein or
minimal L2 distance between the measures associated with Qi,N (t) and Q̄M(t).

We compute the mean and the variance of the discrepancy measures in the training sample:

ξ̂M,N =
1

M

M
∑

i=1

ξi,N and σ̂ 2
M,N =

1

M − 1

M
∑

i=1

(ξi,N − ξ̂M,N )2.
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Our sequential method is based on a detector and a boundary function within a general
paradigm proposed by Chu, Stinchcombe and White (1996). The detector is given by

(2) �(M, s) =
1

σ̂M,N

∣

∣

∣

∣

∣

M+s
∑

i=M+1

ξi,N −
s

M

M
∑

i=1

ξi,N

∣

∣

∣

∣

∣

, 1 ≤ s < ∞.

The form of the detector is fairly intuitive. We compare the average of the weighted distances
(1) in the monitoring sample to their average in the training sample. The absolute difference
is normalized to ensure a variance-free limit. Only specific boundary functions will ensure
that the probability of a false rejection can be controlled. We use the boundary function

(3) g(M, s) = cM1/2
(

1 +
s

M

)(

s

M + s

)γ

,

where γ is a constant satisfying

ASSUMPTION 2.3. 0 ≤ γ < 1/2.

The form of the boundary function is motivated by the objective that the limit distribution
has a simple form and can be easily simulated. It would be possible to replace g with

g(M, s) = cM1/2
(

1 +
s

M

)(

s

M + s

)γ

�

(

s

M + s

)

,

where is � is a slowly varying at ∞. Including the function � is simple from a theoretical point
of view if 0 ≤ γ < 1/2 and harder if γ = 1/2. From the practical point of view, the slowly
varying function does not enhance the statistical procedure; in most applications, slowly vary-
ing functions are set to be constants. We will see that our procedure is asymptotically valid
for any γ satisfying Assumption 2.3. In finite samples, we have the freedom to choose it to
tune the detection procedure to ensure accurate calibration under H0 for small and moderate
M and increase the power under the alternative.

A change point in distribution is detected if the detector crosses the boundary function.
The stopping time is thus defined as follows:

τM =

{

inf
{

s ≥ 1 : �(M, s) > g(M, s)
}

,

∞ if �(M, s) ≤ g(M, s) for all s ≥ 1.

In our sequential detection approach, the key is to control the rate of false alarms. This is
expressed as the following asymptotic condition:

(4) lim
M→∞

P {τM < ∞} = α under H0,

where 0 < α < 1 is a prescribed significance level. According to (4), the probability of false
stopping (rejection of the null hypothesis when it is correct) is α, if M is large. We will
show that for any value of γ , condition (4) is met by suitably choosing c = c(γ,α) in (3).
The computation of c(γ,α) is possible by expressing the limit in (4) in terms of a crossing
probability for a functional of a Wiener process, specifically by showing that

lim
M→∞

P {τM < ∞} = P

{

sup
0<u≤1

|W(u)|

uγ
≤ c

}

,(5)

where {W(u),u ≥ 0} denotes a Wiener process (standard Brownian motion). Verification of
(5) is the chief theoretical contribution of this paper. It requires suitable approximations of
the partial sums of the ξi,N , the weighted Kantorovich–Wasserstein distances. If N is finite,
these are independent and identically distributed random variables, so the approximations in
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Komlós, Major and Tusnády (1975, 1976) can be used. However, if N → ∞, these results
cannot be used, since we need to deal with an array of random variables. In this case, we use
the Skorokhod (1965) representation theorem. Hence we need to establish lower bounds for
the variances and upper bounds for the third absolute moments for the L2 weighted distances
between the empirical and theoretical quantiles. These results are established in the course of
the proofs of the remaining theorems of this section. We also need to prove that using Q̄M(t)

instead of Q(t) does not change the limit results. We aimed at formulating our results in such
a way that there is no connection between the length of the training period, M , and the count
of observations, N , which is allowed to tend to infinity in an arbitrary manner, including
nonmonotonic increase. This is motivated by the financial data we consider; if N is the count
of assets, it is in no way related to the length of the training period M . Another advantage of
our theory is that it covers most scenarios for the form of distribution of the observations Xi,j

(indexed by j ) in a unified way. We essentially classify these scenarios by membership in a
domain of attraction of one of the types of extreme value distribution. For a different domain,
different assumptions on the weight function w are needed, but the final form of limit result
is the same, that is, (5). The assumptions of the weight function w are weak, and are satisfied
in all cases by reasonable functions w. This justifies the application of our theory without
knowing much about the distribution of the Xi,j .

We begin with the case when N is a fixed number. To prove (4), we need Eξ2
i,N < ∞,

which requires that the observations have at least four moments. Assumption 2.4 below is
thus close to optimal because one needs to apply some form of a central limit theorem to the
ξi,N , so they should have finite variance.

ASSUMPTION 2.4. E|Xi,j |
4+δ < ∞ with some δ > 0.

In the case of a fixed N , the requirement on weight function W are very general. It must
be bounded on [0,1], positive on (0,1) and can be zero at the end points, as stated in the
following assumption.

ASSUMPTION 2.5. infε≤t≤1−ε w(t) > 0 for all 0 < ε < 1/2, w(0) ≥ 0, w(1) ≥ 0 and
sup0<t<1 w(t) < ∞.

THEOREM 2.1. If H0 and Assumptions 2.1–2.5 are satisfied and N is a fixed number,
then relation (5) holds.

Next, we consider cases when N → ∞. For the sake of simplicity of the presentation, we
assume that both tails of Q satisfy similar conditions. This is not required, (5) remains valid
if the two tails behave differently, with separate sets of assumptions on each tail, and with
matching assumptions on the weight function.

We begin with the case of regularly varying quantile functions. Recall that g is a regularly
varying function at 0 with index α, if for all λ > 0,

lim
x→0

g(λx)

g(x)
= λα.

ASSUMPTION 2.6. The functions Q(t) and Q(1 − t) are regularly varying at 0 with
parameters −α1 and −α2, respectively, where 0 ≤ α1 < 1/4 and 0 ≤ α2 < 1/4.

We note that Assumption 2.6 implies Assumption 2.4. If the parameter of the regular varia-
tion is 0, then the function is called slowly varying. For definitions and properties of regularly
and slowly varying functions, we refer to Bingham, Goldie and Teugels (1987).
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We consider two sets of assumptions on the weight function w that match Assumption 2.6.
Let

1

h(t)
=

w(t)

f 2(Q(t))
, 0 < t < 1,

where f denotes the density of F , and F is the distribution function of the observations.
First, we consider the case when h(t) is not large in a neighborhood of 0 and also of 1.

