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Abstract—Quasi-cliques are a type of dense subgraphs that
generalize the notion of cliques, important for applications such
as community/module detection in various social and biological
networks. However, the existing quasi-clique definition and algo-
rithms are only applicable to undirected graphs. In this paper,
we generalize the concept of quasi-cliques to directed graphs by
proposing (γ1, γ2)-quasi-cliques which have density requirements
in both inbound and outbound directions of each vertex in
a quasi-clique subgraph. An efficient recursive algorithm is
proposed to find maximal (γ1, γ2)-quasi-cliques which integrates
many effective pruning rules that are validated by ablation
studies. We also study the finding of top-k large quasi-cliques
directly by bootstrapping the search from more compact quasi-
cliques, to scale the mining to larger networks. The algorithms are
parallelized with effective load balancing, and we demonstrate
that they can scale up effectively with the number of CPU cores.

I. INTRODUCTION

Given a degree threshold γ and an undirected graph G, a
γ-quasi-clique is a subgraph of G, denoted by g = (Vg, Eg),
where each vertex connects to at least dγ · (|Vg| − 1)e other
vertices in g. Quasi-clique is a natural generalization of clique
which is useful in mining various networks, such as biological
networks [13], [15], [17], [27], [37], [48], and social and
communication networks [26], [32], [41], [47], [49], [50] to
find significant clusters and communities. However, γ-quasi-
cliques are defined for undirected graphs, while many real
networks are directed such as gene regulatory networks and
Twitter follower networks. It remains an open problem to
define meaningful quasi-clique structures in directed graphs.

We identify the importance of having density requirements
in both inbound and outbound directions of each vertex in a
directed quasi-clique, and define the novel concept of (γ1, γ2)-
quasi-clique, denoted by g, where each vertex connects to
at least γ1 fraction of other vertices in g, and is meanwhile
pointed to by at least γ2 fraction of other vertices in g. As
an illustration, Fig. 1(a) shows a 0.6-quasi-clique (actually
tighter, a 0.75-quasi-clique). If we make the edges directed
as in Fig. 1(b) and add another vertex f that points to every
other vertex, we can see that each vertex therein still points
to at least 60% (i.e., 3) of the other 5 vertices. However, we
cannot regard f as a member of the dense subgraph. Consider,
for example, a group of Twitter users that frequently interact
with each other; then the fact that a new user f follows and
retweets many users in that group does not make f a member,
unless a significant number of users in the group also pay
attention to f . In contrast, the graph g in Fig. 1(c) forms a
convincing dense group since every vertex points to and is
also pointed to by at least 3 of the other 5 vertices, making
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Fig. 1. Quasi-Cliques on Undirected & Directed Graphs

it a (0.6, 0.6)-quasi-clique (i.e., γ1 = γ2 = 0.6). Besides
this example, directed quasi-cliques can also be used in many
other applications in bioinformatics (e.g., finding co-regulated
genes [55]) and cybersecurity (e.g., botnet detection [47]).

Mining maximal γ-quasi-cliques is notoriously expensive.
In fact, [40] shows that even detecting if a given γ-quasi-clique
is maximal is NP-hard, and the state-of-the-art algorithms [33],
[39], [56] were only tested on very small graphs. Our (γ1, γ2)-
quasi-clique definition generalizes γ-quasi-clique, and in fact,
if we treat an undirected graph G as bidirected and mine
(γ, γ)-quasi-cliques on it, this special case is equivalent to
mining γ-quasi-cliques on G. Therefore, detecting if a given
(γ1, γ2)-quasi-clique is maximal is also NP-hard.

In this paper, we design efficient algorithms to mine
(γ1, γ2)-quasi-cliques, by designing effective pruning rules
and search bootstrapping techniques. Despite the NP-hardness
of our problem, these techniques allow maximal (γ1, γ2)-
quasi-clique mining to practically scale to relatively large and
dense real networks. Our main contributions are as follows:

• We develop a recursive mining algorithm following the
set-enumeration search tree framework [33], [54], [58],
by designing effective pruning rules to avoid searching
unpromising subgraphs. Many rules require us to consider
the intricate interactions between the in-neighbors and
out-neighbors of the vertices under exploration.

• For big networks, mining (γ1, γ2)-quasi-cliques directly
for small values of (γ1, γ2) is often expensive with many
small subgraphs returned. We resolve this issue by first
mining more compact (γ′1, γ

′
2)-quasi-cliques where γ′1 ≥

γ1 and γ′2 ≥ γ2, and then mining top-k large (γ1, γ2)-
quasi-cliques from large (γ′1, γ

′
2)-quasi-cliques.

• The above algorithms are parallelized using a task-based
framework, and timeout mechanism [25] is used to de-
compose straggler tasks to allow effective load balancing.

• Extensive experiments on real directed networks verify
the scalability of our mining programs, and we provide a
case study to visualize the mined (γ1, γ2)-quasi-cliques
and to explain the necessity to consider edge directions.



The rest of this paper is organized as follows. Section II for-
mally defines our notations, problem, and the set-enumeration
search framework adopted by our algorithm. Section III re-
views the related work on dense subgraph mining. Section IV
then presents our pruning techniques, and Section V describes
our mining algorithm and its parallelization, and Section VI
describes our bootstrapping approach to directly mine top-k
large quasi-cliques. Finally, Section VII reports our experi-
ments and Section VIII concludes this paper.

II. PRELIMINARIES

Graph Notations. We consider a directed graph G = (V,E)
where V (resp. E) is the set of vertices (resp. edges). The
vertex set of a graph G can also be explicitly denoted as
V (G). We use G(S) to denote the subgraph of G induced
by a vertex set S ⊆ V , and use |S| to denote the number
of vertices in S. We also abuse the notation and use v to
mean the singleton set {v}. We denote the set of outgoing
(resp. incoming) neighbors of a vertex v in G by N+(v) (resp.
N−(v)), and denote the outdegree (resp. indegree) of v in G
by d+(v) = |N+(v)| (resp. d−(v) = |N−(v)|). We denote the
bidirectional neighbors of v by N±(v) = N+(v) ∩N−(v).

Given a vertex subset V ′ ⊆ V , we define N+
V ′(v) =

N+(v)∩V ′, which is the set of v’s out-neighbors in V ′. Sim-
ilarly, we define notations N−V ′(v) = N−(v) ∩ V ′, N±V ′(v) =
N+
V ′(v)∩N

−
V ′(v), d

+
V ′(v) = |N

+
V ′(v)| and d−V ′(v) = |N

−
V ′(v)|.

Problem Definition. We next formally define our problem.

Definition 1 ((γ1, γ2)-Quasi-Clique). A graph g = (Vg, Eg)
is a (γ1, γ2)-quasi-clique (0 ≤ γ1, γ2 ≤ 1) if g is connected,
and for every vertex v ∈ Vg , we have d+g (v) ≥ dγ1 ·(|Vg|−1)e
and d−g (v) ≥ dγ2 · (|Vg| − 1)e.

If a graph is a (γ1, γ2)-quasi-clique, its subgraphs usually
become uninteresting so we only mine maximal quasi-cliques.
Here, given a vertex set S ⊆ V , G(S) is a maximal (γ1, γ2)-
quasi-clique if there does not exist a superset S′ ⊃ S such
that G(S′) is also a (γ1, γ2)-quasi-clique.

For dense subgraph mining, researchers usually only strive
to find big dense subgraphs, such as the largest one [21], [30],
[34], [35], the top-k largest ones [40], and those larger than
a predefined size threshold [21], [22], [33], since small dense
subgraphs are common and thus statistically insignificant, and
the number of dense subgraphs grows exponentially with the
graph size. It is well recognized that mining clique relax-
ations (aka. pseudo-clique) such as quasi-clique [33] and k-
plexes [14] are much more expensive than mining clique [14],
[21], [22], [40] which is already NP-hard per se. We thus
follow the convention and use a minimum size threshold τsize
to return only large quasi-cliques to be tractable.

Definition 2 (Problem Statement). Given a graph G, min-
imum degree thresholds γ1, γ2 ∈ [0, 1] and a minimum size
threshold τsize, find all the vertex sets S such that G(S) is a
maximal (γ1, γ2)-quasi-cliques, and that |S| ≥ τsize.

When G(S) is a valid (γ1, γ2)-quasi-clique with ≥ τsize
vertices, we simply say that S is a valid quasi-clique hereafter.

{}

{a} {b} {c} {d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b, c, d}
Fig. 2. Set-Enumeration Tree

Set-Enumeration Search Framework. The set-enumeration
search tree framework is a popular approach for mining dense
subgraphs, including quasi-cliques [33], [40], k-plexes [22],
[58] and size-bounded max min-degree subgraph [54].

In the set-enumeration search, the giant search space of
a graph G = (V,E), i.e., V ’s power set, can be organized
as a set-enumeration search tree [33]. Fig. 2 shows the set-
enumeration tree T for a graph G with four vertices {a, b, c, d}
where a < b < c < d (ordered by ID). Each tree node
represents a vertex set S, and only vertices larger than the
largest vertex in S are used to extend S. For example, in
Fig. 2, node {a, c} can be extended with d but not b as b < c;
in fact, {a, b, c} is obtained by extending {a, b} with c.

Let us denote TS as the subtree of the set-enumeration tree
T rooted at a node with set S. Then, TS represents the search
space for all result subgraphs that contain all vertices in S. In
other words, Q ⊇ S for any result subgraph Q found by TS .

We represent the task of mining TS as a pair 〈S, ext(S)〉,
where S is the set of vertices assumed to be already included,
and ext(S) ⊆ (V −S) keeps those vertices that can extend S
further into a result subgraph. As we shall see, many vertices
cannot form a (γ1, γ2)-quasi-clique together with S and can
thus be safely pruned from ext(S); therefore, ext(S) is usually
much smaller than (V − S).

Mining of TS can be recursively decomposed into mining
of the subtrees rooted at the children of node S in TS , denoted
by S′ ⊃ S. Since ext(S′) ⊂ ext(S), the subgraph induced by
nodes of a child task 〈S′, ext(S′)〉 can be much smaller.

This set-enumeration approach requires postprocessing to
remove non-maximal quasi-cliques from the set of valid quasi-
cliques found [33]. For example, when processing the task
that mines T{b}, vertex a is not considered and thus the task
has no way to determine that {b, c, d} is not maximal, even
if {b, c, d} is invalidated by {a, b, c, d} which happens to be
a valid pseudo-clique, since {a, b, c, d} is processed by the
task mining T{a}. But this postprocessing is efficient [25]
especially when the number of valid pseudo-cliques is not big
(as we only find large subgraphs).

III. RELATED WORK

This section reviews the related work on set-enumeration
based dense subgraph mining, quasi-clique mining on undi-
rected graphs, and some recent efforts in generalizing dense
subgraph definitions in undirected graphs to directed graphs.

Set-Enumeration Search. In the set-enumeration search tree
framework, designing effective pruning rules is often the



key to the mining efficiency. For different dense subgraph
structures, different tailor-made pruning methods need to be
developed using the properties of the target structures, which
are often the key contributions of such research to make
these NP-hard problems tractable in practice, including quasi-
cliques [33], [40], k-plexes [22], [58] and size-bounded max
min-degree subgraph [54]. As we shall see in Section IV,
we have designed a number of pruning rules tailor-made for
the properties of (γ1, γ2)-quasi-cliques, which is non-trivial
since they consider the intricate interactions between the in-
neighbors and out-neighbors of the vertices under exploration.

Quasi-Clique Mining on Undirected Graphs. Quasi-cliques
were originally defined as a relaxation of cliques on undirected
graphs. Regarding γ-quasi-cliques, a few seminal works de-
vised branch-and-bound subgraph searching algorithms such
as Crochet [28], [39] and Cocain [56] which finally led to
the Quick algorithm [33] that integrated all previous search
space pruning techniques and added new effective ones. Our
prior work Quick+ [25] further improved Quick’s workflow
to better utilize these pruning rules, and we parallelized and
scaled it in our distributed graph mining framework called G-
thinker [51], [52]. Yang et al. [53] adapted Quick to mine a set
of diversified temporal γ-quasi-clique patterns from a temporal
graph, where each subgraph is associated with the time interval
that the pattern spans. Sanei-Mehri et al. [40] bootstraps the
mining of top-k large γ-quasi-cliques by first using Quick to
find the more compact γ′-quasi-cliques (γ′ > γ) quickly, and
then expanding large γ′-quasi-cliques into γ-quasi-cliques.

Some works consider a less costly problem variant which
finds all quasi-cliques that contain a particular vertex or a set of
query vertices [19], [20], [30] to aggressively narrow down the
search space. There is another definition of quasi-clique based
on edge density [11], [20], [38] rather than vertex degree, but it
is essentially a different kind of dense subgraph definition. As
[20] indicates, the edge-density based quasi-cliques are less
dense than our degree-based quasi-cliques, so we focus on
degree-based quasi-cliques. Brunato et al. [16] further consider
both vertex degree and edge density. There are also other dense
subgraph definitions such as k-plexes [14], [21], [22], [58]
and max min-degree subgraph [54], all defined on undirected
graphs. Quasi-cliques were also explored for bipartite graphs,
i.e., quasi-bicliques [31], [42]–[44] which relax the concept of
bicliques [12], [18], [23], [35].

Dense Subgraphs in Directed Graphs. Although many real
networks are directed, research on directed dense subgraphs
lags behind. Only recently, the idea of k-core has been general-
ized to directed graphs, called D-core [24]. However, the work
focuses on finding a D-core that is strongly connected and
contains a particular query vertex, and the degree thresholds
are the actual degree values rather than ratios w.r.t. |Vg| as in
our case. We remark that using ratios is more desirable since
they directly reflect subgraph density, and we find (γ1, γ2)-
quasi-cliques g of all kinds of sizes (as long as |Vg| ≥ τsize),
without the need of providing a query vertex, and we find
many dense subgraphs rather than a maximal D-core subgraph.

A more recent work, [36], finds the densest subgraph from
a large directed graph, defined as a pair of vertex sets (S, T )
that maximizes the density of edges from vertices in S to
vertices in T , which is a different problem from ours since it
only cares about the outbound (resp. inbound) edge density of
vertices in S (resp. T ), rather than bidirectional edge density
of every vertex in a dense subgraph.

