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ADAPTIVE TEST ALLOCATION FOR OUTBREAK DETECTION
AND TRACKING IN SOCIAL CONTACT NETWORKS\ast 
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VICTOR M. PRECIADO\ddagger 

Abstract. We present a general framework for adaptive allocation of viral tests in social contact
networks and arbitrary epidemic models. We pose and solve several complementary problems. First,
we consider the design of a social sensing system whose objective is the early detection of a novel
epidemic outbreak. In particular, we propose an algorithm to select a subset of individuals to be
tested in order to detect the onset of an epidemic outbreak as fast as possible. We pose this problem
as a hitting time probability maximization problem and use submodularity optimization and Monte
Carlo techniques to obtain solutions with explicit quality guarantees. Second, once an epidemic
outbreak has been detected, we consider the problem of using the data from the sensing system to
obtain estimates of the initial patient and the current status of the epidemic. Finally, we consider the
problem of adaptively distributing viral tests over time in order to maximize the information gained
about the current state of the epidemic. We formalize this problem in terms of mutual information
and propose an adaptive allocation strategy with quality guarantees. For these problems, we derive
analytical solutions for any stochastic compartmental epidemic model with Markovian dynamics, as
well as efficient Monte Carlo--based algorithms for non-Markovian dynamics or large networks. We
illustrate the performance of the proposed framework in numerical experiments involving a model of
COVID-19 applied to a real human contact network.
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based sampling
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1. Introduction. On December 31, 2019, The Municipal Health Commission of
Wuhan (China) reported a cluster of cases of pneumonia caused by a novel coronavirus
[3]. This new virus rapidly propagated worldwide through the air transportation
network, and many countries decided to implement severe mobility restrictions and
social distancing policies to ``flatten the curve"" of the pandemic. Through 2020 and
2021, the evolution in the pandemic followed a pattern of waves in which periods
of exponential growth alternated with periods of decreasing cases, both due to new
circulating variants [4] and varying strength of social distancing measures.

Therefore, in this situation, it is of utmost societal importance to develop efficient
strategies for early detection and tracking of new epidemic waves in order to implement
social distancing measures as fast as possible. Furthermore, information about where
the epidemic outbreak started and the current state of the network is valuable to
enact localized and effective measures.
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In this paper, we study the problem of allocating viral tests [2] for an arbitrary
continuous time epidemic model in order to (i) detect a novel epidemic outbreak as
early as possible, as well as to (ii) retrieve as much information as possible about the
evolution of the epidemic given the obtained data. In our work, we consider a social
contact network over which a disease is spreading according to a stochastic compart-
mental model [26]. The main questions explored in this article are the following:

1. Early detection of epidemic outbreaks with limited viral tests : What nodes
should we test in a contact social graph to maximize the probability of early detection?
We will pose this problem in terms of hitting times of a stochastic process associated
to the social graph and propose an algorithm to solve it with quality guarantees based
on submodular optimization.

2. Estimation of past and current state of the disease : Given the results of a
collection of viral tests, what are the probabilities of infection for each individual in
the social network? Furthermore, we analyze the past evolution of the epidemic to
estimate where and when the infection is most likely to have started.

3. Adaptive test allocation for epidemic tracking : Once an epidemic outbreak
has been detected, how should we dynamically allocate viral tests to gain as much
information as possible about the current state of the epidemic?

General work on stochastic compartmental models in networks include [22], [25],
[18]. Additionally, [26], [6] provide a general survey of problems involving spreading
processes in networks.

In [23], van Mieghen, Omic, and Kooij study the spread of malware in computer
networks using Markov chains; however, their focus is on mean-field approximations
derived from continuous-time Markov chains, while our work focuses on the exact
stochastic model of the epidemic process.

The first question of which nodes to test for early detection has been explored
in [21], where Leskovec et al. propose a sensor placement framework to detect out-
breaks of water contaminants and other spreads. In this work, we use a different
objective function that applies to any continuous-time epidemic process and that is
both interpretable and reliable to estimate via Monte Carlo samples. We prove that
our objective function and its Monte Carlo approximation have the same submodu-
larity properties as their family of functions, and therefore the same approximation
quality guarantees and optimization techniques they developed follow. Moreover, in
this paper we analyze the impact of optimizing with an approximation to the true
function and answer the question of how to use the placed tests to obtain information
from the ongoing epidemic once the tests have been decided and detect the epidemic
for the first time.

In [28], Shah and Zaman study the culprit detection problem, developing results
for the popular SI epidemic model on a network using the novel concept of rumor
centrality. Our work in the second question differs from theirs in two fundamental
aspects: first, we do not consider a fixed model and our methodology is applicable to
any compartmental epidemic model, and second, we focus on the information obtained
by the tested nodes only. In [29], Spinelli, Celis, and Thiran also study the culprit
detection problem for a specific family of spreading models without considering early
detection. In [32], Yan et al. consider the independent cascade model and study the
problem of immunizing edges in order to minimize the expected number of infected
nodes at the conclusion of the spreading process.

As far as testing is concerned, there is literature that gives results on different
network monitoring techniques [8], [12], [27], [30], [13]; however, these works do not
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S276 BATLLE, BRUNA, FERNANDEZ-GRANDA, AND PRECIADO

aim to find an optimal solution according to any metric, but they analyze the per-
formance of particular heuristics. Finally, the works in [5], [9], [19] analyze several
heuristics for epidemic detection based on different network centrality measures.

The third question on how to dynamically allocate tests can be seen as a particular
case of the general sequential Bayesian experiment design problem introduced in [14].
In our work, we focus on an application of the well-known submodularity property of
mutual information to propose an algorithm for dynamic testing, similarly as in [20]
but with Monte Carlo samples of the epidemic model instead of having access to the
analytic likelihood of a Gaussian process.

The article is organized as follows. In section 2, we formalize our theoretical setup
and discuss the models to which this framework is applicable. The three questions
described above are explored in sections 3, 4, and 5, respectively. Finally, section 6
presents experiments in a real dataset of human interactions where we apply our
framework using a realistic model of the spread of COVID-19 [10].

2. Notation and preliminaries. For a given n \in N, we let [n] be the set
\{ 1, . . . , n\} . We consider a given network G = (V,E) where V = [n], and a continuous-
time stochastic compartmental epidemic process, denoted by \{ X(t)\} t\geq 0, running over
G. At every t \in R+, each of the n nodes in the network is in one out of s possible
states, where each state represents a compartment in the epidemic model. Since we
have n nodes, the networked stochastic process \{ X(t)\} t\geq 0 has a finite state space \scrS 
with | \scrS | = sn. One of the simplest networked compartmental models is the SIR model
[17], which presents three compartments: Susceptible, Infectious, and Removed. In
this model, infectious nodes may infect healthy neighbors with probability rate \beta 
and may transition into the removed compartment (i.e., no longer infectious) with
probability rate \gamma .

