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Principal component analysis is one of the most fundamental tools of functional data
analysis. It leads to an efficient representation of infinitely dimensional objects, like
curves, by means of multivariate vectors of scores. We study the dependence between
extremal values of the scores using the extremal dependence measure (EDM). The EDM
has been proposed and studied for positive bivariate observations. After extending it
to multivariate observations, we focus on its application to the vectors of scores of
functional data. Estimated scores form a triangular array of dependent random variables.
We derive condition guaranteeing that a suitable estimator of the EDM based on these
scores converges to the population EDM and is asymptotically normal. These conditions
are completely different from those encountered in the second-order theory of functional
data. They are formulated within the framework of functional regular variation. Large
sample theory is complemented by an application to intraday return curves for certain
stocks and by a simulation study.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We first concisely state main contributions of the paper with the caveat that detailed definitions and formulations will
be provided in the following. Consider a sample of functions Xi(t), t ∈ T , such that each of them has the same distribution
as X . The Karhunen–Loéve expansion is X(t) =

∑∞
j=1 ξjvj(t). The functions vj are the functional principal components

(FPCs) and the random variables ξj are their scores. We want to estimate extremal dependence of ξj and ξj′ . We define
a measure of such a dependence, which we denote by D(ξj, ξj′ ). We then define an estimator of D(ξj, ξj′ ) and formulate
conditions under which it is consistent (Theorem 1) and asymptotically normal (Theorem 2). The main difficulty is that
the population scores ξij =

⟨
Xi, vj

⟩
are not observable.

This paper thus makes a contribution at the nexus of functional data analysis (FDA) and extreme value theory (EVT).
We assume that the reader is familiar with mathematical foundations of functional data analysis and central principles
of extreme value theory. The FDA background given in Chapters 2 and 3 of Horváth and Kokoszka [17] is sufficient, and
more detailed treatment is provided in Hsing and Eubank [18]. Recent advances in FDA are surveyed in Goia and Vieu
[15], Aneiros et al. [1], and Cuevas [5].

Chapters 2 and 6 of Resnick [31] provide sufficient background in extreme value theory. Other references are cited
when needed. We assume that all functions are elements of the space L2 = L2(T ), where the measure space T is such
that L2(T ), with the usual inner product, is a separable Hilbert space. This will be ensured if the measure on T is σ -finite
and defined on a countably generated σ -algebra, see e.g. Proposition 3.4.5 in Cohn [2]. In particular, T can be taken to be
a complete separable metric space (Polish space).
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Fig. 1. The first three sample FPCs of intraday returns on Walmart stock based on sample of 1378 curves.

Suppose X1, . . . , Xn are mean zero iid functions in L2 with E∥Xi∥2 < ∞, and denote by X a generic random function
with the same distribution as each Xi. A main dimension reduction tool of functional data analysis is to project the infinite
dimensional functions Xi onto a finite dimensional subspace spanned by the FPCs. We now recall the required definitions.
Consider the population covariance operator of X , defined by

C(x) := E[⟨X, x⟩ X], x ∈ L2. (1)

The eigenfunctions of C are the FPCs, denoted by vj, j ≥ 1, i.e., C(vj) = λjvj, where the λj are the eigenvalues of C . The
FPCs lead to the commonly used Karhunen–Loéve expansion

Xi(t) =
∞∑

j=1

ξijvj(t), ξij =
⟨
Xi, vj

⟩
, Eξ 2

ij = λj. (2)

The FPCs vj and the eigenvalues λj are estimated by v̂j and λ̂j, which are solutions to the equations

Ĉ(v̂j)(t) = λ̂jv̂j(t), foralmostallt ∈ T , (3)

where Ĉ is the sample covariance operator defined by

Ĉ(x)(t) = 1

n

n∑

i=1

⟨Xi, x⟩ Xi, x ∈ L2.

Each curve Xi can then be approximated by a linear combination of a finite set of the estimated FPCs v̂j, i.e., Xi(t) ≈∑p

j=1 ξ̂ijv̂j(t), where the ξ̂ij =
⟨
Xi, v̂j

⟩
are the sample scores. Each ξ̂ij quantifies the contribution of the curve v̂j to the shape

of the curve Xi. Thus, the vector of the sample scores, [ξ̂i1, . . . , ξ̂ip]⊤, encodes the shape of Xi to a good approximation. To
illustrate, Fig. 1 displays the first three sample FPCs, v̂1, v̂2, v̂3, for intraday return curves Ri, 1 ≤ i ≤ 1378, for Walmart
stock from July 05, 2006 to Dec 30, 2011. These data are described in detail in Section II of the supplement. The curves Ri

show how a return on an investment changes throughout a trading day as two examples are shown in Fig. 2. The curve
v̂1 is a monotonic trend throughout the day. If the score corresponding to it is large, trading in this stock on a given day
was dominated by a systematic increase (or decline if the score is negative) in the price of the stock. Notice the gradually
decreasing slope of v̂1, which reflects the well-known fact that the most intense trading takes place after the opening of
the trading floor. The second FPC, v̂2, has a large score, if there is a significant reversal in investor sentiment during a
given trading day. These observations are illustrated in Fig. 2.

The main interest in this paper is the estimation of extremal dependence between the scores corresponding to
different FPCs. Extremal dependence is a tendency of large values of one component to be coupled with large values
of another component of a random vector. In the context of our Walmart stock example, extreme dependence between
the first and second scores indicates that an extremely high monotonic trend and a pronounced reversion tend to occur
simultaneously. We assess extremal dependence of the scores by means of the extremal dependence measure (EDM),
which is constructed based on the theory of heavy-tailed regularly-varying random vectors. There has been considerable
research on quantifying the tail dependence between extreme values in a heavy-tailed random vector. Ledford and Tawn
[23,24,25] defined the coefficient of tail dependence, which was later generalized to the extremogram by Davis and
Mikosch [7]. While these approaches are essentially based on the exponent measure of a random vector, the EDM is
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Fig. 2. Walmart intraday cumulative return curves on two trading days and their approximations by
∑3

i=1 ξ̂ijv̂j(t). In the left panel, ξ̂1 = −4.7, ξ̂2 =
0.4, ξ̂3 = −0.1, observed on October 7, 2008. In the right panel, ξ̂1 = 0.8, ξ̂2 = 1.2, ξ̂3 = 0.1, observed on November 18, 2008.

defined in terms of the spectral measure. The EDM was introduced by Resnick [30] and further investigated by Larsson
and Resnick [22]. Important related papers are Genton et al. [14] and Cooley and Thibaud [3].

In this paper, we quantify extremal dependence of scores using the EDM. To estimate the EDM of population scores,
we consider an extension of the estimator proposed by Larsson and Resnick [22]. It is important to emphasize that in our
functional setting, the estimator can only be computed using the sample scores ξ̂ij =

⟨
Xi, v̂j

⟩
, not the population scores

ξij =
⟨
Xi, vj

⟩
because the ξij are unobservable. Establishing large sample properties of any estimator based on sample scores

requires taking the effect of the estimation of the scores into account. Since the estimator Ĉ in (3) depends on the whole
sample X1, . . . , Xn, the vectors [ξ̂i1, . . . , ξ̂ip]⊤ are no longer independent, even if X1, . . . , Xn are i.i.d functions. They form
a triangular array of dependent identically distributed vectors of dimension p. We also note that the population scores
satisfy Cov(ξij, ξij′ ) = 0 if j ̸= j′ and the sample correlation of the sample scores ξ̂ij and ξ̂ij′ is also zero. However, the
correlation is a measure of the overall dependence, and there may be strong dependence, e.g. between the positive parts
ξ+
ij and ξ+

ij′ , in particular there may be extremal dependence in specific quadrants. Another point to keep in mind is that

for regularly varying observations, zero covariance does not imply independence.
The remainder of the paper is organized as follows. In Section 2, we introduce preliminaries on multivariate regular

variation and the EDM, and extend the concept of the EDM to multivariate data. Our main large sample results are
presented in Section 3, which deals with the EDM for scores of functional observations. Section 4 presents a number
of preliminary results. These results allow us to streamline the exposition of the proofs of the results of Section 3, which
are presented in Section 5.

The paper is accompanied by online Supplementary Material, which contains several sections. Section 1 explains how
to normalize tail indexes of components of multivariate vectors. This is a well-researched topic in EVT, but may be less
known in the FDA community, so a brief account needed to understand the application in Section 2 of the supplement is
provided. Sections 2 and 3, present, respectively, an application to functional return data and a simulation study. Section 4
contains additional tables discussed in Section 3.

We hope that this work will be received with some interest by researchers working in two exciting and dynamic fields:
functional data analysis and extreme value theory.

2. Multivariate regular variation and the EDM

We start by introducing multivariate regular variation for random vectors with positive components because the
extremal dependence measure (EDM) was defined in such context. Following Resnick [31], we denote by Ed = [0, ∞]d\{0}
the nonnegative orthant compactified at infinity. We denote by M+(Ed) the space of Radon measures on Ed, and by

v→
the vague convergence in M+(Ed). An Ed-valued random vector Z = [Z1, . . . , Zd]⊤ with distribution function F is regularly
varying with index −α, α > 0, if there exist a sequence b(n) → ∞ and a Radon measure ν on Ed such that ν(t·) = t−αν(·),
and

n Pr

(
Z

b(n)
∈ ·
)

v→ ν, in M+(Ed). (4)

Unless stated otherwise, all limits are taken as n → ∞. We assume that one-dimensional marginal distributions of ν

are nondegenerate. In (4), all components are normalized by the same sequence {b(n)}, which means that all marginal
distributions are tail equivalent with the index −α, see Remark 6.1 in Resnick [31]. A possible choice for b(n) is the

3
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quantile function, defined by Pr(Z1 > b(n)) = n−1. When b(n) = n, all marginal distributions are tail equivalent to the

standard Pareto distribution with α = 1, which is called the standard case.