IV. PRUNING RULES

Recall the set-enumeration tree in Fig. 2, where each node
represents a mining task, denoted by tS = 〈S, ext(S)〉.
Task tS mines the set-enumeration subtree TS : it assumes
that vertices in S are already included in a result quasi-
clique to find, and continues to expand G(S) with vertices
of ext(S) ⊆ (V − S) into a valid quasi-clique. Task tS can
be recursively decomposed into the mining of subtrees {TS′}
where S′ ⊃ S are child nodes of node S, denoted as tasks
{tS′}. Our recursive serial algorithm basically examines the
set-enumeration tree in depth-first order, while our parallel
implementation utilizes the concurrency among tasks {tS′}.

To reduce search space, we consider two categories of
pruning rules that prune either candidate vertices in ext(S)
from expansion, or simply the entire subtree TS :
• Type I: Pruning ext(S): if a vertex u ∈ ext(S) satisfies

certain conditions, u is pruned from ext(S) since there
must not exist a vertex set S′ such that (S ∪ u) ⊆ S′ ⊆
(S ∪ ext(S)) and G(S′) is a (γ1, γ2)-quasi-clique.

• Type II: Pruning S: if a vertex v ∈ S satisfies certain
conditions, there must not exist a vertex set S′ such that
S ⊆ S′ ⊆ (S ∪ ext(S)) and G(S′) is a (γ1, γ2)-quasi-
clique, and thus there is no need to extend S further.

Type-II pruning invalidates the entire TS . We also allow a
variant of Type-II pruning that invalidates G(S′), S ⊂ S′ ⊆
(S∪ext(S)) from being a valid (γ1, γ2)-quasi-clique, but node
S is not pruned since G(S) may be a valid quasi-clique.
Overview of Pruning Rules and Contribution Highlights.
We design tailor-made pruning rules for our (γ1, γ2)-quasi-
clique definition that can be classified into 7 groups. Each
rule either belongs to Type I, or Type II, or sometimes both.

We remark that these pruning rule types are commonly used
in various set-enumeration algorithms, but the concrete forms
are problem dependent and are the key contributions that make
these NP-hard problems tractable on large graphs in practice.
For example, our cover-vertex pruning to be described in Sec-
tion has their counterparts in k-plexes (Lemma 2 in [58]) and
size-bounded max min-degree subgraph (Lemma 4.7 in [54]),
but their concrete forms are entirely different.

Due to page limit, we briefly summarize our pruning rules
below. Our online appendix [8] gives details of pruning rule
formulations and their complete proofs.

Compared with pruning rules for undirected quasi-cliques
(e.g., those of Quick [33]), designing rules for our directed
setting is much more challenging since our rules need to
additionally consider the intricate interactions between the in-
neighbors and out-neighbors of the vertices under exploration.
Pruning rules for undirected quasi-cliques are just special cases



Algorithm 1 iterative twohop pruning(v)
1: O ← N+(v)−N±(v), I ← N−(v)−N±(v)
2: repeat
3: SO ← O ∪N±(v), SI ← I ∪N±(v)
4: O ← O ∩

⋃
w∈SI

N−(w), I ← I ∩
⋃

w∈SO
N+(w)

5: until neither O and I shrank in Line 4
6: B ←

⋃
w∈SO

N+(w)
⋂ ⋃

w∈SO
N−(w)

⋂⋃
w∈SI

N+(w)
⋂ ⋃

w∈SI
N−(w)

7: return N±(v) ∪O ∪ I ∪B

of ours when in-neighbors = out-neighbors for every vertex
and γ1 = γ2; moreover, as we shall see, considering edge
directions may bring more pruning opportunities non-existent
in the undirected setting.

A. Graph-Diameter Based Pruning
In dense subgraph mining, it is common to conduct

diameter-based pruning. For example, when mining k-plexes,
it is common to require the subgraph diameter to be ≤ 2 [22],
[58] which naturally holds for reasonably large subgraphs. For
undirected γ-quasi-cliques, it is common to assume γ ≥ 0.5
in which case it naturally holds that the subgraph diameter
≤ 2 [28], [33], [39], [56]. This assumption is reasonable since
we prefer denser subgraphs, and the mining cost would be
tractable since candidate vertices in ext(S) are aggressively
pruned. We remark that there exists a diameter upper bound
for an arbitrary γ, denoted by f(γ), as proved in [28], but this
general bound is often much looser so the mining becomes
very costly. The restriction of γ ≥ 0.5 is a sweet spot in terms
of both theoretical soundness and computational tractability.

In our new (γ1, γ2)-quasi-clique definition, we can also
derive a subgraph diameter upper bound for arbitrary values
of (γ1, γ2) in general. Let Gu be the undirected version of a
directed graph G that ignores edge directions, then we have:

Theorem 1 (Diameter Upper Bound). Let Q be a (γ1, γ2)-
quasi-clique of graph G, and γmax = max{γ1, γ2}, then

diam(Qu) <
3|Q|

γmax(|Q| − 1) + 1
<

3

γmax
.

Proof. See Appendix A.
For example, when γ1 = γ2 = 0.5, we have diam(Qu) <

3
0.5 = 6, so we only consider vertices within 5 hops from every
vertex in S on Gu. We can actually derive a tighter bound if
we further divide γ into different cases, similar to Theorem 1
of [28]. Note that since the upper bound is 3

γmax
, the smaller

γ1 and γ2 are, the looser the upper bound is.
However, for the special case where γ1, γ2 ≥ 0.5, we can

derive a much tighter vertex candidate set that can form quasi-
cliques with a vertex v, denoted by B(v). As we shall see, B(v)
is a subset of all vertices within 2 hops from v on Gu, rather
than 5 hops as computed by Theorem 1, so it is much tighter.
Moreover, unlike the undirected setting where Quick [33] only
prunes vertices beyond 2 hops from v when γ ≥ 0.5, here we
compute B(v) as follows to locate and remove unpromising
vertices iteratively even when they are within 2 hops.

Algorithm 1 computes B(v). Specifically, when we consider
(γ1, γ2)-quasi-clique where γ1, γ2 > 0.5, computation of

B(v) is discussed using 4 cases (arrows below represent
directed edges): (1) if u ↔ v, we always have u ∈ B(v);
(2) if u → v only, then u ∈ B(v) only when ∃w ∈
V − {u, v}, u ← w ← v; (3) if u ← v only, then u ∈ B(v)
only when ∃w ∈ V − {u, v}, u → w → v; (4) if u and v
have no neighboring relationship, then u ∈ B(v) only when
∃w1, w2, w3, w4 ∈ V − {u, v}, such that u ← w1 ← v,
u← w2 → v, u→ w3 ← v and u→ w4 → v. The algorithm
to compute B(v) can thus be formulated as in Algorithm 1,
where N±(v) = N+(v)∩N−(v), and O (resp. I , B) denotes
vertices of Case 2 (resp. Case 3, Case 4) above. Iterative
pruning is conducted in Lines 2–5 since w ∈ ext(S) in Case 2
(resp. Case 3) could be pruned by Case 3 (resp. Case 2),
making u invalid in Case 2 (resp. Case 3) anymore. See our
appendix [8] for a complete proof of the 4 cases and a more
detailed description of Algorithm 1. In summary, we have:

Theorem 2. Let Q be a (γ1, γ2)-quasi-clique where γ1, γ2 ≥
0.5, and let v be a vertex in Q, then for any other vertex u ∈ Q,
we have u ∈ B(v) where B(v) is computed by Algorithm 1.

Proof. See Appendix B [8].

Note that B(v) ⊆ ext(S) is just the pruned candidate set
by one vertex v ∈ S. A valid candidate u ∈ ext(S) should
survive the pruning of every vertex v ∈ S. Formally, we have

Theorem 3 (Diameter Pruning). Given a task 〈S, ext(S)〉
where γ1, γ2 ≥ 0.5, we have ext(S) ⊆

⋂
v∈S B(v).

This is a Type-I pruning since if u 6∈
⋂
v∈S B(v), u can

be immediately pruned from ext(S). To efficiently handle the
common setting γ1, γ2 ≥ 0.5, we pre-compute B(v) for every
vertex v so that they can be readily used for pruning as needed
during set-enumeration search. While for the general (γ1, γ2)
setting, we override B(v) with v’s d3/γmax−1e-hop neighbor
set in Gu according to Theorem 1. The neighbor sets can be
computed on demand when it is needed and then cached in
memory for reuse, so such computation can be skipped for
pruned vertices (e.g., by (k1, k2)-core pruning below).

B. Size-Threshold Based Pruning
Theorem 4 (Size Threshold Pruning). If a vertex u has
d+(u) < dγ1 ·(τsize−1)e or d−(u) < dγ2 ·(τsize−1)e, then u
cannot appear in any (γ1, γ2)-quasi-clique Q with |Q| ≥ τsize.

Proof. See Appendix C [8].

For any vertex u in G, let us define k1 = dγ1·(τsize−1)e and
k2 = dγ2 · (τsize − 1)e, this rule shrinks G into its (k1, k2)-
core, which is defined as the maximal subgraph of G such
that every vertex has its outdegree ≥ k1 and indegree ≥ k2.
The (k1, k2)-core of a graph G = (V,E) can be computed
in O(|E|) time using a peeling algorithm, which repeatedly
removes vertices with outdegree < k1 and indegree < k2 until
there is no such vertex. We always shrink a graph G into its
(k1, k2)-core before running our mining algorithm.

C. Degree-Based and Bound-Based Pruning
Four kinds of degrees are frequently used by our pruning

rules. Taking outdegrees for example: (1) SS-degrees: d+S (v)
for all v ∈ S; (2) SE-degrees: d+S (u) for all u ∈ ext(S);



(3) ES-degrees: d+ext(S)(v) for all v ∈ S; and (4) EE-degrees:
d+ext(S)(u) for all u ∈ ext(S).

Three groups of pruning rules utilize these degrees:
(i) degree-based pruning that solely uses the degrees of a
vertex itself, (ii) upper-bound based pruning and (iii) lower-
bound based pruning that look at the degrees of multiple (or
even all) vertices in S and ext(S). Each of the three groups
contains one Type-I rule and one Type-II rule.

Here, the upper bound US (resp. lower bound LS) is defined
on the number of vertices in ext(S) that can be added to S in
order to form a valid (γ1, γ2)-quasi-clique. These bounds are
defined based on the above-mentioned degrees of vertices in
task tS = 〈S, ext(S)〉 under exploration, the concrete forms
can be found in Appendiices D–F [8] due to page limit.

D. Critical-Vertex Based Pruning
We next define the concepts of outdegree critical vertex and

indegree critical vertex using lower bound LS defined above.

Definition 3 (Outdegree Critical Vertex). If there exists a
vertex v ∈ S such that d+S (v)+d

+
ext(S)(v) = dγ1 · (|S|+LS−

1)e, then v is called an outdegree critical vertex of S.

Definition 4 (Indegree Critical Vertex). If there exists a ver-
tex v ∈ S such that d−S (v)+d

−
ext(S)(v) = dγ2 ·(|S|+LS−1)e,

then v is called an indegree critical vertex of S.

Intuitively, v is outdegree (resp. indegree) critical if adding
all its out-neighbors (resp. in-neighbors) inside ext(S) into
S merely allows the outdegree (resp. indegree) of v to meet
the out-bound γ1 (resp. in-bound γ2) degree requirement to
generate a quasi-clique. Then, we have the following theorems:

Theorem 5 (Outdegree Critical Vertex Pruning). If v ∈ S
is an outdegree critical vertex, then for any vertex set S′ such
that S ⊂ S′ ⊆ (S ∪ ext(S)), if G(S′) is a (γ1, γ2)-quasi-
clique, then S′ must contain every out-neighbor of v in ext(S),
i.e., N+

ext(S)(v) ⊆ S
′.

Theorem 6 (Indegree Critical Vertex Pruning). If v ∈ S is
an indegree critical vertex, then for any vertex set S′ such that
S ⊂ S′ ⊆ (S ∪ ext(S)), if G(S′) is a (γ1, γ2)-quasi-clique,
then S′ must contain every in-neighbor of v in ext(S), i.e.,
N−ext(S)(v) ⊆ S

′.

Proof. See Appendix G [8].

Therefore, when extending S, if we find that v ∈ S is an
outdegree (resp. indegree) critical vertex, we can directly add
all vertices in N+

ext(S)(v) (resp. N−ext(S)(v)) to S for mining.

E. Cover-Vertex Based Pruning
Given a vertex u ∈ ext(S), we next define a vertex set

CS(u) ⊆ ext(S) such that for any (γ1, γ2)-quasi-clique Q
generated by extending S with vertices in CS(u), Q∪u is also
a (γ1, γ2)-quasi-clique. In other words, Q is not maximal and
can thus be pruned. We say that CS(u) is the set of vertices in
ext(S) that are covered by u, and that u is the cover vertex.

To utilize CS(u) for pruning, we put vertices of CS(u) after
all the other vertices in ext(S) when checking the next level
in the set-enumeration tree (see Fig. 2), and only check until
vertices of ext(S) − CS(u) are examined (i.e., the extension

S ext(S)

Case 4

u

Case 2

Case 3 Case 1

dS( ) ≥ ⌈γ1 · |S|⌉+ dS( ) ≥ ⌈γ1 · |S|⌉+

Fig. 3. Outbound Cover Set

of S using V ′ ⊆ CS(u) is pruned). To maximize the pruning
effectiveness, we can find u ∈ ext(S) with a large |CS(u)|.

We compute CS(u) as the intersection of an outbound cover
set C+

S (u) and an inbound cover set C−S (u). The outbound
cover set C+

S (u) is computed as follows:

C+
S (u) = N+

ext(S)(u) ∩ N−ext(S)(u) ∩
⋂

v∈S ∧ v 6∈N−(u)

N+(v).

(1)
We call C+

S (u) the outbound cover set of u because, for
any (γ1, γ2)-quasi-clique Q generated by extending S with
vertices in C+

S (u), we have the guarantee that for any vertex
w ∈ Q ∪ u, d+Q∪u(w) ≥ dγ1 · (|Q ∪ u| − 1)e = dγ1 · |Q|e.

We illustrate the computation in Eq (1) using Fig. 3, where
the blue vertices are those in C+

S (u). Note that any blue
vertex is bidirectionally connected with u (i.e., the red vertex
in Fig. 3) due to the term N+

ext(S)(u) ∩ N−ext(S)(u) in
Eq (1). Additionally, any blue vertex is pointed to from all
green vertices, where we highlight a vertex v ∈ S in green if
it is not an in-neighbor of u (other vertices in S are in yellow).
This is because of the term

⋂
v∈S ∧ v 6∈N−(u)N

+(v) in Eq (1).
We can similarly define the inbound cover set of u:

C−S (u) = N−ext(S)(u) ∩ N+
ext(S)(u) ∩

⋂
v∈S ∧ v 6∈N+(u)

N−(v).