In the rest of the paper, we assume that the initial state X(0) of the epidemic
process is randomly chosen from a known probability distribution D supported in \scrS 
and that all subsequent probabilities are conditioned on the realization of X(0). If
the epidemic process \{ X(t)\} t\geq 0 is Markovian, we can derive analytical solutions to
the problems under consideration (shown in Appendix A). However, these analytical
solutions are usable in practice only for relatively small graphs. In the following sec-
tions, we will provide efficient computational tools to analyze non-Markovian epidemic
processes running over large graphs.

3. Early detection of epidemic outbreaks with limited viral tests. The
first key question we address is how to optimally monitor a contact network for early
detection of a new outbreak with limited resources. We assume that we are able to
continuously monitor the health of k nodes of the network before the onset of an
outbreak. We aim to answer two optimization questions.

Q1A (test placement with monitoring constraint). For a given k \in N and
\tau > 0, which k nodes should we continuously monitor to detect a novel outbreak before
a certain time \tau (counting from the onset of the outbreak) with the highest possible
probability?

Q1B (test placement with probability constraint). Given a threshold time
\tau > 0 and a probability P , what is the minimum number k of nodes we need to monitor
to detect the epidemic outbreak before time \tau with a probability P? Where should we
place them?

To analyze these questions, we assume that those nodes being monitored are
frequently tested. We assume that the available tests provide partial information
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about the state of the node. In particular, we consider a partition of the set of s
possible states into two nonempty subsets, G+ and G - , and assume that the test
is able to determine in what subset the state of the monitored node is. In practice,
the set G+ (resp., G - ) represents node states that would result in a positive (resp.,
negative) viral test result. We say that the node is detectable if its state is in G+ and
that the epidemic is detected when one of the monitored nodes becomes detectable
for the first time.

Given a network stochastic process \{ X(t)\} t\geq 0 and a subset A \subset \scrS , its stopping
time TA is defined as the random variable min\{ t \geq 0 : X(t) \in A\} , where X(t) \in \scrS is
the state of the stochastic process at time t. If the process never reaches A, we set
TA =\infty . Given a subset of nodes W \subset V , we additionally define the detection set of
W , denoted by DW , as the subset of \scrS consisting of those network states in which at
least one of the nodes in W is in a detectable state (i.e., one of the nodes in W would
test positive). This means that if we monitor the nodes in W , the epidemic outbreak
is detected when the network process \{ X(t)\} t\geq 0 reaches one of the states in DW .

Now, Question Q1A can be formalized as follows: Given a time horizon \tau > 0,
we want to monitor k nodes of the network in order to maximize the probability that
the process reaches the detection set DW before time t = \tau (counting from the onset
of the epidemic outbreak). Hence, the optimal set of nodes to be monitored can be
found as the solution of the following optimization problem:

argmax
W\subset V,| W | =k

P (TDW
\leq \tau ) .(Q1A)

Similarly, the answer to Question Q1B is the solution to the following optimization:

argmin
W\subset V s.t. P(TDW

\leq \tau )\geq P

| W | ,(Q1B)

i.e, the smallest set of nodes that we need to monitor such that the probability of
detecting the epidemic outbreak before time t = \tau is greater than P . We conveniently
define the optimization objective function over subsets of nodes for a given \tau as
f\tau : W \mapsto \rightarrow P (TDW

\leq \tau ), so that (Q1A) and (Q1B) can be written, respectively, as

argmax
W\subset V,| W | =k

f\tau (W ) and argmin
W\subset V,f\tau (W )\geq P

| W | .(3.1)

Notice that these are combinatorial optimization problems and that finding the
optimal solutions is exponentially hard. In the rest of the paper, we focus on finding
approximate solutions with quality guarantees. In this direction, there are two sep-
arate subproblems we need to address: First, the function f\tau can only be computed
for Markovian epidemic processes taking place in small networks (see Appendix A);
hence, we need to approximate this objective function for non-Markovian processes
over large networks. Second, we also need an optimization scheme to find an approxi-
mate solution with quality guarantees (without evaluating f\tau an exponential number
of times).

3.1. Function evaluation. The function f\tau can be approximated using Monte
Carlo samples, as described below. First, we simulate the stochastic epidemic process
NR times, where each simulation will be stopped when one of two things happen:
Either we reach an absorbing state, or all the nodes have already reached a detectable
state at least once. Then, f\tau can be approximated as follows: Let L be an NR \times n
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matrix such that, for every run of the process r \in [NR],

L[r, j] = min\{ T \in R+ : Xj(T ) \in G+ in run r\} ,(3.2)

whereXj(t) is the state of node j at time t and L[r, j] =\infty if node j is never detectable

in run r. Given the matrix L and any time \tau , an estimator for f\tau , denoted by \^f\tau , can
be calculated as follows: \^f\tau (W ) = 1

NR
| \{ r \in [NR] : mini\in W L[r, i] \leq \tau \} | . As NR \rightarrow \infty ,

we have that \^f\tau \rightarrow f\tau uniformly because of the law of large numbers. Using standard
Chernoff bounds, one can show that the probability of \^f\tau (W ) not being in an interval

((1  - \delta )f\tau (W ), (1 + \delta )f\tau (W )) for any \delta \in [0, 1] is at most 2 exp( - \delta 2

2+\delta f\tau (W )NR), so

to obtain a probability of at least 1  - \alpha of (1  - \delta )f\tau (W ) \leq \^f\tau (W ) \leq (1 + \delta )f\tau (W ),

NR = \Omega ( log 1/\alpha 
\delta 2f\tau (W ) ) samples suffice.

After the matrix L is precomputed, a query of the approximate function \^f has
a worst case complexity of \scrO (| W | NR), \scrO (nNR) when | W | = \scrO (n). One can reduce
the run-time complexity even more at the expense of memory complexity by storing
suitable function values.

3.2. Optimization of \bfitf \bfittau via submodularity. The combinatorial structure of
the problem requires not only a way to rapidly evaluate the objective function but an
optimization scheme that avoids evaluating an exponential number of possible node
monitorizations. In order to do that, we prove and exploit the submodularity proper-
ties of f\tau and \^f\tau combined with fundamental results about submodular optimization
from the literature.

If \Omega is a finite set, a function h : \scrP (\Omega )\rightarrow R is called submodular if it satisfies one
of these three equivalent conditions.

Condition 1. For all X,Y \subseteq \Omega with X \subseteq Y and every x \in \Omega \setminus Y , we have that
h(X \cup \{ x\} ) - h(X) \geq h(Y \cup \{ x\} ) - h(Y ).

