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Abstract. Ecological inference requires integrating information across scales. This integra-
tion creates a complex spatial dependence structure that is most accurately represented by fully
non-stationary models. However, ecologists rarely use these models because they are difficult
to estimate and interpret. Here, we facilitate the use of fully non-stationary models in ecology
by improving the interpretability of a recently developed non-stationary model and applying it
to improve our understanding of the spatial processes driving lake eutrophication. We refor-
mulated a model that incorporates non-stationary correlation by adding environmental predic-
tors to the covariance function, thereby building on the intuition of mean regression. We
created ellipses to visualize how data at a given site correlate with their surroundings (i.e., the
range and directionality of underlying spatial processes). We applied this model to describe the
spatial dependence structure of variables related to lake eutrophication across two different
regions: a Midwestern United States region with highly agricultural landscapes, and a North-
eastern United States region with heterogeneous land use. For the Midwest, increases in forest
cover increased the homogeneity of the residual spatial structure of total phosphorus, indicat-
ing that macroscale processes dominated this nutrient’s spatial structure. Conversely, high for-
est cover and baseflow reduced the spatial homogeneity of chlorophyll a residuals, indicating
that microscale processes dominated for chlorophyll a in the Midwest. In the Northeast,
increases in urban land use and baseflow decreased the homogeneity of phosphorus concentra-
tions indicating the dominance of microscale processes, but none of our covariates were
strongly associated with the residual spatial structure of chlorophyll a. Our model showed that
the spatial dependence structure of environmental response variables shifts across space. It also
helped to explain this structure using ecologically relevant covariates from different scales
whose effects can be interpreted intuitively. This provided novel insight into the processes that
lead to eutrophication, a complex and pervasive environmental issue.
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INTRODUCTION

Integrating information across scales is a fundamental
problem in ecology (Levin 1992). Because ecological pro-
cesses are driven by factors at multiple, interacting spa-
tial scales, they often exhibit complex spatial dependence
structure. Dealing with this structure in a replicable way
is becoming increasingly important as the amalgamation
of ever larger datasets (e.g. NEON, GLEON, LAGOS,
LUCAS, etc.) allows researchers to ask questions at
broad spatial scales and fine tune the scale of an analysis.
Choosing a single scale for any ecological analysis is
risky because it limits inference and may produce biased

estimates (Denny et al. 2004, McCullough et al. 2019).
Inference from analyses at a single scale is particularly
risky if cross-scale interactions exist (Peters et al. 2004,
Soranno 2014). For example, the relationship between
wetland cover in the riparian lake buffer and lake total
phosphorus concentrations is scale dependent (Fergus
et al. 2011). As a result, large scale analyses (spanning
six States in the United States) indicate that local % wet-
land has no effect on lake total phosphorus concentra-
tions, but regional analyses show that this effect is
negative in regions with low levels of agricultural activity
and positive in regions with high levels of agricultural
activity (Soranno et al. 2014). Presenting patterns across
all scales that may affect a given process might mitigate
these risks (Denny et al. 2004), but creating a framework
with enough flexibility to estimate and describe these
patterns in an intuitive way remains a challenge. Meth-
ods for integrating scales have improved our

Manuscript received 25 August 2020; revised 31 March 2021;
accepted 18 May 2021; final version received 23 September
2021. Corresponding Editor: Mark Risser.

4 E-mail: charlotte.narr@siu.edu

Article e02485; page 1

Ecological Applications, 32(1), 2022, e02485
© 2021 by the Ecological Society of America

https://orcid.org/0000-0001-5172-9510
https://orcid.org/0000-0001-5172-9510
https://orcid.org/0000-0001-5172-9510
https://orcid.org/0000-0001-5503-7386
https://orcid.org/0000-0001-5503-7386
https://orcid.org/0000-0001-5503-7386
info:doi/10.1002/eap.2485
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feap.2485&domain=pdf&date_stamp=2021-11-21


understanding of the ecosystem consequences of many
phenomena, for example, evolution, biogeochemical
fluxes, and biogeography, but the continued improve-
ment and adoption of these methods is a critical compo-
nent of ecosystem management (Chave 2013).
One common way for ecologists to handle issues of