There are various equivalent formulations of multivariate regular variation, see Theorem 6.1 of Resnick [31]. The

formulation with a polar coordinate representation is commonly used due to its computational convenience and intuitive

interpretation. Fix a norm ∥ · ∥ in R
d, and set Sd

+ = {x ∈ R
d : ∥x∥ = 1} ∩Ed, the unit sphere in the nonnegative orthant. A

d-dimensional random vector Z = [Z1, . . . , Zd]⊤ is regularly varying if and only if there exist a sequence bR(n) → ∞ and

an angular probability measure Γ on S
d
+ such that for (R,Θ) = (∥Z∥, Z/∥Z∥),

n Pr

((
R

bR(n)
,Θ

)
∈ ·
)

v→ cνα × Γ , in M+((0, ∞] × S
d
+), (5)

where να(x, ∞] = x−α and c = ν{x : ∥x∥ > 1} > 0. The sequence {bR(n)} in (5) is defined by Pr(R > bR(n)) = n−1, so in

this case bR(·) depends on the choice of the norm ∥ · ∥. Definitions (4) and (5) can be extended directly to an R
d-valued

random vector with ν on R
d \ {0} and Γ on S

d = {x ∈ R
d : ∥x∥ = 1}, see, e.g., Propositions 2.2.5 and 2.2.6 of Meiguet

[27]. In practice, the components of a random vector might not be tail equivalent. The case of different tail indexes of the

coordinates, and transformations which make the coordinates tail equivalent are discussed in Section I of the supplement.

We now turn to the EDM. Given a regularly varying nonnegative bivariate random vector Z = [Z1, Z2]⊤, Larsson and

Resnick [22] define the EDM by

EDM(Z1, Z2) =
∫

S
2
+

a1a2Γ (da). (6)

The EDM takes the minimal value of zero, EDM(Z1, Z2) = 0, iff the coordinates of Z are asymptotically independent.

This means that the angular measure Γ concentrates on {(1, 0)/∥(1, 0)∥, (0, 1)/∥(0, 1)∥}, or equivalently, the exponent

measure ν concentrates on the axes. Also, if the norm is symmetric, EDM(Z1, Z2) achieves its maximal value iff the

distribution of Z has asymptotic full dependence; i.e., Γ has mass on {(1, 1)/∥(1, 1)∥}, or equivalently, ν concentrates

on the line {t(1, 1), t > 0}.
Larsson and Resnick [22] show that the EDM can be interpreted as the limit of cross moments between normalized Z1

and Z2 conditional on large values of R = ∥Z∥;

EDM(Z1, Z2) = lim
r→∞

E

[
Z1

R

Z2

R

⏐⏐⏐R > r

]
.

Based on this relation, they propose an estimator for EDM(Z1, Z2), defined by

Dn(Z1, Z2) = 1

k

n∑

i=1

Zi1

Ri

Zi2

Ri

IRi≥R(k) , (7)

where Zi = [Zi1, Zi2]
⊤, 1 ≤ i ≤ n are iid copies of Z = [Z1, Z2]⊤, Ri = ∥Zi∥, and R(k) is the kth largest order statistics with

the convention R(1) = max{R1, . . . , Rn}.
Larsson and Resnick [22] consider non-negative bivariate vectors. To be able to work with the vectors of scores of

functional data, we first have to extend their definitions to a setting of multivariate random vectors of an arbitrary

dimension. Our first objective is to generalize (6) to a d-dimensional vector Z = [Z1, . . . , Zd]⊤. We formulate the EDM

between the components Z1 and Z2 for simplicity. We first assume that all components are positive. Given the angular

measure Γ on S
d
+ for Z, we define the EDM for Z1 and Z2 as

D(Z1, Z2) =
∫

S
d
+

a1a2

∥(a1, a2, 0, . . . , 0)∥2
Γ (da). (8)

We set a1a2/ ∥(a1, a2, 0, . . . , 0)∥2 = 0 when a1 = a2 = 0. Definition (8) is different from a simple extension of (6) given

by

D′(Z1, Z2) =
∫

S
d
+

a1a2Γ (da). (9)

We will now argue that for a d-dimensional vector Z, with d ≥ 3, D is a better measure for assessing extremal dependence

between Z1 and Z2 than D′. Suppose that a random vector Z = [Z1, Z2, Z3]⊤ is regularly varying with an angular measure

Γ on S
3
+, and fix the Euclidean norm ∥ · ∥ in R

3
+. Consider the following four cases:

1. The angular measure Γ1 has unit mass on (1, 1, 10)/
√
102; the exponent measure ν1 concentrates on {t(1, 1, 10), t > 0}.

2. The angular measure Γ2 has unit mass on (1, 1, 1)/
√
3; the exponent measure ν2 concentrates on {t(1, 1, 1), t > 0}.

3. The angular measure Γ3 has unit mass on (7, 7, 2)/
√
102; the exponent measure ν3 concentrates on {t(7, 7, 2), t > 0}.

4. The angular measure Γ4 has mass 1/2 on each (1, 1, 10)/
√
102 and (7, 7, 2)/

√
102; the exponent measure ν4

concentrates on {t(1, 1, 10), t > 0} ∪ {t(7, 7, 2), t > 0}.
4
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Suppose Z has a Pareto distribution with index α > 0. The following random vectors have extremal distribution

corresponding to each of the above cases:

Z(1) = [Z, Z, 10Z], Z(2) = [Z, Z, Z], Z(3) = [7Z, 7Z, 2Z],

Z(4) = ξ [Z, Z, 10Z] + (1 − ξ )[7Z, 7Z, 2Z],

where ξ is a Bernoulli random variable with probability of success 1/2.

Set P12 = {[t1, t2, 0], t1, t2 ∈ R}. The projections of the random vectors Z(1), Z(2), Z(3), and Z(4) onto P12 are, respectively,

Z̃(1) = [Z, Z], Z̃(2) = [Z, Z], Z̃(3) = [7Z, 7Z], Z̃(4) = [ξZ + 7(1 − ξ )Z, ξZ + 7(1 − ξ )Z].

For all of the projected random vectors, the two components are equal, so a good measure of extremal dependence

between them should attain its maximal value. Since we use the Euclidean norm and Γ is normalized to unity, the

maximum value of both D and D′ is 1/2. Direct verification shows that we achieve the maximum value for all cases

using the measure D. The measure D′ however does not give the maximum value. For each case:

D′(Z (1)
1 , Z

(1)
2 ) = 1

102
, D′(Z (2)

1 , Z
(2)
2 ) = 34

102
,

D′(Z (3)
1 , Z

(3)
2 ) = 49

102
, D′(Z (4)

1 , Z
(4)
2 ) = 1

102

1

2
+ 49

102

1

2
= 25

102
.

It can be further shown that, for any norm ∥ · ∥ in R
d, the measures D and D′, defined for d-dimensional vector Z with

d ≥ 3, are not equivalent in the sense of Definition 1 on p.234 of Larsson and Resnick [22], which we now recall. For a

given Z, let ρi(Z) =
∫
S
d
+
ki(a)Γ (da) for some nonnegative map ki : Sd

+ ↦→ R+. Then ρ1(Z) and ρ2(Z) are equivalent if and

only if there are constants 0 < m ≤ M < ∞ such that

mρ1(Z) ≤ ρ2(Z) ≤ Mρ1(Z).

It is obvious that the measures D and D′ are equivalent for a bivariate vector Z. We formalize the nonequivalence between

the measures for a d-dimensional vector Z with d ≥ 3 in the following proposition.

Proposition 1. Suppose that a Ed-valued random vector Z = [Z1, . . . , Zd]⊤ is regularly varying with angular measure Γ on

S
d
+, with d ≥ 3. Then D(Z1, Z2) and D′(Z1, Z2), defined in (8), (9), respectively, are not equivalent for any norm ∥ · ∥ in R

d.

Proof. Proposition 1 of Larsson and Resnick [22] shows that ρ1(Z) and ρ2(Z) are equivalent if and only if there are

constants 0 < m ≤ M < ∞ such that

mk1(a) ≤ k2(a) ≤ Mk1(a), ∀ a ∈ S
d
+. (10)

Observe that the ratio of the integrand in D′(Z1, Z2) to the integrand in D(Z1, Z2) is ∥(a1, a2, 0, . . . , 0)∥2. This ratio is clearly

zero at a = 0, violating (10), but 0 /∈ S
d
+. We therefore consider a path in S

d
+ defined by

a(x) = (x, x, 1, 0, . . . , 0)/∥(x, x, 1, 0, . . . , 0)∥, x ↘ 0.

Then,

∥(a1(x), a2(x), 0, 0, . . . , 0)∥2 = ∥(x, x, 0, 0, . . . , 0)∥2

∥(x, x, 1, 0, . . . , 0)∥2
→ 0,

as x ↘ 0 because every norm in R
d is equivalent to the Euclidean norm. □

Another question of interest is the relationship between D(Z1, Z2) in (8) and EDM(Z1, Z2) in (6). We clarify it in the

following proposition. Related results are derived in Opitz [28], de Fondeville [12] and de Fondeville and Davison [13].

Proposition 2. Suppose that the exponent measure and angular measure of a d-dimensional regularly-varying random vector

Z = [Z1, . . . , Zd]⊤ are, respectively, ν on Ed and Γ on S
d
+. Denote the exponent measure and angular measure of the bivariate

vector [Z1, Z2]⊤, respectively, by ν2 on E2 and Γ2 on S
2
+. Then,

D(Z1, Z2) =
∫

S
d
+

a1a2

∥(a1, a2, 0, . . . , 0)∥2
Γ (da) =

∫

S
2
+

b1b2Γ2(db) = EDM(Z1, Z2)

and, for any Borel set G ⊂ E2,

ν2(G) = ν(G × [0, ∞]d−2).

5
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Proof. We first clarify the connection between the measure ν on Ed and the measure ν2 on E2. By (4), for any measurable

rectangle A × B ⊂ E2,

ν(A × B × [0, ∞]d−2)

ν2(A × B)
= lim

n→∞

n Pr
(
Z/b(n) ∈ A × B × [0, ∞]d−2

)

n Pr (Z1/b(n) ∈ A, Z2/b(n) ∈ B)
= 1.

We conclude that the measure ν2 is obtained by integrating the entire measure ν over all coordinates except for the first

two.

According to formulas on page 239 of Larsson and Resnick [22], EDM(Z1, Z2) can be expressed as
∫

S
2
+

b1b2Γ2(db) = 1

ν2 (∥(y1, y2)∥ > 1)

∫

∥(y1,y2)∥>1

y1y2

∥(y1, y2)∥2
ν2(dy1dy2).

Therefore, using the relationship between ν2 and ν,
∫

S
2
+

b1b2Γ2(db) = 1

ν ({y : ∥(y1, y2, 0, . . . , 0)∥ > 1})

∫

{y:∥(y1,y2,0,...,0)∥>1}

y1y2

∥(y1, y2, 0, . . . , 0)∥2
ν(dy).