Condition 2. For all S, T \subseteq \Omega we have that h(S) + h(T ) \geq h(S \cup T ) + h(S \cap T ).
Condition 3. For all X \subseteq \Omega and x1, x2 \in \Omega \setminus X such that x1 \not = x2, h(X \cup \{ x1\} ) +

h(X \cup \{ x2\} ) \geq h(X \cup \{ x1, x2\} ) + h(X).
We aim to prove that f\tau is a nonnegative, monotone (i.e., f\tau (X) \leq f\tau (Y ) for

X \subset Y ), and submodular function. The non-negativity is trivial from the definition
of probability, and monotonicity comes from the fact that for A \subset B, DA \subset DB , and
so the event TDA

\leq \tau implies that TDB
\leq \tau , and hence f\tau (A) \leq f\tau (B). Furthermore,

f\tau is submodular (as proved in Appendix B).

Theorem 3.1. The set-function f\tau : W \mapsto \rightarrow P (TDW
\leq \tau ) is submodular.

We can now invoke two well-known results in submodular optimization theory to
derive quality guarantees of greedy-like optimization schemes aiming to solve problems
(Q1A) and (Q1B), using Algorithms 3.1 and 3.2, described below. Both algorithms
run in polynomial time and only require \scrO (nk) evaluations of the objective function,
or \scrO (n2) when k = \scrO (n).

Theorem 3.2 (see [24]). If a set-function f is monotone, submodular, and non-
negative, the greedy scheme in Algorithm 3.1 applied to problem (Q1A) returns a
solution S\prime for which f(S\prime ) \geq (1 - 1

e )f(S
\ast ), where S\ast is the optimal set.

Theorem 3.3 (see [31]). If f is monotone and submodular, the greedy scheme

in Algorithm 3.2 applied to problem (Q1B) returns a solution S\prime for which | S\prime | 
| S\ast | \leq 

1 + log f(V ) - f(\emptyset )
f(S\prime ) - f(S - 1)

, where S\ast is the optimal set and S - 1 is the solution set at the

iteration prior to the termination of Algorithm 3.2.
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Algorithm 3.1. Greedy scheme applicable to (Q1A) when f = f\tau .

Input: k \in N, f function over subsets of V
Output: S \subset V with | S| = k, an approximate solution to (Q1A)
S \leftarrow \emptyset , i\leftarrow 0
while i \leq k do

S \leftarrow S \cup argmax
v\in V \setminus S

f(S \cup \{ v\} )

i\leftarrow i+ 1
return S

Algorithm 3.2. Greedy scheme applicable to (Q1B) when f = f\tau .

Input: P \in [0, 1], f set-function over subsets of V
Output: S \subset V with f(S) \geq P , an approximate solution to (Q1B)
S \leftarrow \emptyset 
while f(S) < P do

S \leftarrow S \cup argmax
v\in V \setminus S

f(S \cup \{ v\} )

return S

Note that in the case of non-Markovian epidemic models and/or large networks,
we cannot directly evaluate f\tau , but we can with the previously defined approximation
\^f\tau . A natural question is whether \^f\tau has properties similar to those of f\tau , so that
we can guarantee quality of the optimization. The answer to this question is positive
and summarized in the following theorem.

Theorem 3.4. The approximation function \^f\tau , defined in subsection 3.1, is non-
negative, monotone, and submodular for all NR \in N.

Using this result (proved in Appendix B), we conclude that the quality guaran-

tees in Theorems 3.2 and 3.3 are also applicable to the approximation function \^f\tau .
Furthermore, if we have chosen NR so that (1 - \delta )f\tau \leq \^f\tau \leq (1 + \delta )f\tau with sufficient
probability, then one can derive guarantees similar to those of Theorems 3.2 and 3.3
about the performance of the greedily selected subset using evaluations of \^f\tau , relating
it to the true optimum of f\tau as a function of \delta .

Theorem 3.5. Let S\ast be the optimal set for f\tau . Let \^f\tau be a nonnegative, mono-
tone, and submodular function such that (1  - \delta )f\tau \leq \^f\tau \leq (1 + \delta )f\tau . Then, us-

ing Algorithm 3.1 with evaluations of \^f\tau yields a solution \^S\prime such that f\tau ( \^S\prime ) \geq 
1 - \delta 
1+\delta 

\bigl( 
1 - 1

e

\bigr) 
f\tau (S

\ast ).

Theorem 3.6. Let S\ast be the optimal set for f\tau . Let \^f\tau be a nonnegative, mono-
tone, and submodular function such that (1  - \delta )f\tau \leq \^f\tau \leq (1 + \delta )f\tau . Then, using

Algorithm 3.2 with evaluations of \^f\tau until finding a set with \^f\tau (W ) \geq P (1 - \delta ) yields a
solution \^S\prime such that | \^S\prime | 

| S\ast | \leq 1+ log (1+\delta )f\tau (V ) - (1 - \delta )f\tau (\emptyset )
(1 - \delta )f\tau ( \^S\prime ) - (1+\delta )f\tau ( \^S - 1)

, where \^S - 1 is the solution

set at the iteration prior to the termination of Algorithm 3.2 with \^f\tau .

The proofs of Theorems 3.5 and 3.6 are included in Appendix B.
Combining the complexity of the greedy schemes and the complexity of evaluating

\^f\tau , the overall complexity of running Algorithms 3.1 and 3.2 in their most naive
version is \scrO (nk2NR), and \scrO (n3NR) in the worst case of k = \scrO (n). In practice, one
can significantly decrease the number of function evaluations by further exploiting
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submodularity of the objective function to perform lazy evaluation, as explained in
[21].

3.3. Toy example in a small network. We illustrate our procedures using the
graph in Figure 1. We use an SIR model with \beta = 0.5, \delta = 0.25, and a single initially
infected node chosen uniformly at random. Setting \tau = 0.5, the set of k = 2 nodes to
be monitored such that f\tau is maximized is \{ 1, 5\} (circled in black in the figure) with a
value of f\tau (\{ 1, 5\} ) = 0.442; in other words, monitoring these two nodes, we are able to
detect the epidemic outbreak before 0.5 time units with a probability equal to 0.442.
This solution is obtained via an exhaustive combinatorial search. If, in contrast, we
use the greedy scheme in Algorithm 3.1, we obtain \{ 3, 0\} as our approximate solution
and f\tau (\{ 3, 0\} ) = 0.438. Theorem 3.4 ensures that the greedy solution (i.e., 0.438) is
not worse than (1  - 1/e) \times 0.442 = 0.279 (notice that the greedy solution is much
better than that worst case value).

Fig. 1. Toy example used in subsection 3.3 with n = 7 nodes. For \tau = 0.5, nodes 1 and 5 are
the optimal set, but a greedy approach selects nodes 3 and 0.

4. Estimation of past and current state of the disease. Once an epidemic
outbreak has been detected, it is of practical interest to use the results of the tests
used during the monitoring phase to estimate the network state of the disease. In this
section, we estimate the global state of the network using the information obtained
from the viral test results retrieved from a subset of nodes. In this direction, given
test results for a subset of nodes, we formulate three different subquestions.