(2)
Here, C−S (u) is called the inbound cover set of u because,

for any (γ1, γ2)-quasi-clique Q generated by extending S with
vertices in C−S (u), we have the guarantee that for any vertex
w ∈ Q ∪ u, d−Q∪u(w) ≥ dγ2 · |Q|e.

Finally, for u to cover a vertex w ∈ ext(S), w should satisfy
both d+Q∪u(w) ≥ dγ1 · |Q|e and d−Q∪u(w) ≥ dγ2 · |Q|e. So,

CS(u) = C+
S (u) ∩ C−S (u) (3)

We compute CS(u) for pruning only if d+S (u) ≥ dγ1 · |S|e
and d−S (u) ≥ dγ2 ·|S|e, and for any v ∈ S that are not adjacent
to u, it holds that d+S (v) ≥ dγ1 · |S|e and d−S (v) ≥ dγ2 · |S|e.
Otherwise, we deem this pruning inapplicable. The outbound
degree requirements have been highlighted at the bottom of
Fig. 3. Note that the constraint on v here is not too demanding.
For example, consider the constraint d+S (v) ≥ dγ1 · |S|e: note
that since v ∈ S, we already have d+S (v) ≥ dγ1 · (|S| − 1)e
which is very close, so the chance that the constraints are
satisfied and so the pruning is applicable is not low.

Formally, we have the following theorem:



Theorem 7 (Cover-Vertex Pruning). Given a vertex u ∈
ext(S), assume that d+S (u) ≥ dγ1 ·|S|e and d−S (u) ≥ dγ2 ·|S|e,
and for any v ∈ S that are not adjacent to u, it holds that
d+S (v) ≥ dγ1 · |S|e and d−S (v) ≥ dγ2 · |S|e. Then, for any
(γ1, γ2)-quasi-clique Q generated by extending S with vertices
in CS(u), Q ∪ u is also a (γ1, γ2)-quasi-clique.

Proof. See Appendix H [8].

To maximize the pruning power, we can find our cover
vertex u ∈ ext(S) to maximize |CS(u)|. However, this will
require us to compute CS(u) for every u ∈ ext(S), which is
too expensive when ext(S) is large. We, therefore, adopt a
simple heuristic that chooses the cover vertex u as the vertex
in ext(S) with the largest value of min{d+S (u), d

−
S (u)}, with

tie broken by min{d+ext(S)(u), d
−
ext(S)(u)}.

As we shall see in Section VII, even with this less expensive
heuristic, enabling cover-vertex pruning can slow down the
mining in many datasets since the pruning effectiveness cannot
offset the pruning cost. This is a surprising finding since we
can show that our cover-vertex pruning rule when applied on
undirected graphs (i.e., every edge is treated as bidirected)
is equivalent to the cover-vertex pruning of Quick [33] and
Quick+ [25], but both Quick and Quick+ use cover-vertex
pruning. For this reason, we also studied Quick+ by disabling
its cover-vertex pruning, and also observed a couple of times
of performance improvement on most datasets, and only
observed a couple of times of performance degradation on
some datasets. Still, cover-vertex pruning could be useful
to protect against a long-running worst-case scenario which
occurs on some datasets. We will elaborate on our findings
and recommended pruning rule configurations in Section VII.

As a degenerate special case, initially when S = ∅, Eq (1)
(resp. Eq (2)) becomes C+

S (u) = C−S (u) = N+
ext(S)(u) ∩

N−ext(S)(u) and all neighbors of u belong to ext(S), so
CS(u) = C+

S (u) ∩ C
−
S (u) = N+

ext(S)(u) ∩ N
−
ext(S)(u) =

N+(u) ∩ N−(u), i.e., we only need to find u as the vertex
adjacent to the most number of bidirectional edges in G to
maximize |CS(u)| for cover-vertex pruning.

We find u as the vertex adjacent to the most number
of bidirectional edges after the (k1, k2)-core pruning (c.f.
Section IV-B) since otherwise, we may find a high-degree
vertex with limited pruning power, e.g., adjacent to many low-
degree neighbors that will be pruned by (k1, k2)-core pruning.

V. THE RECURSIVE MINING ALGORITHM

We now describe our recursive mining algorithm that tra-
verses the set-enumeration tree in depth-first order, and applies
the pruning rules presented in Section IV wherever applicable.
Data Structures and Preprocessing. Before running our
recursive main algorithm, we first pre-compute B(v) for each
vertex v ∈ V (c.f. end of Section IV-A). In this way, each
vertex v has direct access to B(v), N+(v) and N−(v).

Recall that each task t = 〈S, ext(S)〉 corresponds to a node
S in the set-enumeration tree. Our main algorithm uses an
array A to organize vertices where vertices in S are positioned
before those in ext(S). In other words elements in A are

always maintained to have 2 segments: (1) vertex objects in S,
(2) vertex objects in ext(S). For each vertex object v in A, we
also maintain five degrees (1) d+S (v), (2) d−S (v), (3) d+ext(S)(v),
(4) d−ext(S)(v) and (5) dBext(S)(v) , |B(v)∩ext(S)|, which are
incrementally updated so that they can be accessed in O(1)
time for checking the conditions of our various pruning rules.
More details can be found in Appendix I [8].
Look-Ahead Pruning. This technique examines if S∪ext(S)
gives a valid quasi-clique, and if so, we output it and avoid the
unnecessary depth-first traversal of the subtree TS . Notably,
since we maintain dBext(S)(v) for each vertex v ∈ ext(S) ⊆
A, it allows an additional pruning opportunity that combines
diameter-based pruning with look-ahead pruning. Please refer
to Appendix J [8] for the algorithm of look-ahead pruning.

Look-ahead pruning comes with a cost since it needs to
be checked at each recursive step. In fact, we find in our
experiments in Section VII that look-ahead pruning does not
improve the mining performance much on most datasets, but
it serves as a faster pruning alternative to cover-vertex pruning
to protect against a potential long-running worst-case scenario
which occurs on some datasets.
Iterative Bound-Based Pruning. Whenever we remove a
candidate vertex from ext(S) and/or add a candidate vertex to
S, the degrees of the vertices in array A w.r.t. S and ext(S)
would be incrementally updated, creating new opportunities
for degree-based pruning (c.f. Appendix D [8]). Moreover, the
degree updates would also cause the bounds LS and US to be
updated (c.f. Fig. 10 and 11 in our appendix [8]), creating new
opportunities for upper bound pruning (c.f. Appendix E [8])
and lower bound based pruning (c.f. Appendix F [8]).

Note that some of the above pruning rules could be
Type I rules, causing ext(S) to shrink, which in turn reduces
d+ext(S)(.) and d−ext(S)(.) and thus triggers another round of
bound-based pruning.

Algorithm 5 in Appendix K [8] details the pseudocode
of iterative bound pruning(S, ext(S)) for iterative bound-
based pruning, which returns if the entire set-enumeration
subtree TS is pruned or not (i.e., PRUNED or NOT PRUNED),
and shrinks ext(S) by Type-I pruning. Note that if iter-
ative bound pruning(S, ext(S)) returns NOT PRUNED but
ext(S) is shrunk into ∅, we still need to examine if G(S) is
a valid quasi-clique but not any other descendant in TS .
Advanced Pruning by Critical Vertices. Recall critical-
vertex based pruning from Section IV-D. These pruning rules
are the most effective when they are used together with
diameter-based pruning. Algorithm 2 gives the details.

Specifically, recall from Theorem 5 (resp. Theorem 6) that
if v is an outdegree (resp. indegree) critical vertex, then its
neighbors N+

ext(S)(v) (resp. N−ext(S)(v)) should be moved
to S in order to form a valid quasi-clique. Therefore, in
Algorithm 2, we collect those vertices into Vnb in Lines 1–3,
which will be added to S in Line 9.

Before this vertex batch movement, we first check if the new
S can create a valid quasi-clique. Two Type-II pruning rules
apply here. (R1) if there exists v ∈ S such that a newly added



Algorithm 2 critical vertex pruning(S, ext(S))
1: gather N+

ext(S)(u) of all outdegree critical vertices u into VO

2: gather N−ext(S)(u) of all indegree critical vertices u into VI

3: Vnb = VO ∪ VI

4: for each w ∈ S ∪ ext(S) do counter[w]← |B(w) ∩ Vnb|
5: for each v ∈ S do
6: if counter[v] 6= |Vnb| do return PRUNED
7: for each w ∈ Vnb do
8: if counter[w] 6= |Vnb| − 1 do return PRUNED
9: add all vertices of Vnb into S

10: prune all those u ∈ ext(S) for which counter[u] 6= |Vnb|
11: return iterative bound pruning(S, ext(S))

vertex u 6∈ B(v), then S is Type-II pruned. This is because
u ∈ Vnb has to be added to S to form a valid quasi-clique, but
then u will occur together with v in such a quasi-clique, which
is impossible given u 6∈ B(v). (R2) if there exists u, u′ ∈ Vnb
such that u 6∈ B(u′), then S is Type-II pruned. This is because
both u and u′ have to be added to S to form a valid quasi-
clique, which is impossible given u 6∈ B(u′).

To facilitate the condition checking for (R1) and (R2),
Line 4 computes for each vertex w ∈ S ∪ ext(S) a counter
counter[w] to keep the number of vertices in Vnb that are
within set B(w). Note that we want Vnb ⊆ B(w), or S is
Type-II pruned. Lines 5–6 (resp. Lines 7–8) implements the
Type-II pruning check for (R1) (resp. (R2)). Note that in Line 8
“−1” is because we want every other vertex of Vnb to be
contained by B(w), but w ∈ Vnb itself is not added to its
counter counter[w] (since w 6∈ B(w)).

If S passes the Type-II pruning, Line 10 then conducts
Type-II pruning over remaining vertices in ext(S) to ensure
that they are contained by B(v) of every vertex v ∈ Vnb
newly added to S. Since this may trigger degree and bound
updates, Line 11 then runs the previously described proce-
dure iterative bound pruning(S, ext(S)) (i.e., Algorithm 5 in
Appendix K) [8] for degree- and bound-based pruning.

The Recursive Main Algorithm. We now put all previously
discussed techniques together, which gives our main algorithm
shown in Algorithm 3. This algorithm is recursive, and we
start the entire mining process by calling recursive mine(∅,
V ). The function recursive mine(.) returns if the current task
tS = 〈S, ext(S)〉 finds any valid quasi-clique in the subtree TS
not counting node S itself. This information is maintained by
variable result found which is initialized as false in Line 1.
Then, we iterate through each vertex v ∈ ext(S) (kept in
array A) via the for-loop starting from Line 2, to move v
from ext(S) to S for recursive mining later in Line 10.

Before moving v to S, Line 3 first conducts look-ahead
pruning by checking if moving all vertices from ext(S) to
S gives a valid quasi-clique (i.e., by running Algorithm 4 in
Appendix J), and if so, Line 4 outputs G(S∪ext(S)) and then
returns true indicating that a result is found in TS , skipping
the iterating through vertices in ext(S). If look-ahead pruning
fails, we create a new array A′ = [S′, ext(S′)] in Lines 5
and 6 for the child task tS′ that mines subtree TS′ . Note that
candidate v has been considered, so Line 5 excludes it from
ext(S) for future iterations. Also, vertices in ext(S′) should

Algorithm 3 recursive mine(S, ext(S))
1: results found← false
2: for each vertex v ∈ ext(S) not covered by the cover vertex do
3: if look ahead(S, ext(S)) then
4: output Q = S ∪ ext(S); return true
5: S′ ← S ∪ v, ext(S)← ext(S)− v
6: ext(S′)← ext(S) ∩ B(v); update degrees for v’s neighbors
7: if iterative bound pruning(S′, ext(S′))=PRUNED continue
8: if critical vertex pruning(S′, ext(S′)) = PRUNED continue
9: find a cover vertex u ∈ ext(S′); mask its covered vertices

10: tag ← recursive mine(S′, ext(S′))
11: if tag = true then results found← true
12: else if G(S′) is a valid quasi-clique then
13: results found← true; output G(S′)
14: return results found

now also be contained in B(v) of the newly added v, so Line 6
excludes unsatisified vertices in ext(S) to compute ext(S′).

Now that tS′ = 〈S′, ext(S′)〉 is constructed, we need to de-
termine if it can be Type-II pruned before processing tS′ recur-
sively in Line 10. Specifically, since v has been moved, Line 6
updates the degrees of v’s neighbors w.r.t. S′ and ext(S′) in
the new array A′. Line 7 then uses iterative bound pruning(S,
ext(S)) (i.e., Algorithm 5 in Appendix K [8]) to conduct
iterative degree- and bound-based pruning, and if S′ is Type-
II pruned, Line 7 directly moves on to check the next v in
ext(S). Otherwise, Line 8 uses Algorithm 2 to conduct the
advanced critical-vertex pruning.

If tS′ survives both pruning, Line 9 then finds a cover vertex
u ∈ ext(S′) using the method described in Section IV-E, and
masks out its covered vertex in ext(S′) before running tS′

over A′ recursively in Line 10, so that Line 2 will skip those
vertices when running tS′ .

Line 10 then runs tS′ by recursively calling Algorithm 3
over A′, and the return value tag indicates if tS′ finds any
quasi-clique not counting S′ itself. If tag = true, it implies
that tS also finds a quasi-clique so we update results found as
true in Line 11; there is no need to check G(S′) since it cannot
be maximal. In contrast, if tag = false, we need to examine
if G(S′) itself is a valid quasi-clique in Line 12, and if so,
output G(S′) and set results found as true in Line 13. Finally,
Line 14 returns results found indicating if any iteration of the
for-loop in Lines 2–13 ever finds any valid quasi-clique, which
is needed when its parent task runs Line 10 to set tag.
Load-Balanced Parallel Implementation. Algorithm 3 di-
rectly traverses the entire set-enumeration tree in depth-first
order. One way to parallelize the algorithm is to create the
level-1 tasks Tv for all v ∈ V so that different tasks can run
concurrently by different CPU cores. However, a task may
have a giant subtree, causing the straggler problem. We use
the timeout mechanism recently proposed in [25] to further
decompose a task tS = 〈S, ext(S)〉: tS traverses TS in
depth-first order by the serial recursive algorithm till when
it runs for a time longer than a timeout threshold, after which
the recursion backtracks and wraps every unprocessed task
〈S′′, ext(S′′)〉 as an independent one that can be assigned to
another CPU core for processing, rather than process tS′′ re-
cursively by the current task’s CPU core. While this approach



can generate small-grained tasks to avoid stragglers, it is also
important to schedule expensive tasks early for decomposition
to keep the number of tasks abundant, and to keep the task
workloads among different CPU cores balanced. Our G-thinker
system achieves this goal by maintaining a globally shared
queue of expensive tasks for prioritized execution, and please
refer to Section 5 of [25] for the details. In this work, we
use a shared-memory parallel counterpart called T-thinker as
proposed in [29], on top of which we parallelize Algorithm 3
using the timeout mechanism. This single-machine parallel
engine facilitates our implementation of the parallel kernel-
expansion solution to be presented in the next section, which
relies on a shared concurrent trie to avoid redundant search.