ASSUMPTION 2.7. For some β < 2 and some c > 0,

1

h(t)
≤ c

(

t (1 − t)
)−β

.

In case of a negative β , we are giving very little weight to the quantile functions in neigh-
borhoods of 0 and 1. Assumption 2.7 holds if 1/h(t) is uniformly bounded from above by a
constant. Any β > 0 and a suitable c > 0 can be used.

The next condition appeared first in Csörgő and Révész (1978).

ASSUMPTION 2.8. For some constant κ ,

sup
0<t<1

t (1 − t)
|f ′(Q(t))|

f 2(Q(t))
≤ κ.

THEOREM 2.2. If H0 and Assumptions 2.1–2.3 and 2.5–2.8 are satisfied, min(N,M) →

∞, then (5) holds.

REMARK 2.1. Under Assumption 2.6, the support of the underlying distribution is the
real line. The result in Theorem 2.2, including its proof remains true if −∞ < Q(0) or
Q(1) < ∞. Under these conditions, we need to replace Assumption (2.6) with the regular
variation of Q(t) − Q(0) and Q(1) − Q(1 − t) at 0 (cf. Corollary 3.3 in Csörgő and Horváth
(1993), pp. 396 and 397).

Our proof show that under the conditions of Theorem 2.2 the extreme values do not play
any role in the behavior of the distances ξi,N . We now consider the case when ξi,N is deter-
mined by the smallest and largest order statistics. Since only the tails of Q(t) matter, we need
more information on the weight function w(t). We thus formulate the following assumption,
which can replace Assumptions 2.7 and 2.8 in Theorem 2.2.

ASSUMPTION 2.9. The functions w(t) and w(1 − t) are regularly varying at 0 with
indices τ1 and τ2.

THEOREM 2.3. If H0 and Assumptions 2.1–2.3, 2.5, 2.6 and 2.9 are satisfied, τ1 −2α1 <

0, τ2 − 2α2 < 0, min(N,M) → ∞, then (5) holds.

REMARK 2.2. Similar to Remark 2.1, the result of Theorem 2.3 remains valid if the
regular variations of Q(t) − Q(0) and Q(1) − Q(1 − t) are assumed in a neighborhood of 0,
when −∞ < Q(0) or Q(1) < ∞.

The conditions in Theorem 2.3 and Remark 2.2 cover two classes of the domain of attrac-
tion of extreme value distributions (cf. Section 8.13 in Bingham, Goldie and Teugels (1987)).
Now we consider the third class of the domain of attraction of extreme value distributions.
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ASSUMPTION 2.10. For all x, y > 0, y �= 1,

lim
t→∞

Q(tx) − Q(t)

Q(ty) − Q(t)
=

logx

logy

and

lim
t→∞

Q((1 − t)x) − Q(1 − t)

Q((1 − t)y) − Q(1 − t)
=

logx

logy
.

Assumption 2.10 covers the Gumbel domain of attraction. For a discussion and some
equivalent forms of Assumption 2.10, we refer to Bingham, Goldie and Teugels (1987).

THEOREM 2.4. If H0 and Assumptions 2.1–2.5, 2.9 and 2.10 are satisfied,
min(N,M) → ∞, then (5) holds.

As noted above, Theorem 2.2 considers the case when ξi,N is determined by the middle
order statistics, while the extreme values dominate the limit in Theorems 2.3 and 2.4. Next,
we study the “in between” case which is referred to as Darling–Erdős type result for integrals
in Csörgő and Horváth (1993).

ASSUMPTION 2.11. The function t (1 − t)w(t)/f 2(Q(t)) is regularly varying function
at 0 and 1 with index −1, that is,

w(t)

f 2(Q(t))
=

1

t2K1(t)
and

w(1 − t)

f 2(Q(1 − t))
=

1

(1 − t)2K2(t)
,

where K1(t), K2(t) are slowly varying functions at 0, K1(t) → 0, K2(t) → 0, as t → 0.

THEOREM 2.5. If H0 and Assumptions 2.1–2.5, 2.8, 2.9 and 2.11 are satisfied,
min(N,M) → ∞, then (5) holds.

We conclude this section by explaining how the critical value c in (5) can be found and
displaying a table with a selection of these critical values. To find c = c(γ,α), we followed
the following steps:

1. Simulate 50,000 independent Wiener processes W(u), where u is on a grid of 10,000
equally-spaced points in [0,1].

2. Obtain sup0≤u≤1 |W(u)|/uγ for each simulated trajectory of Wiener processes.
3. Find (numerical search) c(γ,α) such that

P

{

sup
0≤u≤1

|W(u)|

uγ
> c(γ,α)

}

= α.

Table 1 displays the critical values c(γ,α) for selected values of γ and typical significance
levels α.

Before we move on to data analysis in Section 3 and a simulation study in Section 4, we
remind the reader that a change point is signaled at the first time s such that �(M, s), given
by (2), exceeds g(M, s) given by (3) with the critical value c from Table 1.

Our theory focuses on the behavior of our monitoring procedure under the null hypoth-
esis because this is where advanced mathematical tools are needed. Regardless of various
assumptions, the testing procedure is the same; we only require that M → ∞ and N can be
bounded or N → ∞, and there is no assumption on N as a function of M . However, this is
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TABLE 1
Critical values c = c(γ,α) in (3)

γ \ α 1% 2.5% 5% 10%

0.00 2.7718 2.4628 2.2232 1.9541
0.15 2.8146 2.5473 2.2963 2.0293
0.25 2.8693 2.6208 2.3652 2.1113
0.35 2.9763 2.7233 2.4946 2.2494
0.45 3.2499 3.0038 2.7793 2.5463
0.49 3.5814 3.3135 3.0722 2.8295

not the case under the alternative. Let Q(1) and Q(2) be the quantile functions before and af-
ter the change. We also assume that Q(1) and Q(2) satisfy the conditions of one of Theorems
2.1–2.5. The quantiles should be different before and after the change, so we require

(6)
∫ 1

0

(

Q(1)(u) − Q(2)(u)
)2

du > 0.

Due to applications we are interested in early changes, so we assume that

(7) k∗ = O(1) if M → ∞.

We recall that σ 2
N = var(ξi,N ), 1 ≤ i ≤ M . If

(8)
NM1/2

σM,N

→ ∞,

then

(9) lim
M→∞

P {τM < ∞} = 1.