Applying the polar transformation T defined by T (y) = (∥y∥ , y/ ∥y∥) for y ∈ Ed, we obtain
∫

S
2
+

b1b2Γ2(db) = 1

ν ({y : ∥(y1, y2, 0, . . . , 0)∥ > 1})

∫

T ({y:∥(y1,y2,0,...,0)∥>1})
f ◦ T−1(r, a) ν ◦ T−1(dr × da),

where f (y) = y1y2/∥(y1, y2, 0, . . . , 0)∥2. First observe that

T ({y : ∥(y1, y2, 0, . . . , 0)∥ > 1}) = {(r, (a1, a2, . . . , ad)) : ∥(ra1, ra2, 0, . . . , 0)∥ > 1}
= {(r, (a1, a2, . . . , ad)) : r > ∥(a1, a2, 0, . . . , 0)∥−1}.

Using the fact that ν ◦ T−1 = cνα × Γ , where c = ν (∥y∥ > 1), we obtain

ν ({y : ∥(y1, y2, 0, . . . , 0)∥ > 1}) = ν ◦ T−1 (T ({y : ∥(y1, y2, 0, . . . , 0)∥ > 1}))
= cνα × Γ

(
{(r, (a1, a2, . . . , ad)) : r > ∥(a1, a2, 0, . . . , 0)∥−1}

)
= c ∥(a1, a2, 0, . . . , 0)∥α .

Therefore,
∫

S
2
+

b1b2Γ2(db) = 1

c ∥(a1, a2, 0, . . . , 0)∥α

∫

S
d
+

∫

r>∥(a1,a2,0,...,0)∥−1

a1a2

∥(a1, a2, 0, . . . , 0)∥2
cνα(dr)Γ (da)

=
∫

S
d
+

a1a2

∥(a1, a2, 0, . . . , 0)∥2
Γ (da). □

By Proposition 2 we can use the estimator (7), originally introduced for EDM(Z1, Z2), to estimate D(Z1, Z2) as well.

A further extension of the EDM (6) is that from the nonnegative quadrant to the four quadrants, as a vector of the

scores takes on values in R
d. Larsson and Resnick [22] define the EDM for a nonnegative random vector, but (6) can be

readily generalized to a random vector Z = [Z1, Z2]⊤ with real components. Suppose that Z = [Z1, Z2]⊤ in R
2 is regularly

varying with an angular measure Γ2 on S
2. Then, we define the EDM for Z = [Z1, Z2]⊤ by

EDM(Z1, Z2) =
∫

S2

a1a2Γ2(da). (11)

The above definition allows us to quantify the strength of the extremal dependence between Z1 and Z2 in R
2. Unlike (6),

(11) can take a negative value depending on which quadrants Γ2 has its mass on, so careful interpretation is needed.

To explore the dependence spectrum that (11) can measure, we fix the Euclidean norm ∥ · ∥ in R
2. Then, (11) has

a range from −1/2 to 1/2. The maximal value, 1/2, indicates a perfect positive extremal dependence; here, ‘‘positive’’

means that Z1 and Z2 have the same signs, and ‘‘perfect’’ means that the magnitudes of Z1 and Z2 show asymptotic full
dependence, i.e., Γ2 concentrates on {(1, 1)/

√
2, (−1, −1)/

√
2}. Similarly, the minimum value, −1/2, indicates a perfect

negative extremal dependence; ‘‘negative’’ means that Z1 and Z2 have the opposite signs, and in this case Γ has mass on
{(−1, 1)/

√
2, (1, −1)/

√
2}.

Note that if Z exhibits asymptotic independence, i.e., its exponent measure concentrates on the standard axes, then

(11) is 0, but the reverse does not necessarily hold true. For example, if Γ2 concentrates equally on each element of

{(1, 1)/
√
2, (−1, 1)/

√
2, (−1, −1)/

√
2, (1, −1)/

√
2},

then (11) is 0, but each quadrant shows the perfect dependence. To avoid this issue and take into account the extremal

dependence in each quadrant, we suggest to complement (11) on the unit sphere S
2 with its decomposition into the

four quadrants. Let S
2
(+,+) = S

2 ∩ {(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0}. Similarly, let S

2
(−,+) = S

2 ∩ {x1 ≤ 0, x2 ≥ 0},
6
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S
2
(−,−) = S

2 ∩ {x1 ≤ 0, x2 ≤ 0}, and S
2
(+,−) = S

2 ∩ {x1 ≥ 0, x2 ≤ 0}. We define the supplementary measure for (11) by
splitting the EDM into the four quadrant spheres,

[∫

S
2
(+,+)

a1a2Γ2(da),

∫

S
2
(−,+)

a1a2Γ2(da),

∫

S
2
(−,−)

a1a2Γ2(da),

∫

S
2
(+,−)

a1a2Γ2(da)

]
. (12)

To estimate each of the components in (12), we slightly modify (7); for example, an estimator for
∫
S
2
(+,+)

a1a2Γ (da) is

D(+,+)
n (Z1, Z2) = 1

k

n∑

i=1

Zi1

Ri

Zi2

Ri

IRi≥R(k) IZi1≥0,Zi2≥0.

To elaborate, we first order the n bivariate vectors by norm and consider the top k vectors with large norm. We then use
only those for which Zi1 ≥ 0 and Zi2 ≥ 0 from the k vectors. Estimators for the other components in (12) can be obtained
in the same manner reflecting the different quadrants.

We conclude this section with an analog of Proposition 2. Given an R
d-valued random vector [Z1, . . . , Zd]⊤, we can

measure extremal dependence between Z1 and Z2 using (8), but integrated over the whole sphere S
d. Following the steps

in the proof of Proposition 2, it is readily shown that D(Z1, Z2) for two components of an R
d-valued vector is in fact the

same as (11).

Corollary 1. Suppose the angular measure of a R
d-valued random vector [Z1, . . . , Zd]⊤ is Γ on S

d and the angular measure
of [Z1, Z2]⊤ is Γ2 on S

2. Then,

D(Z1, Z2) =
∫

Sd

a1a2

∥(a1, a2, 0, . . . , 0)∥2
Γ (da) =

∫

S2

b1b2Γ2(db) = EDM(Z1, Z2).

3. The EDM for scores of functional data

In this section, we consider the estimation of the EDM of scores of functional data. Following the framework introduced
in Section 1, recall that X1, . . . , Xn are mean zero iid functions in L2 with E ∥Xi∥2 < ∞, and that each Xi admits the
Karhunen–Loéve expansion (2). The unknown population scores ξij =

⟨
Xi, vj

⟩
in (2) are estimated by the sample scores

ξ̂ij =
⟨
Xi, v̂j

⟩
, where the v̂j are estimators of the FPCs vj. We introduce the following random variables:

Yd = [ξ1, . . . , ξd]⊤, ξj =
⟨
X, vj

⟩
, Yd

i = [ξi1, . . . , ξid]⊤, ξij =
⟨
Xi, vj

⟩
,

Ŷd = [ξ̂1, . . . , ξ̂d]⊤, ξ̂j =
⟨
X, v̂j

⟩
, Ŷd

i = [ξ̂i1, . . . , ξ̂id]⊤, ξ̂ij =
⟨
Xi, v̂j

⟩
.

To quantify the extremal dependence between components ξj and ξj′ in Yd, we consider the EDM, D(ξj, ξj′ ), defined in (8).
Then, by Corollary 1,

D(ξj, ξj′ ) =
∫

S2

a1a2Γjj′ (da), (13)

where Γjj′ on S
2 is the angular measure of the bivariate random vector [ξj, ξj′ ]⊤.

Set Yi = [ξij, ξij′ ]⊤, Ŷi = [ξ̂ij, ξ̂ij′ ]⊤, 1 ≤ i ≤ n, where we suppress the dependence of the bivariate vectors on j and j′.
In light of (7), we consider two random variables that approximate D(ξj, ξj′ ):

Dn(ξj, ξj′ ) := 1

k

n∑

i=1

ξij

Ri

ξij′

Ri

IRi≥R(k) ,

D̂n(ξj, ξj′ ) := 1

k̂

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

ÎRi≥̂R
(k̂)

, (14)

where Ri = ∥Yi∥, R̂i = ∥̂Yi∥, and R(k) and R̂(k̂) are the respective largest order statistics. There is a fundamental difference

between Dn(ξj, ξj′ ) and D̂n(ξj, ξj′ ); Dn(ξj, ξj′ ) is an infeasible estimator because the FPCs vj are not observable, so the ξij
cannot be computed from the data. The estimator based on the sample scores, D̂n(ξj, ξj′ ), is what we can actually compute.

Therefore, the consistency of D̂n(ξj, ξj′ ) for D(ξj, ξj′ ) must be established. As noted in the Introduction, the sample scores

ξ̂ij are no longer independent in i (nor in j); they form a triangular array of dependent identically distributed vectors of
dimension d. This new aspect of EDM estimation is specific to functional data. To handle it rigorously, we must introduce
a suitable framework for regular variation of functional data. We follow Hult and Lindskog [19] and Meiguet [27].

Hult and Lindskog [19] introduced a framework based on M0 convergence, where M0 is the space of measures on a
complete separable metric space. Meiguet [27] further investigated regular variation in Banach spaces using the notion
of M0 convergence. We define a regularly varying function in a separable Banach space B as follows.

7
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Definition 1. Denote the norm in B by ∥ · ∥B and the unit sphere in B by S := {x ∈ B : ∥x∥B = 1}. A random element X
in B is regularly varying with index −α, α > 0 if any of the following conditions hold:

(i) There exist a measure ν and a regularly varying sequence b(n) → ∞ with index 1/α such that

n Pr

(
X

b(n)
∈ ·
)

M0−→ ν(·), n → ∞, (15)

where ν is a non-null measure (exponent measure) on the Borel σ -field B(B0) of B0 = B \ {0}.
(ii) There exist a probability measure Γ on S and a regularly varying sequence bR(n) → ∞ such that, for any y > 0,

n Pr (∥X∥B > ybR(n), X/∥X∥B ∈ ·) w−→ cy−αΓ (·), n → ∞, (16)

There are several equivalent definitions, see Section 2.2 of Meiguet [27], which also contains all details. The quantile
function b(t) in (15) admits the representation

b(t) = t1/αL(t), t > 0, (17)

where L is slowly varying as t → ∞, see e.g. Resnick [31] p. 20, for the definition. An analogous representation holds for
the function bR. With the choice of bR(n), defined by Pr(∥X∥B > bR(n)) = n−1, we get c = 1 in (16) since Γ (S) = 1 for
any y > 0.

We briefly review the theory of M0 convergence. Let Bε := {z ∈ B : ∥z∥B < ε} be the open ball of radius ε > 0 centered
at the origin. A Borel measure ν defined on B0 is said to be boundedly finite if ν(A) < ∞, for all Borel sets that are bounded
away from 0, i.e., A∩Bε = ∅, for some ε > 0. Let M0 be the collection of all such measures. For νn, ν ∈ M0, the νn converge
to ν in the M0 topology, if νn(A) → ν(A), for all bounded away from 0, ν-continuity Borel sets A, i.e., ν(∂A) = 0, where ∂A
is the boundary of A. If B is an Euclidean space, Definition 1 is equivalent to regular variation as defined in Section 2.