Recall that we initially need to pre-compute B(v) for all
vertices v ∈ V , and we implement this operation by a parallel
for-loop (in OpenMP) since each call of Algorithm 1 takes
a non-negligible amount of time. However, we find in our
experiments in Section VII that this parallel for-loop hits a
speedup barrier as we increase the number of threads, because
each call of Algorithm 1 visits a different portion of the
original graph G, causing a lot of CPU cache misses that make
the computation memory-bandwidth bound. The problem does
not occur in the depth-first set-enumeration search since the
cache miss rate is low, and we see an ideal speedup.

VI. MINING TOP-k LARGE QUASI-CLIQUES

Motivated by the kernel expansion approach proposed
by [40] to find top-k large maximal γ-quasi-cliques in an
undirected graph, we also develop a similar approach for
finding top-k large (γ1, γ2)-quasi-cliques. Specifically, we first
(1) mine (γ′1, γ

′
2)-quasi-cliques (γ′1 > γ1 and γ′2 > γ2) using

the previously described algorithm, and then (2) select the
k′ largest (γ1, γ2)-quasi-cliques as “kernels”. For each kernel
S, we then (3) expand S into (γ1, γ2)-quasi-cliques that are
maximal locally in G(S ∪ ext(S)), i.e., it mines maximal
quasi-cliques in subtree TS . (4) For all the quasi-cliques found
by expanding the k′ kernels, the top-k largest results are
then returned. In a nutshell, a kernel-expansion job can be
represented by (γ′1, γ

′
2, k
′, γ1, γ2, k) besides the minimum size

threshold τsize, and it finds k large γ-quasi-cliques with at
least τsize vertices (if available).

Referring to Fig. 2 again, we can first mine k′ = 2 kernels
like S1 = {a, c} and S2 = {b, c}, and then continue to mine
larger quasi-cliques in TS1 and TS2 , which leads to result
subgraphs such as {a, c, d} and {b, c, d}. However, expansions
from different kernels may search the same set-enumeration
tree nodes (and hence their entire subtrees) repeatedly. To illus-
trate, let us consider the following two scenarios. Scenario 1:
there is only one kernel S1 = {a, c} found. In this case, if we
use the node ordering a < b < c < d as in Fig. 2, we will only
find quasi-clique {a, c, d} but will miss {a, b, c} even if the
latter is a large valid result. To find {a, b, c} from S1, we need
to assume that a and c are before all other nodes in ordering,
so c < b and b should be included in ext(S1) unlike in Fig. 2
where we assume b < c. While this assumption avoids missing
results, it can lead to redundant search as we explain next.
Scenario 2: there are two kernels S1 = {a, c} and S2 = {b, c}.

∅

a b c d

b c d c d d

c d d d

d
Fig. 4. The Trie that Incorporates All Sets in Fig. 2

According to our discussion above, when expanding S1 we are
assuming a < b (i.e., a, c ∈ S1 and b ∈ ext(S1)) so S1 can
be expanded with b, but when expanding S2 we are assuming
b < a (i.e., b, c ∈ S2 and a ∈ ext(S2)) so S2 can be expanded
with a. As a result, expansions from both S1 and S2 will reach
node {a, b, c}, meaning that both of them search for the entire
subtree T{a,b,c}! Such redundancy is common among other
vertex pairs beyond (a, b), and [40] did not address this issue.

Our solution is to maintain a data structure T to keep all
those nodes that have been explored, so that, for example, if
the expansion from S1 has visited node {a, b, c}, it will be
detected by the expansion from S2 so this expansion will skip
node {a, b, c} and hence the entire T{a,b,c}, which is already
being explored by the expansion from S1. Note that since we
are only expanding from k′ kernels, we expect the number of
nodes being searched to be acceptable so that T can keep all
of them in memory. We implement T as a trie (i.e., prefix tree)
to be memory-compact. Fig. 4 shows a trie that encodes all the
sets in Fig. 2, and we can see that fewer elements are saved
compared with in Fig. 2. In fact, the red parts in Fig. 4 are
those resulted after inserting both {a, b, c} and {a, b, d} into
trie T , and we can see that a and b are kept only once for these
2 sets. We remark that a trie basically executes a fixed vertex
ordering. For example, in Fig. 4 we assume a < b < c < d.
While different kernel expansions may use different vertex
orders, when they check a node S against T for redundancy
avoidance, S is basically reordered using the vertex ordering
of trie T .

In our parallel implementation, each kernel serves as an
initial task tS = 〈S, ext(S)〉 with all nodes of the kernel being
put in S. Since different tasks that are concurrently processed
may be expanded from different kernels, we adopt the highly-
concurrent trie implementation proposed in [29] where each
trie node is protected by a read-write lock.

VII. EXPERIMENTS

This section reports our experiments. Our code has been
released at https://github.com/guimuguo/Tthinker DQC where
a directly executable demo with Google Colab is provided.

Datasets. We use 8 real directed graphs as summarized in Ta-
ble I spanning a wide range of graph sizes and categories: web
graphs PolBlogs [9], Google [6], Baidu [2] and ClueWeb [4];
social networks Bitcoin [3] and Epinions [5]; contact network
MathOverflow [7]; and road network USA Road [10].

Experimental Setup. Our experiments were run on a server
with IBM POWER8 CPU (32 cores, 3491 MHz) and 1TB
RAM. For the T-thinker system, we used the default parameter

https://github.com/guimuguo/Tthinker_DQC


TABLE II
MINING TIME ON VARIOUS DATASETS (UNIT: SECOND)all_data_exp

Data all rules w/o cover w/o lookahead w/o cover&lookahead

PolBlogs 8.68 1.46 7.96 1.67

Bitcoin 36.71 9.88 37.00 8.48

MathOverflow 551.49 17.05 550.49 17.37

Epinions 15.66 6.82 14.74 6.15

Google 0.77 0.79 0.78 216.89

Baidu 9.21 8.82 10.58 20.15

USA Road 9.81 11.06 10.94 10.20

ClueWeb 172.85 174.79 175.42 198.66

1

TABLE I
DATASETS AND DEFAULT ALGORITHM PARAMETERSdata_yanda

Data |V| |E| |E| / |V| max d+(v) max d-(v) τsize γ1 γ2 # Maximal Category

PolBlogs 1,224 33,430 27.31 351 351 25 0.90 0.90 3,050 web graph

Bitcoin 5,881 35,592 6.05 763 535 10 0.70 0.60 287,139 social network

MathOverflow 24,818 506,550 20.41 5,931 5,378 20 0.87 0.85 5 contact network

Epinions 75,879 508,837 6.71 1,801 3,035 20 0.80 0.90 469 social network

Google 875,713 5,105,039 5.83 456 6,326 15 0.75 0.80 1,827 web graph

Baidu 2,141,300 17,794,839 8.31 2,596 97,950 20 0.70 0.80 802 web graph

USA Road 23,947,347 57,708,624 2.41 9 9 7 0.50 0.50 16 road network

ClueWeb 147,925,593 454,072,685 3.07 1,055 308,477 35 0.90 0.90 2,373 web graph

1

setting in [29] where the task
timeout threshold is 1 second,
and a task tS = 〈S, ext(S)〉 is
considered a big task for prior-
itized scheduling if |ext(S)| ≥
200. T-thinker keeps memory us-
age bounded by spilling superflu-
ous tasks from in-memory task
queues to the disk for later pro-
cessing, if too many tasks were
generated out of a timeout-based
task decomposition. Unless otherwise stated, our parallel
programs were run with 32 concurrent mining threads. All
reported results were averaged over 10 repeated runs. In our
reports, the unit of time (resp. space) is second (resp. MB).

Default Quasi-Clique Parameters. Recall that we have quasi-
clique parameters (τsize, γ1, γ2). We tune their values on each
dataset so that some selective results are returned (in contrast
to 0) but not overwhelmingly many. In Appendix L [8], we
illustrate how the number of results changes as the values
of τsize, γ1, and γ2 vary on Bitcoin and Epinions. Unless
otherwise stated, we use the tuned default parameters in the
experiments reported hereafter. These default parameters are
summarized in Table I along with the number of maximal
(γ1, γ2)-quasi-cliques of size ≥ τsize.
Performance on Various Datasets. Table II reports the per-
formance of our parallel mining algorithms on all the datasets
in Table I. As we shall see later in our ablation study, cover-
vertex pruning and look-ahead pruning could slow down a
program in some cases, but all the other rules always speed up
the mining significantly and are thus indispensable. Therefore,
in Table II, we consider four variants: (1) all rules are used,
(2) all but cover-vertex pruning, (3) all but look-ahead pruning,
and (4) all but cover-vertex and look-ahead pruning.

Comparing the first two columns, we can see that enabling
cover-vertex pruning slows down the mining by quite a few
times on the first four datasets, and only slightly improves the
performance on the last two. This is because computing the
cover set of a selected cover vertex has a non-negligible cost,
and this overhead is often not properly offset by the pruned
search space. This is a new finding since prior works all adopt
a similar pruning rule [25], [33], [54], [58] (though in different
forms). We tested Quick and Quick+ for mining undirected
quasi-cliques and observed a similar speedup on many tested

datasets when we disabled their cover-vertex pruning.
Comparing “all rules” with “w/o lookahead”, we see that

their running times are very close, which means that the
effectiveness of look-ahead pruning alone is very limited.

Since both cover-vertex and look-ahead pruning rules are
not effective, a natural question to ask is: what if we disable
both? As can be seen from the last column, the running time
increases by over two orders of magnitude on Google! doubles
on Baidu, and increases a lot on ClueWeb, while being best
or near-best on the other datasets. This shows that we should

enable at least one of the two rules, as otherwise, some
high-degree candidates that were able to be selected by the
rules to aggressively prune the search space would not be
selected early, causing a huge slowdown.

Since the effectiveness of these rules are very data-
dependent, we recommend to disable cover-vertex pruning but
enable look-ahead pruning by default, which avoids a non-
negligible slowdown.

Speedup by Parallelization. Hereafter, we focus on two algo-
rithm variants, “all rules” and the recommended “w/o cover.”
Tables III and IV show (1) performance of our serial mining
program, (2) that of the parallel program, and (3) speedup
achieved for “all rules” and “w/o cover,” respectively.

Recall that our program has two steps: (i) a preprocessing
stage to compute B(v) for all vertices, and (ii) the set-
enumeration search for quasi-clique mining. In Tables III
and IV, we report metrics including: (1) the total mining time,
(2) the time for Step 1 (denoted by “2-hop”), and (3) the
peak memory and disk space usage. Note that the speedup
with 32 threads is good on all datasets except for Baidu and
ClueWeb, for which the speedup ratio merely passes 7. After
looking into the reason, we find that for these two datasets,
Step 1 consumes the majority of the running time and the set-
enumeration search afterwards is actually fast and has a good
speedup. Recall that we implement Step 1 by OpenMP parallel
for-loop, and since each call of Algorithm 1 visits a different
portion of the original graph G, Step 1 causes a lot of CPU
cache misses that make the computation memory-bandwidth
bound. The problem does not occur in the depth-first set-
enumeration search which is more cache-friendly. Since Step 1
hits a speedup ceiling with merely 8 threads due to the limited
memory bandwidth, the overall speedup achieved by Baidu
and ClueWeb is limited.



TABLE III
SPEEDUP WITH ALL RULESsingle_and_parallel_all_rules

Data
Serial (all rules) 32 Threads (all rules)

Speedup
Runtime 2-hop Memory Runtime 2-hop Memory Disk

PolBlogs 231.04 0.093 18 8.68 0.010 79 26 26.63

Bitcoin 1,604.49 0.141 100 36.71 0.010 180 1,352 43.71

MathOverflow 20,548.69 1.269 153 551.49 0.110 738 30,520 37.26

Epinions 434.48 1.523 68 15.66 0.110 479 109 27.75

Google 15.74 6.386 231 0.77 0.420 564 0 20.36

Baidu 70.84 50.920 587 9.21 7.280 1,524 0 7.69

USA Road 209.32 117.405 4,064 9.81 5.790 15,170 0 21.34

ClueWeb 1,219.55 186.348 62,869 172.85 105.950 255,371 0 7.06

1

TABLE IV
SPEEDUP W/O COVER-VERTEX PRUNINGsingle_and_parallel_no_cover

Data
Serial (w/o cover) 32 Threads (w/o cover)

Speedup
Runtime 2-hop Memory Runtime 2-hop Memory Disk

PolBlogs 26.21 0.092 12 1.46 0.006 31 2 17.97

Bitcoin 294.69 0.143 63 9.88 0.010 89 48 29.81

MathOverflow 276.64 1.273 45 17.05 0.104 209 139 16.23

Epinions 117.12 1.528 54 6.82 0.109 290 9 17.18

Google 15.35 6.323 241 0.79 0.445 565 1 19.48

Baidu 68.92 43.593 536 8.82 6.667 1,576 15 7.82

USA Road 206.30 117.597 3,750 11.06 6.869 14,990 27 18.66

ClueWeb 1,361.91 223.447 62,853 174.79 105.431 255,437 7 7.79

1

In contrast, when Step 1 only accounts for a tiny
portion of the overall time, the speedup ratio can even go
beyond 32 as on Bitcoin and MathOverflow in Table III.
This is because, when we spawn a task tS for each
root task S = {v}, we create a smaller task-subgraph
eliminating those vertices not in B(v), which avoids the
scanning of adjacency list items for those vertices in
subsequent task computation, making computation faster
than our serial program that directly checks the adjacency
lists of the original graph.

Also, we can see that the memory and disk space
consumption is reasonable, though ClueWeb uses a lot
of memory due to its sheer graph size. Our parallel
program often uses a few times more memory than the
serial program, which is within expectation since more
threads imply a larger concurrency fanout in the set-
enumeration search tree; but the additional space used is
much smaller than 32× since our task queues spill tasks
to the disk when they become full to keep memory space
bounded. Since spilled tasks are refilled into task queues
for computation first before considering generating new
tasks from vertices for refill, the disk space used by
buffered tasks is kept small; only MathOverflow (all
rules) used quite some disk space due to the frequent
task decompositions done by the 32 threads that caused a lot
of tasks to be spilled on disk.