We note that under the conditions of Theorems 2.1, 2.2 and Remark 2.1 σN is bounded, so in
this case (8) is satisfied. However, in the other theorems, σN → ∞, so in order to have (8) we
need to assume that N is a function of M and N → ∞ at a certain rate. It is not difficult to
establish (9) under the stated assumptions, an outline of the argument is given in Section A of
the Supplementary Material. It is however not easy to derive the the asymptotic distribution
of τM , and this may be the subject of another paper. We illustrate the distribution of τM in
finite samples in Section 4.

3. Application to cross-sectional returns. Before we analyze finite sample properties
of our procedure in Section 4, we illustrate in this section how it works in practice. We use
for this purpose perhaps the most extensively studied sequence of distributions, the cross-
sectional returns. Suppose pi,j is the price of the stock of company j at the close of trading
day i. The return on day i is defined by

ri,j = 100 × (logpi,j − logpi−1,j ).

The observations ri,j , for all available companies j , are called cross-sectional returns on
day i. Estimated density functions for every day in 2019 are shown in Figure 1. In finance
research, cross-sectional returns over other periods, weeks, months, quarters and years have
also been studied. The main strain of finance research, going back over five decades, has
been concerned with determining factors which may help predict the position of the return
on a stock of company j in the distribution of all returns. For example, will the value of the
price to earnings ratio allow an investor to predict if the next period return will be above
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FIG. 1. Estimated density functions of cross-sectional daily returns for stocks included in the S&P 500 index in

2019. The range of returns is in percent. It is truncated at ±10% because larger daily returns are rare and would

make the graph less informative.

the 80th quantile of all returns? Some of the most frequently cited contributions to this field
include Sharpe (1964), Fama and French (1993) (26K citations as of April 2020), Carhart
(1997), Ang et al. (2006) and Fama and French (2015). Consequently, the distribution of
returns has been extensively studied, with a number of models proposed to describe it. Fama
(1965) suggested a Gaussian mixture model, but it did not fit the data well. In the 1960s,
B. Mandelbrot and E. Fama argued in favor of the stable Paretian distribution as a suitable
model; see Mandelbrot (1997). Praetz (1972) and Blattberg and Gonedes (1974) advocated
Student’s t distribution with low degrees of freedom. Mittnik and Rachev (1993) found that
the Weibull distribution gave the best fit for S&P 500 daily returns between 1982 and 1986.
Granger and Ding (1995) found that the double exponential distribution is also an appropriate
choice. Cont (2001) concluded that at least four parameters are needed to control the location,
the scale, the skewness and the kurtosis. Chen (2005) and Wang (2012) fitted four parameter
skewed t distribution to the daily cross-sectional returns of the 1000 largest capitalization
stocks in the CRSP database.

The richness of models proposed for the distribution of the cross-sectional returns might be
partly attributable to the expectation that this distribution might be evolving or even rapidly
changing over time, and no single model can capture it over a sufficiently long period of
time. This is dramatically illustrated in Figure 2, which shows p-values of the Kolmogorov–
Smirnov test for the fit of a skewed t distribution, defined in Section B of the Supplementary
Material, to daily cross-sectional returns of constituent stock in the S&P 500 index. We do
not test if a distribution with specific parameters is a good fit, but if the whole family of
distributions is suitable; these are the p-values of a goodness-of-fit test. The graph shows that
the four parameter t distribution might be suitable after 1996, but would generally be a poor
fit before 1996.
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FIG. 2. p-values of the Kolmogorov–Smirnov test for the fit of a skewed t distribution to cross-sectional returns

of constituent stock in the S&P 500 index for every trading day from January 1980 until June 2020. The dashed

line shows the 5% significance level.

In this section, we focus on the application of our monitoring procedure studied in Sec-
tion 2. We emphasize that it does not use any model for the distribution of cross-sectional
returns and is applicable to practically any family of distributions. Our objective is to check
if it can detect well-known events that impacted capital markets. We consider daily returns
of the constituent stocks of the S&P 500 index, which is a widely used stock index based
on the market capitalizations of about 500 largest U.S. companies. The index constituents
are updated periodically according to the rules of S&P Dow Jones Indices, typically in re-
sponse to acquisitions and change of market capitalizations. For the data from January 1980
to December 2019, we downloaded the historical constituents list from the UNIX server of
CRSP and closing price data via the CRSP web queries. For the data between January 2020
and June 2020, we deduced the historical constituents list based on the announcements in the
press release of S&P Dow Jones Indices (https://www.spglobal.com/spdji) and downloaded
closing price data from Compustat. The whole dataset covers the period from January 1980
to June 2020, including 10,208 trading days.

We use the significance level α = 0.05, γ = 0.35 and the weight function w(t) = t (1 − t).
(The critical value from Table 1 is c(γ,α) = 2.4946.) We consider four subperiods, which we
identify by established names of events of impact. The detector �(M, s) and the boundary
function g(M, s) for relevant parts of the monitoring periods are shown in Figure 3.

Subperiod 1: Black Monday in 1987 In the first subperiod, we go back to the 1980s and
choose the training period of 1982–1986 (1263 trading days) and the monitoring period of
1987–1989 (758 trading days). We are interested in whether our procedure can detect the sud-
den and severe crash happened on Black Monday (October 19, 1987). The detector �(M, s)

crosses the boundary function g(M, s) on October 16, 1987, three calendar days and one
trading day before the Black Monday. This indicates that some realignment of stock returns
started to happen before the actual crash. This can generally be determined only with a hind-
sight. Our sequential procedure uses only data available up to the current day.

Subperiod 2: Dot-com Bubble In the second subperiod, we shift our interest to the dom-
com bubble crash and use 1995–1999 (1263 trading days) as the training period and 2000–
2002 (751 trading days) as the monitoring period. The detector �(M, s) crosses the boundary
function on March 7, 2000. This is the date when the market peaked due to the previous
years of massive growth in the use and adoption of the internet, but the market started to
crash afterwards, which is referred as the burst of dot-com bubble. Our procedure can find
the change in real time before the market crash.
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FIG. 3. The detector �(M, s) and the boundary function g(M, s) for the four subperiods. Only the first one and

a half years of the monitoring period is shown.