scale is to integrate information across scales and then
account for spatial or temporal autocorrelation. How-
ever, when spatial or temporal autocorrelation is
accounted for without investigating its source, large
amounts of unexplained spatial variation often remain,
and important ecological insights are difficult to extract
(Fergus et al. 2016). Analyzing the spatial structure that
many methods work to “look beyond” can increase the
explanatory power of ecological models, improving our
understanding of ecological relationships (Pickett and
Cadenasso 1995). For example, Lapierre et al. (2018)
explicitly analyzed the spatial structure of variables
describing water quality and environmental predictors
of water quality. They found that the strength of the
relationship between water quality and environmental
predictors increased as the similarity between their spa-
tial structures increased, suggesting that patterns in spa-
tial structure both induce and reflect ecologically
important information.
How can ecologists integrate data across scales in a

way that retains the important information hidden
within a dataset’s spatial dependence structure? One use-
ful option is to analyze the factors that shape spatial
structure at the same time variation across sites is ana-
lyzed. In other words, integrating across scales can be
facilitated by analyzing the covariance (which describes
the spatial dependence structure) along with the vari-
ance (which describes the mean variance across sites).
Analyzing spatial structure is challenging because the
range, or extent of spatial correlation among sites, can
vary across a given study region. This probably violates
a key assumption of many spatial statistics methods used
by ecologists, second-order stationarity, which assumes
that the specified spatial correlation structure does not
vary across the study region (Fortin and Dale 2016).
Many ecological phenomena are also heavily influenced
by directional processes, such as wind and elevation, that
may violate another assumption of many spatial models,
isotropy. Isotropy assumes that the strength of spatial
dependence is independent of direction. Conversely, ani-
sotropy occurs when the strength of spatial dependence
varies with direction. For example, if the prevailing wind
direction is east, we would expect that sites located on
the west-to-east axis are more correlated than those on
the north-to-south axis. However, even under stationary
anisotropic models, an identical “prevailing” direction is
used throughout the study region, which is often unreal-
istic for many ecological processes. Therefore, accurate
modeling of many ecological phenomena requires non-
stationary spatial models that relax these assumptions
and allow the covariance structure – in addition to the
mean – to vary across the study region.

Following seminal work by Higdon et al. (1999) and
later by Paciorek and Schervish (2006), non-stationary
models have been applied to a variety of complex envi-
ronmental processes. For example, Schmidt and Guttorp
(2011) used non-stationary spatial models to study solar
radiation in British Columbia, Canada and mean
temperatures in Colorado, USA. More recently,
non-stationary models have been used to study annual
precipitation: Ingebrigtsen and Lindgren (2014) focus on
Norway, whereas Xu and Gardoni (2018) work with
data collected in Colorado, USA. Unfortunately, many
of these methods are notoriously difficult to estimate
and can be difficult to interpret, which limits their utility
to non-expert users.
Recent progress in statistical methods has improved

the ease of estimation and interpretability of non-
stationary models, making these new models well suited
to integrate ecological information across scales. The
spatial dependence structure of an environmental pro-
cess is typically modeled by a covariance function into
which elements of non-stationary correlation can be
incorporated. Models that build on the intuition of
mean regression by adding environmental predictors to
the covariance function are particularly useful in investi-
gating the relationship between ecological covariates
and properties of spatial covariance (Calder 2008, Reich
et al. 2011, Vianna Neto and Schmidt 2014, Risser and
Calder 2015). When data from different scales are
included as covariates, these models effectively integrate
information across scales. For example, Risser and
Calder (2015) use a Bayesian covariate-driven non-
stationary model to describe the effects of elevation and
east–west slope on the spatial dependence structure of
precipitation in Colorado. Similarly, Vianna Neto et al.
(2014) develop a non-stationary model specifically for
directional covariates (e.g., prevailing wind direction)
and applied it to ozone pollution in the eastern United
States. Risser and Turek (2020) develop an R package
(BayesNSGP) that focused on making non-stationary
model computation easier for moderately sized data sets,
for example, annual precipitation for the entire continen-
tal United States. These projects illustrate the ongoing
interest in non-stationary spatial processes and the
potential of non-stationary models for integrating infor-
mation across multiple scales, but these have very rarely
been adopted by ecologists (but see Schmidt and
Rodrı́guez 2011 and Schmidt and Rodrı́guez 2015). The
paucity of non-stationary models in ecology may be
because these models can be difficult to implement by
non-statisticians, because model parameters can be diffi-
cult to interpret (but see Risser and Turek 2020 for
improvements in interpretability), or simply because
these models are not well known to ecologists.