Recall from Section II that we need a postprocessing step
to remove non-maximal results from the set of valid pseudo-
cliques found, but this time is found to be negligible compared
with the mining time, and it has been included in the total time.

Ablation Study on Pruning Techniques. To verify the
TABLE V

ABLATION STUDY: ALL BUT ONEbitcoin_epinions

Algorithm
Bitcoin MathOverflow

Runtime Memory Runtime Memory

full version 36.71 180 551.49 738

w/o lookahead 37.00 256 550.49 742

w/o critical 70.45 283 663.06 760

w/o cover 9.88 89 17.05 209

w/o bound 200.91 358 3,105.62 1,251

1

effectiveness of
our techniques,
we consider
those algorithm
variants which
use all but one
technique that
gets disabled.
Table V shows
the results on
Bitcoin and MathOverflow, and those for the other 6 datasets
are in Appendix M [8]. We can see that upper- and lower-
bound based pruning is the most effective, without which
the running time can increase significantly. This is followed
by critical-vertex pruning. As we have discussed previously,
the impact of cover-vertex pruning and look-ahead pruning
are not always positive, but they serve to protect against a
long-running worst-case scenario which occurs on Google.

We also consider our algorithm variants by starting from
a baseline with basic diameter-based, size-threshold, and
degree-based pruning, and incrementally adding bound-based,
critical-vertex, look-ahead, and cover-vertex pruning, one at
a time. This gives algorithm variants denoted by “baseline,”
“+bound,” “+critical,” “+lookahead,” and “+cover.” Note that

our baseline still adopts those basic pruning techniques
which are quick to check but highly effective in pruning, so
that its mining program can finish in reasonable time.

TABLE VI
ABLATION STUDY: INCREMENTAL ADDITIONablation1

Algorithm
Bitcoin Google

Runtime Memory Runtime Memory

baseline 123.55 195 207.84 2,086

+bound 17.01 121 222.34 2,445

+critical 9.38 89 214.24 2,475

+lookahead 9.88 89 0.79 565

+cover 36.71 180 0.77 564

1

Table VI shows the
results on Bitcoin
and Google, and
those for the other
6 datasets are in
Appendix M. We
can see that bound-
based pruning
significantly
speeds up the
baseline on Bitcoin though the performance remains similar
as baseline on Google. Critical-vertex pruning further speeds
up “+bound.” As we have discussed previously, adding
lookahead and cover-vertex pruning on Bitcoin slows down
“+critical” on Bitcoin, but significantly speeds up “+critical”
on Google and avoids the long-running worst-case scenario.

Scalability with # of Threads. We illustrate the scalability
of our parallel program by running 1, 2, 4, 8, 16 and 32
threads. Fig. 5 shows the results of “w/o cover” on Bitcoin,
where the red curve shows the program running time, and
the blue curve shows the peak memory usage. We can see
that the running time almost halves each time the number of
threads doubles. Also, the memory usage increases with the
number of threads but slowly and gradually flattens at the
maximum allowed task queue capacity [25]. Note that here
even our parallel program with one thread is faster than the
serial one in Table IV, because we spawn tasks with smaller
subgraphs and hence avoid scanning the long adjacency lists
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Fig. 5. Scalability of “w/o cover” on Bitcoin

of the original graph. In our online appendices [8], we show
the complete scalability plots for all our datasets running
with “full version” and “w/o cover”, where the observation is

similar except that on Baidu and ClueWeb, the time
curve hits a floor higher than 0 as the memory-bound
computing of B(v) dominates the runtime.

Finding Top-k Large Quasi-Cliques by Kernel Expansion.
Recall from Section VI that in order to directly mine top-
k large (γ1, γ2)-quasi-cliques faster than from scratch, we
first find the top-k′ largest (γ′1, γ

′
2)-quasi-cliques as “kernels”

(where γ1 < γ′1 and γ2 < γ′2) as Stage 1, which are then
expanded to generate (γ1, γ2)-quasi-cliques and return top-k
maximal ones from the results as Stage 2. Thus, such a job
takes parameters (γ′1, γ

′
2, k
′, γ1, γ2, k). Following the default

setting by [40] for mining large undirected γ-quasi-cliques, we
set k′ = 3k and k = 100, and use the same τsize for mining
both kernels and result subgraphs. We use the default values of
(τsize, γ1, γ2) in Table I for bootstrapping, i.e., they are used
as parameters (τsize, γ

′
1, γ
′
2) here, to mine quasi-cliques with

even smaller values of (γ1, γ2).

We illustrate the effectiveness of this kernel bootstrapping
approach on three datasets in Table VII, which shows the
values of (γ1, γ2) that we aim to mine quasi-cliques, the
number of maximal quasi-cliques found, the time/speedup
metrics, and the result quality metrics. Note that (γ1, γ2)
here are smaller than the bootstrapping parameters as given
by Table I, so directly mining quasi-cliques from scratch
is much more time consuming, as shown by the Column
“Without Kernel Runtime.” When using kernel expansion,
Stage 1 runtime is given by Table II where we adopt the
recommended configuration “w/o cover,” and Stage 2 runtime
is shown in Table VII. They sum up to be the total runtime
as shown by the Column “Stages 1&2 Runtime,” which is
then compared with the from-scratch runtime to obtain the
speedup achieved by our kernel expansion method. We observe

impressive speedup of up to 630× on Bitcoin, which shows
that kernel expansion can effectively scale mining to large
quasi-cliques even when the values of γ1 and γ2 are small
(hence mining from scratch could be very time consuming).

To evaluate the result quality of the kernel expansion
technique, we define the concept of “top-k recall” as the
fraction of the exact top-k largest γ-quasi-cliques that are
within the top-k largest quasi-cliques found by Stage 2.
Intuitively, top-k recall measures how many large quasi-
cliques are missed when using kernel expansion rather than
exact mining. Note that the result precision is always 100%
since Stage 2 always finds valid quasi-cliques that meet the
(τsize, γ1, γ2) requirement. Table VII reports the top-k recall
for k = 50, 100, 150. We can see that the recall is high
in general, meaning that most large cliques are not missed
by this bootstrapping technique (note, however, that quasi-TABLE VII

EFFECTIVENESS OF KERNEL EXPANSIONkernel_expansion

Data γ1 γ2  # Maximal Stage 2  
Runtime

Stages 1&2    
Runtime

Without Kernel  
Runtime Speedup Top-50  

Recall
Top-100  
Recall

Top-200  
Recall

PolBlogs 0.87 0.87 415 0.201 1.660 19.89 11.98 0.820 0.410 0.650

Bitcoin 0.6 0.5 4,144 0.334 8.917 5,620.88 630.36 0.960 0.890 0.945

Epinions 0.75 0.85 430 1.115 7.934 194.60 24.53 0.960 0.930 0.965

1

cliques are not hereditary so it
is inevitable to miss results).
Also note that the recall value
is not monotonic to k, since as
k changes, so is the set of top-k
exact largest quasi-cliques that
determine the numerator of the

recall ratio computation (although the denominator increases
with k).
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Case Study. We conducted a case study using the citation
network from [1] which consists of papers chosen from Ar-
netMiner [45], [46] that fall in 10 topics such as Data Mining
and Database Systems, as well as their citation relationship.
Since the vertices of this network are papers, but the citation
relationship is one-way in time, it is improper to directly mine
quasi-cliques on this network. We, therefore, preprocess this
network to obtain an author citation network G, where an edge
(u, v) is added if there exists a paper (co-)authored by u that
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cited another paper (co-)authored by v. In total, G
contains 2,160 authors and 19,192 citation edges.

We mined (0.75, 0.75)-quasi-cliques on G with
τsize = 10, and obtained 22 quasi-cliques in
total in 0.7 second. Fig. 6 top (resp. bottom)
shows a result quasi-clique with 10 (resp. 11)
authors where each author cites at least 75%
other members and is cited by at least 75% other
members. We can see that these two quasi-cliques
correspond to two communities of renowned
database researchers that frequently cite each
others’ works; in fact, Jennifer Widom was Jun
Yang’s PhD advisor, so they know each other.

An alternative method without using (γ1, γ2)-
quasi-clique mining is to mine γ-quasi-cliques
from the undirected graph Gu. We mined 0.75-
quasi-cliques on Gu with τsize = 30, and ob-
tained 37 undirected quasi-cliques in total in 18.1
seconds. Fig. 7 shows a result 0.75-quasi-clique
with 30 authors. Note that the 10 authors plotted
on the inner circle are exactly those in Fig. 6
top. However, some authors on the outer circle
may have a low inbound or outbound degree.
For example, ‘Theodore Johnson’ has 18 outgoing
edges (highlighted in red) and merely 7 incoming
edges (in blue). This is because γ-quasi-cliques do
not care about edge directions. We remark that
the community in Fig. 6 top cannot be found
here since it is not maximal given the quasi-
clique in Fig. 7. Moreover, we also cannot further
reduce τsize from 30 to as low as 10, since there
are already 961,389 0.75-quasi-cliques when we
reduce τsize to 25. This shows the necessity of
our (γ1, γ2)-quasi-clique formulation for finding
highly cohesive directed subgraphs in real directed networks.

Recall that our algorithm can also handle the case when γ1
and/or γ2 < 0.5, by replacing B(v) with v’s d3/γmax−1e-hop
neighbor set in Gu (where γmax = max{γ1, γ2}) following
Theorem 1. We mined (0.6, 0.4)-quasi-cliques on G with
τsize = 22 in 1.7 seconds, and obtained only 1 valid quasi-
clique. Fig. 8 shows the result quasi-clique, where ‘Laura
M. Hass’ has 13 outgoing edges (in red) and 9 incoming
edges (in blue). Laura actually has the lowest indegree in
this community, but she is still connected by 42% of the
other researchers so the community is a valid (0.6, 0.4)-quasi-
clique. Note that Laura was not in all previously visualized
communities when our threshold values are 0.75, but she is
still in a relatively dense community if we lower our density
criteria a bit. Since the community in Fig. 8 is the only (0.6,
0.4)-quasi-clique with ≥ 22 vertices, it is clearly statistically
significant and Laura should be considered research active. If
we reduce τsize to 20, mining (0.6, 0.4)-quasi-cliques would
take 5.0 seconds and return 394 results.

VIII. CONCLUSION
We formulated the concept of (γ1, γ2)-quasi-cliques on

directed graphs, and proposed an efficient recursive algorithm

with many effective pruning rules to find maximal (γ1, γ2)-
quasi-cliques. We also studied a kernel-expansion approach to
find top-k large quasi-cliques directly by bootstrapping. The
algorithms are parallelized following a task-based framework
with effective load balancing. Extensive experiments
demonstrated the scalability of our algorithms, and we
analyzed the effectiveness of various pruning rules to obtain
a recommended default configuration that is generally
efficient on various datasets. A case study was conducted to
demonstrate the necessity of our new (γ1, γ2)-quasi-clique
formulation.
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APPENDIX

A. Proof of Theorem 1

Proof. Consider a (γ1, γ2)-quasi-clique Q of graph G. For an
arbitrary vertex v in Q, let us use Vj to denote the set of
vertices whose shortest distance in Gu is j hops away from
v, and assume that we can decompose Q into V0, V1, . . . , V`.
Then, we have

|V0| = 1, (4)
|V1| ≥ γmax · (|Q| − 1), (5)

|Vi−1|+ |Vi|+ |Vi+1| ≥ γmax · (|Q| − 1) + 1, (6)
|V`−1|+ |V`| ≥ γmax · (|Q| − 1) + 1, (7)

where Eq (4) is because V0 = {v}; Eq (5) is because V1
contain neighbors of v including γ1 in-neighbors and γ2 out-
neighbors; Eq (6) is because for a vertex u in Vi, its neighbors
must be within Vi−1 ∪ Vi ∪ Vi+1 (recall that Vj’s are defined
over Gu), and u plus its neighbors contain at least (γmax ·
(|Q|−1)+1) vertices; Eq (7) is because for a vertex u in V`,
its neighbors must be within V`−1 ∪ V`. Then we can add the
following formulas:

|V0|+ |V1| ≥ γmax · (|Q| − 1) + 1,

|V0|+ |V1|+ |V2| ≥ γmax · (|Q| − 1) + 1,

|V1|+ |V2|+ |V3| ≥ γmax · (|Q| − 1) + 1,

|V2|+ |V3|+ |V4| ≥ γmax · (|Q| − 1) + 1,

· · · ,

|V`−5|+ |V`−4|+ |V`−3| ≥ γmax · (|Q| − 1) + 1,

|V`−4|+ |V`−3|+ |V`−2| ≥ γmax · (|Q| − 1) + 1,

|V`−3|+ |V`−2|+ |V`−1| ≥ γmax · (|Q| − 1) + 1,

|V`−1|+ |V`| ≥ γmax · (|Q| − 1) + 1.

After summation, we have 3 · |Q| > the left hand side ≥
` · (γmax · (|Q| − 1) + 1), so:

` <
3|Q|

γmax(|Q| − 1) + 1
,

which completes the proof since the vertex farthest from v in
Q can be at most ` hops away.

B. Proof of Theorem 2

Proof. Consider any two vertices u, v in a (γ1, γ2)-quasi-
clique Q where γ1, γ2 ≥ 0.5, we can easily show that u and v
are at most 2 hops apart in Gu (c.f., Fig. 9). Specifically, we
prove below that any two vertices u, v in Q cannot be more
than 2 hops apart (i.e., cannot fall out of the 6 cases in Fig. 9).

Without loss of generality, we only consider the path from v
to u where the first edge is outbound from v, i.e., Cases 1(a)–
(c). Cases 2(a)–(c) are symmetric and can be similarly proved.

