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a b s t r a c t

We propose a significance test to determine if data on a regular d-dimensional grid
can be assumed to be a realization of Gaussian process. By accounting for the spatial
dependence of the observations, we derive statistics analogous to sample skewness
and kurtosis. We show that the sum of squares of these two statistics converges to
a chi-square distribution with two degrees of freedom. This leads to a readily applicable
test. We examine two variants of the test, which are specified by two ways the spatial
dependence is estimated. We provide a careful theoretical analysis, which justifies the
validity of the test for a broad class of stationary random fields. A simulation study
compares several implementations. While some implementations perform slightly better
than others, all of them exhibit very good size control and high power, even in relatively
small samples. An application to a comprehensive data set of sea surface temperatures
further illustrates the usefulness of the test.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Nearly all modern spatial statistics applications involve Gaussian processes. While for most large sample results it
is not necessary to assume Gaussianity, it is often assumed to improve finite-sample inference and effectively apply
Bayesian methods. The same goes for nearly all applications involving conditional and simultaneous autoregressive models
in discrete space, see the monographs of Cressie [7], Stein [39], Schabenberger and Gotway [34], Cressie and Wikle [8]
and Banerjee et al. [5]. A survey of Gaussian modeling in spatial statistics is given by Gelfand and Schliep [14], part III
of Gelfand et al. [13] specifically focuses on methods for discrete spatial data which rely on the Gaussian assumption, and
then those that do not. Recent research has focused on applying spatial statistics methods based on the assumption of
Gaussianity to large data sets and advancing computational approaches, including parallel and distributed computing, see,
e.g., Nychka et al. [26], Paciorek et al. [27], Katzfuss [20] and Guhaniyogi and Banerjee [15]. Methodology and theory for
spatial Gaussian models continue to be developed, the references are very numerous. We note the recent work of Stroud
et al. [41], which is concerned with missing values, and of Chang et al. [6] who study signal identification within the
model involving a Gaussian field on a grid.

Despite the prevalence of the assumption of Gaussianity, there appears to exist no significance tests that could be used
to assess if it is reasonable to assume that a given spatial data set can be treated as a realization of a Gaussian random
field. This is a difficult problem because normality tests, and even exploratory tools like QQ-plots or histograms, require
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Fig. 1. Mercer and Hall wheat-yield data. The data were collected from wheat uniformity trials carried out at Rothamsted Experimental Station in

1910. The yield data are on 20 × 25 grid with each slot in a size of approximately 3.30 meter (east–west) × 2.5 meter (north–south), giving the

total area of roughly one acre.

a random sample (iid observations) from a distribution whose Gaussianity is to be determined. For a general spatial data
set, testing the joint normality of all finite-dimensional distributions is practically impossible. We will show that it is
possible for data defined on a grid under the assumption of stationarity. When the original data do not appear stationary,
it is a common practice to attempt to transform them to stationarity. For example, one can use the deformation approach
pioneered by Sampson and Guttorp [33] and subsequently developed by Schmidt and O’Hogan [35], Anderes and Stein
[1] and Fouedjio et al. [11], among others. A more common approach is to consider regression models, e.g., Chapter 6
of Schabenberger and Gotway [34], whose errors are stationary, and are often assumed jointly normal. These procedures
should also be validated by suitable normality tests.

We illustrate an application of our methodology by considering a classical data set of wheat yields studied in some
detail in Section 4.5 of Cressie [7], and many earlier papers cited there. The data are shown in Fig. 1. It is argued in Cressie
[7] that no transformation of these data is needed to ensure stationarity. The question we want to answer is if these data
can be considered to be a realization of a Gaussian process, i.e., if these values can be assumed to be a realization of a
random field Xi,j, i, j ∈ Z, whose all finite-dimensional distributions are multivariate normal. This question is difficult to
answer because the pronounced spatial dependence of these data can ‘‘force’’ more large or small values in a finite region
than univariate normality might suggest. More fundamentally, since these data are not a random sample, usual exploratory
plots or tests cannot be relied on. Our significance test shows that these data can be assumed to be a realization of a
Gaussian process. Depending on the implementation, the P-values are between 16% and 52%, details are shown in Section
I of the online supplement. Our simulations show that most implementations have sufficient power to detect a departure
from normality that matters, even for the relatively small sample size (20 × 25 grid) of the data in Fig. 1.

We hope that the test we propose will turn out to be a useful diagnostic tool, which may lend confidence in
the application of various methodologies based on the normality assumption, or provide a caution on the validity of
conclusions. An appealing feature of our test is that the test statistics can be computed fairly easily using existing R or
MATLAB software, and the critical values are those of a chi-square distribution. The test has good empirical size and
power, and can be justified asymptotically using recent advances in the asymptotic theory for random fields and new
arguments related to the quantification of spatial dependence.

The assumption of normality has underlain much of the development of statistics, well beyond spatial statistics, and
many tests have been proposed. Perhaps the best known is the Shapiro and Wilk [37] test, which has been extended
and improved in many directions, Royston [30,31,32]. Tests based on the empirical distribution function have also been
extensively used, Anderson and Darling [2], Stephens [40], Scholz and Stephens [36]. Great many other approaches have
been proposed, Mardia [22,23] D’Agostino et al. [9], Henze and Zirkler [16], Doornik and Hansen [10], among many others.
However, perhaps the most commonly used test is the Jarque and Bera [18,19] test. It checks if the first four moments of
a distribution agree with the those of a normal distribution. This is a general direction we take. Our test will not detect
very subtle departures from normality, which manifest themselves in discrepancy in moments beyond the first four, but
it will detect most commonly encountered deviations from normality.
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The paper is organized as follows. In Section 2 we develop the test. Its finite sample performance is evaluated

in Section 3 by means of a simulation study and an application to a climate data set. There are many possible

implementations of our general paradigm, which must be evaluated and compared. The proofs of the mathematical results

of Section 2, needed to derive and justify the test, are presented in Section II of an online supplement, which also contains

additional details of the test procedure and additional tables, which support our conclusions and recommendations.