We work in the Hilbert space L2, so in the following we replace the general Banach space B with a separable Hilbert
space H. We define the finite-dimensional projection of z ∈ H on the subspace spanned by f1, . . . , fd ∈ H by

πf1,...,fd (z) := [⟨z, f1⟩ , . . . , ⟨z, fd⟩]⊤.

We claim in the following proposition that regular variation in H implies regular variation of the finite-dimensional
projections in R

d. To lighten the notation, we suppress the subscript f1, . . . , fd so that π (z) = πf1,...,fd (z). Let B(Sd) be

the Borel σ -field on S
d. For any set S in B(Sd), define a set of elements in H by

Aπ (S) := {z ∈ H : ∥π (z)∥ > 1, π (z)/∥π (z)∥ ∈ S} . (18)

Proposition 3. If a random element X in H is regularly varying with index −α, α > 0, and ν(Aπ (S
d)) > 0, then π (X) is

regularly varying in R
d with index −α.

In our FDA context, the functions f1, . . . , fd of interest are the FPCs v1, . . . , vd. We work under the following assumption.

Assumption 1. The functions X1, . . . , Xn are i.i.d copies of X , which is regularly varying in L2 according to Definition 1
with α > 2, α ̸= 4. The FPCs v1, . . . , vd satisfy ν(Aπv1,...,vd

(Sd)) > 0 (the set Aπv1,...,vd
is defined according to (18)).

By Proposition 3, under Assumption 1, the projection Yd = πv1,...,vd (X) is regularly varying in R
d with the same index

as X . The assumption α > 2 ensures that E∥X∥2 < ∞, so that the FPCs can be defined. If α = 2, then either E∥X∥2 = ∞
or E∥X∥2 < ∞ are possible, and complex assumptions on the slowly varying function L would be needed to ensure that
E∥X∥2 < ∞. Similarly, if α = 4, then either E∥X∥4 = ∞ or E∥X∥4 < ∞ are possible. There is a phase transition at
α = 4 found in the functional context by Kokoszka et al. [21]. The phase transitions at α = 2 and α = 4 in various
context related to regular variation have been well-known since the 1980s, see, e.g., Theorem 3.5 in Davis and Mikosch
[6], earlier papers of Davis and Resnick [8,9,10], and Embrechts et al. [11] for a broad picture. We therefore exclude α = 2
and α = 4 from our analysis. In the context of research on regularly varying and heavy-tailed random elements, the chief
restriction is α > 2, needed to ensure that the FPC are readily defined. It is conceivable that in the context of functions
whose projections are heavy-tailed, data-driven bases different from the FPC might be appropriate, but such bases have
not been devised yet.

As noted earlier, the sample scores ξ̂ij =
⟨
Xi, v̂j

⟩
form a triangular array whose elements are dependent across i and j.

We now review bounds on the distance v̂j − vj. As noted in the Introduction, these bounds apply to sign
(⟨

v̂j, vj

⟩)
v̂j − vj,

but the sign always cancels in final formulas, so we assume that sign
(⟨

v̂j, vj

⟩)
= 1. Recall that vj is the jth eigenfunction

of the covariance operator C in (1) corresponding to the eigenvalue λj, and v̂j is the jth eigenfunction of its estimator Ĉ
in (3). By Lemma 2.3 in Horváth and Kokoszka [17],

∥v̂j − vj∥ ≤ Aj∥̂C − C∥L, (19)

provided dj > 0, where Aj = 2
√
2/dj, and

d1 = λ1 − λ2, dj = min
{
λj−1 − λj, λj − λj+1

}
, j ≥ 2. (20)

8
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Fig. 3. The graph of the function γ (α) for α ∈ (2, 6).

The asymptotic properties of the distance between Ĉ and C are separated into two cases depending on the range of α. If
α > 4, then E∥X∥4 < ∞, so, by Theorem 2.5 in Horváth and Kokoszka [17],

E∥̂C − C∥2 = O(n−1). (21)

Using (19), we have

E∥v̂j − vj∥2 = O(n−1). (22)

The case of regularly varying X with tail index α ∈ (2, 4), which implies E∥X∥2 < ∞ and E∥X∥4 = ∞, is studied
in Kokoszka et al. [21]. Under week conditions, relation (21) must be replaced by

E∥̂C − C∥β
L

≤ Lβ (n)n
−β(1−2/α), ∀ β ∈ (0, α/2), (23)

where Lβ is a slowly varying function. For a fixed α, the strongest bound is obtained as β ↗ α/2, in which case
β(1 − 2/α) ↗ α/2 − 1. As α ↗ 4 and β ↗ α/2, relation (23) thus approaches, in a heuristic sense, relation (21).
From (19) and (23), we get the condition

E∥v̂j − vj∥β = o
(
n−κ

)
, ∀ β ∈

(
1,

α

2

)
, ∀ κ ∈

(
0, β

(
1 − 2

α

))
. (24)

To see this, observe that

nκE∥v̂j − vj∥β ≤ Ajn
κE∥̂C − C∥β

L
≤ AjLβ (n)n

−β(1−2/α)+κ .

Since −β(1 − 2/α) + κ < 0, by Proposition 2.6 (i) of Resnick [31], we obtain (24).
Assumption 2 thus always holds as long as the eigenvalue separations dj defined by (20) are positive, but this is a

sufficient condition, so we state what is needed for our results to hold.

Assumption 2. The estimators v̂j satisfy (22) if α > 4 and (24) if α ∈ (2, 4).

Asymptotic properties in extreme value theory are typically derived as the number of upper order statistics, k,
tends to infinity with the sample size n, in such a way that k/n → 0. This condition remains to be sufficient for

Dn(ξj, ξj′ )
P→ D(ξj, ξj′ ), since the population scores Yi are i.i.d. and regularly varying under Assumption 1. In our setting,

however, we estimate the EDM based on D̂n(ξj, ξj′ ) calculated from the observed approximations Ŷi. It can be therefore
expected that this additional approximation will, to some extent, restrict the rate at which k tends to infinity with n. We
formulate a sufficient condition on the order of k in Assumption 3. We first define the function

γ (α) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

6 − α

α + 2
, α ∈ (2, 4],

α − 2

2α − 2
, α ∈ (4, ∞).

(25)

Fig. 3 shows that γ (·) is continuous at the phase transition point α = 4 with γ (4) = 1/3. It increases on (4, ∞) with
limα↗∞ γ (α) = 1

2
. For α ∈ (2, 4), γ (α) decreases with limα↘2 γ (α) = 1. For each value of α > 2, the interval (γ (α), 1) is

not empty. We write

k >> nγ , for some γ ∈ (0, 1), if k/nγ → ∞.

9
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Assumption 3. We assume that k ≫ nγ for some γ ∈ (γ (α), 1), with γ (α) defined in (25).

Assumption 3 implies that k >
√
n always works if α > 4, but as α ↘ 2, almost all observations must be used to

ensure the consistency of the estimator.
With all assumptions formulated and explained, we are ready to state the first main result of this section.

Theorem 1. Recall the definitions of the EDM D(ξj, ξj′ ) and its estimator D̂n(ξj, ξj′ ) given, respectively, in (13) and (14). Under
Assumptions 1, 2, and 3,

D̂n(ξj, ξj′ )
P→ D(ξj, ξj′ ).

Recall that D(ξj, ξj′ ) integrates extremal dependence over the whole sphere S
2, so we decompose D(ξj, ξj′ ) into

components measuring dependence over the four quadrants:
[
D(+,+)(ξj, ξj′ ),D

(−,+)(ξj, ξj′ ),D
(−,−)(ξj, ξj′ ),D

(+,−)(ξj, ξj′ )
]

:=
[∫

S
2
(+,+)

a1a2Γjj′ (da),

∫

S
2
(−,+)

a1a2Γjj′ (da),

∫

S
2
(−,−)

a1a2Γjj′ (da),

∫

S
2
(+,−)

a1a2Γjj′ (da)

]
.

The corresponding estimators for the components are given by, respectively,

D̂(+,+)
n (ξj, ξj′ ) := 1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

ÎRi≥̂R(k)
Iξ̂ij≥0,ξ̂ij′≥0, D̂(−,+)

n (ξj, ξj′ ) := 1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

ÎRi≥̂R(k)
Iξ̂ij≤0,ξ̂ij′≥0,

D̂(−,−)
n (ξj, ξj′ ) := 1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

ÎRi≥̂R(k)
Iξ̂ij≤0,ξ̂ij′≤0, D̂(+,−)

n (ξj, ξj′ ) := 1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

ÎRi≥̂R(k)
Iξ̂ij≥0,ξ̂ij′≤0. (26)

Note that k in (26) is the same as in (14). In application, we first select k, the number of upper order statistics R̂(i) and
then use it to compute (14) and (26). We will describe this with details in Section 2 of the supplement.

We establish the consistency of these estimators in the following corollary.

Corollary 2. Under Assumptions 1, 2, and 3,

D̂(+,+)
n (ξj, ξj′ )

P→ D(+,+)(ξj, ξj′ ), D̂(−,+)
n (ξj, ξj′ )

P→ D(−,+)(ξj, ξj′ ),

D̂(−,−)
n (ξj, ξj′ )

P→ D(−,−)(ξj, ξj′ ), D̂(+,−)
n (ξj, ξj′ )

P→ D(+,−)(ξj, ξj′ ).

Theorem 1 and Corollary 2 are proven in Section 5. Our approach to prove the consistency for the EDM is based on
weak convergence of tail empirical measures. Set Θ̂ i = Ŷi/∥̂Yi∥. The estimator D̂n(ξj, ξj′ ) can then be written as an integral
of a tail empirical measure, i.e.,

D̂n(ξj, ξj′ ) =
∫

S2

a1a2Γ̂n(da), Γ̂n := 1

k

n∑

i=1

I
Θ̂ i

ÎRi≥̂R(k)
.