Q2A (patient zero detection). What is the probability of each node being
patient zero?

Q2B (outbreak time estimation). How much time has passed since the out-
break started?

Q2C (current network status assessment). What is the probability of each
individual node being infected?

Assuming that nodes v1, . . . , vk \in V are our k monitoring nodes, we define the
k dimensional observation vector O such that Oi = 1 when vi have tested positive
during the monitoring phase and Oi = 0 otherwise. Hence, assuming that xi \in \scrS is
the network state in which only node i is infected, Q2A asks us to estimate

P(X(0) = xi| O) \propto P(O| X(0) = xi)P(X(0) = xi) \forall i,(Q2A)

while Q2B asks us about the distribution of the time t since the beginning of the
epidemic outbreak conditioned to our observation O, i.e., P(t \leq u| O) for u \in R+.
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In subproblem Q2C, we aim to estimate P(X = x| O), where X is the state of the
stochastic process at the present time. However, since the number of possible network
states grows exponentially with the number of nodes, it is computationally intractable
to solve Q2C. Alternatively, we will aim to estimate the n\times s marginal probabilities
\{ P(Si = sj | O)\} i=1:n,j=1:s, where Si is the current state of node i and sj \in [s] is one of
the possible s states or compartments. We can also collect reliable information about
correlations between the status of a particular node and other nodes in the network.

To estimate solutions to questions Q2A, Q2B, and Q2C, we are using the Monte
Carlo estimator for conditioned probability, as described in the previous section. Here,
Obsr \in \{ 0, 1\} k refers to the observation vector O at detection time tr obtained in the
rth run of the Monte Carlo iteration with initial state Xr(0). Hence, the approximate
solution for Q2A (patient zero detection) is the following distribution over initial
states:

(4.1) \^P(X(0) = xi| O) =
| \{ r \in [NR] : X

r(0) = xi \cap Obsr = O\} | 
| \{ r \in [NR] : Obsr = O\} | 

.

For Q2B (outbreak time estimation), our empirical distribution of times depends
on how long it took to detect the outbreak in those runs producing an observation
Obsr = O, as stated in the following equation:

(4.2) \^P(t \leq k| O) =
| \{ r \in [NR] : tr \leq k \cap Obsr = O\} | 
| \{ r \in [NR] : Obsr = O\} | 

.

Defining Sr
i as the status of node i at the time of detection of run r, we have the

following approximation for Q2C (current status assessment):

(4.3) \^P(Si = sj | O) =
| \{ r \in [NR] : S

r
i = sj \cap Obsr = O\} | 

| \{ r \in [NR] : Obsr = O\} | 
.

Finally, we can obtain information about correlations in a similar way:

(4.4) \^P(Si = sj | Sk = sl, O) =
| \{ r \in [NR] : S

r
i = sj \cap Sr

k = sl \cap Obsr = O\} | 
| \{ r \in [NR] : Obsr = O \cap Sr

k = sl\} | 
.

All the estimators converge to the true probabilities as NR \rightarrow \infty , with the same
convergence rates of \^f in the previous section. In particular, the same bounds on the
number of runs required so that the estimators are within a factor of 1\pm \delta of the true
values with high probability apply.

4.1. Toy example in a small network. Consider an SIR epidemic model on
the network in Figure 1 using the same settings as in subsection 3.3. Let us assume
that we are continuously monitoring nodes 1 and 5. Suppose that the first time a
test detects the epidemic, node 5 is infectious. Using our results, we can calculate
the posterior distribution of patient-zero probabilities and the time-since-outbreak t,
which are plotted in Figures 2 and 3, respectively. The probability of t = 0 (detection
immediately after outbreak) is 0.416, in agreement with the posterior distribution of
patient zero in Figure 2. The expected value of the distribution is 0.760. Finally, in
Figure 4 the estimated marginal distributions for each node and state can be observed.

5. Dynamic allocation for epidemic tracking. In a practical scenario, once
an epidemic is detected we may be interested in retrieving as much information as
possible about its state sequentially in different points in time. In this section, we
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Fig. 2. Posterior distribution of patient-
zero probabilities for the example in subsec-
tion 4.1.

Fig. 3. Posterior distribution of time-
since-outbreak for the example in subsec-
tion 4.1.

Fig. 4. Marginal distributions of the current state of the network after detection, given the
observation of node 5 as the first infectious between nodes 1 and 5.

address this problem by providing quality guarantees of a strategy that assigns nodes
to be tested over time.

We let t0 be the time at which an epidemic outbreak is first detected and consider
that, afterwards, we are able to perform a number of new tests n1, n2, . . . , nl at times
t1 < t2 < \cdot \cdot \cdot < tl. Question Q3, stated below, is concerned with the design of a
testing strategy aiming to maximize the amount of information extracted about the
state of the disease using this series of tests, as well as providing an algorithm to use
Monte Carlo runs to go from the results from testing at time ti to the tests to perform
at time ti+1 for 1 \leq i < l.

Q3 (optimal dynamic test allocation after detection). Assuming that we
are free to sequentially allocate ni tests at each time ti, which nodes should we test at
each time to maximize the information about the state of the disease at each time?

We let X be the random variable of the state of the epidemic at detection time
conditioned on the observation of the sensors, from which we know the marginals
using Q2C. This will act as a prior. We let A be the set of tested nodes tests and
XA the random variable including the status of the nodes in A. Similarly as in the
Bayesian experiment design literature [7], we aim to maximize the mutual information
between X and XA, i.e., the information about X provided by knowing the result of
testing the nodes in A. Equivalently, we aim to choose A so that the expected KL
divergence between the prior pX and the posterior pX| XA

is maximized. Here, the
expectation is taken with respect to the test results.

We assume an online scenario without future rewards: this means that at time ti
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we receive the state of the network (coming from the initial marginals and updates
from testing at all times before ti) and the number of tests ni; we then aim to choose
nodes to test that maximize the information we obtain immediately after testing.
This also corresponds to a case in which it is unknown how many tests (if any) will
be available in the future.

The high-level overview of the proposed procedure is as follows. After tests at
time ti are taken, we define Di as the distribution over nodes conditioned on the test
results. If the process is Markovian, the conditions needed to start the model are just
the status of all nodes. For non-Markovian processes, other elements, such as how
much time a node has been in its status, need to be considered. We include these
under Di, understanding that we sample all the values needed to uniquely determine
the system current status and evolution. We use the Monte Carlo simulator with
initial states sampled from Di until t = ti+1 - ti. After we have enough runs, one can
estimate the marginal distributions and correlations using (4.3) and (4.4), then decide
where the new ni+1 optimal tests are allocated, and then calculate Di+1 using the
results from the testing. This procedure is conceptually similar to particle filtering
or sequential Monte Carlo methods, in which measurements of reality are combined
sequentially with a simulator of the associated dynamics.