Application

In this paper, our objective is to facilitate the use of
fully non-stationary models in ecology. We do this by
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integrating and building on the models of Vianna Neto
et al. (2014) and Risser and Calder (2015). We reformu-
late covariate-driven non-stationary models to empha-
size the interpretability of model parameters that
measure the influence of ecological variables within the
spatial covariance portion of the model. In contrast with
some previous work, we implement linear relationships
between environmental covariates and the anisotropy
angle and ratio using typical log and logit link functions.
The linearity of these relationships is important because
anisotropy angles and ratios can be increased and
reduced by changing covariate values. Our covariates
inform the shapes of local spatial correlation that are
easy to visualize. Specifically, following visualization in
Higdon et al. (1999) and Paciorek and Schervish (2006),
we characterize variation in spatial dependence using
locally stationary anisotropy ellipses. The orientation
and size of the ellipses are determined by the effect of
ecologically relevant covariates on the structure of the
spatial dependence. These ellipses represent how data at
each site correlate with their surroundings, thereby
reflecting the directionality of the underlying spatial pro-
cesses. Our models are estimated in a fully Bayesian set-
ting using the adaptive No-U-Turn Hamiltonian Monte
Carlo (NUTS HMC) method implemented in Stan 2.17
(Carpenter et al. 2017) in Rv.3.5 language (RCore Team
2019). In the context of complex correlated data, HMC
has been shown to consistently outperform traditional
MCMC samplers (Metropolis-Hastings and Gibbs) in
terms of effective samples per minute and model diag-
nostics (Monnahan and Thorson 2017, Monnahan and
Kristensen 2018, Nishio and Arakawa 2019).
To further facilitate the use of fully non-stationary

models among ecologists, we demonstrate the applica-
tion of our reformulated model and evaluate its robust-
ness and utility by using it to describe the spatial
dependence structure of a complex and pervasive envi-
ronmental issue, eutrophication. By evaluating the per-
formance of our model under different datasets and
parameterizations, we illustrate the model’s strengths
and limitations for different types of ecological datasets.
Eutrophication, caused by nutrient inputs to freshwater
systems from human activities such as agriculture and
urban development, is responsible for the deterioration
of coastal water quality and 20% of impaired river or
stream miles (Howarth and Sharpley 2002, Gilinsky
et al. 2009). Human activities contribute nutrients to
freshwater at multiple scales from point sources, such as
wastewater treatment plants, to N deposition that can
affect entire regions. Lakes in some watersheds are also
more sensitive to nutrient inputs than others (Stoddard
et al. 2016). As a result, freshwater nutrient concentra-
tions have dependence structures that are likely to vary
over space. Understanding how these spatial dependen-
cies structure the interaction between nutrient sources
and watershed characteristics to predict lake nutrient
concentrations and trophic status is a persistent chal-
lenge in ecosystem management.

The spatial dependence structure of nutrient concen-
trations in lakes probably reflects the main drivers of
nutrient inputs into lakes, i.e., watershed transport
capacity and land use. Generally, when transport capac-
ity is low, fine-scale or within-lake properties exert a
stronger influence on nutrient concentrations, but when
transport capacities are high, larger scale or watershed
level activities can become more important (Fraterrigo
and Downing 2008). Therefore, urban areas often serve
as nutrient sources to nearby lakes but, in areas where
baseflow is high, the nutrients from urban areas may tra-
vel further, contaminating lakes that are more distant
from cities. This high baseflow could create zones of
increased homogeneity in the spatial dependence struc-
ture of nutrients in lakes down gradient from other lakes.
The effect of baseflow on the spatial structure might
then be well represented by a thin ellipse (an ellipse with
a high ratio of length to width) angled in the direction of
flow.
To examine this possibility, we applied our non-

