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Abstract

Normalization techniques have become a basic component in modern convolutional
neural networks (ConvNets). In particular, many recent works demonstrate that
promoting the orthogonality of the weights helps train deep models and improve
robustness. For ConvNets, most existing methods are based on penalizing or
normalizing weight matrices derived from concatenating or flattening the convo-
lutional kernels. These methods often destroy or ignore the benign convolutional
structure of the kernels; therefore, they are often expensive or impractical for deep
ConvNets. In contrast, we introduce a simple and efficient “Convolutional Normal-
ization” (ConvNorm) method that can fully exploit the convolutional structure in
the Fourier domain and serve as a simple plug-and-play module to be conveniently
incorporated into any ConvNets. Our method is inspired by recent work on pre-
conditioning methods for convolutional sparse coding and can effectively promote
each layer’s channel-wise isometry. Furthermore, we show that our ConvNorm can
reduce the layerwise spectral norm of the weight matrices and hence improve the
Lipschitzness of the network, leading to easier training and improved robustness for
deep ConvNets. Applied to classification under noise corruptions and generative
adversarial network (GAN), we show that the ConvNorm improves the robustness
of common ConvNets such as ResNet and the performance of GAN. We verify our
findings via numerical experiments on CIFAR and ImageNet. Our implementation
is available online at https://github.com/shengliu66/ConvNorm.

1 Introduction

In the past decade, Convolutional Neural Networks (ConvNets) have achieved phenomenal success in
many machine learning and computer vision applications [1–7]. Normalization is one of the most
important components of modern network architectures [8]. Early normalization techniques, such as
batch normalization (BatchNorm) [4], are cornerstones for effective training of models beyond a few
layers. Since then, the values of normalization for optimization and learning is extensively studied,
and many normalization techniques, such as layer normalization [9], instance normalization [10],
and group normalization [11] are proposed. Many of such normalization techniques are based on
estimating certain statistics of neuron inputs from training data. However, precise estimations of the
statistics may not always be possible. For example, BatchNorm becomes ineffective when the batch
size is small [12], or batch samples are statistically dependent [13].
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Weight normalization [14] is a powerful alternative to BatchNorm that improves the conditioning
of neural network training without the need to estimate statistics from neuron inputs. Weight
normalization operates by either reparameterizing or regularizing the network weights so that all the
weights have unit Euclidean norm. Since then, various forms of normalization for network weights
are proposed and become critical for many tasks such as training Generative Adversarial Networks
(GANs) [15] and obtaining robustness to input perturbations [16, 17]. One of the most popular forms
of weight normalization is enforcing orthogonality, which has drawn attention from a diverse range
of research topics. The idea is that weights in each layer should be orthogonal and energy-preserving.
Orthogonality is argued to play a central role for training ultra-deep models [18–22], optimizing
recurrent models [23–26], improving generalization [27], obtaining robustness [28, 29], learning
disentangled features [30, 31], improving the quality of GANs [32, 33], learning low-dimensional
embedding [34], etc.

BatchNorm
(with affine transform)

ConvNorm
(with affine transform)

Figure 1: Comparison between BatchNorm
and ConvNorm on activations of k = 1, . . . , C
channels. BatchNorm subtracts and multiplies the
activations of each channel by computed scalars:
mean µ and variance σ2, before a per-channel
affine transform parameterized by learned param-
eters β and γ; ConvNorm performs per-channel
convolution with precomputed kernel v to nor-
malize the spectrum of the weight matrix for the
convolution layer, following with a channel-wise
convolution with learned kernel r as the affine
transform.

Exploiting convolution structures for normal-
ization. Our work is motivated by the pivotal
role of weight normalization in deep learning. In
the context of ConvNets, the network weights are
multi-dimensional (e.g., 4-dimensional for a 2D
ConvNet) convolutional kernels. A vast major-
ity of existing literature [27, 28, 35–39] imposes
orthogonal weight regularization for ConvNets
by treating multi-dimensional convolutional ker-
nels as 2D matrices (e.g., by flattening certain di-
mensions) and imposing orthogonality of the ma-
trix. However, this choice ignores the translation-
invariance properties of convolutional operators
and, as shown in [22], does not guarantee en-
ergy preservation. On the other hand, these meth-
ods often involve dealing with matrix inversions
that are computationally expensive for deep and
highly overparameterized networks.