2. Testing procedure and its large sample justification

We derive and formulate the testing procedure in Section 2.1, where we also specify the most important assumptions

for its validity. A fundamental ingredient of our approach is the quantification and estimation of spatial dependence, this

is treated in Section 2.2. Asymptotic theory underlying both Sections 2.1 and 2.2 is developed in Section 2.3.

2.1. Assumptions and test derivation

Let Zd denote the set of d–dimensional vectors with integer coordinates. We assume that the observations Xi follow

the model

Xi = µ + ei, i ∈ Z
d,

where {ei} is a strictly stationary, zero mean spatial process. The mean µ is unknown.

We want to test

H0 : the Xi are jointly normal,

against the alternative that H0 does not hold. The test is based on observations Xi, i ∈ Γn ⊂ Z
d. The domain Γn is indexed

by positive integers n, which are not sample sizes, but sample indexes in increasing domain asymptotics. The sample size

is denoted by nΓ , the cardinality of the set Γn, nΓ = |Γn|. If d = 2, and Γn = ΓN,M := {(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ M}, then
nΓ = NM . Let ∂Γn denote the boundary of Γn and |∂Γn| its cardinality. We assume that, as n → ∞,

|∂Γn|
nΓ

→ 0. (1)

Condition (1) states that asymptotically there should be many more points in the interior of the domain than at its

boundary. If d = 2, and Γn = ΓN,M , defined above, then (1) holds if and only of min(N,M) → ∞.

We assume that under the null hypothesis {ei} is a Gaussian spatial linear process, i.e., it satisfies the following

assumption.

Assumption 1. The ei are spatial moving averages,

ei =
∑

s∈Zd

asεi−s, i ∈ Z
d, (2)

with independent, standard normal innovations εi, and the coefficients as satisfying
∑

s∈Zd

|as| < ∞. (3)

Assumption 1 implies that the field {Xi} is strictly stationary and Gaussian, with spatial dependence quantified by

conditions (2) and (3). Linearity in (2) is needed to ensure normality of the observations. The summability condition in

(3) cannot be relaxed because the required CLT would not hold with standard rate, see Lahiri and Robinson [21]. Under

Assumption 1, the random variables

zi = Xi − µ

σ
, with σ 2 =

∑

s∈Zd

a2s , (4)

are standard normal (but, in general, not independent). The zi must be approximated by random variables that can be

computed from the sample. For this purpose, define

S2n = 1

nΓ

∑

i∈Γn

(Xi − X̄n)
2, X̄n = 1

nΓ

∑

i∈Γn

Xi.

Our tests statistics are based on the standardized observations

xi = xi,n = Xi − X̄n

Sn
, i ∈ Γn, (5)
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which are sample counterparts of the standard normal zi defined above. Using the xi, we define the sample skewness and
kurtosis by

Sn = 1

n
1/2
Γ

∑

i∈Γn

x3i and Kn = 1

n
1/2
Γ

∑

i∈Γn

(x4i − 3). (6)

As we will see in Section 2.3, the asymptotic variances of Sn and Kn are, respectively,

φ2
S

=
∑

i∈Zd

E
[
(z30 − 3z0)(z

3
i − 3zi)

]
(7)

and

φ2
K

=
∑

i∈Zd

E
[
(z40 − 6z20 + 3)(z4i − 6z2i + 3)

]
. (8)

In particular,

φ2
K

̸=
∑

i∈Zd

E
[
(z40 − 3)(z4i − 3)

]
.

This motivates the introduction of modified sample skewness and kurtosis defined by

S
⋆
n = 1

n
1/2
Γ

∑

i∈Γn

(x3i − 3xi) and K
⋆
n = 1

n
1/2
Γ

∑

i∈Γn

(x4i − 6x2i + 3).

Observe that S
⋆
n = Sn because

∑
i∈Γn

xi = 0. The statistics S
⋆
n and K

⋆
n also have asymptotic variances, respectively, φ2

S

and φ2
K
, and are better matched to them in finite samples because φ2

S
and φ2

K
are direct counterparts of spatial long-run

variances of the sequences
{
x3i − 3xi

}
and

{
x4i − 6x2i + 3

}
.

Denoting by φ̂S and φ̂K consistent estimators of φS and φK, the test statistic is defined as

J⋆n = S
⋆2
n

φ̂2
S

+ K
⋆2
n

φ̂2
K

.

It is the sum of squares of normalized skewness and kurtosis. As will be stated in Section 2.3, J⋆n is asymptotically chi-square
with two degrees of freedom. The test thus is:

Reject H0 at significance level α if J⋆n > χ2
2 (1 − α), where χ2

2 (1 − α) is the (1 − α)th quantile of the chi-square distribution
with two degrees of freedom.

Suitable estimators φ̂2
S
and φ̂2

K
are derived in Section 2.2, see formulas (12) and (13).

The key to understanding the need for the modified kurtosis is the fact that

φ2
K

̸=
∑

i∈Zd

E
[
(z40 − 3)(z4i − 3)

]
.

The formula given above must be used instead, which is the long-run variance of the unobservable field
{
z4i − 6z2i + 3

}
.

We replace the zi by the observable xi, which approximate them with an asymptotically negligible effect. In particular,
Var[K⋆

n] = φ2
K
, so K

⋆2
n divided by an estimator of the variance of K⋆

n is a Wald statistic, which is asymptotically χ2
1 . (The

population kurtosis is zero under the null hypothesis.) The same argument applies the skewness. We show that these two
components are asymptotically independent, so their sum is asymptotically χ2

2 .

2.2. Estimation of the spatial long run variances

It is useful to consider a more general setting. Suppose
{
yi, i ∈ Z

d
}
is a zero mean strictly stationary scalar random

field such that Ey20 < ∞, whose covariances are γ (j) = E[y0yj], j ∈ Z
d. The objective is to estimate the long-run, or

asymptotic, variance defined by

σ 2 =
∑

j∈Zd

γ (j) =
∑

j∈Zd

E[y0yj]. (9)

We assume throughout that
∑

j∈Zd

|γ (j)| < ∞, (10)

so that σ 2 can be defined. We observe yj ∈ Γn, which is a rectangle whose all dimensions are increasing, as specified in
the following assumption.
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Assumption 2. The spatial domain Γn is given by

Γn = {1, . . . , n1} × {1, . . . , n2} × · · · × {1, . . . , nd]

and n⋆ := min1≤i≤d ni → ∞.