Subperiod 3: Subprime Mortgage Crisis In the third subperiod, we focus on the global
financial crisis known as the subprime mortgage crisis of 2008. The training period and the
monitoring period are set to be 2003–2006 (1007 trading days) and 2007–2010 (756 trad-
ing days), respectively. The Wasserstein distances ξi,N (not shown) initially stays at a low
level, but it starts to climb up in the late 2007 and has substantial growth since the financial
crisis in 2008. The increase of ξi,N in the monitoring period is precisely reflected in the de-
tector �(M, s), which exceeds the boundary function on November 13, 2007. This is several
months before September 2008 when the Subprime Mortgage Crisis began to be apparent (on
September 15, 2008, Lehman Brothers filed for bankruptcy). This example indicates that our
procedure can provide early warnings.

Subperiod 4: COVID-19 In the last subperiod, we are interested in monitoring the dramatic
impact from COVID-19. We choose the test period from January 2019 to June 2020 (377
trading days) and use the previous 5 years (2014–2018, 1257 trading days) as the training
period. The detector �(M, s) abruptly goes over the boundary function g(M, s) on March
9, 2020. Although it is in the early stage of the pandemic in the U.S., the S&P 500 index
dropped 7% within 3 minutes after the market opening on that day and triggered the circuit
breaker, resulting in the trading halt of all stocks. This is the first time that the circuit breaker
is triggered in the last two decades, and then it is triggered for three additional times in March
2020. Our procedure can promptly detect the abrupt change.

There could be a concern that raw returns may not satisfy the independence conditions
specified in Assumption 2.1. As a robustness check, we applied our procedure to idiosyn-
cratic returns (IR). An idiosyncratic return is defined as the fraction of the excess return
not explained by common factors; Morgenson and Harvey (2002) provide an introduction.
For this reason, idiosyncratic returns can be considered as “more independent” than raw re-
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TABLE 2
Time of detected change based on raw return and idiosyncratic return

Subperiod 1 Subperiod 2 Subperiod 3 Subperiod 4

Raw Returns Oct 16, 1987 Mar 7, 2000 Nov 13, 2007 Mar 9, 2020
IR from 1-factor CAPM Jun 16, 1987 Jan 3, 2000 Aug 10, 2007 Mar 3, 2020
IR from 3-factor Model Jun 15, 1987 Jan 3, 2000 Aug 10, 2007 Mar 10, 2020
IR from 4-factor Model Jun 2, 1987 Jan 3, 2000 Nov 12, 2007 Mar 9, 2020
IR from 5-factor Model Jun 2, 1987 Jan 3, 2000 Aug 13, 2007 Mar 10, 2020

turns. To construct idiosyncratic returns, a factor model for stock returns is needed to account
for various common risk factors. In order to explore the potential impact from the specific
choice of a factor model, we decide to use four different factor models, including the one-
factor capital asset pricing model (CAPM), the three-factor model (Fama and French (1993)),
the four-factor model (Carhart (1997)) and the five-factor model (Fama and French (2015)).
Then we follow the specific method of Herskovic et al. (2016) to obtain idiosyncratic re-
turns in the training period. Since our procedure monitors the change in real-time, the id-
iosyncratic returns in the monitoring period are constructed based on factor loadings from
previous year. The factors were downloaded from Professor Kenneth R. French’s website:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Using the same setting, we perform our monitoring procedure on the idiosyncratic returns
of constituent stocks in the S&P 500 index. Table 2 compares the time of detected changes
based on the raw returns and the idiosyncratic returns. As can be observed, the results based
on the idiosyncratic returns from four different factor models are generally similar, implying
that the choice of the specific factor model has small impact. In the first three subperiods,
we can typically detect changes a few months earlier based on the idiosyncratic returns,
compared with the raw return. In Sub-period 4, there is no substantial difference in the time
of detected change, based on the raw and idiosyncratic returns. It appears that our procedure,
generally, has shorter delay time if the independence assumption is more closely satisfied by
the data.

In the above examples, the length of the training period, M , was chosen in such a way
that it does not contain any obvious events that might violate the assumption of a constant
distribution of cross-sectional returns. This period must also be sufficiently long because
the validity of our methods is established as M → ∞. A data driven method of choosing
the longest past period of stable returns might be developed, as was done Chen, Härdle and
Pigorsch (2010) in the case of a scalar series of realized volatility. It is however not clear
at present how to do it for quantile functions, and a reasonable exploratory analysis might
provide a superior choice. The length of the monitoring period, K , was chosen for illustration
only. Since our theory assumes that M + K → ∞, K can be chosen to be fairly long. In fact,
except for subperiod 4, for which we had no more data, we used K which is several times
longer than the one and a half year period used in Figure 3. Since the boundary crossing
occurred within one and a half year after monitoring commenced, we displayed only the first
one and a half year of monitoring so that the boundary function and the detector can be seen
more clearly. The training period would be updated periodically, definitely after a change has
been detected. Once a change is detected, the procedure is terminated and can be restarted
after a sufficiently long training sample is available.

4. A simulation study. For clarity of presentations, we start with the definitions of the
quantities appearing in this section:
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• N is the number of observations at each time i.
• M is the length of historical training sample.
• K is the length of monitoring sample.
• w(t) is the weight function in (1).
• γ is the exponent in (3).
• α is the size in (4).

In the examples of Section 3, we used N ≈ 500, M ≈ 1250, K ≈ 750, w(t) = t (1 − t),
γ = 0.35, α = 0.05. In this section, we explore the behavior of the procedure for broader
ranges of these values. Before doing so, we summarize the procedure in an algorithmic form,
which may be useful for researchers who want to apply it without studying the underlying
theory.

Steps of the detection procedure:

1. At each time i, order the data from smallest to largest, Xi;1,N ≤ Xi;2,N ≤ · · · ≤ Xi;N,N .
2. Calculate the quantile function

Qi,N (t) = Xi;j,N if (j − 1)/(N + 1) ≤ t < j/(N + 1), j = 1,2, . . . ,N.

The values Qi,N (t) are numerically calculated at the grid t ∈ {1/2N,2/2N, . . . ,1 − 1/2N}.
3. Calculate the average quantile function of the training sample:

Q̄M(t) =
1

M

M
∑

i=1

Qi,N (t).

4. Calculate the distances

ξi,N =

∫ 1−1/(2N)

1/(2N)

{

Qi,N (t) − Q̄M(t)
}2

w(t) dt, 1 ≤ i ≤ M + K.

The integral is calculated numerically over the grid t ∈ {1/2N,2/2N, . . . ,1 − 1/2N}.
5. Calculate the mean and the variance of the ξi,N in the training sample:

ξ̂M,N =
1

M

M
∑

i=1

ξi,N and σ̂ 2
M,N =

1

M − 1

M
∑

i=1

(ξi,N − ξ̂M,N )2.