In contrast, in this work we introduce a new nor-
malization method dedicated to ConvNets, which
explicitly exploits translation-invariance proper-
ties of convolutional operators. Therefore, we term our method as Convolutional Normalization
(ConvNorm). We normalize each output channel for each layer of ConvNets, similar to recent
preconditioning methods for convolutional sparse coding [40]. The ConvNorm can be viewed as a
reparameterization approach for the kernels, that actually it normalizes the weight of each channel to
be tight frame.2 While extra mathematical hassles do exist in incorporating translation-invariance
properties, and it turns out to be a blessing, rather than a curse, in terms of computation, as it allows
us to carry out the inversion operation in our ConvNorm via fast Fourier transform (FFT) in the
frequency domain, for which the computation complexity can be significantly reduced.

Highlights of our method. In summary, for ConvNets our approach enjoys several clear advantages
over classical normalization methods [41–43], that we list below:
• Easy to implement. In contrast to weight regularization methods that often require hyperparameter

tuning and heavy computation [41, 43], the ConvNorm has no parameter to tune and is efficient
to compute. Moreover, the ConvNorm can serve as a simple plug-and-play module that can be
conveniently incorporated into training almost any ConvNets.
• Improving network robustness. Although the ConvNorm operates on each output channel

separately, we show that it actually improves the overall layer-wise Lipschitzness of the ConvNets.
Therefore, as demonstrated by our experiments, it has superior robustness performance against
noise corruptions and adversarial attacks.
• Improving network training. We numerically demonstrate that the ConvNorm accelerates

training on standard image datasets such as CIFAR [44] and ImageNet [45]. Inspired by the
work [40, 46], our high-level intuition is that the ConvNorm improves the optimization landscape
that optimization algorithms converge faster to the desired solutions.
2Tight frame can be viewed as a generalization of orthogonality for overcomplete matrices, which is also

energy preserving.
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Related work. Besides our work, a few very recent work also exploits the translation-invariance
for designing the normalization techniques of ConvNets. We summarize and explain the difference
with our method below.
• The work [22, 43] derived a similar notion of orthogonality for convolutional kernels, and adopted

a penalty based method to enforce orthogonality for network weights. These penalty methods often
require careful tuning of the strength of the penalty on a case-by-case basis. In contrast, our method
is parameter-free and thus easier to use. Our method also shows better empirical performance in
terms of robustness.
• Very recent work by [29] presented a method to enforce strict orthogonality of convolutional

weights by using Cayley transform. Like our approach, a sub-step of their method utilizes the
idea of performing the computation in the Fourier domain. However, as they normalize the
whole unstructured weight matrix, computing expensive matrix inversion is inevitable, so that
their running time and memory consumption is prohibitive for large networks.3 In contrast, our
method is “orthogonalizing” the weight of each channel instead of the whole layer, so that we
can exploit the convolutional structure to avoid expensive matrix inversion with a much lower
computational burden. In the meanwhile, we show that this channel-wise normalization can still
improve layer-wise Lipschitz condition.

Organizations. The rest of our paper is organized as follows. In Section 2, we introduce the
basic notations and provide a brief overview of ConvNets. In Section 3, we introduce the design of
the proposed ConvNorm and discuss the key intuitions and advantages. In Section 4, we perform
extensive experiments on various applications verifying the effectiveness of the proposed method.
Finally, we conclude and point to some interesting future directions in Section 5. To streamline our
presentation, some technical details are deferred to the Appendices.