The sample covariances are defined by

γ̂ (j) = |Γn(j)|−1
∑

i∈Γn(j)

yiyi+j, where Γn(j) = {i ∈ Γn : i + j ∈ Γn} .

To provide explicit formulas, in the following we use the notation j = (j1, . . . , jd). In this setting, σ 2 is estimated by the

kernel estimator

σ̂ 2
n =

d∑

ℓ=1

∑

|jℓ|≤nℓ

{
d∏

ℓ=1

K

(
jℓ

hℓ

)}
γ̂ (j1, . . . , jd), (11)

where K is a univariate kernel satisfying the following commonly used assumption.

Assumption 3. The kernel K is a continuous function on the interval [−1, 1] satisfying K (0) = 1. The bandwidths hℓ

satisfy h⋆ := max1≤ℓ≤d hℓ → ∞, as n → ∞.

In our context, we use estimator (11) computed from yi = x3i − 3xi and yi = x4i − 6xi + 3. These yi do not form a

strictly stationary random field. Due to the random normalization in (5), they form a structure which could be called a

spatial triangular array. However, the zi defined by (4) do form a strictly stationary random field, so it must be shown

that replacing the xi by the zi introduces an asymptotically negligible effect into the estimation of φ2
S

and φ2
K
. This will

be established in the proof of Theorem 2. We first introduce the required notation. Set

ySi = x3i − 3xi, yKi = x4i − 6xi + 3

and

ȳS = 1

nΓ

∑

i∈Γn

ySi , ȳK = 1

nΓ

∑

i∈Γn

yKi .

Next, we define the sample covariances

γ̂S(j) = |Γn(j)|−1
∑

i∈Γn(j)

(
ySi − ȳS

) (
ySi+j − ȳS

)
,

γ̂K(j) = |Γn(j)|−1
∑

i∈Γn(j)

(
yKi − ȳK

) (
yKi+j − ȳK

)
.

Using notation

∑

j∈J(h)
wh(j)g(j) =

d∑

ℓ=1

∑

|jℓ|≤nℓ

{
d∏

ℓ=1

K

(
jℓ

hℓ

)}
g(j1, . . . , jd),

which applies to any function g on Z
d, we define the kernel estimators

φ̂2
S,kern =

∑

j∈J(h)
wh(j)γ̂S(j), φ̂2

K,kern =
∑

j∈J(h)
wh(j)γ̂K(j). (12)

The idea behind the kernel estimators is as follows. Focus on φ̂2
K,kern and consult formula (8). We replace the model

autocovariances E
[
(z40 − 6z20 + 3)(z4j − 6z2j + 3)

]
by the sample autocovariances γ̂K(j). The latter are variable if the set

Γn(j) is small, i.e., if j is ‘‘spatially large". For this reason, we put smaller weights on them. This idea has been commonly

used in time series analysis.

Another class of estimators can be derived as follows. Set ρi = E[z0zi]. Tedious calculations, using the values of the

moments of the standard normal distributions, show that

φ2
S

= 6
∑

i∈Zd

ρ3
i and φ2

K
= 24

∑

i∈Zd

ρ4
i .

We estimate the ρi by the sample covariances of the xi, i.e., by (recall that x̄ = 0)

γ̂x(j) = |Γn(j)|−1
∑

i∈Γn(j)

xixi+j
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and define the power estimators

φ̂2
S,pow = 6

∑

j∈J(h)
wh(j)γ̂

3
x (j), φ̂2

K,pow = 24
∑

j∈J(h)
wh(j)γ̂

4
x (j), (13)

i.e.,

φ̂2
S,pow = 6

d∑

ℓ=1

∑

|jℓ|≤hℓ

{
d∏

ℓ=1

K

(
jℓ

nℓ

)}
γ̂ 3
x (j1, . . . , jd),

φ̂2
K,pow = 24

d∑

ℓ=1

∑

|jℓ|≤hℓ

{
d∏

ℓ=1

K

(
jℓ

nℓ

)}
γ̂ 4
x (j1, . . . , jd).

The consistency of the above spatial long-run variance estimators is established in Section 2.3. More explicit formulas
for the commonly encountered case of a 2D rectangular domain are given in Section III of the Supplement.

2.3. Asymptotic theory

This section contains asymptotic results, which justify the application of the test for a large class of stationary fields.
All proofs are given in Section II of the supplement. The first result establishes the asymptotic distribution of the sample
skewness Sn and kurtosis Kn, and their modified versions S

⋆
n and K

⋆
n. Very little must be assumed about the shape of the

spatial domain Γn.

Theorem 1. Suppose condition (1) and Assumption 1 hold. Then the series (7) and (8) defining, respectively, φ2
S
and φ2

K
are

absolutely convergent, and the vectors [Sn,Kn]⊤ and [S⋆
n,K

⋆
n]⊤ both converge to the bivariate normal distribution with mean

zero and covariance matrix[
φ2
S

0

0 φ2
K

]
.

Based on Theorem 1, we consider the test statistics

Ĵn = S
2
n

φ̂2
S

+ K
2
n

φ̂2
K

and J⋆n = S
⋆2
n

φ̂2
S

+ K
⋆2
n

φ̂2
K

.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Suppose condition (1) and Assumption 1 hold, and

φ̂2
S

P→ φ2
S

and φ̂2
K

P→ φ2
K
. (14)

Then Ĵn
D→ χ2

2 and J⋆n
D→ χ2

2 , where χ2
2 is a chi-square random variable with two degrees of freedom.

We now turn to the consistency of the estimators given by (12) and (13). For these results more restrictive assumptions
on the spatial domain are required. Recall that n⋆ := min1≤i≤d ni and h⋆ = max1≤ℓ≤d hℓ.

Theorem 2. Suppose (1), Assumptions 1–3 hold, and h⋆ = o(n⋆1/2). Then relations (14) hold for the estimators φ̂2
S,kern and

φ̂2
K,kern given by (12) and the estimators φ̂2

S,pow and φ̂2
K,pow given by (13).