The key argument to prove the consistency is therefore to show

Γ̂n ⇒ Γjj′ in M+
(
S
2
)
, (27)

with Γjj′ in (13). Relation (27) is established by proving a series of weak convergence results.
We now turn to the asymptotic normality. The asymptotic normality of the estimator for the EDM is proven for i.i.d.

bivariate observations in Larsson and Resnick [22]. To show the asymptotic normality of an estimator based on heavy-
tailed data, additional conditions are required even in fully observable i.i.d. settings. For example, for the Hill estimator,
second-order regular variation with restrictions on the rate of k is assumed, see Haeusler and Teugels [16], Csörgő et al. [4],
Resnick and Stărică [32,33]. The aforementioned condition is a univariate concept, which is not applicable to our context.
Instead, we use a multivariate version of second-order regular variation, defined by Resnick [29]. With some constraint
on k, i.e.,

√
kA(b(n/k)) → 0, where A is defined in formula (15) in Resnick [29], the multivariate second-order regular

variation implies the following weaker condition, which is also assumed by Larsson and Resnick [22].

Assumption 4. The Ri, Θ i satisfy

√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ ·
)

− cνα × Γjj′

]
v→ 0 in M+((0, ∞] × S

2).

Assumption 4 means that R1 and Θ1 are asymptotically independent. We emphasize that this assumption applies
to population quantities, which are not observable in our setting. We now formulate the asymptotic normality of our
estimator for the EDM, which is based on projections of functional data.

10
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Theorem 2. Under Assumptions 2, 3 and 4
√
k
(
D̂n(ξj, ξj′ ) − D(ξj, ξj′ )

)
⇒ N (0, σ 2),

where σ 2 = Var(Θ̃1Θ̃2) > 0, with Θ̃1 and Θ̃2 being the components of a random vector with distribution Γjj′ .

4. Preliminary results

We put together several preliminary results in this section to avoid burdening the proofs in Section 5, so that readers

can keep track of the main flow of the argument made in Section 5.

The first lemma follows from Lemma 3.7 of Kim and Kokoszka [20] and is needed to prove Lemma 2.

Lemma 1. Suppose random variables Hm(n), m, n ≥ 1, satisfy 0 ≤ Hm(n) ≤ 1 and ∀ m ≥ 1, Hm(n)
P→ 0, as n → ∞.

Then,
∑∞

m=1 2
−mHm(n)

P→ 0, as n → ∞.

In the following lemma, we present a sufficient condition to guarantee the convergence between random measures

defined on a nice space. We denote a locally compact topological space with countable base by E. Following page 51

of Resnick [31], the vague metric d(·, ·) on M+(E) is defined by

d(µ1, µ2) =
∞∑

i=1

|µ1(fi) − µ2(fi)| ∧ 1

2i
, µ1, µ2 ∈ M+(E), (28)

for some sequence of functions fi ∈ C+
K (E) where C+

K (E) is the space of continuous functions with compact support on E.

By Lemma 1, the following is readily proven.

Lemma 2. Suppose that µn, νn are random measures in M+(E). If, for any f ∈ C+
K (E), |µn(f ) − νn(f )|

P→ 0, n → ∞, then

d(µn, νn)
P→ 0.

In the following lemma, we show that a continuous mapping with a compactness condition preserves convergence of

random measures. Suppose that E1 and E2 are locally compact topological spaces with countable base. Denote by K(E) a

set of all compact subsets of E.

Lemma 3. Suppose that H : E1 ↦→ E2 is a continuous function such that

H−1(K2) ∈ K(E1), ∀K2 ∈ K(E2). (29)

If random measures µn, νn in M+(E1) satisfy d(µn, νn)
P→ 0, as n → ∞, then d(µn ◦ H−1, νn ◦ H−1)

P→ 0, in M+(E2).

Proof. By Lemma 2, it suffices to show that, for any f ∈ C+
K (E2),

µn ◦ H−1(f ) − νn ◦ H−1(f )
P→ 0. (30)

Using the change of variables, we have (µn−νn)◦H−1(f ) =
∫
E2

f (e2)(µn−νn)◦H−1(de2) =
∫
E1

f (H(e1))(µn−νn)(de1). Thus,

we have (µn − νn) ◦ H−1(f ) = (µn − νn)(f ◦ H). Since f and H are both continuous, and with (29), we get f ◦ H ∈ C+
K (E1),

see page 142 of Resnick [31]. Then, since d(µn, νn)
P→ 0 by assumption, we get (30). □

Consider the polar coordinate transform T : [−∞, ∞]2 \ {0} ↦→ (0, ∞] × S
2 defined by, for x ∈ [−∞, ∞]2 \ {0},

T (x) =
(

∥x∥, x

∥x∥

)
. (31)

Note that T is not bijective since its boundaries at infinity are included. Thus, Lemma 3 cannot be directly applied to T

to show that it preserves convergence of random measures. Instead, we will show that by using, say, ‘‘restrict and then

extend space’’ strategy, which is used in a different setting on page 176∼179 of Resnick [31]. We follow the technique in

the proof of the next lemma.

Lemma 4. Suppose that random measures µn, νn satisfy

d(µn, νn)
P→ 0, in M+([−∞, ∞]2 \ {0}), (32)

as n → ∞. Then, d(µn ◦ T−1, νn ◦ T−1)
P→ 0, in M+((0, ∞] × S

2).

11



M. Kim and P. Kokoszka Journal of Multivariate Analysis 189 (2022) 104887

Proof. Consider the transform T ′ : (−∞, ∞)2 \ {0} ↦→ (0, ∞) × S
2 defined by (31). Our first claim is that (32) implies

d(µn, νn)
P→ 0, in M+((−∞, ∞)2 \ {0}). (33)

Let fi ∈ C+
K

(
(−∞, ∞)2 \ {0}

)
, and suppose that Ki ∈ K((−∞, ∞)2 \ {0}) is the compact support of fi. Let f̃i := fi(x)Ix∈Ki ,

then f̃i ∈ C+
K

(
[−∞, ∞]2 \ {0}

)
. Observe that d(µn, νn) =

∑∞
i=1 2

−i|(µn − νn)(f̃i)| =
∑∞

i=1 2
−i|(µn − νn)(fi)|

P→ 0, by (32),
so we get (33).

Our second claim is that (33) implies

d(µn ◦ (T ′)−1, νn ◦ (T ′)−1)
P→ 0, in M+((0, ∞) × S

2). (34)

This is readily proven by Lemma 3, since T ′ is continuous and satisfy (29).
The last step is now to extend T ′ to the bigger space, where ∞ is included. Let fi ∈ C+

K

(
(0, ∞] × S

2
)
, and set

∥fi∥ = sup fi < ∞. We define a smooth truncation function of r , for fixed M , δ, by

φ(r;M, δ) := I0<r≤M + {−(r − M)/δ + 1}IM<r≤M+δ.

Then, observe that

d(µn ◦ T−1, νn ◦ T−1) =
∞∑

i=1

2−i|(µn − νn) ◦ T−1(fi)| −
∞∑

i=1

2−i|(µn − νn) ◦ T−1(fiφ)|

+
∞∑

i=1

2−i|(µn − νn) ◦ T−1(fiφ)| −
∞∑

i=1

2−i|(µn − νn) ◦ (T ′)−1(fiφ)| +
∞∑

i=1

2−i|(µn − νn) ◦ (T ′)−1(fiφ)| =: A + B + C .

Now, we will show that each of the components goes to 0. First, observe that

A ≤
∞∑

i=1

2−i

⏐⏐⏐⏐
∫

(0,∞]×S2

fi(r, θ )(1 − φ(r))(µn − νn) ◦ T−1(dr, dθ )

⏐⏐⏐⏐ ≤
∞∑

i=1

2−i∥fi∥
⏐⏐⏐⏐
∫

(M,∞]×S2

(µn − νn) ◦ T−1(dr, dθ )

⏐⏐⏐⏐ .

Taking a sufficiently large M , then A gets arbitrarily small. Next, for each M ,

B ≤
∞∑

i=1

2−i∥fi∥
⏐⏐⏐⏐
∫

(0,M]×S2

(µn − νn) ◦ (T−1 − (T ′)−1)(dr, dθ )

⏐⏐⏐⏐ = 0.

Since fi(r, θ )φ(r;M, δ) ∈ C+
K

(
(0, ∞) × S

2
)
, the last term C goes to 0 by (34). □

The next lemma shows that the distance between a population score and its corresponding approximation is
asymptotically negligible.

Lemma 5. Under Assumptions 1, 2, for α > 4, E|ξ̂j − ξj| = O(n−1/2), and for 2 < α < 4, E|ξ̂j − ξj|
r = o(n−κr/β ), for some

r > 0 satisfying

r <
2β

β + 2
, (35)

where κ , β are defined in (24).

Proof. For α > 4, by the Cauchy–Schwarz inequality, |ξ̂j − ξj| ≤ ∥X∥∥v̂j − vj∥, so by Assumption 2,

E|ξ̂j − ξj| ≤ {E∥X∥2}1/2{E∥v̂j − vj∥2}1/2 = O(n−1/2).

Now consider the case of 2 < α < 4. Since for any β ,
2β

β+2
< β , condition (35), implies that r < β . Applying Hölder’s

inequality with p = β/r > 1 and q = β/(β − r), we get E|ξ̂j − ξj|
r ≤ {E∥v̂j − vj∥β}

r
β {E∥X∥rq}1/q. Direct verification shows

that condition (35) is equivalent to

2β2

(β + 2)(β − r)
< 2,

which implies rq < 2. Hence, by Assumption 1, {E∥X∥rq}1/q < ∞. Therefore, by (24), E|ξ̂j − ξj|
r = o(n−κr/β ). □

In the following lemmas, we verify the continuity of functions that will be used in Section 5 with the continuous
mapping theorem.

Lemma 6. Suppose that the map H : M+
(
(0, ∞] × S

2
)
× (0, ∞) −→ M+((0, ∞] × S

2), defined by for any measurable set

A × B ⊂ (0, ∞] × S
2,

H(U, x)(A × B) = U(xA × B).

The map H is continuous at (να × Γjj′ , x).

12
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Proof. Suppose Wn
v→ να × Γjj′ in M+

(
(0, ∞] × S

2
)
, and xn → x in (0, ∞). Then we must show that

H(Wn, xn) = Wn((xn·) × ·) v→ H(να × Γjj′ , x) = να × Γjj′ ((x·) × ·).

To verify this, it suffices to show that for any f ∈ C+
K ((0, ∞] × S

2),

Wn((xn·) × ·)(f ) =
∫

(0,∞]×S2

f (t, a) Wn(xndt, da) =
∫

(0,∞]×S2

f (y/xn, a) Wn(dy, da)

→ να × Γjj′ ((x·) × ·)(f ) =
∫

(0,∞]×S2

f (t, a) να(xndt)Γjj′ (da) =
∫

(0,∞]×S2

f (y/x, a) να(dy)Γjj′ (da).