2 Preliminary
Review of deep networks. A deep network is essentially a nonlinear mapping f(·) : x 7→ y,
which can be modeled by a composition of a series of simple maps: f(x) = fL−1 ◦ · · · ◦ f1 ◦ f0(x),
where every f `(·) (1 ≤ ` ≤ L) is called one “layer”. Each layer is composed of a linear transform,
followed by a simple nonlinear activation function ϕ(·).4 More precisely, a basic deep network of L
layers can be defined recursively by interleaving linear and nonlinear activation layers as

z`+1 = f `(z`) = ϕ ◦ A`(z`) (1)

for ` = 0, 1, . . . , L− 1, with z0 = x. Here A`(·) denotes the linear transform and will be described
in detail soon. For convenience, let us use θ to denote all network parameters in

{
A`(·)

}L−1
`=0

. The
goal of deep learning is to fit the observation y with the output f(x,θ) for any sample x from a
distribution D, by learning θ. This can be achieved by optimizing a certain loss function `(·), i.e.,

min
θ∈Θ

L(θ;
{(
xi,yi

)}m
i=1

) :=
1

m

m∑
i=1

`
(
f(xi,θ),yi

)
,

given a (large) training dataset
{(
xi,yi

)}m
i=1

. For example, for a typical classification task, the class
label of a sample x is represented by a one-hot vector y ∈ Rk representing its membership in k
classes. The loss can be chosen to be either the cross-entropy or `2-loss [48]. In the following, we
use (x,y) to present one training sample.

An overview of ConvNets. The ConvNet [49] is a special deep network architecture, where each
of its linear layer can be implemented much more efficiently via convolutions in comparison to fully
connected networks [50]. Because of its efficiency and popularity in machine learning, for the rest of
the paper, we focus on ConvNets. Suppose the input data x has C channels, represented as

x = (x1,x2, · · · ,xC) , (2)

where for 1D signal xk ∈ Rm denotes the kth channel feature of x.5 For the `th layer (0 ≤ ` ≤ L−1)
of ConvNets, the linear operator A`(·) : RC`×m 7→ RC`+1×m in (1) is a convolution operation with
C`+1 output channels,

3In [29], the results are reported based on ResNet9, whereas our method can be easily added to larger
networks, e.g. ResNet18 and ResNet50.

4The nonlinearity could contain BatchNorm [4], pooling, dropout [47], and stride, etc.
5If the data is 2D, we can assume x ∈ Rm1×m2 . For simplicity, we present our idea based on 1D signal.
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z`+1 =
(
z`+1
1 , z`+1

2 , · · · , z`+1
C`+1

)
,

z`+1
k = ϕ

 C∑̀
j=1

a`
kj ∗ z`j

 (1 ≤ k ≤ C`+1),

where ∗ denotes the convolution between two items that we will discuss below in more detail. Thus,
for the `th layer with C` input channels and C`+1 output channels, we can organize the convolution
kernels {akj} as

A` =


a`
11 a`

12 · · · a`
1C`

a`
21 a`

22 · · · a`
2C`

...
...

. . .
...

a`
C`+11

a`
C`+12

· · · a`
C`+1C`

 .
Convolution operators. For the simplicity of presentation and analysis, we adopt circular con-
volution instead of linear convolution.6 For 1D signal, given a kernel a ∈ Rn and an input signal
x ∈ Rm (in many cases m � n), a circular convolution ∗ between a and x can be written in a
simple matrix-vector product form via

y = a ∗ x = Ca · x,

where Ca denotes a circulant matrix of (zero-padded) a,

Ca := [s0 [a] s1 [a] · · · sm−1 [a]] ,

which is the concatenation of all cyclic shifts sk [a] (0 ≤ k ≤ m−1) of length k of the (zero-padded)
vector a. Since Ca can be decomposed via the discrete Fourier transform (DFT) matrix F :

Ca = F ∗ diag (â)F , â = Fa, (3)

where â denotes the Fourier transform of a vector a. The computation of a ∗ x can be carried out
efficiently via fast Fourier transform (FFT) in the frequency domain. We refer the readers to the
appendix for more technical details.

3 Convolutional Normalization

In the following, we introduce the proposed ConvNorm, that can fully exploit benign convolution
structures of ConvNets. It can be efficiently implemented in the frequency domain, and reduce the
layer-wise Lipschitz constant. First of all, we build intuitions of the new design from the simplest
setting. From this, we show how to expand the idea to practical ConvNets and discuss its advantages
for training and robustness.