stationary model to describe the spatial dependence
structure of lake nitrogen (N), phosphorus (P), and
chlorophyll a (from this point forwards “Chla”) concen-
trations, as well as N:P ratios across two different
regions in the United States: first, a Midwestern region
including the States of Iowa, Wisconsin, and Illinois,
and second, a Northeastern region including the State
of New York. Investigating the spatial dependence
structures of these four aspects of water quality in two
distinct regions allowed us to examine the performance
of our model across eight datasets and four response
variables.
We also explored the role of covariate choice in model

performance. We suspected that our non-stationary
model would perform better when the spatial covariance
function was parameterized with covariates that exhibit
strong spatial structure. To examine this possibility, we
parameterized the spatial dependence structure of each
response variable in each region with the same three sets
of covariates. This design allowed us to assess model per-
formance across covariance parameters (holding the
variance portion of the model constant) and within
covariance parameters (allowing the covariance portion
of the model to vary). Because we expected the spatial
dependence structure of lake nutrients to reflect the
combined effects of watershed transport capacity and
land use, we parameterized the spatial covariance por-
tion of our models with covariates representing combi-
nations of both the movement (baseflow) and potential
sources of nutrients within a watershed. In each location,
and for each response variable, we estimated the spatial
covariance structure using three different sets of vari-
ables: (1) baseflow and total N deposition in the water-
shed, (2) baseflow and the percent urban land use in
each watershed, and (3) baseflow and the percent of for-
est cover in each watershed (i.e. not developed for urban
or agricultural activities). Finally, we conducted analyses
to determine if the spatial structure of these covariates
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affected our ability to estimate their effects within the
context of covariate-driven non-stationary models.

METHODS

Stationary spatial models

The least complex stationary spatial models are isotro-
pic, where the extent of spatial correlation – measured
by the range parameter ρ inside the covariance function
– remains constant in all directions and at all locations
(Fig. 1a). This produces circular, concentric correlation
contours, with stronger spatial correlation near the loca-
tions where data have been observed. Real-world spatial
processes are rarely truly isotropic, however isotropic
models may serve as useful approximations of more
complex processes, especially if the study region is rela-
tively small and geographically homogeneous.
Stationary anisotropic models (Fig. 1b) are a natural

extension of isotropic models, where we elongate the cor-
relation contours at all locations by the so-called aniso-
tropy ratio (λ) along some direction (θ), both of which
are estimated from the data. Isotropy is a special case of
anisotropy, in which the anisotropy ratio, which is the
ratio of major-to-minor axis of each ellipse, is set to 1.
Although anisotropic models are theoretically more gen-
eral, the assumption that there exists one identical pre-
dominant direction across the study region is often
tenuous. This assumption probably holds true only if the
study region is relatively small and the geophysical
mechanism that induces directionality is well defined,
for example, air pollution and prevailing wind patterns.

More formally, in the context of stationary anisotropic
models, the correlation structure at each site sð Þ is
described by an ellipse Σ sð Þ, where all intersite distances
are rotated counterclockwise through an angle θ and
then compressed in that direction by the anisotropy ratio
λ. By compressing distances in direction θ, we thereby
induce greater spatial correlation in that direction, as
spatial correlation functions intuitively assume that cor-
relation is greater at small intersite distances. By defini-
tion, stationary models assume that θ and λ do not
change with site, so we can write Σ sð Þ ¼ Σ for all sites.
We parameterize anisotropy ellipses following Schaben-
berger and Gotway (2005) and Bass and Sahu (2017),
such that:

Σ ¼ cosθ �sinθ
sinθ cosθ

� � λ 0

0 1

� �
cosθ sinθ
�sinθ cosθ

� �

As λ approaches 1, the ellipses become less elongated
and start to resemble circles, and so spatial dependence
approaches isotropy. Consistent with this, when λ= 1,
anisotropy angle θ is not estimable. Distances are com-
puted on the rotated and scaled coordinates and these
transformed distances are input into a spatial correlation
function, for example the exponential, such that

ρ h∗, δð Þ ¼ exp �δh∗ð Þ, where h∗ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsi � sjÞTH si � sj

� �q
with H ¼ λ2 cos2 θþ sin2 θ λ2 � 1

� �
cosθ sinθ

λ2 � 1
� �

cosθ sinθ cos2θþ λ2 sin2θ

 !
.