The following verification is mostly based on pp. 83–84 of Resnick [31], whose test functions are univariate. Our test

functions are however bivariate. We must employ a product metric to apply uniform continuity of the test functions.

First observe that⏐⏐⏐⏐⏐

∫

(0,∞]×S
2
+

f (y/xn, a) Wn(dy, da) −
∫

(0,∞]×S2

f (y/x, a) να(dy)Γjj′ (da)

⏐⏐⏐⏐⏐

≤
⏐⏐⏐⏐
∫

(0,∞]×S2

f (y/xn, a) Wn(dy, da) −
∫

(0,∞]×S2

f (y/x, a) Wn(dy, da)

⏐⏐⏐⏐

+
⏐⏐⏐⏐
∫

(0,∞]×S2

f (y/x, a) Wn(dy, da) −
∫

(0,∞]×S2

f (y/x, a) να(dy)Γjj′ (da)

⏐⏐⏐⏐ .

Since Wn
v→ να × Γjj′ and f ( ·

x
, ·) ∈ C+

K ((0, ∞] × S
2), the second term of the right-hand side goes to zero. Now, we focus

on the first term. Since f has compact support in (0, ∞] × S
2, we can take δ > 0 such that the supports of f ( ·

x
, ·) and

f ( ·
xn

, ·), for large n, are contained in [δ, ∞] × S
2. Then we get the bound

⏐⏐⏐⏐⏐

∫

(0,∞]×S
2
+

f (y/xn, a) Wn(dy, da) −
∫

(0,∞]×S
2
+

f (y/x, a) Wn(dy, da)

⏐⏐⏐⏐⏐

≤
∫

[δ,∞]×S
2
+

|f (y/xn, a) − f (y/x, a)|Wn(dy, da) ≤ sup
y≥δ, a∈S2

|f (y/xn, a) − f (y/x, a)|Wn([δ, ∞] × S
2).

Since Wn([δ, ∞] × S
2) is bounded, it remains to show that as xn → x,

sup
y≥δ, a∈S2

|f (y/xn, a) − f (y/x, a)| → 0. (36)

We use the fact that a continuous function with compact support is uniformly continuous. The metric on (0, ∞] × S
2 is

given by dprod((u, a), (v, b)) = d(0,∞](u, v) + d
S2 (a, b), see p.57 of Resnick [31]. Define the metric on (0, ∞] by

d(0,∞](u, v) = |u−1 − v−1|,

for u, v ∈ (0, ∞], which measures the distance between points in (0, ∞] with one point compactification at ∞. Since

xn −→ x and y ≥ δ0,

dprod ((y/xn, a) , (y/x, a)) = |xn − x|
y

≤ |xn − x|
δ0

−→ 0.

Therefore, by the uniform continuity of f , we get (36). □

Lemma 7. The function g on M+
(
(0, ∞] × S

2
)
defined by for any measurable sets A ⊂ (0, ∞], B ⊂ S

2, g(U) = U (A × B)

is continuous at να × Γjj′ .

Proof. Suppose Wn
v→ να × Γjj′ in M+

(
(0, ∞] × S

2
)
. Since A × B is relatively compact in (0, ∞] × S

2, by Theorem 3.2

of Resnick [31] g(Wn) = Wn (A × B) → g(να × Γjj′ ) = να(A)Γjj′ (B). □

Lemma 8. The function h on M+
(
S
2
)
defined by for B ∈ {S2, S2

(+,+), S
2
(−,+), S

2
(−,−), S

2
(+,−)}, h(U) =

∫
B
θ1θ2U(dθ) is continuous

at Γjj′ .

Proof. Suppose Wn
v→ Γjj′ in M+

(
S
2
)
. Consider a map f : S2 → R, defined by f (θ) = θ1θ2Iθ∈B. Note that every continuous

function on a compact space has compact support. Since f is continuous with compact support, by the definition of vague

convergence,

13



M. Kim and P. Kokoszka Journal of Multivariate Analysis 189 (2022) 104887

h(Wn) =
∫

B

θ1θ2Wn(dθ) → h(Γjj′ ) =
∫

B

θ1θ2Γjj′ (dθ). □

5. Proofs of the results of Section 3

Proof of Proposition 3. First, note that ∥π (X)∥ > yb(n) and π (X)/∥π (X)∥ ∈ · iff (yb(n))−1X ∈ Aπ (·). Observe that, for
any set S in B(Sd),

nPr(∥π (X)∥ > yb(n), π (X)/∥π (X)∥ ∈ S) = n Pr

(
X

yb(n)
∈ Aπ (S)

)
.

To prove the regular variation of π (X) in R
d, we will apply Theorem 2.3 of Lindskog et al. [26]. To do this, we must show

that the Aπ (S) are continuity sets of ν, i.e., ν(∂Aπ (S)) = 0. The verification uses the same idea described in the proof
of Proposition 3.1 of Kokoszka et al. [21], but the difference is that we work with the different projection π (z) and its
relevant set Aπ (S).

By (18), we have

∂Aπ (S) = {z ∈ H : ∥π (z)∥ = 1, π (z)/∥π (z)∥ ∈ S} , ∂(rAπ (S)) = {z ∈ H : ∥π (z)∥ = r, π (z)/∥π (z)∥ ∈ S} .

Note that ∂(rAπ (S)) = r∂Aπ (S), and the sets ∂(rAπ (S)) are all disjoint in r . We assume ν(∂Aπ (S)) > 0 and get a
contradiction. Since Aπ (S) ⊃ ∪n≥1∂(n

1/α
Aπ (S)), for all α > 0, and ν is homogeneous,

ν(Aπ (S)) ≥
∞∑

n=1

ν(n1/α∂Aπ (S)) =
∞∑

n=1

n−1ν(∂Aπ (S)) = ∞.

This contradicts to the fact that ν is boundedly finite. Therefore, the Aπ (S) are continuity sets of ν.
Now, by Theorem 2.3 of Lindskog et al. [26] and (15), we obtain

nPr(∥π (X)∥ > yb(n), π (X)/∥π (X)∥ ∈ S) → ν(yAπ (S)) = y−αν(Aπ (S)).

Setting

Γ (·) := ν(Aπ (·))
c

, c = ν(Aπ (S
d)), (37)

we get the claim.

Proof of Theorem 1. Recall that

Yi = [ξij, ξij′ ]⊤, Ri = ∥Yi∥, Θ i = Yi/Ri, Ŷi = [ξ̂ij, ξ̂ij′ ]⊤, R̂i = ∥̂Yi∥, Θ̂ i = Ŷi/̂Ri.

Under Assumption 1, the Yi are regularly varying with index −α by Proposition 3. More specifically, there exist a sequence
{b(n)} (the same as in (15)) and a probability angular measure Γjj′ defined as (37) satisfying

nPr

((
Ri

b(n)
, Θ i

)
∈ ·
)

v→ cvα × Γjj′ in M+((0, ∞] × S
2). (38)

The constant c depends on the choice of b(n). In the following, we assume c = 1 to keep the notation simple.
Our approach is to establish several weak convergences of tail empirical measures. We start with an empirical measure

based on i.i.d. Yi:

Un := 1

k

n∑

i=1

I(Ri/b(n/k), Θ i) ⇒ να × Γjj′ in M+
(
(0, ∞] × S

2
)
. (39)

We then extend (39) to

Ûn := 1

k

n∑

i=1

I(
R̂i/b(n/k), Θ̂ i

) ⇒ να × Γjj′ in M+
(
(0, ∞] × S

2
)
. (40)

Since the Ŷi are no longer independent, this requires techniques involving the Slutsky theorem. We further proceed to
replace the unknown sequence b(n/k) by its estimate R̂(k):

Û⋆
n := 1

k

n∑

i=1

I(
R̂i /̂R(k), Θ̂ i

) ⇒ να × Γjj′ in M+
(
(0, ∞] × S

2
)
. (41)

Applying the continuous mapping theorem, we finally get (27), i.e.,

Γ̂n = 1

k

n∑

i=1

I
Θ̂ i

ÎRi≥̂R(k)
⇒ Γjj′ in M+

(
S
2
)
.

The consistency of D̂n(ξj, ξj′ ) for D(ξj, ξj′ ) is then established because D̂n(ξj, ξj′ ) =
∫
S2

a1a2Γ̂n(da).

14
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We now present a series of the results mentioned above, of which Proposition 4 is the most essential and important

step toward Theorem 1. The following lemma verifies (39), which is readily proven from (38) by Theorem 5.3 (ii) of Resnick

[31].

Lemma 9. Under Assumption 1, relation (39) holds.

The next result shows that the infeasible samples Yi in (39) can be replaced by their approximations Ŷi.

Proposition 4. Under Assumptions 1, 2, and 3, relation (40) holds.

Proof. By Lemma 9 and the Slutsky theorem, it suffices to prove that

d(Ûn,Un) = d

(
1

k

n∑

i=1

I(
R̂i/b(n/k), Θ̂ i

),
1

k

n∑

i=1

I(Ri/b(n/k), Θ i)

)
P−→ 0. (42)

To show (42), we set V̂n := 1
k

∑n

i=1 ÎYi/b(n/k), Vn := 1
k

∑n

i=1 IYi/b(n/k), and prove

d(V̂n, Vn) = d

(
1

k

n∑

i=1

ÎYi/b(n/k),
1

k

n∑

i=1

IYi/b(n/k)

)
P−→ 0. (43)

Applying the polar transformation defined in (31), we get (42) from (43) by Lemma 4.

To prove (43), it suffices to show that, by Lemma 2, for any f ∈ C+
K ([−∞, ∞]2 \ {0}), and any τ > 0,

Pr

(⏐⏐⏐⏐⏐
1

k

n∑

i=1

f

(
Ŷi

b(n/k)

)
− 1

k

n∑

i=1

f

(
Yi

b(n/k)

)⏐⏐⏐⏐⏐ > τ

)
→ 0. (44)

Since f has compact support in [−∞, ∞]2 \ {0}, set

a := inf{∥s∥ : s ∈ supp(f )} > 0. (45)

To prove (44), we consider a decomposition using the following sets. For 0 < η < a/2, set

An(k) :=
{
1 ≤ i ≤ n :


Ŷi

b(n/k)
− Yi

b(n/k)

 ≤ η,


Yi

b(n/k)

 ≥ a − η

}
,

Bn(k) :=
{
1 ≤ i ≤ n :


Ŷi

b(n/k)
− Yi

b(n/k)

 ≤ η,


Yi

b(n/k)

 < a − η

}
,

Cn(k) :=
{
1 ≤ i ≤ n :


Ŷi

b(n/k)
− Yi

b(n/k)

 > η

}
.