6. Calculate the detector �(M, s),

�(M, s) =
1

σ̂M,N

∣

∣

∣

∣

∣

M+s
∑

i=M+1

ξi,N −
s

M

M
∑

i=1

ξi,N

∣

∣

∣

∣

∣

, 1 ≤ s ≤ K.

7. Calculate boundary function

g(M, s) = c(γ,α)M1/2
(

1 +
s

M

)(

s

s + M

)γ

, 1 ≤ s ≤ K,

where c(γ,α) is from Table 1.
8. Reject H0 if there is a 1 ≤ s ≤ K such that �(M, s) > g(M, s). The first s at which this

occurs is the time of detection.

The above steps are repeated 5000 times to compute empirical size and power for a specific
data generating process Xi,j , 1 ≤ j ≤ N , i = 1,2, . . . ,M + K . There are basically unlimited
choices for the distribution of the Xi,j , the type of change, and for the values of N , M and
K . We consider several scenarios, using the data analysis in Section 3 as a motivation.

Empirical size We consider two data generating processes (DGPs): (1) skewed t distri-
bution with μ = 0, σ = 2, ξ = 1.05, ν = 4.5; (2) standard normal distribution. The skewed
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t distribution is motivated by the application to the cross-sectional returns in Section 3. Its
density and parameters are specified in Section B of the Supplementary Material. The pa-
rameter values we use are representative to what we have seen after year 2000 in relatively
stable periods. The normal distribution is used to provide a more generic example, which
may be relevant in many other fields. We consider two lengths of the historical training sam-
ple, M = 500 and 1250, and three lengths of the monitoring period K = 750, 1250 and
2500. There are N = 500 observations at each time. The weight function is chosen to be
w(t) = t (1 − t). The asymptotic theory justifies the procedure for K = ∞, so we expect the
sizes to be generally smaller than nominal for finite K (the crossing may occur later).

Table 3 reports the empirical sizes for the monitoring scheme for two DGPs at the sig-
nificance levels of 1%, 5% and 10% with a range of values of γ . The monitoring procedure
has reasonably good empirical sizes because they are generally under (when K is small or
modest) or close to (when K is large) the nominal sizes as suggested by the theory developed
in Section 2. Additionally, the empirical sizes for M = 1250 are closer to theoretical levels,
which also reflects the asymptotic validity as M → ∞. One noticeable insight is that the
empirical sizes depend on the choice of γ . Recall that γ can be arbitrarily chosen between 0
and 0.5. The observations in our simulation shows that a larger γ results in a higher rejection
percentage and a smaller γ is more conservative in rejection. Specifically, the nominal sizes
are close to theoretical levels but with marginal inflation if γ is close to 0.5, while opposite
direction is observed if γ is close to 0. Considering the case most closely related to the empir-
ical study in Section 3 (skewed t , γ = 0.35, M = 1250, k = 750), we see that the probability
of a type I error (false detection) is about 2.1%. Thus the detections reported in the first three
subperiods considered in Section 3 are unlikely to be spurious. (They reflect well-known
real events, which is a stronger justification.) We have also computed the rejection rates for
the weight function w(t) = 1, which corresponds to the usual Kantorovich–Wasserstein dis-
tance. It gives good sizes for the normal distribution, but too many rejections for the skewed
t distribution; a constant weight function apparently places too much weight on the heavy
tails.

Finally, we also considered the case of temporally dependent observations. Even though
this case is not covered by our theory, it is useful to see if the method still performs well if
the assumption of independence is violated. We generated data according to GARCH(1,1)

model:

Xi,j = σi,jεi,j , εi,j ∼ i.i.d.N (0,1),

σ 2
i,j = 0.05 + 0.9σ 2

i−1,j + 0.05ε2
i−1,j .

The parameter values are very typical of what is encountered for real stocks. The empirical
size is only marginally higher than for independent data, and the power is correspondingly
marginally higher.

Empirical power We now turn to the analysis of the empirical power. There are many
different ways of changes under the alternative, especially for the skewed t distribution. In
reality, we typically observe a larger volatility, a more negative skewness, and a higher kurto-
sis in the distribution of cross-sectional returns in presence of a crisis. The opposite direction
occurs when the economy recovers from a crisis. Thus, we consider both positive and nega-
tive changes in different moments of the skewed t distribution in our simulation study under
the alternative. In addition, we explore two scenarios related to the time of change k∗: (i)
k∗ = 1 represents the scenario when the distribution of the observations changes immedi-
ately after the training sample; (ii) k∗ = 100 implies that the changes occurs relatively late
in the monitoring sample. The historical sample length is M = 750 and 1250, the monitor-
ing sample is K = 750, and there are N = 500 scalar observations at each time. The weight
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TABLE 3
Empirical size with weight function w(t) = t (1 − t)

DGP-1: skewed t (μ = 0, σ = 2, ξ = 1.05, ν = 4.5)

M = 500, K = 750 M = 500, K = 1250 M = 500, K = 2500

γ \ α 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.00 0.3% 1.5% 3.1% 0.7% 2.4% 5.1% 1.1% 4.0% 7.5%
0.15 0.5% 2.2% 4.7% 0.9% 3.1% 6.6% 1.4% 4.4% 8.6%
0.25 0.6% 2.9% 6.0% 1.1% 3.7% 7.6% 1.5% 4.9% 9.2%
0.35 1.3% 4.4% 8.0% 1.6% 5.0% 9.2% 1.9% 5.8% 10.1%
0.45 2.9% 7.0% 10.6% 3.2% 7.4% 11.1% 3.4% 7.7% 11.6%
0.49 3.2% 7.0% 10.2% 3.3% 7.3% 10.5% 3.4% 7.5% 10.7%

M = 1250, K = 750 M = 1250, K = 1250 M = 1250, K = 2500

γ \ α 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.00 0.0% 0.1% 0.4% 0.0% 0.5% 1.5% 0.1% 1.7% 3.8%
0.15 0.0% 0.4% 1.2% 0.1% 1.1% 2.5% 0.2% 2.4% 4.9%
0.25 0.2% 0.9% 2.2% 0.3% 1.8% 3.6% 0.4% 3.1% 5.9%
0.35 0.3% 2.1% 4.4% 0.4% 2.9% 5.6% 0.7% 4.0% 7.4%
0.45 2.1% 5.3% 9.1% 2.2% 5.9% 10.1% 2.3% 6.5% 11.1%
0.49 2.9% 6.4% 9.7% 2.9% 6.7% 10.2% 2.9% 6.9% 10.8%