Estimation of the spatial long-run variance σ 2 given by (9) has been recently studied by Prause and Steland [29] who
established consistency assuming ϕ-mixing with a suitable rate. If the errors εj are normal, even for d = 1, the moving
average (2) is ϕ-mixing if only finitely many coefficients as are not zero, see Ibragimov and Linnik [17] and Sidorov [38].
For this reason, we use a different, more direct, approach to prove Theorem 2.

We now turn to the consistency of the test. We begin with an assumption which is essentially Assumption 1, but
without assuming normality.

Assumption 4. The ei are moving averages (2) with independent and identically distributed random variables εi, satisfying
Eεℓ = 0, Eε2

ℓ = 1, Eε8
ℓ < ∞, and the coefficients as satisfying (3).

Under Assumption 4, we can establish limits in probability of n
−1/2
Γ S

⋆
n and n

−1/2
Γ K

⋆
n, as stated in Theorem 3. Notice that

under H0 these limits are zero.

Theorem 3. If (1) and Assumption 4 hold, then

n
−1/2
Γ S

⋆
n

P→ Ez30 and n
−1/2
Γ K

⋆
n

P→ Ez40 − 3,

where z0 is defined by (4). The limit of n
−1/2
Γ Kn is the same as the limit of n

−1/2
Γ K

⋆
n.
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Next we establish bounds on magnitudes of the estimators of the long-run variances.

Theorem 4. Suppose (1) and Assumptions 3 and 4 hold, and h⋆ = o(n⋆1/2). Then

φ̂2
S,kern = OP (h

⋆), φ̂2
K,kern = OP (h

⋆)

and

φ̂2
S,pow = OP (1), φ̂2

K,pow = OP (1).

Using Theorems 3 and 4, we can prove the consistency of the test.

Corollary 2. If the conditions of Theorem 4 are satisfied and if Ez30 ̸= 0 and/or Ez40 ̸= 3, then Ĵn
P→ ∞ and J⋆n

P→ ∞.

3. Finite sample performance and application to temperature data

In Section 3.1, we explore the empirical size and power of several implementations of our test. In Section 3.2, we check
if the spatial fields of sea surface temperature anomalies can be assumed to be Gaussian, and provide further insights into
the behavior of the test.

3.1. A simulation study

In this section, we use Monte Carlo simulation to assess finite sample properties of the test derived in Section 2.1. We
focus on the case of d = 2, most commonly encountered in applications. Explicit formulas in this case are given in Section
III of the Supplement. We consider data generating processes (DGPs) defined by three different spatial models specified
below, and by several grid sizes. We use 5000 independent replications, and record the count of rejections to calculate
empirical size and power of the proposed test.

We generate realizations on a grid {1 ≤ i, j ≤ N} of the following spatial models:

Spatial IID: Xi,j = 2 +
√
2ξi,j.

Spatial Moving-average (MA): Xi,j = ξi,j + 0.5ξi,j−1.

Spatial Autoregressive(AR): Xi,j = 0.5Xi−1,j−1 + ξi,j.

Under H0, ξi,j ∼ i.i.d. N (0, 1). We consider two error distributions under HA: the ξi,j are i.i.d. with either Student’s
t-distribution with ν degrees of freedom or with the skew-normal distribution. We set ν to values ranging from 5 to 20.
If ν ≥ 30, the univariate t-distribution is visually almost indistinguishable from the standard normal distribution, and
its quantiles are almost equal to the standard normal quantiles. Unlike the t-distribution, the skew-normal distribution,
treated in Azzalini [4], has nonzero skewness. Further details and power tables are presented in Section IV of the
Supplement.

Both the kernel and power estimators, defined in Section 2.2 (and Section III of the Supplement), need the specification
of the kernel and the smoothing bandwidth. Three kernel functions are compared.

The truncated kernel (TR): KTR (t) = I {|t| ⩽ 1}.
The Bartlett kernel (BT): KBT (t) = (1 − |t|) I {|t| ⩽ 1}.
The flat-top kernel (FT):

KFT (t) =

⎧
⎨
⎩

1, 0 ⩽ t < 0.5

2 − |t| , 0.5 ⩽ t < 1

0, 1 ⩽ t.

The bandwidth h for these kernels is selected as

hTR = ⌊4(N/100)1/5⌋, hBT = ⌊4(N/100)2/9⌋, hFT = ⌊4(N/100)1/5⌋. (15)

The choice of the smoothing bandwidth has been well studied. For the truncated and Bartlett kernels, Newey andWest [25]
compared the performance of different plug-in methods, while Andrews [3] proposed a data-driven bandwidth selection
technique. Politis [28] developed an adaptive bandwidth choice for the flat-top kernel. It turns out that these choices
work well for our purpose. We thus follow Newey and West [25] to select the bandwidth for the truncated and Bartlett
kernels. Our simulations showed that choosing the bandwidth of the flat-top kernel the same as for the truncated kernel
produces stable and satisfactory results.

Empirical size Table 1 reports the empirical sizes, the percentages of rejections under H0. As can be seen, the empirical
sizes are close to the theoretical levels, even for small grid size, such as N = 100. Comparing the results for the kernel
estimator and the power estimator, it seems that there is no obvious pattern in the empirical sizes. The differences arising
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Table 1

The empirical sizes of 5000 independent simulations with significant levels of 10%, 5%, and 1% for the spatial normality

tests based on the kernel estimators φ̂2
S,kern, φ̂

2
K,kern and the power estimators φ̂2

S,pow, φ̂2
K,pow for three DGPs of spatial

IID (Xi,j = 2+
√
2ξi,j), spatial moving-average (Xi,j = ξi,j +0.5ξi,j−1), spatial autoregressive(Xi,j = 0.5Xi−1,j−1 +ξi,j), where

ξi,j ∼ i.i.d. N (0, 1).