3.1 A warm-up study

Let us build some intuitions by zooming into one layer of ConvNets with both input and output being
single-channel,

zout = AL(z) = a ∗ zin, (4)

where zin is the input signal, a is a single kernel, and zout denotes the output before the nonlinear
activation. The form (4) is closely related to recent work on blind deconvolution [46]. More
specifically, the work showed that normalizing the output zout via preconditioning eliminates bad
local minimizers and dramatically improves the optimization landscapes for learning the kernel a.
The basic idea is to multiply a preconditioning matrix which approximates the following form7

P =
(
CaC

>
a

)−1/2
. (5)

As we observe
6Although there are slight differences between linear and circulant convolutions on the boundaries, actually

any linear convolution can be reduced to circular convolution simply via zero-padding.
7In the work [46], they cook up a matrix by using output samples P̃ =

(
C
m

∑m
i=1 Czi

out
(Czi

out
)>
)−1/2

.

When the input samples zi
in are i.i.d. zero mean, it can be showed that P̃ ≈ P for large m. For ConvNets, we

can just use the learned kernel a for cooking up P .
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z̃out = Pzout =
(
CaC

>
a

)−1/2
Ca︸ ︷︷ ︸

Q(a)

·zin,

the ConvNorm is essentially reparametrizing the circulant matrixCa of the kernel a to an orthogonal
circulant matrixQ(a) =

(
CaC

>
a

)−1/2
Ca, withQQ> = I . Thus, the ConvNorm is improving the

conditioning of the vanilla problem and reducing the Lipschitz constant of the operator AL(·) in (4).
On the other hand, the benefits of this normalization can also be observed in the frequency domain.
Based on (3), we have P = F ∗ diag (v)F = Cv with v = F−1

(
|â|�−1

)
. Thus, we also have

Q(a) = Cv ·Ca = Cv∗a = F ∗ diag(ĝ(a))F , ĝ(a) = â� |â|�−1 ,

with � denoting entrywise operation and g = F−1
(
â� |â|�−1

)
. Thus, we can see that:

• Although the reparameterization involves matrix inversion, which is typically expensive to compute,
for convolution it can actually be much more efficiently implemented in the frequency domain via
FFT, reducing the complexity from O(n3) to O(n log n).
• The reparametrized kernel g is effectively an all-pass filter with flat normalized spectrum â �
|â|�−1.8 From an information theory perspective, this implies that it can better preserve (in
particular, high-frequency) information of the input feature from the previous layer.

3.2 ConvNorm for multiple channels
So far, we only considered one layer ConvNets with single-channel input and output. However, recall
from Section 2, modern deep ConvNets are usually designed with many layers; each typical layer is
constructed with a linear transformation with multiple input and output channels, followed by strides,
normalization, and nonlinear activation. Extension of the normalization approach in Section 3.1
from one layer to multiple layers is easy, which can be done by applying the same normalization
repetitively for all the layers. However, generalizing our method from a single channel to multiple
channels is not obvious, that we discuss below.

In [40], the work introduced a preconditioning method for normalizing multiple kernels in convo-
lutional sparse coding. In the following, we show that such an idea can be adapted to normalize
each output channel, reduce the Lipschitz constant of the weight matrix in each layer, and improve
training and network robustness. Let us consider any layer ` (1 ≤ ` ≤ L) within a vanilla ConvNet
using 1-stride, and take one channel (e.g., k-th channel) of that layer as an example. For simplicity of
presentation, we hide the layer number `. Given zk,out =

∑CI

j=1 akj ∗ zj,in, the k-th output channel
can be written as

zk,out =
[
Cak1

Cak2
· · · CakCI

]︸ ︷︷ ︸
Ak

·


z1,in
z2,in

...
zCI ,in


︸ ︷︷ ︸

zin

,

with CI and CO being the numbers of input and output channels, respectively. For each channel
k = 1, · · · , CO, we normalize the output by

Pk =

 CI∑
j=1

Cakj
C>akj

−1/2 =
(
AkA

>
k

)−1/2
, (6)

so that
z̃k,out = Pkzk,out =

(
AkA

>
k

)−1/2
Ak︸ ︷︷ ︸

Qk(Ak)

·zin. (7)

Thus, we can see the ConvNorm is essentially a reparameterization of the kernels {akj}CI

j=1 for the
k-th channel. Similar to Section 3.1, the operation can be rewritten in the form of convolutions

Qk(Ak) = PkAk =
[
Cvk∗ak1

· · · Cvk∗akCI

]
8An all-pass filter is a signal processing filter that passes all frequencies equally in gain, but can change the

phase relationship among various frequencies.
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with Pk = Cvk and vk = F−1
(∑CI

i=1 |âki|�2
)�−1/2

; it can be efficiently implemented via FFT.