DGP-2: standard normal

M = 500, K = 750 M = 500, K = 1250 M = 500, K = 2500

γ \ α 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.00 0.4% 1.5% 3.0% 0.7% 2.7% 5.4% 1.1% 4.1% 7.3%
0.15 0.6% 2.3% 4.3% 0.9% 3.6% 6.6% 1.4% 4.8% 8.0%
0.25 0.9% 3.2% 5.8% 1.1% 4.3% 7.8% 1.6% 5.4% 8.9%
0.35 1.5% 4.6% 7.9% 1.7% 5.6% 9.5% 2.1% 6.3% 10.5%
0.45 3.3% 7.3% 10.7% 3.5% 7.8% 11.6% 3.7% 8.1% 12.2%
0.49 3.7% 7.5% 10.8% 3.8% 7.8% 11.2% 3.9% 8.0% 11.5%

M = 1250, K = 750 M = 1250, K = 1250 M = 1250, K = 2500

γ \ α 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.00 0.0% 0.1% 0.5% 0.0% 0.5% 1.3% 0.2% 1.6% 3.6%
0.15 0.0% 0.5% 1.4% 0.1% 1.0% 2.6% 0.4% 2.3% 4.8%
0.25 0.1% 1.2% 2.8% 0.4% 1.8% 4.2% 0.6% 3.0% 6.0%
0.35 0.6% 2.5% 4.7% 0.8% 3.1% 6.0% 1.0% 4.2% 7.5%
0.45 2.1% 5.8% 8.7% 2.3% 6.2% 9.5% 2.4% 6.8% 10.3%
0.49 2.8% 6.9% 9.8% 3.0% 7.2% 10.1% 3.0% 7.4% 10.6%

function is w(t) = t (1 − t). We set the values of parameters of skewed t before k∗ as

Xi,j ∼ skewed t (μ = μ0, σ = σ0, ξ = ξ0, ν = ν0), 1 ≤ i < M + k∗,1 ≤ j ≤ N,

where μ0 = 0, σ0 = 2, ξ0 = 1.05 or 0.95, ν0 = 0.45 or 0.55, and we change the values in one
of four parameters in each of the following alternatives:

HA,1 : Xi,j ∼ skewed t (μ = μ1, σ = σ0, ξ = ξ0, ν = ν0), M + k∗ ≤ i ≤ M + K,

HA,2 : Xi,j ∼ skewed t (μ = μ0, σ = σ1, ξ = ξ0, ν = ν0), M + k∗ ≤ i ≤ M + K,

HA,3 : Xi,j ∼ skewed t (μ = μ0, σ = σ0, ξ = ξ1, ν = ν0), M + k∗ ≤ i ≤ M + K,

HA,4 : Xi,j ∼ skewed t (μ = μ0, σ = σ0, ξ = ξ0, ν = ν1), M + k∗ ≤ i ≤ M + K.
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TABLE 4
Empirical power under HA,1 and HA,2 with weight function w(t) = t (1 − t) at significance level 5%

HA,1: skewed t

(μ = μ1, σ = 2, ξ = 1.05, ν = 4.5)
HA,2: skewed t

(μ = 0, σ = σ1, ξ = 1.05, ν = 4.5)

Before k∗: μ0 = 0.00 μ0 = 0.00 μ0 = 0.00 μ0 = 0.00 σ0 = 2.00 σ0 = 2.00 σ0 = 2.00 σ0 = 2.00
After k∗: μ1 = −0.10 μ1 = −0.05 μ1 = 0.05 μ1 = 0.10 σ1 = 1.80 σ1 = 1.90 σ1 = 2.10 σ1 = 2.20

γ M = 500, k∗ = 1 M = 500, k∗ = 1

0.00 100.0% 91.4% 90.8% 100.0% 100.0% 79.4% 100.0% 100.0%
0.15 100.0% 93.4% 92.8% 100.0% 100.0% 83.1% 100.0% 100.0%
0.25 100.0% 94.2% 93.8% 100.0% 100.0% 85.0% 100.0% 100.0%
0.35 100.0% 94.7% 94.4% 100.0% 100.0% 85.7% 100.0% 100.0%
0.45 100.0% 94.3% 93.7% 100.0% 100.0% 83.7% 100.0% 100.0%
0.49 100.0% 92.3% 91.8% 100.0% 100.0% 79.3% 100.0% 100.0%

γ M = 1250, k∗ = 1 M = 1250, k∗ = 1

0.00 100.0% 94.6% 94.2% 100.0% 100.0% 82.1% 99.9% 100.0%
0.15 100.0% 97.4% 97.2% 100.0% 100.0% 90.2% 99.9% 100.0%
0.25 100.0% 98.3% 98.4% 100.0% 100.0% 93.2% 99.9% 100.0%
0.35 100.0% 98.6% 98.7% 100.0% 100.0% 95.0% 99.9% 100.0%
0.45 100.0% 98.8% 98.8% 100.0% 100.0% 95.2% 99.9% 100.0%
0.49 100.0% 98.4% 98.5% 100.0% 100.0% 93.5% 99.9% 100.0%

γ M = 500, k∗ = 100 M = 500, k∗ = 100

0.00 100.0% 81.9% 81.8% 100.0% 100.0% 65.5% 100.0% 100.0%
0.15 100.0% 84.5% 84.6% 100.0% 100.0% 69.7% 100.0% 100.0%
0.25 100.0% 85.7% 85.9% 100.0% 100.0% 72.1% 100.0% 100.0%
0.35 100.0% 86.1% 86.1% 100.0% 100.0% 72.4% 100.0% 100.0%
0.45 100.0% 83.6% 83.7% 100.0% 100.0% 68.3% 100.0% 100.0%
0.49 100.0% 79.6% 79.1% 100.0% 100.0% 61.4% 100.0% 100.0%

γ M = 1250, k∗ = 100 M = 1250, k∗ = 100

0.00 100.0% 86.1% 84.2% 100.0% 100.0% 64.5% 100.0% 100.0%
0.15 100.0% 92.2% 91.0% 100.0% 100.0% 77.2% 100.0% 100.0%
0.25 100.0% 94.7% 93.6% 100.0% 100.0% 83.1% 100.0% 100.0%
0.35 100.0% 95.9% 95.0% 100.0% 100.0% 86.2% 100.0% 100.0%
0.45 100.0% 96.0% 94.9% 100.0% 100.0% 86.2% 100.0% 100.0%
0.49 100.0% 94.4% 93.7% 100.0% 100.0% 82.5% 100.0% 100.0%

Tables 4 and 5 show the empirical power for the above four alternatives for k∗ = 1 and 100
at the significance level of 5%. There are five major observations. First, our test has higher
power when the change occurs relatively early in the monitoring sample since the rejection
rates of k∗ = 1 are generally higher than those of k∗ = 100. Second, since the power tends to
one as M → ∞, the empirical power of M = 1250 is, as predicted by the theory, higher than
M = 500 in most cases. Third, the power approaches 100% as the magnitude of the change
increases in either positive or negative directions. Fourth, the choice of γ has a minor impact
on the power; it usually peaks if γ = 0.35 or 0.45. Lastly, the power has symmetric pattern
only in HA,1, while the test is more sensitives to change of increase in σ , ξ , and ν.