In the next subsections, we explain the mathematical details of each part of the
process.

5.1. Choosing the optimal tests. At any fixed time, we assume knowledge
of (an approximation to) the marginals P(Si = sj | O) from (4.3) and the correlations
P(Si = sj | Sk = sl, O) from (4.4). We henceforth omit the dependence on O for
notation simplicity. Our problem at time ti then takes the form

argmax
A\subset V,| A| =ni

I(X;XA) = H(X) - H(X| XA),(5.1)

where I(X;XA) is the mutual information between X once we test the nodes in A,
which can be expressed as the difference in entropies between X and X| XA. Here,
H(X| XA) is the expectation of the entropy of the random variable X| (XA = xa) with
respect to the test results xa. This function is known to be submodular [11], [16],
positive (by Jensen's inequality), and monotone; therefore, we can directly apply The-
orem 3.2 to obtain the same (1 - 1/e) approximation guarantee result as in Question
Q1A when using the greedy algorithm. To use Algorithm 3.1, it remains to be seen
how to evaluate H(X| XA) for subsets A \subset V .

5.2. Updating the marginals from the test results and evaluating the
objective function. Throughout, we assume conditional independence in test re-
sults, assuming that

(5.2) P(Si = sj | S1 = s1, . . . , Sn = sn) =
n\prod 

k=1

P(Si = sj | Sk = sk).

This is due to the fact that we can estimate the correlations P(Si = sj | Sk = sk) with
Monte Carlo runs but not higher order correlations, as there are n2s2 first order
correlations but nk+1sk+1 order k correlations, which is prohibitively large even for
moderate k.

Let TA be the set of possible test results; then H(X| XA) =
\sum 

xa\in TA
H(X| XA =

xa)P(XA = xa). The elements in TA and the values of XA = xa depend on the tests
available, and P(XA = xa) depends on the test parameters (sensitivity, specificity,
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etc.) and the input marginals. Since H(X| XA) = Exa
[H(X| XA = xa)], we can

approximate H(X| XA) as the average of the entropy of the conditional distribution
once the test results are obtained from the different Monte Carlo runs. In particular,
for a single run in which the results xa include each node \alpha in A being in state s(\alpha ),
we estimate the conditional entropy from the marginals as follows:

\^H(X| XA = xa) = - 
n\sum 

i=1

s\sum 
j=1

P(Si = sj | XA = xa) logP(Si = sj | XA = xa)

(5.3)

= - 
n\sum 

i=1

s\sum 
j=1

\prod 
\alpha \in A

P(Si = sj | S\alpha = s(\alpha )) logP(Si = sj | S\alpha = s(\alpha )),

where in the last step we have used the conditional independence assumption and the
values are known approximately from (4.4). Finally, we approximate the objective
function H(X| XA) by \^H(X| XA), the average of \^H(X| XA = xa) across Monte Carlo
runs with different testing results xa.

Once we get to know the true result of the tests xtrue, all that remains is us-
ing the Monte Carlo simulator with the initial distribution being the new marginals
\{ P(Si = sj | XA = xtrue)\} i=1:n;j=1:s to obtain the marginals at ti+1, a process that can
be applied repeatedly.

5.3. Toy example in a small network. Figure 5 shows the process of adaptive
testing in the case of the toy example in Figure 1. We start with the marginals in
Figure 4, which are used to calculate their entropies and decide the optimal nodes to
test next. After the test is taken, one uses the information to update the marginals
and use them to sample the initial condition for subsequent Monte Carlo runs, in
which we simulate the stochastic process until the time in which we are allowed to
allocate more tests (e.g., every week). After that, we can update the marginals, decide
on the next tests to take, and repeat the cycle.

Fig. 5. Dynamic testing process, consisting of alternating testing and simulation, applied to
the toy example network.

6. Experiments. In this section, we illustrate the proposed procedures to a
non-Markovian model of COVID-19 in a real human interaction network. In order
to simulate the stochastic processes, we use an event-driven simulation algorithm in
which the next events (infections, recoveries, etc.) are stored in a priority queue
and processed in order of time [18]. This method can be used to efficiently simulate
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many stochastic models, such as the model studied here. We use the Hypertext 2009
network [1], a network of human-to-human interactions, in our simulations. The ACM
Conference on Hypertext and Hypermedia 2009 was held in Turin, Italy, in 2009 and,
during the conference, the conference badges included radio-frequency identification
(RFI) devices able to mine face-to-face proximity relations [15]. The exchange of radio
packets between badges implies a proximity of less than 1--1.5m, a distance in which
contagious diseases could spread. In this network, a node represents a conference
visitor and an edge represents a face-to-face contact that was active for at least 20
seconds. The network has n = 100 nodes and m = 946 edges once we aggregate edges
over time during the first day of the conference.

For this network, we use an adaptation to networks of a realistic non-Markovian
model of COVID-19 proposed in [10]. In this work, the authors infer that, for COVID-
19, the incubation period (time between contracting the disease and showing symp-
toms) follows a lognormal distribution with meanlog 1.644 and sdlog 0.363, and the
generation time (time between infection of the source and infection of the target)
follows a Weibull distribution with shape parameter 2.826 and scale parameter 5.665.
Additionally, the authors infer that the proportion of infectious individuals who are
asymptomatic is 0.4 and that the asymptomatic transmission rate is 10 times lower
than for symptomatic patients. We use this data to create a non-Markovian model
with susceptible, presymptomatic, symptomatic, asymptomatic, and removed com-
partments in which each node can independently infect its neighbors as long as it is
not susceptible or removed. The times for that infection to occur and symptoms to
appear is sampled from the distributions in [10]. We draw the random time to full
recovery from first infection to removal from a normal distribution of mean 14 and
standard deviation 2, both for symptomatic and asymptomatic carriers. The model
is summarized in Figure 6.

Fig. 6. Summary of the non-Markovian model of COVID-19 spreading in networks based in [10].

We assume that the outbreak is started by a single infectious node chosen uni-
formly at random. We then monitor k = 10 nodes decided according to the greedy
scheme in Algorithm 3.1, which aims to maximize the probability of detection during
the first \tau = 3 days of the outbreak. We test the greedy algorithm against three
simple baselines: uniformly random node subset selection, random node subset se-
lection weighted by node degree, and random node selection eliminating neighbors
from chosen nodes iteratively. Figure 7 summarizes the results, where the greedy
algorithm outperforms all the strategies by around 3\% in probability. In order to un-
derstand how this translates to real scenarios in practice, we run 105 simulations for
the greedy test placement and 105 for the best randomly found placement in which we
set lockdown measures as soon as the epidemic is detected in each case. The curves
of infectious (asymptomatic + symptomatic + presymptomatic) and recovered nodes
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for each case can be seen in Figure 8. On average, four out of the 100 nodes do
not contract the disease by using the greedy placement instead of the best random
placement.