Grid size Kernel Kernel estimator Power estimator

10% 5% 1% 10% 5% 1%

Panel A: Spatial IID

N = 100

Truncated 10.12% 4.92% 1.10% 10.52% 4.96% 1.16%

Bartlett 9.52% 4.54% 1.08% 10.52% 4.96% 1.16%

Flat-top 9.54% 4.84% 1.10% 10.52% 4.96% 1.16%

N = 500

Truncated 9.66% 5.08% 0.84% 10.48% 5.46% 1.08%

Bartlett 9.66% 5.06% 0.84% 10.48% 5.46% 1.08%

Flat-top 9.66% 5.08% 0.86% 10.48% 5.46% 1.08%

N = 1000

Truncated 9.68% 4.90% 0.96% 10.26% 5.06% 0.98%

Bartlett 9.64% 4.86% 0.96% 10.26% 5.06% 0.98%

Flat-top 9.70% 4.88% 0.98% 10.26% 5.06% 0.98%

Panel B: Spatial moving average

N = 100

Truncated 10.72% 5.44% 1.30% 10.00% 4.68% 0.78%

Bartlett 10.68% 5.70% 1.30% 10.42% 5.04% 0.86%

Flat-top 10.36% 5.44% 1.26% 10.00% 4.68% 0.78%

N = 500

Truncated 10.16% 4.82% 1.12% 9.96% 4.76% 1.02%

Bartlett 10.58% 5.10% 1.24% 10.46% 5.06% 1.12%

Flat-top 10.14% 4.72% 1.12% 9.96% 4.76% 1.02%

N = 1000

Truncated 10.44% 5.38% 1.18% 10.00% 4.94% 1.02%

Bartlett 10.84% 5.64% 1.24% 10.18% 5.12% 1.20%

Flat-top 10.54% 5.42% 1.16% 10.00% 4.94% 1.02%

Panel C: Spatial autoregressive

N = 100

Truncated 10.70% 5.82% 1.50% 9.34% 4.74% 0.96%

Bartlett 12.32% 6.60% 1.64% 11.56% 5.74% 1.40%

Flat-top 10.46% 5.42% 1.34% 9.36% 4.74% 0.96%

N = 500

Truncated 10.12% 5.06% 0.96% 9.94% 4.82% 1.00%

Bartlett 11.58% 6.12% 1.14% 11.74% 5.82% 1.28%

Flat-top 9.96% 5.02% 0.90% 9.98% 4.84% 1.02%

N = 1000

Truncated 10.00% 4.74% 1.00% 9.70% 4.66% 1.12%

Bartlett 11.50% 5.62% 1.20% 10.90% 5.64% 1.30%

Flat-top 10.00% 4.76% 1.00% 9.70% 4.66% 1.12%

from the application of different kernels are small and do not exhibit any clear pattern either. We conclude that our test

controls size very well, not matter which one of the six considered implementations is used.

Empirical power Tables 2 and 3 present the empirical power of the test by 5% significance level critical values with the

spatial long run variance estimated, respectively, by the kernel estimator and the power estimator. As expected, the power

increases with the grid size N . Comparing the results for the three DGPs, we find that the test has higher power under

the spatial IID than the two models with spatial dependence. This could be expected, as both the MA and AR models

lead to some averaging of the ξi,j, bringing the observations Xi,j a bit closer to normality. There is no apparent difference

when using different kernels under the spatial IID, but the Bartlett kernel occasionally has marginally higher power under

the spatial MA and AR models. An important observation is that different results are produced by using the two spatial

long run variance estimators. When the power estimator is used, the power is monotonously decreasing as the degrees of

freedom ν of the ξi,j grow. However, this pattern does not occur when the kernel estimator is employed. To be specific for

the kernel estimator, the expected power behavior is observed for ν > 8, but not for ν ⩽ 8. A reasonable explanation is

that we use the 8th moment of the Student’s t-distribution when estimating φ2
K
. However, the kth moment of a Student’s

t random variable is well-defined only for k < ν. For the power estimator, we only use the 4th moment of observations

in the spatial models generated by the Student’s t random variable. Comparing Tables 2 and 3, we can conclude that the

power estimator has better power properties than the kernel estimator. Additionally, the power estimator is more broadly

applicable as it requires fewer moments of the data. We note that the kernel estimator requires the existence of first eight

moments of the distribution, but we are still interested in the impact on power of the kernel estimator if some of the first

eight moments do not exist. Thus, we also report the power of the kernel estimator for ν = 8, 5 in Table 2. The empirical

power when the skew-normal distribution is employed, has similar behavior, except that we do not see nonmonotonic
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Table 2

The empirical power of 5000 independent simulations with significance level of 5% for the spatial normality

test based on the kernel estimators φ̂2
S,kern, φ̂

2
K,kern for three DGPs of spatial IID (Xi,j = 2 +

√
2ξi,j), spatial

moving-average (Xi,j = ξi,j + 0.5ξi,j−1), spatial autoregressive(Xi,j = 0.5Xi−1,j−1 + ξi,j), where ξi,j are from i.i.d.

Student’s t-distribution with ν degrees of freedom.