In Section C of the Supplementary Material, we consider the impact of the weight function
w on the performance of our method. A broad conclusion is that while for distributions with
light tails the choice of w does not matter much, for heavy-tailed observations functions giv-
ing less weights to tails are recommended. This emphasizes the usefulness of using weighted
quantile functions rather than the original Wasserstein distance.
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TABLE 5
Empirical power under HA,3 and HA,4 with weight function w(t) = t (1 − t) at significance level 5%

HA,3: skewed t

(μ = 0, σ0 = 2, ξ = ξ1, ν = 4.5)
HA,4: skewed t

(μ = 0, σ0 = 2, ξ = 1.05, ν = ν1)

Before k∗: ξ0 = 1.05 ξ0 = 1.05 ξ0 = 0.95 ξ0 = 0.95 ν0 = 4.50 ν0 = 4.50 ν0 = 5.50 ν0 = 5.50
After k∗: ξ1 = 0.95 ξ1 = 0.99 ξ1 = 1.01 ξ1 = 1.05 ν1 = 5.80 ν1 = 5.50 ν1 = 4.50 ν1 = 4.20

γ M = 500, k∗ = 1 M = 500, k∗ = 1

0.00 100.0% 73.9% 80.5% 100.0% 100.0% 96.9% 77.6% 100.0%
0.15 100.0% 78.3% 84.3% 100.0% 100.0% 97.7% 81.2% 100.0%
0.25 100.0% 80.4% 86.0% 100.0% 100.0% 98.1% 83.4% 100.0%
0.35 100.0% 81.2% 86.7% 100.0% 100.0% 98.3% 84.2% 100.0%
0.45 100.0% 79.6% 85.5% 100.0% 100.0% 97.9% 82.0% 100.0%
0.49 100.0% 74.6% 80.9% 100.0% 99.9% 96.7% 77.2% 100.0%

γ M = 1250, k∗ = 1 M = 1250, k∗ = 1

0.00 100.0% 74.6% 82.9% 100.0% 100.0% 98.8% 79.4% 100.0%
0.15 100.0% 85.0% 91.1% 100.0% 100.0% 99.5% 89.0% 100.0%
0.25 100.0% 89.3% 94.2% 100.0% 100.0% 99.7% 92.7% 100.0%
0.35 100.0% 92.0% 95.7% 100.0% 100.0% 99.8% 94.3% 100.0%
0.45 100.0% 92.4% 96.0% 100.0% 100.0% 99.9% 94.7% 100.0%
0.49 100.0% 90.3% 94.6% 100.0% 100.0% 99.8% 93.1% 100.0%

γ M = 500, k∗ = 100 M = 500, k∗ = 100

0.00 100.0% 61.2% 66.9% 100.0% 99.6% 90.9% 64.0% 99.9%
0.15 100.0% 65.4% 70.9% 100.0% 99.7% 92.7% 68.4% 99.9%
0.25 100.0% 67.4% 72.9% 100.0% 99.7% 93.6% 70.3% 100.0%
0.35 100.0% 67.9% 73.6% 100.0% 99.7% 93.6% 70.8% 100.0%
0.45 100.0% 64.7% 70.1% 100.0% 99.7% 91.9% 67.0% 99.9%
0.49 100.0% 57.6% 64.1% 100.0% 99.5% 89.1% 60.0% 99.9%

γ M = 1250, k∗ = 100 M = 1250, k∗ = 100

0.00 100.0% 58.3% 66.2% 100.0% 100.0% 94.4% 62.0% 100.0%
0.15 100.0% 71.5% 78.1% 100.0% 100.0% 97.5% 75.1% 100.0%
0.25 100.0% 78.3% 83.3% 100.0% 100.0% 98.4% 81.8% 100.0%
0.35 100.0% 81.9% 86.9% 100.0% 100.0% 98.8% 84.9% 100.0%
0.45 100.0% 81.9% 86.8% 100.0% 100.0% 98.7% 85.0% 100.0%
0.49 100.0% 78.2% 83.1% 100.0% 100.0% 98.2% 81.4% 100.0%

It is also worthwhile to examine the distribution of the stopping time τM . Figure 4 shows
the estimated densities of the distributions of the τM under scenarios focusing two different
time of change k∗ = 1 (upper panel) and k∗ = 100 (lower panel), under HA,2 with σ1 = 2.1,
M = 500 and K = 750. The detectors with γ close to 0.5 have the shortest delay in detection
in the scenario which a change occurs immediately in the monitoring sample, while the de-
tector with γ = 0 typically find the first exceedance above the boundary function with delay
in a period of 118 (mode in its density). However, the detector with γ = 0.45 or 0.49 is not
recommended for the practical application due to the insight found in the lower panel of Fig-
ure 4 for the scenario of k∗ = 100, where we observe some spurious detections even before a
change has occurred. Overall, γ = 0.35 (the solid thick line in Figure 4) is our recommended
choice because it gives a good balance between the short delay and the negligible proportion
of false early alarms. Section D of the Supplementary Material provides additional figures
illustrating the distribution of the stopping time in different scenarios; γ = 0.35 continuous
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FIG. 4. Estimated densities of the stopping time of rejection of HA,2 at the 5% significance level. Upper panel:
k∗ = 1. Lower Panel: k∗ = 100.

to be the preferred choice. We also briefly discuss in Section D what happens if there are two
change points close to each other.