Then, we have

Pr

(⏐⏐⏐⏐⏐
1

k

n∑

i=1

f

(
Ŷi

b(n/k)

)
− 1

k

n∑

i=1

f

(
Yi

b(n/k)

)⏐⏐⏐⏐⏐ > τ

)
≤ Pr(S(An) > τ/3) + Pr(S(Bn) > τ/3) + Pr(S(Cn) > τ/3),

where

S(An) = 1

k

∑

i∈An(k)

⏐⏐⏐⏐f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)⏐⏐⏐⏐ ,

and S(Bn) and S(Cn) are defined analogously with
∑

i∈Bn(k) and
∑

i∈Cn(k), respectively.
We will show that each of the three parts goes to 0. We first investigate Pr(S(An) > τ/3). Since f is uniformly

continuous,

wη(f ) := sup
∥x−y∥≤η, x,y∈[−∞,∞]2\{0}

|f (x) − f (y)| −→ 0, η −→ 0.

Note that

S(An) ≤ wη(f )
1

k
#

{
1 ≤ i ≤ n :


Yi

b(n/k)

 ≥ a − η

}
= wη(f )Un(Ea−η),

with the measure Un defined in (39), and with the set Eb ⊂ (0, ∞] × S
2 defined by

Eb =
{
(r, θ ) ∈ (0, ∞] × S

2 : r ≥ b
}
, b > 0.

15
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Now consider the function g on M+
(
(0, ∞] × S

2
)
, defined by, for any measurable set A ⊂ (0, ∞], g(U) = U

(
A × S

2
)
.

Then, by Lemma 7 and the continuous mapping theorem, for a fixed η, Un(Ea−η)
P→ να(a − η, ∞] = (a − η)−α . Therefore,

lim sup
n→∞

Pr(S(An) > τ/3) ≤ Pr
(
wη(f )(a − η)−α > τ/3

)
≤ Pr

(
wη(f ) > 2−αaατ/3

)
.

By taking sufficiently small η, we can ensure that Pr
(
wη(f ) > 2−αaατ/3

)
= 0, hence limn→∞ Pr(S(An) > τ/3) = 0.

Next, we consider the second probability in the decomposition. Observe that for each i ∈ Bn(k),
Ŷi

b(n/k)

 ≤


Ŷi

b(n/k)
− Yi

b(n/k)

+


Yi

b(n/k)

 < a,


Yi

b(n/k)

 < a − η.

Thus, the two points Ŷi/b(n/k),Yi/b(n/k) are outside of the support of f for all i ∈ Bn(k), so S(Bn) = 0 by construction,
and so Pr(S(Bn) > τ/3) = 0.

It remains to show that for any η > 0, limn→∞ Pr(S(Cn) > τ/3) = 0. Set

∥f ∥∞ = sup
x∈[−∞,∞]2\{0}

|f (x)|. (46)

First, consider the case of α > 4. By Markov’s inequality,

Pr(S(Cn) > τ/3) ≤ 3

τk
E

⎡
⎣ ∑

i∈Cn(k)

⏐⏐⏐⏐f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)⏐⏐⏐⏐

⎤
⎦ ≤ 6∥f ∥∞

τk
E

[
n∑

i=1

I∥̂Yi−Yi∥>ηb(n/k)

]

≤ 6∥f ∥∞
τ

n

k
Pr
(
∥̂Yi − Yi∥ > ηb(n/k)

)
≤ 6∥f ∥∞

τη

n

kb(n/k)
E∥̂Yi − Yi∥.

Since all norms in R
2 are equivalent, we get

∥̂Yi − Yi∥ ≤ C

(
|ξ̂ij − ξij| + |ξ̂ij′ − ξij′ |

)
, (47)

for some C > 0. Since E∥̂Yi−Yi∥ ≤ O(n−1/2) by Lemma 5, we have Pr(S(Cn) > τ/3) = O
(
n1/2/{kb(n/k)}

)
. By Assumption 3

and (17), Pr(S(Cn) > τ/3) = o(1).
Now consider the case of α ∈ (2, 4). We will use Lemma 5, which refers to relation (24). Observe that since

β < α/2 < 2 in (24), it holds that
2β

β+2
< 1. This implies that r satisfying (35) also satisfies r < 1. Applying Markov’s and

Lyapunov’s inequalities, we thus obtain

Pr(S(Cn) > τ/3) ≤ Pr

(
2∥f ∥∞

k

n∑

i=1

I∥̂Yi−Yi∥>ηb(n/k) >
τ

3

)
≤ 6r∥f ∥r

∞nr

τ rkr
E

[(
1

n

n∑

i=1

I∥̂Yi−Yi∥>ηb(n/k)

)r]

≤ 6r∥f ∥r
∞nr

τ rkr

{
E

[
1

n

n∑

i=1

I∥̂Yi−Yi∥>ηb(n/k)

]}r

= 6r∥f ∥r
∞nr

τ rkr
Pr
(
∥̂Yi − Yi∥ > ηb(n/k)

)r
.

Applying Markov’s inequality with the same r again and (47), we obtain

Pr(S(Cn) > τ/3) ≤ c
nr

kr{b(n/k)}r2
{
E
[
max

(
|ξ̂ij − ξij|, |ξ̂ij′ − ξij′ |

)r]}r
,

for some c > 0. Then by Lemma 5 and (17)

Pr(S(Cn) > τ/3) = o

(
nr−κr2/β

kr{b(n/k)}r2

)
= o

(
nr−κr2/β−r2/α

kr−r2/α

)
.

Let

γ =
r − κr2

β
− r2

α

r − r2

α

=
1 − r

α
− κr

β

1 − r
α

.

Then, γ is smaller than 1 for all 2 < α < 4, as κ/β gets close to 0, and it attains its smallest value as κ/β approaches its
largest possible value, i.e., 1 − 2/α, see (24). We now set a lower bound of γ as a function of r for α fixed,

γL(r; α) :=
1 − r

α
− (1 − 2

α
)r

1 − r
α

= α − αr + r

α − r
. (48)

Since 2β/(β + 2) in (35) is an increasing function of β and attains its upper limit when β = α/2, see (24), we obtain
r < 2α/(α + 4). Then, since γL(r; α) is an decreasing function of r , γ can be arbitrarily close to γL(2α/(α + 4); α) =
(6 − α)/(α + 2). Thus, by Assumption 3, k ≫ nγ , and we get Pr(S(Cn) > τ/3) = o(1). □
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The following proposition is used to prove the asymptotic normality in Theorem 2. We put it in this section to help
readers follow its proof easily since it uses several elements of the proof of Proposition 4. The claim is similar to (42), but
1/k is replaced by a suitably chosen power of k, so a more delicate argument is needed.

Proposition 5. Suppose that Assumptions 2 3 and 4 hold. Then,

d

(
1√
k

n∑

i=1

I(
R̂i/b(n/k), Θ̂ i

),
1√
k

n∑

i=1

I(Ri/b(n/k), Θ i)

)
P−→ 0.

Proof. We follow the approach used in the proof of Proposition 4, so we skip fully analogous parts and focus on the new
aspects. To get the claim, it suffices to show that

Pr

(
1√
k

n∑

i=1

⏐⏐⏐⏐f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)⏐⏐⏐⏐ > τ

)
→ 0,

for every f ∈ C+
K ([−∞, ∞]2 \ {0}). For 0 < η < a/2, with a defined in (45), set

An(k) :=
{
1 ≤ i ≤ n :


Ŷi

kpb(n/k)
− Yi

kpb(n/k)

 ≤ η,


Yi

kpb(n/k)

 ≥ a − η

}
,

Bn(k) :=
{
1 ≤ i ≤ n :


Ŷi

kpb(n/k)
− Yi

kpb(n/k)

 ≤ η,


Yi

kpb(n/k)

 < a − η

}
,

Cn(k) :=
{
1 ≤ i ≤ n :


Ŷi

kpb(n/k)
− Yi

kpb(n/k)

 > η

}
,

where p is a positive constant such that pmin{r, 1} = 1/2 for some r satisfying (35). Except for the factor kp, these sets
of indexes are analogous to those used in the proof of Proposition 4. Then, we have

Pr

(
1√
k

n∑

i=1

⏐⏐⏐⏐f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)⏐⏐⏐⏐ > τ

)
≤ Pr(S(An) > τ/3) + Pr(S(Bn) > τ/3) + Pr(S(Cn) > τ/3),

where

S(An) = 1√
k

∑

i∈An(k)

⏐⏐⏐⏐f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)⏐⏐⏐⏐ ,

and S(Bn) and S(Cn) are defined analogously with
∑

i∈Bn(k) and
∑

i∈Cn(k), respectively. Our claim is that each of the three
terms converges to 0. Before we proceed, we note some results about p in kp to facilitate the understanding of the proofs;

pr = 1

2
for 2 < α < 4, p ≥ 1

2
for α > 2. (49)

To see this, observe that β < α/2 in (24) and
2β

β+2
in (35) is increasing of β . It thus holds that r <

2β

β+2
< 2α

α+4
. This implies

that 0 < r < 1 for 2 < α < 4, and 0 < r < 2 for α > 2.
First, observe that

S(An) ≤ 2∥f ∥∞
√
k
1

k

n∑

i=1

I∥Yi/kpb(n/k)∥≥a−η = c
√
k

(
1

k

n∑

i=1

IRi/b(n/k)≥kp(a−η) − να(k
p(a − η), ∞]

)
+ ck1/2−pα(a − η)−α,

where ∥f ∥∞ is defined in (46) and c is a positive constant. The last term goes to 0 since pα > p ≥ 1/2 for α > 2. Now,
we focus on the first term. Assumption 4 implies

µn :=
√
k

(
1

k

n∑

i=1

IRi/b(n/k) − να

)
P→ 0. (50)

Consider the map gM on M+(0, ∞], defined by gM (U) = U([M, ∞]). We must show that gkp(a−η)(µn)
P→ 0. This follows

from the following more general argument. We have a sequence of signed measures on (0, ∞], such that µn
P→ 0. Since

we can decompose µn into positive and negative parts, we can assume that the µn are positive. For an → ∞ (in our

case an = kp(a − η)), we claim that µn([an, ∞]) P→ 0. By Lemma 7, the map gM is continuous, so for each fixed M ,

µn([M, ∞]) P→ 0. For sufficiently large n, an > 1, µn([an, ∞]) ≤ µn([1, ∞]), and the claim follows.
Next, we obtain Pr(S(Bn) > τ/3) = 0 in the same manner in Proposition 4.
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For S(Cn), we first consider the case of α > 4. 0bserve that by Markov’s inequality,

Pr(S(Cn) > τ/3) ≤ 1√
k

6∥f ∥∞
τη

n

kpb(n/k)
E∥̂Yi − Yi∥.