Grid size Kernel ν = 20 ν = 9 ν = 8 ν = 5

Panel A: Spatial IID

N = 25

Truncated 18.86% 43.42% 47.82% 54.08%

Bartlett 9.18% 33.22% 38.92% 48.66%

Flat-top 11.52% 36.70% 41.62% 50.00%

N = 50

Truncated 54.86% 90.14% 88.12% 76.64%

Bartlett 53.52% 90.20% 88.10% 75.94%

Flat-top 54.36% 90.22% 88.18% 76.14%

N = 100

Truncated 99.50% 98.28% 97.94% 87.10%

Bartlett 99.50% 98.24% 97.94% 86.96%

Flat-top 99.50% 98.26% 97.96% 87.06%

Panel B: Spatial moving average

N = 25

Truncated 12.50% 28.80% 32.20% 45.78%

Bartlett 6.68% 20.18% 23.22% 40.50%

Flat-top 7.34% 21.54% 24.64% 40.58%

N = 50

Truncated 28.34% 82.56% 84.18% 73.96%

Bartlett 27.62% 83.32% 84.78% 74.82%

Flat-top 26.86% 81.94% 83.78% 73.58%

N = 100

Truncated 93.04% 98.14% 97.60% 86.30%

Bartlett 93.48% 98.26% 97.76% 86.82%

Flat-top 93.06% 98.10% 97.56% 86.24%

Panel C: Spatial autoregressive

N = 25

Truncated 11.90% 22.80% 26.44% 41.64%

Bartlett 7.44% 17.50% 20.58% 38.70%

Flat-top 6.68% 16.38% 18.94% 35.84%

N = 50

Truncated 22.66% 75.30% 79.36% 74.06%

Bartlett 24.10% 78.76% 81.70% 75.84%

Flat-top 21.26% 75.16% 79.22% 73.48%

N = 100

Truncated 84.44% 97.70% 97.20% 86.32%

Bartlett 86.60% 98.10% 97.50% 87.52%

Flat-top 84.42% 97.76% 97.18% 86.16%

power for the kernel estimator; both estimators produce comparable results. The test is very powerful even for small
departures of normality. Details are discussed in Section IV of the Supplement.

Broad conclusions Based on the simulations we performed, we recommend the implementation based on the power
estimators (13) and any one of the three kernels listed in this section, with bandwidths given by (15).

We conclude this section by presenting in Table 4 the empirical size of the standard Jarque–Bera test. Under
independence, this standard test has correct size, as does our test, but under spatial dependence it has overinflated size,
while our test controls the size very well. The distortion increases as the nominal size decreases, and exceeds 100% of the
nominal size at the 1 percent level.

3.2. Normality of Sea Surface Temperature anomalies

Sea Surface Temperatures (SSTs) are closely linked with EI Niño/Southern Oscillation (ENSO) events, which are
related to pattern changes in rainfall, wind speeds, ocean circulation, and general global weather patterns. The North
Carolina Institute for Climate Studies (NCICS) provides monthly mean of daily Optimum Interpolation Sea Surface
Temperature (OISST) analysis using Advanced Very High Resolution Radiometer (AVHRR) prepared for Observations for
Model Intercomparisons Project by National Centers for Environmental Information (NCEI). The global SSTs are on a
1440 × 720 grid (in every 1/4 longitude degree and 1/4 latitude degree) observed daily for over 30 years, with missing
pixels over land. The specific data we used was downloaded from the website https://esgf-node.llnl.gov/search/obs4mips.
In the data set, there are 400 monthly observations in the period of September 1981 to December 2014. Fig. 2 shows a
snapshot of the SST data in the month of September 1981.

Denote the SST observations by Yi,j(t), where t is a month, i is longitude, and j is latitude. These observations are
available only for coordinates i, j which correspond to sea, not to land. For any sufficiently large region, and any month t ,
the observations Yi,j(t) cannot be considered as a realization of a stationary spatial field because of spatial trends in water
temperature due to latitude, ocean currents and the shape of neighboring land. We must therefore transform these data

https://esgf-node.llnl.gov/search/obs4mips
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Table 3

The empirical power of 5000 independent simulations with significance level of 5% for the spatial normality

test based on the power estimators φ̂2
S,pow, φ̂2

K,pow for three DGPs of spatial IID (Xi,j = 2 +
√
2ξi,j), spatial

moving-average (Xi,j = ξi,j + 0.5ξi,j−1), spatial autoregressive(Xi,j = 0.5Xi−1,j−1 + ξi,j), where ξi,j are from i.i.d.

Student’s t-distribution with ν degrees of freedom.

Grid size Kernel ν = 20 ν = 9 ν = 8 ν = 5

Panel A: Spatial IID

N = 25

Truncated 36.62% 87.62% 93.22% 99.84%

Bartlett 36.64% 87.62% 93.22% 99.84%

Flat-top 36.64% 87.62% 93.22% 99.84%

N = 50

Truncated 82.44% 100.00% 100.00% 100.00%

Bartlett 82.44% 100.00% 100.00% 100.00%

Flat-top 82.44% 100.00% 100.00% 100.00%

N = 100

Truncated 100.00% 100.00% 100.00% 100.00%

Bartlett 100.00% 100.00% 100.00% 100.00%

Flat-top 100.00% 100.00% 100.00% 100.00%

Panel B: Spatial moving average

N = 25

Truncated 23.60% 67.98% 76.78% 98.02%

Bartlett 24.50% 68.76% 77.54% 98.14%

Flat-top 23.60% 68.00% 76.78% 98.02%

N = 50

Truncated 56.30% 99.36% 99.86% 100.00%

Bartlett 57.02% 99.42% 99.86% 100.00%

Flat-top 56.30% 99.36% 99.86% 100.00%

N = 100

Truncated 98.14% 100.00% 100.00% 100.00%

Bartlett 98.26% 100.00% 100.00% 100.00%

Flat-top 98.14% 100.00% 100.00% 100.00%

Panel C: Spatial autoregressive

N = 25

Truncated 19.66% 59.84% 68.24% 96.00%

Bartlett 22.60% 63.08% 71.02% 96.56%

Flat-top 19.82% 60.16% 68.48% 96.04%

N = 50

Truncated 44.26% 97.74% 99.32% 100.00%

Bartlett 47.40% 98.10% 99.42% 100.00%

Flat-top 44.62% 97.78% 99.32% 100.00%

N = 100

Truncated 93.34% 100.00% 100.00% 100.00%

Bartlett 94.10% 100.00% 100.00% 100.00%

Flat-top 93.34% 100.00% 100.00% 100.00%

Table 4

The empirical sizes of Jarque–Bera test based on 5000 independent simulations with significant levels

of 10%, 5%, and 1% for three DGPs of spatial IID (Xi,j = 2 +
√
2ξi,j), spatial moving-average (Xi,j =

ξi,j + 0.5ξi,j−1), spatial autoregressive(Xi,j = 0.5Xi−1,j−1 + ξi,j), where ξi,j ∼ i.i.d. N (0, 1).