Our theory covers both the case of fixed N and N → ∞. A practical question is how
small can N be? Recall that N is the number of observations needed to estimate the quantile
function (or cdf or density), so this number cannot be too small. Additional simulations, not
reported, show that using N = 100 rather than N = 500 has no noticeable impact on the
empirical size and reduces the power slightly.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Monitoring for a change point in a sequence of distri-

butions” (DOI: 10.1214/20-AOS2036SUPP; .pdf). In Section A, we provide the proofs of
the results of Section 2. In Section B, we show the parameterization of skewed t distribution.
In Section C, we investigate the impact of the weight function on empirical rejection rates. In
Section D, we illustrate the distribution of the stopping time in different scenarios and briefly
discuss what happens if there are two change points close to each other.
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CSÖRGŐ, M. and RÉVÉSZ, P. (1981). Strong Approximations in Probability and Statistics. Probability and Math-

ematical Statistics. Academic Press, New York. MR0666546
DEL BARRIO, E., GINÉ, E. and MATRÁN, C. (1999). Central limit theorems for the Wasserstein distance between

the empirical and the true distributions. Ann. Probab. 27 1009–1071. MR1698999 https://doi.org/10.1214/aop/
1022677394

DEL BARRIO, E., GINÉ, E. and UTZET, F. (2005). Asymptotics for L2 functionals of the empirical quantile
process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli 11 131–189.
MR2121458 https://doi.org/10.3150/bj/1110228245

DEL BARRIO, E., CUESTA-ALBERTOS, J. A., MATRÁN, C. and RODRÍGUEZ-RODRÍGUEZ, J. M. (1999).
Tests of goodness of fit based on the L2-Wasserstein distance. Ann. Statist. 27 1230–1239. MR1740113
https://doi.org/10.1214/aos/1017938923

DUBEY, P. and MÜLLER, H.-G. (2020). Fréchet change-point detection. Ann. Statist. 48 3312–3335. MR4185810
https://doi.org/10.1214/19-AOS1930

FAMA, E. (1965). The behavior of stock-market prices. J. Bus. 38 34–105.
FAMA, E. and FRENCH, K. (1993). Common risk factors in the returns on bonds and stocks. J. Financ. Econ. 33

3–56.
FAMA, E. and FRENCH, K. (2015). A five-factor asset pricing model. J. Financ. Econ. 116 1–22.
GRANGER, C. W. J. and DING, Z. (1995). Some properties of absolute return: An alternative measure of risk.

Ann. Econ. Statist. 40 67–91. MR1476513 https://doi.org/10.2307/20076016
GROMENKO, O., KOKOSZKA, P. and REIMHERR, M. (2017). Detection of change in the spatiotemporal mean

function. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 29–50. MR3597963 https://doi.org/10.1111/rssb.12156
HERSKOVIC, B., KELLY, B., LUSTIG, H. and VAN NIEUWERBURGH, S. (2016). The common factor in idiosyn-

cratic volatility: Quantitative asset pricing implications. J. Financ. Econ. 119.
HORVÁTH, L., KOKOSZKA, P. and WANG, S. (2021). Supplement to “Monitoring for a change point in a sequence

of distributions.” https://doi.org/10.1214/20-AOS2036SUPP
JIRAK, M. (2015). Uniform change point tests in high dimension. Ann. Statist. 43 2451–2483. MR3405600

https://doi.org/10.1214/15-AOS1347
KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1975). An approximation of partial sums of independent RV’s and

the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 111–131. MR0375412 https://doi.org/10.1007/BF00533093



MONITORING FOR A CHANGE POINT IN A SEQUENCE OF DISTRIBUTIONS 2291

KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1976). An approximation of partial sums of independent RV’s, and
the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 33–58. MR0402883 https://doi.org/10.1007/BF00532688

LI, J. and JIN, B. (2018). Multi-threshold accelerated failure time model. Ann. Statist. 46 2657–2682.
MR3851751 https://doi.org/10.1214/17-AOS1632

MANDELBROT, B. (1997). The Variation of Certain Speculative Prices. Springer, Berlin.
MITTNIK, S. and RACHEV, S. T. (1993). Modeling asset returns with alternative stable distributions. Econometric

Rev. 12 261–389. With comments by P. C. B. Phillips, F. X. Diebold and R. T. Baillie and a reply by the authors.
MR1249625 https://doi.org/10.1080/07474939308800266

MORGENSON, G. and HARVEY, C. (2002). The New York Times Dictionary of Money and Investing: The Essential

A-to-Z Guide to the Language of the New Market. Macmillan, New York.
PADILLA, O. H. M., ATHEY, A., REINHART, A. and SCOTT, J. G. (2019). Sequential nonparametric tests for

a change in distribution: An application to detecting radiological anomalies. J. Amer. Statist. Assoc. 114 514–
528. MR3963159 https://doi.org/10.1080/01621459.2018.1476245

PANARETOS, V. M. and ZEMEL, Y. (2016). Amplitude and phase variation of point processes. Ann. Statist. 44

771–812. MR3476617 https://doi.org/10.1214/15-AOS1387
PANARETOS, V. M. and ZEMEL, Y. (2019). Statistical aspects of Wasserstein distances. Annu. Rev. Stat. Appl. 6

405–431. MR3939527 https://doi.org/10.1146/annurev-statistics-030718-104938
PETERSEN, A. and MÜLLER, H.-G. (2016). Functional data analysis for density functions by transformation to

a Hilbert space. Ann. Statist. 44 183–218. MR3449766 https://doi.org/10.1214/15-AOS1363
POLLAK, M. (1985). Optimal detection of a change in distribution. Ann. Statist. 13 206–227. MR0773162

https://doi.org/10.1214/aos/1176346587
POLUNCHENKO, A. S. and TARTAKOVSKY, A. G. (2010). On optimality of the Shiryaev–Roberts proce-

dure for detecting a change in distribution. Ann. Statist. 38 3445–3457. MR2766858 https://doi.org/10.1214/
09-AOS775

PRAETZ, P. (1972). The distribution of share price changes. J. Bus. 45 49–55.
SHARPE, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. J. Finance 19

425–442.
SKOROKHOD, A. V. (1965). Studies in the Theory of Random Processes. Addison-Wesley, Reading, MA. Trans-

lated from the Russian by Scripta Technica, Inc. MR0185620
WANG, J. (2012). A State Space Model Approach to Functional Time Series and Time Series Driven by Differential

Equations. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Rutgers Univ., New Brunswick, NJ. MR3152378
XIE, Y. and SIEGMUND, D. (2013). Sequential multi-sensor change-point detection. Ann. Statist. 41 670–692.

MR3099117 https://doi.org/10.1214/13-AOS1094
YAKIR, B. (1997). A note on optimal detection of a change in distribution. Ann. Statist. 25 2117–2126.

MR1474086 https://doi.org/10.1214/aos/1069362390


	Introduction
	Assumptions and main results
	Application to cross-sectional returns
	A simulation study
	Acknowledgments
	Funding
	Supplementary Material
	References