By Lemma 5, E∥̂Yi − Yi∥ = O(n−1/2), so Pr(S(Cn) > τ/3) = O
(
n1/2−1/α/k1/2+p−1/α

)
. We must thus verify that

n1/2−1/α/k1/2+p−1/α → 0. We know that nγ /k → 0 if γ > γ (α). We use the factorization

n1/2−1/α

k1/2+p−1/α
=
(
nγ

k

) 1
2γ

− 1
αγ
(
1

k

) 1
2
+p− 1

α − 1
2γ

+ 1
αγ

.

Since α > 2, 1
2γ

− 1
αγ

> 0, so we must be able to claim that 1
2

+ p − 1
α

− 1
2γ

+ 1
αγ

> 0. Since p ≥ 1
2
, this will follow from

1− 1
α

− 1
γ

(
1
2

− 1
α

)
> 0. A few algebraic manipulations show that the above inequality is equivalent to γ > α−2

2α−2
= γ (α).

For the case of α ∈ (2, 4), we apply Markov’s and Lyapunov’s inequalities, just as we did in Proposition 4. Then, by
Lemma 5 and (49) we obtain

Pr(S(Cn) > τ/3) = o

(
nr−κr2/β−r2/α

kr/2+pr2−r2/α

)
= o

(
nr−κr2/β−r2/α

kr−r2/α

)
.

It is verified at the end of the proof of Proposition 4 that the last quantity tends to zero under Assumption 3. □

The next lemma will be used in Proposition 6 to replace b(n/k) in (40) with R̂(k).

Lemma 10. Under Assumptions 1, 2, and 3, R̂(k)/b(n/k)
P→ 1.

Proof. Fix ε > 0 and set

P+(n) = Pr

(
R̂(k)

b(n/k)
> 1 + ε

)
, P−(n) = Pr

(
R̂(k)

b(n/k)
< 1 − ε

)
.

Observe that

P+(n) = Pr
(
ÎR(k)/b(n/k)(1 + ε, ∞] = 1

)
≤ Pr

(
1

k

n∑

i=1

ÎRi/b(n/k)(1 + ε, ∞] ≥ 1

)
= Pr

(
Ûn

(
(1 + ε, ∞] × S

2
)

≥ 1
)
.

A similar argument shows that P−(n) ≤ Pr
(
Ûn

(
(1 − ε, ∞] × S

2
)

< 1
)
. The claim follows because by Lemma 7 and the

continuous mapping theorem, we obtain Ûn((1 + ε, ∞] × S
2)

P→ να(1 + ε, ∞] = (1 + ε)−α < 1; Ûn((1 − ε, ∞] × S
2)

P→ να(1 − ε, ∞] = (1 − ε)−α > 1. □

Proposition 6. Under Assumptions 1, 2, and 3, relation (41) holds.

Proof. By Propositions 4 and 10, we obtain joint weak convergence
(
Ûn,

R̂(k)

b(n/k)

)
⇒ (να × Γjj′ , 1) in M+

(
(0, ∞] × S

2
)
×

(0, ∞). Consider the operator H : M+
(
(0, ∞] × S

2
)

× (0, ∞) −→ M+((0, ∞] × S
2), defined by for any measurable set

A×B ⊂ (0, ∞]×S
2, H(U, x)(A×B) = U(xA×B). Since H

(
Ûn, R̂(k)/b(n/k)

)
= 1

k

∑n

i=1 I
(
R̂i /̂R(k), Θ̂ i

), H
(
να × Γjj′ , 1

)
= να×Γjj′ ,

we get (41) by Lemma 6 and the continuous mapping theorem. □

Proof of Theorem 1. Consider the map g : M+
(
(0, ∞] × S

2
)

→ M+
(
S
2
)
, defined by for any measurable set A ⊂ S

2,
g(U) = U ([1, ∞] × A). Then, by Lemma 7 and the continuous mapping theorem, we obtain (27) from (41). Now we
consider the map h on M+(S2) defined by h(U) =

∫
S2

θ1θ2U(dθ). By Lemma 8 and the continuous mapping theorem, we

obtain, from (27),
∫
S2

θ1θ2Γ̂n(dθ) ⇒
∫
S2

θ1θ2Γjj′ (dθ). Since

∫

S2

θ1θ2Γ̂n(dθ) = 1

k

n∑

i=1

IRi≥R(k)

∫

S2

θ1θ2IΘ i∈dθ = D̂n(ξ̂ij, ξ̂ij′ ),

we get the claim.

Proof of Corollary 2. Consider the map h on M+(S2) defined by

h(S) =
∫

S
2
(+,+)

θ1θ2S(dθ).

Applying the map to (27), we obtain the consistency of D̂
(+,+)
n (ξj, ξj′ ) for D(+,+)(ξj, ξj′ ), by Lemma 8 and the continuous

mapping theorem. The consistency of the remaining estimators can be proven in the same way, just using different
quadrant domains in the map h.
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Proof of Theorem 2. Define the empirical process based on the sample scores by

Wn(t) = 1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2 − E

[
Θ̃1Θ̃2

])
ÎRi/b(n/k)≥t−1/α , t ≥ 0.

The main argument to prove the asymptotic normality is the weak convergence of Wn to the standard Brownian motion
W ;

Wn ⇒ W , in D[0, ∞), (51)

where D[0, ∞) is the usual Skorokhod space. Once we verify (51), then by Lemma 10 we obtain the joint convergence
(
Wn(·),

(
R̂(k)

b(n/k)

)−α
)

⇒ (W (·), 1), in D[0, ∞) × [0, ∞).

Applying the composition map (x(·), c) ↦→ x(c), we conclude that

√
k
(
D̂n(ξj, ξj′ ) − E

[
Θ̃1Θ̃2

])
= σWn

((
R̂(k)

b(n/k)

)−α
)

⇒ σW (1).

The general strategy is thus similar to the one employed to prove Theorem 1 in Larsson and Resnick [22]. However, in
our setting, new arguments are needed to establish relations (53) and (54). These terms are zero in the proof of Larsson
and Resnick [22].

Now, to show (51), consider the following decomposition

Wn(t) = 1

σ
√
k

n∑

i=1

(
Θi1Θi2 − E

[
Θ̃1Θ̃2

])
IRi/b(n/k)≥t−1/α + 1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2 ÎRi/b(n/k)≥t−1/α − Θi1Θi2IRi/b(n/k)≥t−1/α

)

+ 1

σ
√
k

n∑

i=1

E
[
Θ̃1Θ̃2

] (
IRi/b(n/k)≥t−1/α − ÎRi/b(n/k)≥t−1/α

)
.

We will verify that

1

σ
√
k

n∑

i=1

(
Θi1Θi2 − E

[
Θ̃1Θ̃2

])
IRi/b(n/k)≥(·)−1/α ⇒ W , in D[0, ∞), (52)

and for any s ≥ 0,

sup
0≤t≤s

⏐⏐⏐⏐
1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2 ÎRi/b(n/k)≥t−1/α − Θi1Θi2IRi/b(n/k)≥t−1/α

) ⏐⏐⏐⏐
P→ 0; (53)

E
[
Θ̃1Θ̃2

]
sup
0≤t≤s

⏐⏐⏐⏐
1

σ
√
k

n∑

i=1

(
IRi/b(n/k)≥t−1/α − ÎRi/b(n/k)≥t−1/α

) ⏐⏐⏐⏐
P→ 0. (54)

We begin with (52). Since the empirical process in (52) is based on i.i.d. population scores, if we verify

√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ ·
)

− n

k
Pr

(
R1

b(n/k)
∈ ·
)

× Γjj′

]
v→ 0, in M+((0, ∞] × S

2), (55)

then (52) readily holds by Theorem 1 of Larsson and Resnick [22]. Their theorem is proven for nonnegative random vectors,
but the proof also works for random vectors in R

d, with a small modification.
To prove (55), we use the equivalent conditions for vague convergence presented in Theorem 3.2 of Resnick [31].

Take any relatively compact set B ∈ (0, ∞]. Then, B × S
2 is also relatively compact in (0, ∞] × S

2, so we obtain from
Assumption 4,

√
k

[
n

k
Pr

(
R1

b(n/k)
∈ B

)
− να(B)

]
→ 0. (56)

The constant c in Assumption 4 depends on the choice of b(n), so we set c = 1 for simplicity. Now, take any relatively
compact set A × S ∈ (0, ∞] × S

2, and observe that

√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ A × S

)
− n

k
Pr

(
R1

b(n/k)
∈ A

)
× Γjj′ (S)

]

=
√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ A × S

)
− να(A)Γjj′ (S)

]
+

√
k

[
να(A) − n

k
Pr

(
R1

b(n/k)
∈ A

)]
Γjj′ (S) → 0.
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The first term vanishes by Assumption 4. Also, since A is relatively compact in (0, ∞] and 0 ≤ Γjj′ (S) ≤ 1, the second
term goes to 0 by (56).

For (53) and (54), we Proposition 5, i.e.,

1√
k

n∑

i=1

I(
R̂i/b(n/k), Θ̂ i

) − 1√
k

n∑

i=1

I(Ri/b(n/k), Θ i)
P−→ 0. (57)

Consider the map h : M+
(
(0, ∞] × S

2
)

→ M+(0, ∞], defined by h(U) =
∫
S2

θ1θ2U(dr, dθ). Applying h to (57), by Lemma 8
and the continuous mapping theorem we obtain

φn := 1√
k

n∑

i=1

(
Θ̂i1Θ̂i2 ÎRi/b(n/k) − Θi1Θi2IRi/b(n/k)

) P→ 0. (58)

We thus have a sequence of signed measures on (0, ∞], such that φn
P→ 0. Since a signed measure can be decomposed

into positive and negative parts, we can assume that the φn are positive. Now, consider the map gM on M+(0, ∞], defined
by gM (U) = U([M, ∞]). By Lemma 7, the map gM is continuous, so for each fixed M , φn([M, ∞]) P→ 0. Therefore, for any
s ≥ 0, taking M such that M > s, we obtain

sup
0≤t≤s

⏐⏐⏐⏐
1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2 ÎRi/b(n/k)≥t−1/α − Θi1Θi2IRi/b(n/k)≥t−1/α

) ⏐⏐⏐⏐ ≤ φn([M, ∞]) P→ 0.

Similarly, considering the map ℓ : M+
(
(0, ∞] × S

2
)

→ M+(0, ∞], defined by ℓ(U) =
∫
S2

U(dr, dθ), we conclude (54).
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