Grid size 10% 5% 1%

Panel A: Spatial IID

N = 100 9.62% 4.88% 1.02%

N = 500 10.48% 4.70% 0.98%

N = 1000 9.80% 5.18% 0.94%

Panel B: Spatial moving average

N = 100 12.48% 6.66% 1.60%

N = 500 11.96% 6.74% 1.76%

N = 1000 12.84% 7.08% 1.68%

Panel C: Spatial autoregressive

N = 100 15.20% 8.68% 2.36%

N = 500 14.88% 8.44% 2.30%

N = 1000 14.80% 8.10% 2.22%

to consider them as a realization of a stationary random field whose normality can be tested. A transformation that is of

primary interest, see, e.g., NASA [24], is defined as follows. Compute the long term averages

Ai,j(T ) = 1

T

T∑

t=1

Yi,j(t)
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Fig. 2. SST data snapshot in September 1981 and the four selected regions. The global SST data is on a 1440 × 720 grid (in every 1/4 longitude

degree and 1/4 latitude degree), with missing pixels over land. Region 1 (longitude 60◦ to 90◦ , latitude −30◦ to 0◦) lies in Indian Ocean and in the

southern hemisphere. Region 2 (longitude 170◦ to 200◦ , latitude −15◦ to 15◦) is located in the Pacific Ocean and it is symmetric by the equator.

Region 3 (longitude 210◦ to 240◦ , latitude −50◦ to −20◦) is in the Pacific Ocean but it is in the southern hemisphere, away from the equator. Region

4 (longitude 305◦ to 335◦ , latitude 10◦ to 40◦) is in the Northern Atlantic. Each selected region is on a 120 × 120 grid, containing 30◦ of longitude

and 30◦ of latitude.

Table 5

P-values of the spatial normality test for Di,j(t) in July. Bold numbers indicate rejections at the 5% significance level.

Date Kernel estimator Power estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Jul-1982 3.3% 0.0% 36.7% 0.0% 9.0% 0.0% 34.5% 0.0%

Jul-1983 47.4% 0.0% 0.0% 0.0% 46.4% 1.8% 1.6% 0.0%

Jul-1984 0.0% 0.1% 0.0% 0.0% 0.0% 1.4% 2.5% 0.0%

Jul-1985 0.0% 0.0% 0.1% 0.0% 0.4% 0.0% 0.0% 0.4%

Jul-1986 4.7% 0.0% 84.8% 0.0% 5.4% 0.2% 85.8% 0.0%

Jul-1987 27.0% 1.4% 71.4% 0.0% 45.5% 11.8% 73.5% 0.0%

Jul-1988 11.9% 0.0% 1.5% 3.6% 8.0% 0.0% 3.2% 16.0%

Jul-1989 0.5% 0.0% 0.3% 0.0% 0.3% 0.0% 8.0% 0.0%

Jul-1990 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0%

Jul-1991 0.3% 0.0% 0.0% 0.0% 6.6% 0.0% 0.0% 0.0%

Jul-1992 0.0% 50.1% 0.0% 0.0% 0.0% 57.6% 0.1% 0.0%

Jul-1993 11.5% 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0%

Jul-1994 4.1% 0.0% 0.1% 0.0% 20.3% 0.0% 1.4% 0.0%

Jul-1995 0.0% 31.6% 1.9% 0.0% 0.1% 58.7% 1.8% 0.0%

Jul-1996 11.0% 0.0% 0.0% 0.0% 25.4% 0.0% 1.0% 0.1%

Jul-1997 0.8% 0.0% 74.2% 0.0% 10.2% 0.3% 52.5% 0.0%

Jul-1998 1.0% 0.0% 1.9% 15.6% 5.3% 0.0% 4.0% 33.7%

Jul-1999 0.1% 0.0% 0.0% 10.4% 3.3% 0.0% 0.0% 18.6%

Jul-2000 0.5% 0.0% 0.0% 0.0% 3.4% 0.0% 0.0% 0.0%

Jul-2001 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.1% 12.4%

Jul-2002 7.8% 0.0% 0.0% 0.0% 34.0% 0.0% 0.0% 0.0%

Jul-2003 0.0% 0.0% 57.8% 0.0% 0.0% 0.0% 49.6% 0.2%

Jul-2004 2.9% 18.5% 51.9% 0.0% 2.8% 26.5% 66.6% 0.1%

Jul-2005 1.5% 5.2% 0.0% 0.0% 0.0% 2.1% 0.1% 0.3%

Jul-2006 0.2% 23.8% 54.0% 0.0% 0.0% 40.3% 57.0% 0.0%

Jul-2007 0.0% 0.0% 8.9% 0.0% 0.0% 0.0% 0.9% 0.3%

Jul-2008 37.0% 0.0% 0.1% 0.0% 41.9% 0.0% 0.0% 0.0%

Jul-2009 34.3% 0.3% 48.9% 0.0% 45.6% 9.5% 56.8% 0.0%

Jul-2010 4.1% 9.7% 0.0% 0.0% 13.2% 21.5% 0.3% 0.0%

Jul-2011 0.0% 0.0% 0.6% 0.0% 0.3% 0.0% 13.8% 0.0%

Jul-2012 0.0% 0.0% 0.0% 0.1% 0.3% 0.0% 1.0% 2.5%

Jul-2013 0.0% 0.0% 12.1% 0.6% 0.1% 0.1% 4.0% 0.1%

Jul-2014 0.2% 0.0% 53.7% 0.8% 0.3% 0.0% 49.4% 2.0%

where T is number of the same calendar months in the sample period. For example, if t corresponds to July, and we have
T = 33 Julys in the sample period. The monthly anomalies are defined as

Di,j(t) = Yi,j(t) − Ai,j(T ).
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Table 6

P-values of the spatial normality test for Ui,j(t) in July. Bold numbers indicate rejections at the 5% significance level.