Here, as for multiple kernels the matrixAk is overcomplete (i.e.,Ak is a wide rectangular matrix),
we cannot normalize the channel-wise weight matrix Ak to exact orthogonal. However, it can be
normalized to tight frame withQkQ

>
k = I . This further implies that we can normalize the spectral

norm ‖Qk‖ of the weight matrixQk in each channel to unity (see Figure 2 (Left)).
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Figure 2: Condition number for each channel
(averaged over all channels) (Left), and spec-
tral norm for each layer (Right) on ResNet18
except for skip connection layers. ConvNorm nor-
malizes the channel-wise condition number to 1
and reduces the layer-wise spectral norm. We use
the method in [51] to calculate the singular values
of the weight matrix.

Combining the operation for all the channels,
the ConvNorm for each layer overall can be
summarized as follows:

z̃out =

 P1z1,out
...

PCO
zCO,out

 =

 Q1

...
QCO


︸ ︷︷ ︸

Q

zin,

(8)

that we normalize each output channel k by dif-
ferent matrix Pk. The proposed ConvNorm has
several advantages that we discuss below.
Proposition 3.1 The spectral norm ofQ intro-
duced in (8) can be bounded by

‖Q‖ ≤

√√√√CO∑
k=1

‖Qk‖2,

that spectral norm ofQ is bounded by the spectral norms of all the weights {Qk}CO

k=1.
Proof We defer the proof to the Appendix A.3.

• Efficient implementations. There are many existing results [29, 39, 41] trying to normalize
the whole layerwise weight matrix. For ConvNets, as the matrix is neither circulant nor block
circulant, computing its inversion is often computationally prohibitive. Here, for each layer, we
only normalize the weight matrix of the individual output channel. Thus similar to Section 3.1,
the inversion in (6) can be much more efficiently computed via FFT by exploiting the benign
convolutional structure.
• Improving layer-wise Lipschitzness. As we can see from Proposition 3.1, although ConvNorm

only normalized the spectral norm of each channel, it can actually reduce the spectral norm of
the whole weight matrix, improving the Lipschitzness of each layer; see Figure 2 (Right) for
a numerical demonstration on ResNet18. As extensively investigated [28, 29, 42], improving
the Lipschitzness of the weights for ConvNets will lead to enhanced robustness against data
corruptions, for which we will demonstrate on the proposed ConvNorm in Section 4.1.

• Easier training and better generalization. For deconvolution and convolutional sparse coding
problems, the work [40, 46] showed that ConvNorm could dramatically improve the corresponding
nonconvex optimization landscapes. On the other hand, from an algorithmic unrolling perspective
for neural network design [52, 53], the ConvNorm is analogous to the preconditioned or conjugate
gradient methods [54] which often substantially boost algorithmic convergence. Therefore, we
conjecture that the ConvNorm also leads to better optimization landscapes for training ConvNets,
that they can be optimized faster to better solution qualities of generalization. We empirically show
this in Section 4.2.

3.3 Extra technical details
To achieve the full performance and efficiency potentials of the proposed ConvNorm, we discuss
some essential implementation details in the following.
Efficient back-propagation. For ConvNorm, as the normalization matrix in (6) is constructed from
the learned kernels, it complicates the computation of the gradient in back-propagation when training
the network. Fortunately, we observe that treating the normalization matrices {Pk} as constants
during back-propagation usually does not affect the training and generalization performances, so that
the computational complexity in training is not increased. We noticed that such a technique has also
been recently considered in [55] for self-supervised learning, which is termed as stop-gradient.
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Learnable affine tranform. For each channel, we include an (optional) affine transform after the
normalization Pk · zk,out = Cvk · zk,out = vk ∗ zk,out in (7) as follows:

zk = rk ∗ z̃k,out = rk ∗ vk ∗ zk,out,

where the extra convolutional kernel rk is learned along with the original model parameters. The idea
of including this affine transform is analogous to including a learnable rescaling in BatchNorm, which
can be considered as an "undo" operation to make sure the identity transform can be represented [4].
The difference between our affine transform and BatchNorm is that we apply channel-wise convolu-
tions instead of simple rescaling (see Figure 1). Note that when rk is an inverse kernel of vk (i.e.,
rk ∗ vk = 1), the overall transformation becomes an identity. The effectiveness of affine transform is
demonstrated in the ablation study in Appendix C.4.
Dealing with stride and 2D convolution. There are extra technicalities that we briefly discuss
below. For more details, we refer the readers to Appendix B.
• Extension to 2D convolution. Although we introduced the ConvNorm based on 1D convolution for

the simplicity of presentations, it should be noted that our approach can be easily extended to the
2D case via 2D FFT.
• Dealing with stride. Strided convolutions are universal in modern ConvNet architectures such as

the ResNet [5], which can be viewed as downsampling after unstrided convolution. To deal with
stride for our ConvNorm, we first perform an unstrided convolution, normalizing the activations
using ConvNorm and then downsampling the normalized activations. In comparison, the method
proposed in [29] is incompatible with strided convolutions.

4 Experiments & Results
In this section, we run extensive experiments on CIFAR and ImageNet, empirically demonstrating
two major advantages of our approach: (i) it improves the robustness against adversarial attacks, data
scarcity, and label noise corruptions [56–58], and (ii) it makes deep ConvNets easier to train and
perform better on problems such as classification and GANs [59]. The rest of this section is organized
as follows. First, we introduce baseline methods for comparisons, and describe the setups of network
architectures, datasets, and training. In Section 4.1 and Section 4.2, we demonstrate the effectiveness
of our approach on robustness and training, respectively.
Baseline methods for comparisons. We compare our method with three representative methods.
• Spectral normalization (SN). For each layer of ConvNets, the work [15] treats multi-dimensional

convolutional kernels as 2D matrices (e.g., by flattening certain dimensions) and normalizes its
spectrum (i.e., singular values). It estimates the matrix’s maximum singular value via a power
method and then uses it to normalize all the singular values. As we discussed in Section 1, the
method does not exploit convolutional structures of ConvNets.
• Orthogonalization by Newton’s Iteration (ONI). The work [39] whitens the same reshaped

matrices as SN, so that the reshaped matrices are reparametrized to orthogonality. However,
the method needs to compute full inversions of covariance matrices, which is approximated by
Newton’s iterations. Again, no convolutional structure is utilized.
• Orthogonal ConvNets (OCNN). Few methods that exploit convolutional structures are [22, 43],

which enforce orthogonality on doubly block circulant matrices of kernels via penalties on the loss.
Here, we compare with [43].

Setups of dataset, network and training. For all experiments, if not otherwise mentioned, CIFAR-
10 and CIFAR-100 datasets are processed with standard augmentations, i.e., random cropping and
flipping. We use 10% of the training set for validation and treat the validation set as a held-out test
set. For ImageNet, we perform standard random resizing and flipping. For training, we observe our
ConvNorm is not sensitive to the learning rate, and thus we fix the initial learning rate to 0.1 for all
experiments.9 For experiments on CIFAR-10, we run 120 epochs and divide the learning rate by
10 at the 40th and 80th epochs; for CIFAR-100, we run 150 epochs and divide the learning rate by
10 at the 60th and 120th epoch; for ImageNet,we run 90 epochs and divide the learning rate by 10
at the 30th and 90th epochs. The optimization is done using SGD with a momentum of 0.9 and a
weight decay of 0.0001 for all datasets. For networks we use two backbone networks: VGG16 [60]
and ResNet18 [5]. We adopt Xavier uniform initialization [61] which is the default initialization in
PyTorch for all networks.