The likelihood of the outcome variable Y sð Þ is
assumed to be multivariate Normal: Y sð Þ ∼
MVN X sð Þβ, Ωð Þij ¼ α2ρ h∗ij , δ

� �
þ τ2I

� �
with spatially

FIG. 1. Stylized examples of spatial correlation contours with four locations under stationary isotropy (a), stationary anisotropy
(b), and non-stationarity (c). Anisotropy ratio (lambda) and baseline range (rho) are labeled on the figure.

Article e02485; page 4 CHARLOTTE F. NARR ET AL.
Ecological Applications

Vol. 32, No. 1



varying mean X sð Þβ and an N �N variance–covariance
matrix Ω.

Non-stationary spatial models

There are many potential reasons why non-stationary
spatial correlation arises. Among these, the most com-
mon reason is that the study region is sufficiently large
such that a homogeneous (i.e., stationary) spatial corre-
lation structure is no longer feasible (e.g., Sampson
2010). Non-stationary models are estimated specifically
to relax the assumption that Σ sð Þ ¼ Σ, allowing the ani-
sotropy ellipse – and therefore the direction and strength
of spatial dependence – to vary at each site sð Þ (Fig. 1c).
This is akin to additionally allowing the variance–co-
variance matrix to depend on site inside the likelihood
function: Y sð Þ ∼ MVN X sð Þβ, Ω sð Þð Þ. The estimation
task becomes considerably more complex, in which we
must now estimate one anisotropy ellipse per location.
Furthermore, methods that introduce this level of flexi-
bility into the spatial correlation structure while retain-
ing model interpretability tend to be relatively
uncommon (Kleiber and Nychka 2012).
Here, we extend ideas recently introduced by Risser

and Calder (2015) and Vianna Neto et al. (2014), who
suggest using spatially indexed covariates to inform how
anisotropy varies in space. Risser and Calder (2015)
adapt a covariance regression (e.g., see Hoff and Niu
2012) to construct the spatial correlation kernel at each
spatial location as a quadratic function of observed
covariates. Vianna Neto et al. (2014) allow spatially
varying directional effects by setting the angle of greater
spatial correlation to be a deterministic function of a
vector-valued directional covariate. Both papers operate
under a Bayesian estimation paradigm by sampling from
the posterior distribution using a Gibbs sampler. Fur-
thermore, both papers feature relatively small spatial
datasets with 195 and 48 locations, respectively, ostensi-
bly to avoid the well known “big N problem” in spatial
statistics (e.g., Gelfand and Banerjee 2017). Therefore,
we introduce spatially varying angles as θ sð Þ and spa-
tially varying ratios as λ sð Þ and specify hierarchical lin-
ear processes for each one, such that:

π� logit�1 θ sð Þð Þ ∼ N αT þ XT sð ÞβT , ψTð Þ
and log λ sð Þð Þ ∼ N αL þ XL sð ÞβL, ψLð Þ

where the symbol ∼ is read “distributed as,” parameters
αT and αL serve as “baseline” angle and ratios, and
matrices XT sð Þ and XL sð Þ are design matrices for angles
and ratios, respectively. In introducing these design
matrices, we gain the ability to investigate the associa-
tion between any general covariates and the spatially
varying angles and ratios separately. Finally, we note
that with our specification, we aim to disentangle sys-
tematic variation (via the mean structure of the two Nor-
mal distributions) from random variation, or variation

due to noise (via the two “error” standard deviations ψT
and ψL).
By specifying linear processes for each spatially vary-

ing anisotropy parameter, we can understand the impact
of covariates using familiar GLM-like interpretations.
For example, if the coefficient βL1

> 0, this implies that
the anisotropy ratio – and consequently the size of the
ellipse and the geographic extent of spatial dependence –
increase by exp βL1