Date Kernel estimator Power estimator

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4

Jul-1982 11.3% 0.0% 0.0% 0.0% 40.3% 0.0% 0.0% 0.0%

Jul-1983 1.3% 0.0% 0.1% 0.0% 13.1% 0.0% 0.7% 0.0%

Jul-1984 0.0% 6.8% 0.0% 0.0% 0.2% 29.3% 0.1% 0.0%

Jul-1985 0.0% 0.0% 1.2% 0.0% 0.1% 1.0% 3.2% 1.2%

Jul-1986 0.4% 0.0% 0.3% 0.0% 0.1% 0.0% 6.3% 0.0%

Jul-1987 3.9% 0.0% 77.7% 0.0% 5.9% 0.6% 83.5% 0.0%

Jul-1988 56.3% 0.0% 5.8% 0.0% 70.9% 0.1% 15.8% 0.0%

Jul-1989 19.4% 0.0% 0.0% 0.0% 40.4% 0.0% 0.1% 0.0%

Jul-1990 70.5% 0.1% 1.6% 0.1% 82.5% 0.3% 7.7% 0.4%

Jul-1991 0.0% 0.0% 0.0% 0.0% 0.3% 1.9% 0.0% 0.0%

Jul-1992 8.0% 0.1% 0.0% 0.0% 12.1% 0.1% 0.0% 0.3%

Jul-1993 38.6% 0.0% 0.0% 0.2% 63.6% 0.0% 1.7% 2.5%

Jul-1994 17.9% 0.0% 0.0% 0.0% 43.1% 0.0% 1.5% 0.0%

Jul-1995 0.3% 43.0% 5.8% 0.0% 6.6% 47.3% 9.7% 0.0%

Jul-1996 0.0% 1.4% 1.4% 0.0% 2.3% 14.4% 3.4% 0.1%

Jul-1997 0.0% 0.0% 59.1% 0.0% 0.3% 0.0% 66.8% 0.0%

Jul-1998 0.2% 0.1% 0.1% 0.0% 6.9% 4.4% 1.9% 0.0%

Jul-1999 0.7% 0.0% 0.0% 3.2% 12.0% 0.0% 0.0% 7.6%

Jul-2000 0.0% 0.0% 0.0% 0.0% 1.4% 0.0% 0.0% 0.0%

Jul-2001 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.3%

Jul-2002 1.2% 0.0% 0.0% 0.0% 16.1% 1.1% 0.0% 0.0%

Jul-2003 0.1% 0.0% 53.9% 0.0% 0.3% 0.0% 48.8% 2.6%

Jul-2004 11.0% 0.0% 0.0% 0.0% 21.1% 0.0% 0.8% 0.1%

Jul-2005 96.4% 45.2% 0.0% 0.0% 97.4% 48.6% 0.5% 0.0%

Jul-2006 3.1% 46.0% 0.0% 0.1% 2.4% 60.6% 2.5% 0.8%

Jul-2007 10.4% 0.0% 0.0% 0.0% 10.1% 0.0% 0.0% 0.1%

Jul-2008 0.4% 0.0% 13.6% 4.7% 5.4% 0.0% 0.3% 6.7%

Jul-2009 35.2% 0.4% 6.1% 0.0% 59.5% 8.8% 18.0% 0.0%

Jul-2010 0.1% 0.0% 30.9% 0.0% 4.1% 0.0% 54.4% 0.0%

Jul-2011 3.9% 0.0% 0.0% 0.0% 19.8% 0.0% 0.0% 0.0%

Jul-2012 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.6% 1.2%

Jul-2013 13.3% 0.0% 34.2% 76.3% 25.5% 0.0% 44.9% 81.3%

Jul-2014 9.1% 0.0% 0.0% 0.0% 28.2% 0.0% 1.5% 1.2%

They are deviations in a given year from what is typical for a given month at location (i, j). As quantified by French et al.
[12], among others, surface temperatures exhibit complex spatial trends in their variability. These are more pronounced
over continents (temperatures over coastal regions are less variable that those in the interior), but one can expect a similar,
though smaller, effect over bodies of water. We therefore also consider standardized anomalies defined by

Ui,j(t) = Yi,j(t) − Ai,j(T )

SDi,j(T )
,

where

SD2
i,j(T ) = 1

T

T∑

t=1

(Yi,j(t) − Ai,j(T ))
2.

As spatial domains, we selected four squared ocean regions with different characteristics. Region 1 (longitude 60◦ to
90◦, latitude -30◦ to 0◦) lies in Indian Ocean and in the southern hemisphere. Region 2 (longitude 170◦ to 200◦, latitude
−15◦ to 15◦) is located in the Pacific Ocean and it is symmetric by the equator. Region 3 (longitude 210◦ to 240◦, latitude
−50◦ to −20◦) is also in the Pacific Ocean but it is in the southern hemisphere, away from the equator. The last region,
Region 4 (longitude 305◦ to 335◦, latitude 10◦ to 40◦) is in the Northern Atlantic. The data over these regions are on a
120 × 120 grid, due to the fact that they all contain an area extending 30◦ of longitude and 30◦ of latitude. The four
selected regions are highlighted in Fig. 2.

Conclusions from the application of the normality test We applied the implementations with both the kernel and the power
estimator in order to see if the differences observed in Section 3.1 manifest themselves for the temperature data. It turns
out that the kernel and the power estimators produce consistent results in the most cases, but not in all cases. We only
reports results for the flat-top kernel as other kernels produce similar results.

The P-values for July in all years of the sample period for Di,j(t) and Ui,j(t) are shown in Tables 5 and 6, respectively. The
P-values for January, April, and October are provided in the Supplement. The most general observation is that normality of
these spatial data cannot be assumed without further checks, so spatial statistics methods which rely on the assumption
of Gaussianity must be used with caution. It might be best to use methods which do not assume Gaussianity. Comparing
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the results for the two versions of monthly anomalies, Di,j(t) and Ui,j(t), they generally lead to the same conclusion, but
Ui,j(t) tends to produce more acceptances of normality, indicated by the P-values greater than 5%. This effect is however
not very large. By looking at the results in different four regions, we see that Region 1, which is in the Indian Ocean and in
the southern hemisphere, is the one with the highest number of normality in the July monthly anomalies for all years. In
particular, the test on the second version of monthly anomalies, Ui,j(t), using the power estimator for the long run variance
suggests the normality in 21 out of 33 years. On the opposite side, Region 4, which is located in the Atlantic Ocean and in
the northern hemisphere, has the lowest number of acceptances of normality of the July monthly anomalies. Specifically,
Ui,j(t) with the power estimator only suggests the normality in 3 out of 33 years. These conclusions also hold for other
months.
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