If v directly points to u, we are done since Case 1(a) occurs.
Now assume that edge (v, u) does not exist in G, and we show
that:
• Case (I): edge (u, v) does not exist in G, then both

Case 1(b) and Case 1(c) should be satisfied. (i) We first

v u v u
Case 1(b)Outbound from v Case 1(c)

v u
Case 1(a)

Inbound to v v u v u
Case 2(b) Case 2(c)

v u
Case 2(a)

Fig. 9. Cases for Two-Hop Diameter Upper Bound

prove Case 1(b). Note that u 6∈ N+(v) and v 6∈ N+(u).
Since γ1 ≥ 0.5, u and v each points to at least d0.5 ·
(|Q|−1)e other vertices in Q, so they must share an out-
neighbor; otherwise, there exist 2·d0.5·(|Q|−1)e ≥ |Q|−
1 vertices other than u and v, leading to a contradiction
since there will be at least (|Q|+ 1) vertices in Q when
adding u and v. (ii) We next prove Case 1(c). Note that
v 6∈ N−(u) and u 6∈ N+(v). Since γ1 ≥ 0.5, v points
to at least d0.5 · (|Q| − 1)e other vertices in Q (here, u
is excluded since u 6∈ N+(v)); also since γ2 ≥ 0.5, u is
pointed to by at least d0.5 · (|Q|−1)e other vertices in Q
(here, v is excluded since v 6∈ N−(u)). So, N+(v) and
N−(u) must intersect as illustrated by Fig. 9 Case 1(c);
otherwise, there will be (|Q| + 1) vertices in Q when
adding u and v.

• Case (II): edge (u, v) exists in G, then Case 1(c) should
be satisfied. The proof is the same as (ii) above. Note
that we cannot guarantee Case 1(b) anymore, since v ∈
N+(u), i.e., v can be one of the at least d0.5 · (|Q|− 1)e
neighbors of u, invalidating the prove for (i) above.

Symmetrically, consider the path from v to u where the first
edge is inbound to v, i.e., Cases 2(a)–(c). If u directly points
to v, we are done since Case 2(a) occurs. If edge (u, v) does
not exist in G:
• Case (III): edge (v, u) does not exist in G, then both

Case 2(b) and Case 2(c) should be satisfied. The proof is
symmetric to Case (I) above and thus omitted.

• Case (IV): edge (v, u) exists in G, then Case 2(c) should
be satisfied. The proof is symmetric to Case (II) above.

Putting the above discussions together, we obtain the fol-
lowing 4 cases, for each of which we explain how to exclude
an impossible candidate u from ext(S) given a vertex v ∈ S.
• Case A: (v, u) ∈ E and (u, v) ∈ E. In this case, we

always have u ∈ ext(S).
• Case B: (v, u) 6∈ E and (u, v) ∈ E. Based on Case (II)

above, we have u ∈ ext(S) only if a path u ← w ← v
exists in G for some w ∈ V (w 6= u, v).

• Case C: (v, u) ∈ E and (u, v) 6∈ E. Based on Case (IV)
above, we have u ∈ ext(S) only if a path u → w → v
exists in G for some w ∈ V (w 6= u, v).

• Case D: (v, u) 6∈ E and (u, v) 6∈ E. Based on Case (I)
above, we have Condition (C1): u ∈ ext(S) only if both
Case 1(b) and Case 1(c) in Fig. 9 are satisfied. Similarly,
based on Case (III) above, we have Condition (C2): u ∈
ext(S) only if both Case 2(b) and Case 2(c) are satisfied.
Combining both conditions, u ∈ ext(S) only if there
exist w1, w2, w3, w4 ∈ V −{u, v} such that u← w1 ← v
and u← w2 → v and u→ w3 ← v and u→ w4 → v.



Once we have applied the above rules to prune ext(S) to
exclude invalid candidates u, let us abuse the notation to use
G again to denote the resulting graph induced by S ∪ ext(S)
after pruning. Note that we can apply this diameter-based
pruning on the pruned G again, since some vertex w in Case B
(resp. Case C) could have been pruned by Case C (resp.
Case B) in the previous iteration, causing some required paths
to disappear, further invalidating more vertices u from ext(S).
This pruning can be iteratively run over G.

Based on the above idea, Algorithm 1 computes the set of
vertices in ext(S) that are not 2-hop pruned by a vertex v ∈ S.
Specifically, Line 1 computes O (resp. I) as the set of v’s out-
neighbors (resp. in-neighbors) u that belong to Case B (resp.
Case C).

Then, Line 3 recovers SO (resp. SI ) as the set of v’s all non-
pruned out-neighbors (resp. in-neighbors) w in Case B (resp.
Case C) with path v → w → u (resp. v ← w ← u). Note that
N±(v) ⊆ ext(S) based on Case A so its vertices cannot be
further pruned, so the iterative pruning is contributed by the
shrink of sets O and I .

Next, Line 4 prunes away those vertices u ∈ O (resp. u ∈ I)
that cannot find a path u ← w (resp. u → w) for some non-
pruned w ∈ N−(v) (resp. w ∈ N+(v)), which is based on
Case B (resp. Case C). Note that if O or I shrinks in Line 4,
Line 5 will trigger another iteration of pruning. When the loop
of Lines 2–5 exits, we have O (resp. I) being the remaining
vertices u ∈ ext(S) in Case B (resp. Case C) after iterative
pruning.

Finally, Line 6 computes the set B of vertices where u
satisfies Case D w.r.t. v, and Line 7 unions the 4 disjoint
candidate sets that correspond to Cases A, B, C and D,
respectively, to obtain the final 2-hop pruned ext(S) for a
vertex v ∈ S. We denote this set as B(v), which is returned
by Line 7.

C. Proof of Theorem 4

Proof. A valid (γ1, γ2)-quasi-clique Q ⊆ V should contain
at least τsize vertices (i.e. |Q| ≥ τsize), and therefore, for any
v ∈ Q, its outdegree d+(v) ≥ dγ1·(|Q|−1)e ≥ dγ1·(τsize−1)e
and indegree d−(v) ≥ dγ2 ·(|Q|−1)e ≥ dγ2 ·(τsize−1)e.

D. Degree-Based Pruning

Recall that d+V ′(v) = |N+
V ′(v)| and d−V ′(v) = |N−V ′(v)|.

Thus, d+S (v) (resp. d−S (v)) denotes the number of v’s out-
neighbors (resp. in-neighbors) in S, and d+ext(S)(v) (resp.
d−ext(S)(v)) denotes the number of v’s out-neighbors (resp. in-
neighbors) in ext(S).

Theorem 8 (Type I Degree Pruning). Given a vertex u ∈
ext(S), if Condition (i): d+S (u) + d+ext(S)(u) < dγ1 · (|S| +
d+ext(S)(u))e or Condition (ii): d−S (u) + d−ext(S)(u) < dγ2 ·
(|S|+ d−ext(S)(u))e holds, then u can be pruned from ext(S).

This theorem is a result of the following lemma proven by
[57].

Lemma 1. If a + n < dγ · (b + n)e where a, b, n ≥ 0, then
∀i ∈ [0, n], we have a+ i < dγ · (b+ i)e.

Proof of Theorem 8. Theorem 8 follows since for any valid
(γ1, γ2)-quasi-clique Q = S ∪ V ′ where u ∈ V ′ and V ′ ⊆
ext(S), we have

d+Q(u) = d+S (u) + d+V ′(u) (8)

< dγ1 · (|S|+ d+V ′(u))e (9)
≤ dγ1 · (|Q| − 1)e, (10)

where Eq (8) is because Q = S ∪ V ′; Eq (9) is derived
using Lemma 1, based on Condition (i) and the fact that
V ′ ⊆ ext(S); Eq (10) is because

(
S ∪ N+

V ′(u)
)
⊆
(
S ∪

V ′ − {u}
)
= Q − {u}. This result contradicts with the fact

that Q is a (γ1, γ2)-quasi-clique. Condition (ii) is symmetric
and a contradiction can be similarly derived. Therefore, if u
satisfies either Condition (i) or (ii), we can safely prune u
from ext(S).

Theorem 9 (Type II Degree Pruning). Given vertex v ∈
S, if (1) d+S (v) < dγ1 · |S|e and d+ext(S)(v) = 0, or (2) if
d+S (v) + d+ext(S)(v) < dγ1 · (|S| − 1 + d+ext(S)(v))e, then for
any S′ such that S ⊂ S′ ⊆ (S ∪ ext(S)), G(S′) cannot be a
(γ1, γ2)-quasi-clique.

Given vertex v ∈ S, if (1) d−S (v) < dγ2 · |S|e and
d−ext(S)(v) = 0, or (2) if d−S (v)+d

−
ext(S)(v) < dγ2 · (|S|−1+

d−ext(S)(v))e, then for any S′ such that S ⊂ S′ ⊆ (S∪ext(S)),
G(S′) cannot be a (γ1, γ2)-quasi-clique.

Proof. We hereby prove the pruning rule w.r.t. outdegrees, and
the other rule w.r.t. indegrees is symmetric and can be similarly
proved. First consider Condition (2), we have

d+Q(v) = d+S (v) + d+V ′(v) (11)

< dγ1 · (|S| − 1 + d+V ′(v))e (12)
≤ dγ1 · (|Q| − 1)e, (13)

where Eq (11) is because Q = S ∪ V ′; Eq (12) is derived
using Lemma 1, based on Condition (2) and the fact that V ′ ⊆
ext(S); Eq (13) is because

(
S ∪ N+

V ′(v)
)
⊆
(
S ∪ V ′

)
= Q.

This result contradicts with the fact that Q is a (γ1, γ2)-quasi-
clique. Note that as long as we find one such v ∈ S, there is no
need to extend S further. If d+ext(S)(v) = 0 in Condition (2),
then we obtain d+S (v) < dγ1 · (|S|− 1)e which is contained in
Condition (1). Note that Condition (2) applies to the case S =
S′ since i can be 0 in Lemma 1 (in contrast to Condition (1)
to be explained below).

Now let us consider Condition (1). Condition (1) allows
more effective pruning and is correct since for any valid quasi-
clique Q ⊃ S extended from S, we have V ′ 6= ∅ and

d+Q(v) ≤ d+S (v) + d+ext(S)(v) (14)

= d+S (v) (15)
< dγ1 · (|Q| − 1)e, (16)

where Eq (14) is because Q = S ∪ V ′ and V ′ ⊆ ext(S);
Eq (15) is because d+ext(S)(v) = 0 in Condition (1); Eq (16)
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is because d+S (v) < dγ1 · |S|e in Condition (1) and the fact
that |S| ≤ |Q| − 1 (recall that V ′ 6= ∅ and Q = S ∪ V ′).
This result contradicts with the fact that Q is a (γ1, γ2)-quasi-
clique. Note that the pruning of Condition (1) does not include
the case where S′ = S.

E. Upper Bound Based Pruning

We next define an upper bound, denoted by US , on the num-
ber of vertices in ext(S) that can be added to S concurrently
to form a (γ1, γ2)-quasi-clique. The definition of US is based
on d±S (v) and d±ext(S)(v) of all vertices v ∈ S and on d±S (u)
of vertices u ∈ ext(S) as summarized by Fig. 10, which we
describe next.

We first define d+min (resp. d−min) as the minimum outdegree
(resp. minimum indegree) of any vertex in S, where the
degrees are counted w.r.t. the other vertices in S ∪ ext(S)
(c.f. Fig. 10):

d+min = min
v∈S
{d+S (v) + d+ext(S)(v)}

d−min = min
v∈S
{d−S (v) + d−ext(S)(v)}

Now consider any quasi-clique S′ such that S ⊆ S′ ⊆
(S ∪ ext(S)). For any v ∈ S, we have d+S (v) + d+ext(S)(v) ≥
d+S′(v) ≥ dγ1·(|S′|−1)e and therefore, d+min ≥ dγ1·(|S′|−1)e.
As a result, bd+min/γ1c ≥ bdγ1 ·(|S′|−1)e/γ1c ≥ bγ1 ·(|S′|−
1)/γ1c = |S′| − 1, which gives the following upper bound on
|S′|:

|S′| ≤ bd+min/γ1c+ 1. (17)

We can similarly derive the other upper bound on |S′| w.r.t.
d−min:

|S′| ≤ bd−min/γ2c+ 1. (18)

Combining Eq (17) and Eq (18), we obtain:

|S′| ≤ min{bd+min/γ1c, bd
−
min/γ2c}+ 1. (19)

Let us define UminS as an upper bound on the number of
vertices from ext(S) that can further extend S to form a valid
quasi-clique. Using Eq (19) and the fact that vertices in S are
already included in a quasi-clique to find (i.e., S ⊆ S′), we
obtain (c.f. Fig. 10):

UminS = min{bd+min/γ1c, bd
−
min/γ2c}+ 1− |S|. (20)

We next tighten this upper bound using vertices in ext(S) =
{u+1 , u

+
2 , · · ·u+n }1, assuming that the vertices are listed in

1The superscript “+” is to indicate that vertices in ext(S) are ordered by outdegree.

non-increasing order of outdegree d+S (.). Similarly, we can
also tighten this upper bound using vertices in ext(S) =
{u−1 , u

−
2 , · · ·u−n }, assuming that the vertices are listed in non-

increasing order of indegree d−S (.). Then we have:

Lemma 2. Given an integer k such that 1 ≤ k ≤ n, if∑
v∈S d

+
S (v) +

∑k
i=1 d

−
S (u

−
i ) < |S| · dγ1(|S|+ k − 1)e, then

for any vertex set Z ⊆ ext(S) with |Z| = k, S ∪ Z is not a
(γ1, γ2)-quasi-clique.

Proof. If S′ is a (γ1, γ2)-quasi-clique, then for any v ∈ S′:

d+S′(v) ≥ dγ1 · (|S
′| − 1)e,

and therefore, for any S ⊆ S′, we have∑
v∈S

d+S′(v) ≥ |S| · dγ1(|S
′| − 1)e. (21)

Thus, to prove Lemma 2, we only need to show that∑
v∈S

d+S∪Z(v) < |S| · dγ1(|S|+ |Z| − 1)e, (22)

That is, Eq (21) is not satisfied for S′ = S ∪ Z, so a con-
tradiction happens that invalidates S′ from being a (γ1, γ2)-
quasi-clique.

We now show that Eq (22) is correct below:∑
v∈S

d+S∪Z(v) =
∑
v∈S

d+S (v) +
∑
v∈S

d+Z (v) (23)

=
∑
v∈S

d+S (v) +
∑
u∈Z

d−S (u) (24)

≤
∑
v∈S

d+S (v) +

|Z|∑
i=1

d−S (u
−
i ) (25)

< |S| · dγ1(|S|+ |Z| − 1)e, (26)

where Eq (23) is because Z ⊆ ext(S) so Z∩S = ∅; Eq (24) is
because

∑
v∈S d

+
Z (v) =

∑
u∈Z d

−
S (u) = the number of edges

pointing from vertices in S to vertices in Z; Eq (25) is because
u−1 , · · · , u−|Z| are the k (= |Z|) vertices with the highest d−S (.)
in ext(S); Eq (26) is because of Lemma 2 (k = |Z|).