� �
for each unit change in the covari-

ate x1. The intercepts for each process reflect the “base-
line” anisotropy ratio and angle across the region. With
centered covariates, this “baseline” would be the esti-
mated anisotropy ratio and angle over locations with
average values for all covariates. Note that we are free to
specify quadratic terms and interactions inside the two
design matrices, in addition to using both quantitative
and categorical covariates. Furthermore, we can suggest
evidence of statistically significant non-stationarity by
recording whether 0 is inside the credible interval for
either βT and βL. More formally, one could also desig-
nate a Region of Practical Equivalence (ROPE), for
example a range between −0.1 and 0.1 (Kruschke 2014),
and perform a formal Bayesian hypothesis test. Of
course, we could encounter the case where there exists
non-stationarity in angles, but not in ratios, and vice
versa. Finally, stationary models are a special case of
our model: we recover anisotropy when βL ¼ 0, βT ¼ 0,
and the “baseline” λ> 1; we recover isotropy when
βL ¼ 0, βT ¼ 0 and the “baseline” λ ¼ 1.
The anisotropy ellipse at each location is a function of

θ sð Þ and λ sð Þ, such that:

Σ sð Þ ¼ cos θ sð Þ½ � �sin θ sð Þ½ �
sin θ sð Þ½ � cos θ sð Þ½ �

� � λ sð Þ 0

0 1

� �

cos θ sð Þ½ � sin θ sð Þ½ �
�sin θ sð Þ½ � cos θ sð Þ½ �

� �

Following Paciorek and Schervish (2006), once each
Σ sð Þ is defined and assuming a stationary variance
α2 þ τ2, we combine (more formally: convolve) N such
ellipses into a positive-definite non-stationary variance–
covariance matrix through:

ðΩÞNS
ij ¼ α2 Σ sið Þj j14 Σ s j

� �		 		14 Σ sið Þðj
þ Σ s j

� �Þ=2j�1
2RS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q si, s j
� �q� �

þ τ2I

Q si, s j
� � ¼ ðsi � s jÞT Σ sið Þ þ Σ s j

� �� �
=2

� ��1
si � s j
� �

where RS is any stationary isotropic spatial correlation
function, α2 is the spatial variance, and τ2 is the nugget
variance. We use the usual exponential spatial correla-
tion function throughout this manuscript. The likeli-
hood of the outcome variable is again assumed to be
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multivariate Normal with mean X 0 sð Þβ and a non-
stationary variance–covariance matrix ΩNS .
To further clarify our estimation strategy, we combine

all parameters to be estimated into the vector
Ψ ¼ β, αT , βT , αL, βL, ψT , ψL, α2, τ2


 �
, which parame-

terizes the mean function, the covariance function, the
spatial variance, and the nugget variance, respectively.
Our models focus on the marginal likelihood f ðY jΨÞ,
which marginalizes over the N spatial effects and has
a closed form for the multivariate Normal:
Y sð Þ ∼ MVN X 0 sð Þβ, ΩNS

� �
. The posterior distribution

is then specified as: p ΨjYð Þ / f Y jΨð Þ � p Ψð Þ, where the
priors are assumed to be a priori independent. Rela-
tive to the conditional likelihood, working with the mar-
ginal likelihood is known to reduce the computational
burden and produce a computationally better behaved
variance–covariance matrix (Banerjee and Carlin 2015).
To contrast our model specification against others,

in the Risser and Calder (2015) model, covariates
interact via a quadratic function with the entire aniso-
tropy ellipse via a covariance regression: not aniso-
tropy angles and ratios separately. This means that the
coefficients in Risser and Calder’s model are only
estimable up to a constant. Therefore, we would be
unable to discern positive associations from negative
associations, for example. Risser and Calder allow the
variance (α2) to be non-stationary and itself depend
on a set of parameters, an extension we do not pursue
in the current paper. The model in Vianna Neto et al.
(2014) allows only the angles to vary in space as a
deterministic function of directional covariates and
assumes all other covariance parameters are stationary.
Finally, the seminal Paciorek and Schervish (2006)
model uses two additional N-dimensional Gaussian
processes, each with its own variance and range
parameter, to allow anisotropy angles and ratios to
vary smoothly in space. Although this approach is
intuitive, it is computationally prohibitive, as noted by
the authors in their paper.