Fig. 7. Histogram of results after using
the three baseline random placement strate-
gies in comparison to the greedy algorithm in
order to place k = 10 tests. The greedy algo-
rithm scores a detection probability of 0.57,
while the best random solution scores 0.542.

Fig. 8. Infectious (asymptomatic +
symptomatic + presymptomatic) and recov-
ered mean curves for 105 runs in which lock-
down is imposed once detecting the epidemic.
The small probability gain of using the set of
sensors found with the greedy strategy trans-
lates to four fewer nodes being infectious on
average.

A similar analysis as the one performed in the toy example in subsection 4.1
can be performed to estimate patient zero. The most likely node is in this case the
node in which the epidemic was detected with a probability of 0.08 of being patient
zero assuming a uniform prior. Similarly as before, we can estimate the probability
density function of time-since-outbreak at the time of detection. Here, we do it
for three different kinds of tests: tests that detect antibodies (meaning all kind of
non-susceptible nodes), ``tests"" that detect symptoms only, and ``tests"" that detect
removed people only. These two last cases correspond to the cases in which epidemic
outbreaks are detected late instead of using actual viral tests, simulating scenarios in
which countries or populations are unprepared for an outbreak and can only detect it
after the first death (or person with symptoms) is detected. The results can be seen
in Figure 9, in which we can observe that the difference is of the order of several days
in each case.

Finally, we illustrate the proposed adaptive testing algorithm with a fixed amount
of tests at t = t0 and every 3 days, up to four times. We compare it with a baseline
algorithm of randomly selecting which nodes to choose at each iteration. In this
comparison, testing is only used to monitor the epidemic (i.e., no lockdown measures
are imposed regardless of test results). In Figure 10, the mean entropy of the predicted
marginal distributions are plotted over time, averaging over 104 different real runs. As
expected, more tests translate distributions with less entropy. By comparing testing
strategies, it can be observed how the proposed strategy improves on the uncertainty
that the distributions convey. The time of higher uncertainty is around 6 days after
detection, as there are more possible scenarios of the current state of the pandemic
than later on. The reason for this is that, in this non-lockdown scenario, after a
certain point most of the nodes will most likely have been infected.

7. Conclusions. We have introduced a flexible framework to analyze problems
concerning the early detection of epidemic outbreaks, as well as the dynamic allo-
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Fig. 9. Probability density functions of
times between disease outbreak and detection
for optimal monitorization of k = 10 nodes
using tests of different types, corresponding
to being able to test people (left), detecting
just the symptoms (center), or just the death
of patients (right).

Fig. 10. Mean entropy time evolution
in the dynamic testing scenario in which a
fixed number of tests are used every 3 days,
up to 12 days after the outbreak is detected.
Averages of 104 runs.

cation of tests to maximize the information retrieved about the state of the infec-
tion. We have stated and solved several problems of practical interest by analyzing
continuous-time stochastic compartmental models over complex networks. First, we
have considered the problem of designing a monitoring system whose objective is to
detect a novel epidemic outbreak as soon as possible. In particular, we have developed
an algorithm able to select a subset of individuals to be continuously monitored in
order to detect the onset of an epidemic as fast as possible. We have mathematically
described this problem as a hitting-time probability maximization and use submod-
ularity optimization techniques to derive explicit quality guarantees for the proposed
solution. Second, assuming that an epidemic outbreak has been detected, we have
also considered the problem of dynamically allocating viral tests over time in order
to maximize the amount of information gained about the state of the epidemic. We
have proposed an adaptive allocation strategy with quality guarantees based on the
concepts of information entropy and mutual information. For all these problems,
we have derived analytical solutions for Markovian stochastic compartmental models,
as well as efficient Monte Carlo--based algorithms for non-Markovian dynamics and
large-scale networks. We have illustrated the performance of the proposed algorithms
using numerical experiments involving a model of COVID-19 applied to a real human
contact network.

Appendix A. Analytical solution for Markov chains. In this section, we
provide analytical solutions for the questions from section 1 in the case where the
Markov property holds and the epidemic model defines a continuous-time Markov
chain. Similarly as in the general case, the epidemic model can be formulated as a
continuous-time Markov chain of state space \scrS with | \scrS | = sn if the Markov property
holds. An initial probability distribution D such that X(0) \sim D is also assumed.
The continuous-time Markov chain is characterized by a transition rate matrix Q of
dimensions sn \times sn.

A.1. Early detection of epidemic outbreaks with limited viral tests.
We use the same notation as in the general case: TDW

is the minimum time in which

D
ow

nl
oa

de
d 

06
/1

0/
22

 to
 1

28
.1

22
.1

49
.9

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S288 BATLLE, BRUNA, FERNANDEZ-GRANDA, AND PRECIADO

the Markov chain reaches the detection set of W \subset V . We can analytically calculate
P (TDW

\leq \tau ) = P (TDW
\leq \tau | TDW

< \infty )P (TDW
<\infty ), where P (TDW

<\infty ) refers to
the probability of the Markov process ending in an absorbing state in DW . Some
models, such as SIR, have absorbing states which represent the epidemic dying before
any detection is done (for example, the first person gets cured before transmitting
it to anyone), which might therefore not be part of DW . To treat that, we use the
jump matrix of the Markov chain. If Q is the transition rate matrix of a continuous-
time and discrete space-Markov chain and we are at state i, the probability of the
next jump of the Markov chain being to state j \not = i is

Qij

 - Qii
. This lets us define

the jump matrix M , where Mij =
Qij

 - Qii
if i \not = j and Mii = 1  - 

\sum 
i\not =j Mij , which

corresponds to the matrix of a discrete-time Markov chain describing the jumps the
Markov chain makes without taking into account how long it takes to do such jumps.
For calculations such as the probability of being absorbed in a particular state, we
can use the jump matrix and theory from discrete-time absorbing Markov chains. In
particular, we can calculate P (TDW

<\infty ) from the fundamental matrix of the jump
matrix created from Q.

Conditional absorption Markov chain theory. To calculate P (TDW
\leq \tau | TDW

<
\infty ), we need to eliminate the absorbing states not in DW from the chain, which we
denote by S - . The dynamics of those runs that do not end in S - are Markovian, and
its rate transition matrix can be found according to the following proposition.

Proposition 1. Given a Markov chain with two sets of absorbing states S+ and
S - and a rate transition matrix Q, one can construct a matrix Q+ corresponding to
the Markovian dynamics of those processes that get absorbed at S+ (which we can
write as X\infty \in S+) as follows:

(A.1) Q+
ij =

\left\{   Qij
P (X\infty \in S+| X(0) = j)

P (X\infty \in S+| X(0) = i)
, P (X\infty \in S+| X(0) = i) \not = 0,

0, P (X\infty \in S+| X(0) = i) = 0.