Symmetrically, we can also prove the following lemma:

Lemma 3. Given an integer k such that 1 ≤ k ≤ n, if∑
v∈S d

−
S (v) +

∑k
i=1 d

+
S (u

+
i ) < |S| · dγ2(|S|+ k − 1)e, then

for any vertex set Z ⊆ ext(S) with |Z| = k, S ∪ Z is not a
(γ1, γ2)-quasi-clique.

Based on Lemma 2 and Lemma 3, we define a tightened
upper bound US as follows (c.f. Fig. 10):

US = max

{
t

∣∣∣∣(1 ≤ t ≤ UminS

)∧(∑
v∈S

d+S (v) +

t∑
i=1

d−S (u
−
i )

≥ |S| · dγ1(|S|+ t− 1)e
)∧(∑

v∈S
d−S (v) +

t∑
i=1

d+S (u
+
i )

≥ |S| · dγ2(|S|+ t− 1)e
)}

. (27)



If such a t cannot be found, then S cannot be extended
to generate a valid quasi-clique, which is a Type-II pruning.
Otherwise, we further consider the 4 pruning rules to be
described below which are based on US . Below, we only
prove the theorems for outdegree-based upper bound pruning;
the indegree-based rules are symmetric and can be similarly
proved. We first describe Type-I pruning rules:

Theorem 10 (Type-I Outdegree Upper Bound Pruning). Given
a vertex u ∈ ext(S), if d+S (u)+US−1 < dγ1 ·(|S|+US−1)e,
then u can be pruned from ext(S).

Proof. Consider any valid quasi-clique Q = S ∪ V ′ where
u ∈ V ′ and V ′ ⊆ ext(S). If the condition in Theorem 10
holds, i.e., d+S (u)+US−1 < dγ1 · (|S|+US−1)e, then based
on Lemma 1 and the fact that |V ′| ≤ US , we have:

d+S (u) + |V
′| − 1 < dγ1 · (|S|+ |V ′| − 1)e = dγ1 · (|Q| − 1)e,

(28)
and therefore, d+Q(u) = d+S (u)+d

+
V ′(u) ≤ d

+
S (u)+ |V ′|−1 <

dγ1 · (|Q| − 1)e (where the last step is due to Eq (28)), which
contradicts with the fact that Q is a quasi-clique.

Symmetrically, we can also prove the following theorem:
Theorem 11 (Type-I Indegree Upper Bound Pruning). Given
a vertex u ∈ ext(S), if d−S (u)+US−1 < dγ2 ·(|S|+US−1)e,
then u can be pruned from ext(S).

We next describe Type-II pruning rules:

Theorem 12 (Type-II Outdegree Upper Bound Pruning).
Given a vertex v ∈ S, if d+S (v) +US < dγ1 · (|S|+US − 1)e,
then for any S′ such that S ⊆ S′ ⊆ (S ∪ ext(S)), G(S′)
cannot be a (γ1, γ2)-quasi-clique.

Proof. Consider any valid quasi-clique Q = S ∪ V ′ where
v ∈ S and V ′ ⊆ ext(S). If the condition in Theorem 12
holds, i.e., d+S (v) + US < dγ1 · (|S| + US − 1)e, then based
on Lemma 1 and the fact that |V ′| ≤ US , we have:

d+S (v)+ |V
′| < dγ1 ·(|S|+ |V ′|−1)e = dγ1 ·(|Q|−1)e, (29)

and therefore, d+Q(v) = d+S (v) + d+V ′(v) ≤ d+S (v) + |V ′| <
dγ1 · (|Q| − 1)e (where the last step is due to Eq (29)), which
contradicts with the fact that Q is a quasi-clique.

Since i can be 0 in Lemma 1, the pruning of Theorem 12
includes the case where S′ = S, which is different from
Theorem 9.

Symmetrically, we can also prove the following theorem:

Theorem 13 (Type-II Indegree Upper Bound Pruning). Given
a vertex v ∈ S, if d−S (v) + US < dγ2 · (|S|+ US − 1)e, then
for any S′ such that S ⊆ S′ ⊆ (S ∪ ext(S)), G(S′) cannot
be a (γ1, γ2)-quasi-clique.

F. Lower Bound Based Pruning

Given a vertex set S, if some vertex v ∈ S has d+S (v) <
dγ1 · (|S| − 1)e (or d−S (v) < dγ2 · (|S| − 1)e), then at least a
certain number of vertices need to be added to S to increase
the outdegree (or indegree) of v in order to form a (γ1, γ2)-
quasi-clique. We denote this lower bound as Lmin, which is

dS|min LS|min

LS

dS(v) for all v ∈ S+

dS(v) for all v ∈ S–

++

dS(u) for u ∈ ext(S) sorted by outdegree+

dS(u) for u ∈ ext(S) sorted by indegree–

LS
min

dS|min LS|min
––

Fig. 11. Lower Bound Derivation

defined based on d±S (v) of all vertices v ∈ S and based on
d±S (u) of vertices u ∈ ext(S) as summarized by Fig. 11, which
we describe next.

We first define d+S |min as the minimum outdegree of any
vertex in S and d−S |min as the minimum indegree of any vertex
in S:

d+S |min = min
v∈S

d+S (v), d−S |min = min
v∈S

d−S (v)

Then, we can immediately derive the following two lower
bounds:

L+
S |min = min{t | d+S |min + t ≥ dγ1 · (|S|+ t− 1)e},(30)

L−S |min = min{t | d−S |min + t ≥ dγ2 · (|S|+ t− 1)e}.(31)

Note that if even when all t newly added vertices are counted
towards the degree of v ∈ S, the degree requirements w.r.t.
γ1 and γ2 are still not satisfied, then we cannot make S ∪ Z
(where Z ⊆ ext(S) and |Z| = t) a valid quasi-clique, hence t
is not valid. The lower bounds are taken as the smallest valid
t.

To find such L+
S |min (resp. L−S |min), we check t = 0, 1, · · · ,

|ext(S)|, and if none of them satisfies the inequality in Eq (30)
(resp. Eq (31)), then S and its extensions cannot produce a
valid quasi-clique, which is a Type-II pruning.

Otherwise, we obtain a lower bound:

LminS = max
{
L+
S |min, L

−
S |min

}
. (32)

We can further tighten this lower bound into LS be-
low using Lemma 2, assuming that vertices in ext(S) =
{u+1 , u

+
2 , · · · , u+n } are listed in non-increasing order of d+S (.),

and ext(S) = {u−1 , u−2 , · · · , u−n } are listed in non-increasing
order of d−S (.):

LS = min

{
t

∣∣∣∣ (LminS ≤ t ≤ n
)∧(∑

v∈S
d+S (v) +

t∑
i=1

d−S (u
−
i )

≥ |S| · dγ1(|S|+ t− 1)e
)∧(∑

v∈S
d−S (v) +

t∑
i=1

d+S (u
+
i )

≥ |S| · dγ2(|S|+ t− 1)e
)}

. (33)

If such a t cannot be found, then S cannot be extended
to generate a valid quasi-clique, which is Type-II pruning.
Otherwise, we further consider 4 pruning rules based on LS
which we list below. There, we only prove the theorems w.r.t.
outdegree, since those w.r.t. indegree are symmetric. We first
describe Type-I pruning rules:



Theorem 14 (Type-I Outdegree Lower Bound Pruning). Given
a vertex u ∈ ext(S), if d+S (u)+d

+
ext(S)(u) < dγ1 ·(|S|+LS−

1)e, then u can be pruned from ext(S).

Proof. Consider any valid quasi-clique Q = S∪V ′ where u ∈
V ′ and V ′ ⊆ ext(S). If the condition in Theorem 14 holds,
we have d+Q(u) = d+S (u) + d+V ′(u) ≤ d+S (u) + d+ext(S)(u) <

dγ1 · (|S| + LS − 1)e (due to the condition in Theorem 14)
≤ dγ1 · (|Q| − 1)e (since LS ≤ |V ′|), which contradicts the
fact that Q is a quasi-clique.

Symmetrically, we can also prove the following theorem:

Theorem 15 (Type-I Indegree Lower Bound Pruning). Given
a vertex u ∈ ext(S), if d−S (u)+d

−
ext(S)(u) < dγ2 ·(|S|+LS−

1)e, then u can be pruned from ext(S).

We next describe Type-II pruning rules:

Theorem 16 (Type-II Outdegree Lower Bound Pruning).
Given a vertex v ∈ S, if d+S (v) + d+ext(S)(v) < dγ1 · (|S| +
LS − 1)e, then for any S′ such that S ⊆ S′ ⊆ (S ∪ ext(S)),
G(S′) cannot be a (γ1, γ2)-quasi-clique.

Proof. Consider any valid quasi-clique Q = S ∪ V ′ where
v ∈ S and V ′ ⊆ ext(S). If the condition in Theorem 16 holds,
we have d+Q(v) = d+S (v) + d+V ′(v) ≤ d+S (v) + d+ext(S)(v) <

dγ1 · (|S| + LS − 1)e (due to the condition in Theorem 16)
≤ dγ1 · (|Q| − 1)e (since LS ≤ |V ′|), which contradicts the
fact that Q is a quasi-clique.

Symmetrically, we can also prove the following theorem:

Theorem 17 (Type-II Indegree Lower Bound Pruning). Given
a vertex v ∈ S, if d−S (v)+ d−ext(S)(v) < dγ2 · (|S|+LS − 1)e,
then for any S′ such that S ⊆ S′ ⊆ (S ∪ ext(S)), G(S′)
cannot be a (γ1, γ2)-quasi-clique.

G. Proof of Theorems 5 and 6

Proof. This theorem is correct because if u ∈ N+
ext(S)(v) is

not in S′, then d+S′(v) < d+S (v)+d
+
ext(S)(v) = dγ1 ·(|S|+LS−

1)e (due to Definition 3) ≤ dγ1 · (|S′|−1)e, which contradicts
with the fact that S′ is a (γ1, γ2)-quasi-clique.

Symmetrically, we can also prove Theorems 6.

H. Proof of Theorem 7

We first prove that for any (γ1, γ2)-quasi-clique Q generated
by extending S with vertices in C+

S (u), we have d+Q∪u(w) ≥
dγ1 · (|Q ∪ u| − 1)e = dγ1 · |Q|e for any vertex w ∈ Q ∪ u.
The other guarantee w.r.t. C−S (u) is symmetric and can be
similarly proved.

Proof. Recall from Fig. 3 that we only compute C+
S (u) for

pruning if we have

d+S (u) ≥ dγ1 · |S|e (34)
d+S (v) ≥ dγ1 · |S|e, ∀ v ∈ S ∧ v 6∈ N−(u) (35)

We divide the vertices w ∈ Q ∪ u in 3 disjoint sets (1) S,
(2) C+

S (u) ⊆ ext(S), and (3) {u} into 4 categories as follows,
and prove that d+Q∪u(w) ≥ dγ1 · |Q|e for any vertex w.

• Case 1: w = u (red in Fig. 3). Then, we have

d+Q∪u(u) = d+S (u) + |Q| − |S| (36)
≥ dγ1 · |S|e+ |Q| − |S| (37)
≥ dγ1 · |Q|e+ |Q| − |Q| (38)
≥ dγ1 · |Q|e,

where Eq (36) is because u points to all the blue vertices
in C+

S (u) (c.f. Fig. 3); Eq (37) is because of Eq (34); and
Eq (38) is because S ⊆ Q and dγ1 − 1e ≤ 0.

• Case 2: w ∈ S and w 6∈ N−(u) (green in Fig. 3).

d+Q∪u(w) = d+S (w) + |Q| − |S| (39)
≥ dγ1 · |S|e+ |Q| − |S| (40)
≥ dγ1 · |Q|e+ |Q| − |Q| (41)
≥ dγ1 · |Q|e,

where Eq (39) is because all the green vertices point to
all the blue vertices in C+

S (u) (c.f. Fig. 3); Eq (40) is
because of Eq (35); and Eq (41) is because S ⊆ Q and
dγ1 − 1e ≤ 0.

• Case 3: w ∈ S and w ∈ N−(u) (yellow in Fig. 3).

d+Q∪u(w) = d+Q(w) + 1 (42)
≥ dγ1 · (|Q| − 1)e+ 1 (43)
≥ dγ1 · |Q|e, (44)

where Eq (42) is because any yellow vertex in S should
point to u (c.f. Fig. 3); Eq (43) is because Q is a (γ1, γ2)-
quasi-clique; and Eq (44) is because d1− γ1e ≥ 0.

• Case 4: w ∈ C+
S (u) (blue in Fig. 3).

d+Q∪u(w) = d+Q(w) + 1 (45)
≥ dγ1 · (|Q| − 1)e+ 1 (46)
≥ dγ1 · |Q|e, (47)

where Eq (45) is because any blue vertex in C+
S (u)

should point to u (c.f. Fig. 3); Eq (46) is because
Q is a (γ1, γ2)-quasi-clique; and Eq (47) is because
d1− γ1e ≥ 0.

As a special case, if all vertices in S points to u, then we do
not have any vertex in Case 2, and our proof still holds. Here,
we just need to compute C−S (u) = N+

ext(S)(u) ∩ N
−
ext(S)(u)

(c.f. Eq (1)).

The other guarantee w.r.t. C−S (u) (c.f. Eq (2)) is symmetric
and can be similarly proved by reversing the directions of
all edges. That is, for any (γ1, γ2)-quasi-clique Q generated
by extending S with vertices in C−S (u), d

−
Q∪u(w) ≥ dγ2 ·

|Q|e for any w ∈ Q ∪ u. Combining both guarantees, for any
(γ1, γ2)-quasi-clique Q generated by extending S with vertices
in CS(u) = C+

S (u) ∩ C
−
S (u), Q ∪ u is also a (γ1, γ2)-quasi-

clique so Q is not maximal.
As for the degenerate special case when initially S =
∅, Eq (1) (resp. Eq (2)) becomes C+

S (u) = C−S (u) =
N+
ext(S)(u) ∩ N

−
ext(S)(u) and all neighbors of u belong to

ext(S), so CS(u) = C+
S (u) ∩ C−S (u) = N+

ext(S)(u) ∩



Algorithm 4 look ahead(S, ext(S))
1: if |Q| < τsize return FAIL
2: for each w ∈ S ∪ ext(S) do {here, we are iterating array A}
3: if d+S (w)+ d

+
ext(S)(w) < d+min(|S|+ |ext(S)|) return FAIL

4: if d−S (w)+ d
−
ext(S)(w) < d−min(|S|+ |ext(S)|) return FAIL

5: if w ∈ ext(S) and dBext(S)(w) < |ext(S)| − 1 return FAIL
6: return SUCCEED

N−ext(S)(u) = N+(u) ∩ N−(u), i.e., we only need to find
u as the vertex adjacent to the most number of bidirectional
edges in G to maximize |CS(u)| for cover-vertex pruning.
This is correct, since in our previous proof, there are no
vertex in Cases 2 and 3 so no vertex breaks the requirement
d+Q∪u(w) ≥ dγ1 · |Q|e for any vertex w ∈ Q ∪ u.