9For experiments with ONI, we use learning rate 0.01 since the loss would be trained to NaN if with 0.1.
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ε Test Acc. SN BN ONI OCNN ConvNorm

0 Clean 82.52 ± 0.22 82.13 ± 0.67 80.70 ± 0.14 82.90 ± 0.31 83.23 ± 0.25

8
255

FGSM 52.34 ± 0.33 51.72 ± 0.52 48.33 ± 0.16 52.49 ± 0.21 52.87 ± 0.24
PGD-10 45.68 ± 0.40 45.31 ± 0.29 42.30 ± 0.24 45.74 ± 0.13 46.12 ± 0.26
PGD-20 44.47 ± 0.37 44.04 ± 0.24 41.08 ± 0.30 44.53 ± 0.10 44.75 ± 0.30

Table 1: Comparison of ConvNorm to baseline methods under different gradient based attacks.
Models are robustly trained following the procedure in [62] using a ResNet18 backbone. Experiments
are conducted on CIFAR-10 dataset. Results are averaged over 4 random seeds.

4.1 Improved robustness
Method Average Queries Attack Success rate (%)

SN 2519.32 60.60

ONI 2817.09 55.90

OCNN 2892.81 54.50

ConvNorm 2966.16 53.50

Table 2: Comparison of ConvNorm to baseline
methods on SimBA black box attack. The mean
value of average queries (the higher, the better) and
attack success rate (the lower, the better) through-
out 3 runs are reported. Models are trained using a
ResNet18 backbone without BN layers.

In this section, we demonstrate our method is
more robust to various kinds of adversarial at-
tacks, as well as random label corruptions and
small training datasets.

Robustness against adversarial attacks. Ex-
isting results [29, 43] show that controlling the
layer-wise Lipschitz constants for deep net-
works improves robustness against adversarial
attack. Since our method improves the Lipschitz-
ness of weights (see Figure 2), we demonstrate
its robustness under adversarial attack on the
CIFAR-10 dataset. We adopt both white-box
(gradient based) attack [57, 58] and black-box
attack [56] to test the robustness of our proposed method and other baseline methods. The results
are presented in Table 1 and Table 2. For the ease of presentation, all technical details about model
training and generation of the adversarial examples are postponed to Appendix C.

In the case of gradient based attacks, we follow the training procedure described in [62] to train models
with our ConvNorm and other baseline methods. We report the performances of the robustly trained
models on both the clean test dataset and datasets that are perturbed by Fast Gradient Sign Method
(FGSM) [57] and Projected Gradient Method (PGD) [58]. As shown in Table 1, our ConvNorm
outperforms other methods in terms of robustness under white-box attack while maintaining a good
performance on clean test accuracy.

For black-box attack, we adopt a popular black-box adversarial attack method, Simple Black-box
Adversarial Attacks (SimBA) [56]. By submitting queries to a model for updated test accuracy, the
attack method iteratively finds a perturbation where the confidence score drops the most. We report
the average queries and success rate after 3072 iterations in Table 2. As we can see, the ConvNorm
resists the most queries, and that the SimBA has the lowest attack success rate for ConvNorm
compared with other baseline methods.
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Figure 3: Test accuracy for noisy label (Left)
and insufficient training data (Right). Experi-
ments are conducted on CIFAR-10 dataset using a
ResNet18 backbone. Error bars corresponding to
standard deviations over 3 runs.

Robustness against label noise and data
scarcity. It has been widely observed that
overparameterized ConvNets tend to overfit
when label noise presents or the amount of train-
ing labels is limited [63–66]. Recent work [67]
shows that normalizing the weights enforces cer-
tain regularizations, which can improve gener-
alization performance against both label noise
and data scarcity. Since our method is es-
sentially reparametrizing and normalizing the
weights, we demonstrate the robustness of our
approach under these settings on CIFAR-10 with
ResNet18 backbone.

• Robustness against label noise. Following the scheme proposed in [68], we simulate noisy labels
by randomly flipping 20% to 80% of the labels in the training set. As shown in Figure 3 (Left), our
method outperforms the others on most noisy rates by a hefty margin when the noise level is high.
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Figure 4: ConvNorm accelerates convergence. VGG16 trained on CIFAR-10 (Left), and ResNet18
(Middle) trained on CIFAR-10 and ImageNet (Right), with and without ConvNorm or BatchNorm.
We do not use data augmentation, weight decay, or any other regularization in this experiment to
isolate the effects of the normalization techniques. Error bars correspond to min/max over 4 runs.