Furthermore, the initial probability distribution \{ P(X(0) = i)\} i also gets modified:

(A.2) P(X(0) = i| X\infty \in S+) =
P(X\infty \in S+| X(0) = i)P(X(0) = i)\sum 
j P(X\infty \in S+| X(0) = j)P(X(0) = j)

.

Once we have a Markov chain with the only set of absorbing states S+ (and
therefore P(X\infty \in S+) = 1), the distribution of stopping times (usually called hitting
times in the context of Markov chains) to S+ follows a phase-type distribution. If
we collapse all the states of S+ into one (by adding the probability rates that reach
it), the hitting times are unchanged and the rate matrix of the Markov chain with Nt

transient states (Nt depends on the choice of compartment model and n) takes the
form

Q\prime =

\biggl( 
0 0
S0 S

\biggr) 
,

where S is an Nt\times Nt matrix and S0 is equal to  - S\vec{}1, where \vec{}1 is the column vector of
all ones. The time it takes to be absorbed in state 0 starting from a vector of initial
probabilities \vec{}\alpha is distributed according to the distribution function F (t) = P(TS+ \leq 
t) = 1 - \vec{}\alpha exp(St)\vec{}1, where exp(\cdot ) denotes the matrix exponential. The expected value
is  - \vec{}\alpha S - 1\vec{}1.

The full equation reads as P(TDW
\leq \tau ) = P(TDW

<\infty )P(TDW
\leq \tau | TDW

<\infty ) =
P(TDW

<\infty )(1 - \vec{}\alpha exp(St)\vec{}1), where S is obtained by the process of first conditioning
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and then collapsing the absorbing states and \alpha also comes from conditioning D and
then collapsing the states in DW .

However, this is infeasible in practice, as S scales roughly as Q, which is sn \times sn.

A.2. Estimation of the state of the disease. We now continue to solve
analytically the rest of the tasks. Q2A and Q2B ask about patient-zero posterior
probabilities and outbreak-time estimation.

We define a state of the Markov chain to be compatible with our observation if in
that state the tested nodes are in a state which agrees with the tests. These include
all possibilities for nontested nodes but may include some variations in tested nodes
if the tests do not perfectly distinguish all states. We let \scrC \subset DW \subset \scrS be the set of
compatible states and O denote our observation.

For Q2A, we can apply Bayes' theorem,

P(X0 = x| O) =
P(O| X0 = x)P(X0 = x)

P(O)
\propto P(O| X0 = x)P(X0 = x),(A.3)

as P(O) is just a constant that ensures
\sum 

i\in \scrS P(X0 = i| O) = 1. We know P(X0 = x),
as the initial distribution D is known. For P(O| X0 = x), we again consider all states of
the detection set of the placed tests as absorbing, and we need to sum the probabilities
of getting absorbed to exactly those states in the detection set which are compatible
with our observation. Therefore,

P(O| X0 = x) =
\sum 
\alpha \in \scrC 

P(X\infty = \alpha | X0 = x).(A.4)

The probability of ending in a specific absorbing state starting from a specific tran-
sient state can be found with the fundamental matrix of the jump Markov chain
matrix. Q2B asks about the distribution of time since the epidemic began. To cal-
culate the distribution function P(t \leq k| O) conditioned on the absorption happening
on a compatible state, we can do exactly the same as we have done to calculate
P (TDW

\leq \tau | TDW
< \infty ), except for replacing DW for its subset C. Q2C asks about

the probability distributions of the current state over the states in DW . This is
calculated using the same idea as Q2A. We denote by X the actual state

P(X = x| O) =
P(O| X = x)P(X = x)

P(O)
\propto P(O| X = x)P(X = x) = I(x \in \scrC )P(X = x).

(A.5)

P(X = x) is the probability of being absorbed at state x, which is known a priori
with the fundamental matrix. Therefore, we see that the observation just restricts the
probability distribution from DW to its subset \scrC . We can now solve for the probability
of node i being in state sl by summing over the posterior probabilities of all states in
which i is in sl.

A.3. Dynamic allocation for epidemic tracking. Note that if we perfectly
know P (X = x| O), then we are able to evaluate the expression for H(X| O, TW \prime ) since
if \scrC i \subset \scrC are the compatible states with test output ti, P(TW \prime = ti) =

\sum 
\alpha \in \scrC i

P(\alpha | O),
and similarly as before,

P(X = x| O, TW \prime = ti) \propto P(TW \prime = ti| O,X = x)P(X = x| O) = I(x \in \scrC i)P(X = x| O).
(A.6)

We can now evaluate the mutual information for all tests to obtain the best one.
Therefore, in this case we can perform the following iterative procedure:
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\bullet At t = ti, we test nodes according to the entropy criterion. After the tests,
we update the distributions conditioned on test results using Bayes' theorem.
Let Di be the distribution over nodes conditioned on the test results.

\bullet Run the Markov chain analytically until t = ti+1 - ti with initial distribution
Di.
\bullet Calculate the state distributions at time ti+1.
\bullet Decide which nodes to test at time ti+1 according to the criteria in Q5, and
calculate Di+1 with the obtained results.

Appendix B. Proofs of Theorem 3.1, Theorem 3.4, Theorem 3.5, and
Theorem 3.6.

B.1. Proof of Theorem 3.1.

Theorem B.1 (submodularity of f\tau ). f\tau : W \mapsto \rightarrow P (TDW
\leq \tau ) is a submodular

function.

Lemma B.2. Let S be a finite set, and consider M a continuous time stochastic
process over the states of S. Then, for \tau \in R+ the function h(W ) : W \mapsto \rightarrow P (TW \leq \tau ),
where W \in \scrP (S), is submodular.

Proof. We want to see that for X \subset Y and x \in S \setminus Y , P(TX\cup \{ x\} \leq \tau ) - P(TX \leq 
\tau ) \geq P(TY \cup \{ x\} \leq \tau ) - P(TY \leq \tau ). For Z \subset S, P(TZ\cup \{ x\} \leq \tau ) - P(TZ \leq \tau ) = P(T\{ x\} \leq 
\tau \cap TZ > \tau ). But since X \subset Y , TY \geq \tau =\Rightarrow TX \geq \tau , and so P(T\{ x\} \leq \tau \cap TX \geq \tau ) \geq 
P(T\{ x\} \leq \tau \cap TY \geq \tau ), and we are done.

The second part of the submodularity proof for f\tau concerns being able to conserve
the submodularity of h under composition with functions of certain properties.