I. Degree Fields Maintained by Vertices in Array A

Each vertex object v in A (i.e., S ∪ ext(S)) maintains five
degrees (1) d+S (v), (2) d−S (v), (3) d+ext(S)(v), (4) d−ext(S)(v)
and (5) the number of 2-hop neighbors B(v) that are in ext(S),
denoted by dBext(S)(v) = |B(v) ∩ ext(S)|. These five degree
values are kept up-to-date whenever S and/or ext(S) changes
during the recursive mining, so that they can be accessed
in O(1) time when needed. Recall that these degree values
are frequently needed when evaluating the conditions of our
pruning rules, such as computing the bounds US and LS as
summarized in Fig. 10 and 11, so accessing them in O(1)
time is performance-critical. In fact, incrementally maintaining
these degree values has a low cost: if a vertex v is moved
or pruned, we only need to access those vertices in N+(v),
N−(v), and B(v) to increment/decrement their degree values
w.r.t. S and/or ext(S).

J. Quasi-Clique Validation & Look-Ahead Pruning

Quasi-Clique Validation. Recall that τsize is the size thresh-
old for a valid quasi-clique. Let us define two functions:

d+min(size) = dγ1 · (max{size, τsize} − 1)e, (48)
d−min(size) = dγ2 · (max{size, τsize} − 1)e. (49)

Then, the following theorem directly follows from the
definition of (γ1, γ2)-quasi-clique:

Theorem 18. Let Q be a vertex set, then Q is a valid quasi-
clique if and only if (i) |Q| ≥ τsize and (ii) for any vertex
v ∈ Q, we have d+Q(v) ≥ d

+
min(|Q|) and d−Q(v) ≥ d

−
min(|Q|).

The Look-Ahead Technique. This technique examines if S∪
ext(S) gives a valid quasi-clique, and if so, we output it and
avoid the unnecessary depth-first traversal of the subtree TS .
The rationale is that when G(S∪ext(S)) is a valid quasi-clique
and hence dense, traversing TS can be expensive since pruning
is less likely to be applicable during the traversal. In fact, when
mining structures with a hereditary property such as k-plexes,
look-ahead pruning is even essential since if G(S ∪ ext(S))
is a k-plex, every node S in TS is also a k-plex (and will thus
be explored) but not maximal [58].

Algorithm 4 checks if G(S ∪ ext(S)) is a (γ1, γ2)-quasi-
clique, and returns SUCCEED if so to skip the traversal of
subtree TS . Specifically, we first make sure |Q| ≥ τsize in

Algorithm 5 iterative bound pruning(S, ext(S))
1: compute bounds US and LS

2: conduct degree-based, upper- and lower-bound based pruning
using Type-II pruning rules for every v ∈ S

3: if S is Type-II pruned do return PRUNED
4: if LS ≤ US then
5: conduct degree-based, upper- and lower-bound based pruning

using Type-I pruning rules for every u ∈ ext(S)
6: while ext(S) 6= ∅ and ext(S) shrank do
7: update d+ext(S)(.) and d−ext(S)(.)
8: compute bounds US and LS

9: conduct degree-based, upper- and lower-bound based prun-
ing using Type-II pruning rules for every v ∈ S

10: if S is Type-II pruned then return PRUNED
11: if LS > US then ext(S)← ∅; return NOT PRUNED
12: conduct degree-based, upper- and lower-bound based prun-

ing using Type-I pruning rules for every u ∈ ext(S)
13: else ext(S)← ∅
14: return NOT PRUNED

Line 1. Then, we check each vertex w in array A = [S, ext(S)]
one by one (Line 2), to examine the conditions of Theorem 18.
If the conditions hold for all vertices in S ∪ ext(S), then
G(S∪ext(S)) is a valid quasi-clique so we return SUCCEED
in Line 6; while if they do not hold for some vertex w, we
return FAIL immediately as in Lines 3 and 4.

Line 5 provides an additional pruning if w is a vertex in
ext(S): if dBext(S)(w) < |ext(S)| − 1 (recall that we keep
dBext(S)(w) = |B(w) ∩ ext(S)| with w), then there must exist
another vertex u ∈ ext(S) such that u 6∈ B(w), so u and
w cannot appear together in any valid quasi-clique, including
G(S ∪ ext(S)). Note that we do not need to consider w ∈ S
since when we add w into S, we always make sure that w ∈
B(v) for any v ∈ S, and we always prune away those vertices
in ext(S) that are not in B(w).

K. Iterative Bound-Based Pruning

Whenever we remove a candidate vertex from ext(S) and/or
add a candidate vertex to S, the degrees of the vertices in
array A w.r.t. S and ext(S) would be incrementally updated,
creating new opportunities for degree-based pruning (c.f. Ap-
pendix D). Moreover, the degree updates would also cause the
bounds LS and US to be updated (c.f. Fig. 10 and 11), creating
new opportunities for upper bound pruning (c.f. Appendix E)
and lower bound based pruning (c.f. Appendix F).

Note that some of the above pruning rules could be
Type I rules, causing ext(S) to shrink, which in turn reduces
d+ext(S)(.) and d−ext(S)(.) and thus triggers another round of
bound-based pruning.

Algorithm 5 shows the process of iterative bound-based
pruning. Specifically, Line 1 first computes US and LS fol-
lowing the procedures summarized in Fig. 10 and 11. Type-II
pruning may occur during the process of computing US and
LS (c.f., the paragraphs after Eq (27), after Eq (33) and before
Eq (32)). If Type-II pruning occurs in Line 1, Algorithm 5
will return tag PRUNED directly so that the main algorithm
will skip subtree TS . Otherwise, Line 2 conducts degree-
based Type-II pruning (i.e., Theorem 9), upper-bound based
Type-II pruning (i.e., Theorems 12 and 13), and lower-bound



TABLE VIII
EFFECT OF QUASI-CLIQUE PARAMETERS ON Bitcoin

bitcoin

τsize γ1 γ2 Runtime            
(all rules)

Runtime                 
(w/o cover) # Maximal

10

0.67

0.6

72.32 16.29 166,014

0.68 68.53 15.49 166,014

0.69 56.13 14.40 174,785

0.7 36.71 9.88 287,139

0.71 21.40 3.28 24,962

0.72 16.20 2.78 34,470

0.73 12.09 1.88 9,446

10 0.7

0.57 54.32 13.39 261,451

0.58 43.23 12.09 281,868

0.59 38.20 8.99 287,139

0.6 36.71 9.88 287,139

0.61 23.40 4.18 72,215

0.62 22.71 4.39 72,333

0.63 23.42 4.29 72,333

7

0.7 0.6

41.65 12.54 320,836

8 41.82 12.82 320,763

9 39.44 11.21 289,114

10 36.71 9.88 287,139

11 36.00 9.00 287,138

12 23.83 1.99 24,344

1

based Type-II pruning (i.e., Theorems 16 and 17). Algorithm 5
returns PRUNED directly in Line 3 if S is Type-II pruned.
Otherwise, if we find LS > US in Line 4 meaning that
S cannot be expanded further into a valid quasi-clique, we
set ext(S) ← ∅ in Line 13 and return NOT PRUNED in
Line 14 to indicate that TS is not Type-II pruned. Note that
if iterative bound pruning(S, ext(S)) returns NOT PRUNED
but ext(S) has been set to ∅, we still need to examine if G(S)
is a valid quasi-clique but not any other descendant in TS .

Otherwise, Line 5 then conducts degree-based Type-I prun-
ing (i.e., Theorem 8), upper-bound based Type-I pruning (i.e.,
Theorems 10 and 11), and lower-bound based Type-I pruning
(i.e., Theorems 14 and 15). If some vertices have been Type-I
pruned from ext(S), and ext(S) 6= ∅ (Line 6), then since the
degrees d+ext(S)(.) and d−ext(S)(.) may decrease triggering the
update of US and LS and hence more pruning opportunities,
we enter the iterative pruning procedure given by Lines 6–
12. Specifically, Line 7 updates d+ext(S)(.) and d−ext(S)(.), and
Line 8 updates US and LS , to reflect the removal of Type-I
pruned vertices from ext(S). Then, Line 9 conducts Type-II
pruning once more, followed by Line 12 for Type-I pruning
once more, and the iterative pruning repeats by going back to
Line 6 for another iteration of pruning.

Note that Line 10 and Line 11 help skip unnecessarily
executing the expensive checking in Line 12 before checking

TABLE IX
EFFECT OF QUASI-CLIQUE PARAMETERS ON Epinionsepinions

τsize γ1 γ2 Runtime            
(all rules)

Runtime              
(w/o cover) # Maximal

20

0.77

0.9

15.54 6.24 469

0.78 15.86 6.15 469

0.79 15.95 5.94 469

0.8 15.54 6.82 469

0.81 10.84 5.05 345

0.82 10.84 4.25 345

0.83 10.63 4.74 345

20 0.8

0.87 46.49 11.27 2,669

0.88 34.88 9.28 2,669

0.89 18.48 7.37 2,669

0.9 15.54 6.82 469

0.91 6.24 4.24 0

0.92 5.44 3.13 0

0.93 3.84 2.74 0

17

0.8 0.9

18.60 7.14 687

18 17.11 7.62 477

19 17.28 6.38 473

20 15.54 6.82 469

21 14.95 5.84 469

22 10.48 4.07 24

1

the loop-exiting conditions in Line 6. Another detail not
shown in Algorithm 5 is with Condition (1) in Theorem 9
which Type-II prunes TS except for S itself, in which case
instead of returning PRUNED, we set ext(S) = ∅ and return
NOT PRUNED so G(S) will still be examined.

L. Effect of Quasi-Clique Parameters

Effect of Quasi-Clique Parameters. Recall that we tuned
the quasi-clique parameters (τsize, γ1, γ2) and used them in
our experiments by default. Here, we show how the mining
time and number of results vary as the parameters change,
using Bitcoin and Epinions.

We show the effect of changing the quasi-clique parameters
(τsize, γ1, γ2) by varying one parameter while fixing the other
two. Table VIII shows the results on Bitcoin for illustration.
We can see that a small change of a parameter value can
change the number of results a lot. For example, when
changing γ1 from (10, 0.7) to (10, 0.71), the result number
decreases from 287,139 to 24,962 due to the stricter density
requirements. The change of result number is, however, not
monotonic. For example, when changing γ1 from (10, 0.69) to
(10, 0.70), the result number actually increases which might
appear counter-intuitive. The reason is that some previously
valid quasi-cliques get split into multiple smaller quasi-cliques
rather than being eliminated. Table IX shows the results



TABLE X
ABLATION STUDY: ALL BUT ONEpolblogs_mathoverflow_google

Algorithm
PolBlogs Epinions Google

Runtime Memory Runtime Memory Runtime Memory

full version 8.68 79 15.66 479 0.77 564

w/o lookahead 7.96 72 14.74 520 0.78 611

w/o critical 9.08 88 16.25 532 0.78 583

w/o cover 1.46 31 6.82 290 0.79 565

w/o bound 48.90 184 268.40 924 0.76 572

1

baidu_usaroad_clueweb

Algorithm
Baidu USA Road ClueWeb

Runtime Memory Runtime Memory Runtime Memory

full version 9.21 1,524 9.81 15,170 172.85 25,5371

w/o lookahead 10.58 1,436 10.94 15,250 175.42 25,5690

w/o critical 10.20 1,509 10.79 15,223 171.75 25,5349

w/o cover 8.82 1,576 11.06 14,990 174.79 25,5437

w/o bound 10.67 1,439 10.52 15,041 176.47 25,5513

1

TABLE XI
ABLATION STUDY: INCREMENTAL ADDITIONablation2_1

Algorithm
MathOverflow PolBlogs Epinions

Runtime Memory Runtime Memory Runtime Memory

baseline 385.29 798 2.30 45 94.76 665

+bound 22.82 217 1.40 24 5.81 291

+critical 17.51 186 1.40 23 6.71 273

+lookahead 17.05 209 1.46 31 6.82 290

+cover 551.49 738 8.68 79 15.66 479

1

ablation2_2

Algorithm
Baidu USA Road ClueWeb

Runtime Memory Runtime Memory Runtime Memory

baseline 20.57 1,549 10.34 15,575 191.63 257,502

+bound 19.60 1,473 9.62 15,450 199.79 255,568

+critical 19.97 1,604 8.71 15,433 196.47 255,567

+lookahead 8.82 1,576 9.82 15,225 174.79 255,437

+cover 9.21 1,524 9.81 15,170 172.85 255,371

1

on Epinions for illustration, and we can obtain a similar
observation.

M. Ablation Study

We report the ablation study results of those algorithm
variants which use all but one technique on the other 6
datasets in Table X. We can see that bound-based pruning
is very effective, without which the running time can be much
longer as on PolBlogs and Epinions. Also, our recommended
configuration “w/o cover” is consistently the fastest or near-
fastest, and exhibits much better performance on PolBlogs and
Epinions than other configurations.

We also report our algorithm variants starting from a
baseline with basic diameter-based, size-threshold, and degree-
based pruning, and incrementally adding bound-based, critical-
vertex, look-ahead, and cover-vertex pruning, one at a time.

This gives algorithm variants denoted by “baseline,” “+bound,”
“+critical,” “+lookahead,” and “+cover.”

Table XI reports the results on the other 6 datasets. We
can see that bound-based pruning significantly speeds up the
baseline, especially on MathOverflow and Epinions. As we
have discussed previously, adding look-ahead and cover-vertex
pruning generally slows down the computation but can speed
up web graphs such as Baidu and ClueWeb (as well as Google
as shown in Table VI).

N. Scalability

We report the scalability study results of our parallel algo-
rithm with all pruning rules enabled in Fig. 12, and we report
the scalability study results of our parallel algorithm with all
but cover-vertex pruning in Fig. 13.

We can observe on most datasets that the running time
almost halves each time the number of threads doubles, except
that the time curve hits a floor higher than 0 on Baidu and
ClueWeb as the memory-bound computing of B(v) dominates
the runtime.
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Fig. 12. Scalability of “full version”
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Fig. 13. Scalability of “w/o cover”
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