• Robustness against data scarcity. We test our method on training the network with varying sizes
of the training set, obtained by randomly sampling. The results in Figure 3 (Right) show that our
ConvNorm achieves on par performance compared with baseline methods, and its performance
stays high even when the size of the training data is tiny (e.g., 4500 examples).

4.2 Easier training on classification and GAN
Finally, we compare training convergence speed for classification and performances on GAN. Extra
experiments on better generalization performance and ablation study can be found in Appendix C.4.

Improved training on supervised learning. We test our method on image classification tasks
with two backbone architectures: VGG16 and ResNet18. We show that ConvNorm accelerates the
convergence of training. To isolate the effects of the normalization layers for training, we train on
CIFAR-10 and ImageNet without using any augmentation, regularization, and learning rate decay.
In Figure 4, we show that adding ConvNorm consistently results in faster convergence, stable training
(less variance in accuracy), and superior performance. On CIFAR-10, there is a wide performance
gap after the first few iterations of training: 1000 iterations of training with ConvNorm lead to
generalization performance comparable to 8000 iterations of training using BatchNorm. In the case
of standard settings where data augmentation, regularization and learning rate decay are added, we
notice that using ConvNorm and BatchNorm together also yield better test performances compared
to only using BatchNorm (See Appendix C.4 for details). Besides the convergence speed of training,
the exact training time for different methods is another important factor for measuring the efficiency
of such methods. To this end, we empirically compare the training time for different methods and
report the results in Appendix D and Table 8.
Improved performance for GANs. It has been found that improving the Lipschitz condition of
the discriminator of GAN stabilizes its training [69]. For instance, WGAN-GP [70] demonstrates that
adding a gradient penalty (1-GP) regularization to enforce the 1-Lipschitzness of the discriminator
stabilizes GAN training and prevents mode collapse. Subsequent works [71, 72] using variants of
the 1-GP regularization also show their improvement in GAN. Later on, [15] further reveals the
performance of GAN can be significantly improved if the spectral norm (Lipschitz condition) of the
discriminator network is strictly enforced to 1. As shown in Figure 2, the proposed ConvNorm also
controls the Lipschitz condition of ConvNets. Therefore, we expect our method to also ameliorates
the performance of GAN.

Metric SN ONI OCNN Vanilla ConvNorm

IS 8.12 7.07 7.54 7.13 7.62

FID 14.53 29.49 22.15 29.47 21.37

Table 3: Comparison of ConvNorm to baseline
methods on GAN training. Inception score (IS)
(the higher, the better) and FID score (the lower,
the better) of ResNet with different normalizations.
For each pair of model and method, we generate
50k images 10 times and compute the mean of IS.

To demonstrate the effectiveness of the Con-
vNorm on GAN, we compare it with other base-
line methods introduced previously. In our ex-
periments, we adopt the same settings and archi-
tecture suggested in [15] without any modifica-
tion, and we use the inception score (IS) [73],
and FID [74] score for quantitative evaluation.
As shown in Table 3, our ConvNorm achieves
the second-best performance to SN.10

10The performance of GANs is highly sensitive to the computational budget and the hyperparameters of the
networks [75], and the hyperparameters of SN is fine-tuned for CIFAR-10 while we use the same hyperparameters
as SN.
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5 Discussions & Conclusion
In this work, we introduced a new normalization approach for ConvNets, which explicitly exploits
translation-invariance properties of convolutional operators, leading to efficient implementation and
boosted performances in training, generalization, and robustness. Our work has opened several
interesting directions to be further exploited for normalization design of ConvNets: (i) although we
provided some high-level intuitions why our ConvNorm works, theoretical justifications are needed;
(ii) as our ConvNorm only promotes channel-wise “orthogonality”, it would be interesting to utilize
similar ideas to efficiently normalize the layerwise weight matrices by exploiting convolutional
structures. We leave these questions for future investigations.
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