Lemma B.3 (conservation of submodularity under pullback). Let V, S be finite
sets, and let h : \scrP (S) \rightarrow R be monotone submodular. Let g : \scrP (V ) \rightarrow \scrP (S) be a
function satisfying g(A \cup B) = g(A) \cup g(B) and A \subset B =\Rightarrow g(A) \subset g(B) for A,
B \subset V . Then, h \circ g : \scrP (V )\rightarrow R is monotone submodular.

(Note that by g(A) we do not mean \{ g(x)| x \in A\} but rather the image under g of
A as an element g(\{ A\} ), but we omit the brackets. A is a subset of V but an element
of \scrP (\scrV ), and therefore g sends it to a subset of S, an element of \scrP (S).)

Figure 11 provides a scheme of the situation, in which we have used the explicit
notation.

Fig. 11. Scheme of Lemma B.3. We want to see that given that h is monotone submodular
and g satisfies certain conditions, the submodularity is conserved under the composition h \circ g.

Proof. The monotonicity of h \circ g comes from the monotonicity of h and g. For
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the submodularity, we want to see that for all S, T \subset V ,

(h \circ g)(S) + (h \circ g)(T ) \geq (h \circ g)(S \cup T ) + (h \circ g)(S \cap T ),

h(g(S)) + h(g(T )) \geq h(g(S \cup T )) + h(g(S \cap T )),

h(g(S)) + h(g(T )) \geq h(g(S) \cup g(T ))) + h(g(S \cap T )).

Since h is submodular and g(S) and g(T ) are subsets of S, we know that

h(g(S)) + h(g(T )) \geq h(g(S) \cup g(T ))) + h(g(S) \cap g(T )).

But since g is monotonous we have g(S\cap T ) \subset (g(S)\cap g(T )) and since h is monotonous
we have h(g(S \cap T )) \leq h(g(S)\cap g(T )), and so we have h(g(S)) + h(g(T )) \geq h(g(S)\cup 
g(T ))) + h(g(S \cap T )).

Proof of Theorem 3.1. We apply Lemma B.3 to the composition h \circ D, where D
is the detection set function D : \scrP (\scrV ) \rightarrow \scrP (\scrS ) mapping W to DW , where V is the
set of vertices in the graph and S the set of states of the stochastic process. By
Lemma B.2, h is submodular and it is also clearly monotonous by the same argument
that we have shown that f\tau is monotonous. By the definition of the detection set
function D, DA \subset DB if A \subset B and DA\cup B = DA \cup DB . Therefore, f = h \circ D is
submodular.

B.2. Proof of Theorem 3.4.

Theorem B.4. The sample approximation of f\tau , \^f\tau defined in subsection 3.1, is
nonnegative, monotone, and submodular for all NR \in N.

Proof. Nonnegativity is true by definition, and monotonicity comes from the fact
that if A \subset B, then mink\in A L[i, k] \geq mink\in B L[i, k], and so for a lesser or equal
number of runs the minimum over A will be less than or equal to the minimum over
B, so f(A) \leq f(B). For submodularity, we want to prove that for X \subset Y and
x \in V \setminus Y ,

\^f(X \cup \{ x\} ) - \^f(X) \geq \^f(Y ) - \^f(Y \cup \{ x\} ) .(B.1)

The left-hand side is

| i \in [NR] s.t. min
k\in X\cup \{ x\} 

L[i, k] \leq \tau |  - | i \in [NR] s.t. min
k\in X

L[i, k] \leq \tau | ,

which equals | i \in [NR] s.t. (mink\in X L[i, k] > \tau ) \cap (L[i, x] \leq \tau )| . Similarly, the right-
hand side is | i \in [NR] s.t. (mink\in Y L[i, k] > \tau ) \cap (L[i, x] \leq \tau )| . As mink\in Y L[i, k] >
\tau =\Rightarrow mink\in X L[i, k] > \tau , there are at least as many elements in the set of the
left-hand side than in the set of the right-hand side, proving the inequality.

Taking limits in the submodularity inequality for \^f\tau provides an alternative proof
that f\tau is submodular.

B.3. Proof of Theorem 3.5.

Theorem B.5. Let S\ast be the optimal set for f\tau . Let \^f\tau be a nonnegative, mono-
tone, and submodular function such that (1  - \delta )f\tau \leq \^f\tau \leq (1 + \delta )f\tau . Then, us-

ing Algorithm 3.1 with evaluations of \^f\tau yields a solution \^S\prime such that f\tau ( \^S\prime ) \geq 
1 - \delta 
1+\delta 

\bigl( 
1 - 1

e

\bigr) 
f\tau (S

\ast ).
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Proof. Let \^S\ast be the optimal solution of the optimization of \^f\tau . Then, we have

f\tau ( \^S\prime ) \geq 1

1 + \delta 
\^f\tau ( \^S\prime ) \geq 1

1 + \delta 

\biggl( 
1 - 1

e

\biggr) 
\^f\tau ( \^S\ast )

\geq 1

1 + \delta 

\biggl( 
1 - 1

e

\biggr) 
\^f\tau (S

\ast ) \geq 1 - \delta 

1 + \delta 

\biggl( 
1 - 1

e

\biggr) 
f\tau (S

\ast ).(B.2)

B.4. Proof of Theorem 3.6.

Theorem B.6. Let S\ast be the optimal set for f\tau . Let \^f\tau be a nonnegative, mono-
tone, and submodular function such that (1  - \delta )f\tau \leq \^f\tau \leq (1 + \delta )f\tau . Then, using

Algorithm 3.2 with evaluations of \^f\tau until finding a set with \^f\tau (W ) \geq P (1 - \delta ) yields a
solution \^S\prime such that | \^S\prime | 

| S\ast | \leq 1+ log (1+\delta )f\tau (V ) - (1 - \delta )f\tau (\emptyset )
(1 - \delta )f\tau ( \^S\prime ) - (1+\delta )f\tau ( \^S - 1)

, where \^S - 1 is the solution

set at the iteration prior to the termination of Algorithm 3.2 with \^f\tau .

Proof. Let \^S\ast be the optimal solution of the optimization of \^f\tau . First, we have
| \^S\prime | 
| S\ast | =

| \^S\prime | 
| \^S\ast | 

| \^S\ast | 
| S\ast | . Since every W such that f(W ) \geq P also satisfies \^f(W ) \geq P (1  - \delta ),

we have that | \^S\ast | 
| S\ast | \leq 1. Finally, from Theorem 3.3 we have

| \^S\prime | 
| \^S\ast | 

\leq 1 + log
\^f\tau (V ) - \^f\tau (\emptyset )

\^f\tau ( \^S\prime ) - \^f\tau ( \^S - 1)
\leq 1 + log

(1 + \delta )f\tau (V ) - (1 - \delta )f\tau (\emptyset )
(1 - \delta )f\tau ( \^S\prime ) - (1 + \delta )f\tau ( \^S - 1)

.(B.3)
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