Data and model parameterization

We applied our statistical model to limnological and
geospatial data from the LAGOS-NELIMNO v.1.087.3
(Soranno and Bacon 2017, Soranno and Cheruvelil
2019) accessed using the lagosne R package (Stachelek
and Oliver 2017). This database includes limnological
information synthesized from 87 State agency, federal
agency, university, tribal and citizen science water qual-
ity monitoring programs, and has undergone extensive
quality assurance and control to ensure data are compa-
rable (Soranno 2015). We used this dataset to explore
the utility of our non-stationary model across a range of
response variables, datasets, and covariates by parame-
terizing it in different ways using the following steps: (1)
choosing four response variables of major importance
for water quality, (2) identifying a suite of potential pre-
dictor variables for these response variables from three

spatial scales, (3) identifying two different regions within
the United States, with an appropriate number of lakes
for model exploration, (4) creating a reduced set of
uncorrelated predictors for each response variable within
each region to use to parameterize the mean (non-
spatial) portion of the model, (5) choosing three sets of
covariates to parameterize the covariance (spatial) por-
tion of the model. Each of these steps is outlined in
detail below.
In step one, we chose four limnological response vari-

ables from LAGOS-NELIMNO that are related to lake
eutrophication: total nitrogen (TN), total phosphorus
(TP), chlorophyll a (Chla), and the stoichiometric ratio
of total nitrogen to total phosphorus (N:P). N:P is
related to nutrient limitation of primary production, but
it can be more difficult to explain cross-lake spatial pat-
terns in N:P compared with nutrient concentrations
(Collins et al. 2017). We calculated the decadal median
value for each response variable. In step two, we devel-
oped candidate models using predictor variables that
have been shown to drive water quality at continental
scales (Taranu and Gregory-Eaves 2008, Read 2015,
Collins et al. 2017, Lapierre et al. 2018). Predictor vari-
ables were generated from LAGOS-NEGEO v1.05 (Sor-
anno and Cheruvelil 2017), and either related to climate
and hydrology at the 8-digit hydrological unit code
(HUC 8) watershed scale, land use at the lake watershed
scale, or individual characteristics of lakes (e.g., lake
depth, lake surface area).
In step three, we identified two distinct regions within

the United States that would allow us to examine the
success and utility of our non-stationary model in dif-
ferent environmental contexts: the Midwest (Iowa, Illi-
nois, and Wisconsin), and the Northeast (New York).
We selected these regions because we wanted to test the
model in contiguous areas with data from 100 to 300
lakes, a broad range of water quality conditions, and a
broad range of environmental conditions for multiple
types of covariates (Fig. 2). To maintain consistency
between the two regions while limiting potential multi-
collinearity, we added a fourth step examining correla-
tions between a single, large set of potential predictors
for each region and removing predictors until there
were no correlations >0.5. This process produced a set
of predictors that included: average HUC 8 baseflow,
average HUC 8 TN deposition, % urban land use in the
individual lake watershed, % forest land cover in the
individual lake watershed, lake area, maximum lake
depth, lake connection (whether a lake is isolated, a
headwater lake, a drainage lake, or a drainage lake with
upstream lakes), and the ratio of lake area to watershed
area, which is a common proxy for water residence
time. Using this common set of predictors, we con-
ducted ordinary least squares regression (OLS) to
determine which predictors explained the most varia-
tion in TP, TN, N:P, and Chla in each location and, as
a result, belong in the mean portion of the non-
stationary model. The parameters used in the mean
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and covariance portions of each model are shown in
Table 1.
In the fifth and final step of model parameterization,

we created three sets of covariates to include in the
non-stationary portion of the model. To facilitate the
computation of these models, we limited the number of
parameters in the non-stationary portion of the model
to two variables that represented the transport and
source of nutrients within a watershed. In each set of
covariates, baseflow was used to represent the transport
of nutrients, but we varied the second parameter to
reflect either broad (N deposition) or finer scale (percent
land use) watershed processes. Therefore, for each
response variable in each region, we held the non-spatial

portion of the model constant and parameterized the
spatial portion of the model (both the ratio and angle of
the spatial dependence structure) with (1) baseflow and
total N deposition in the watershed, (2) baseflow and
the percent urban land use in each watershed, and (3)
baseflow and the percent of forest cover in each water-
shed (i.e. not developed for urban or agricultural activi-
ties). All covariates were centered and standardized.

Interpreting model output

To determine the ability of our model to accurately
estimate the effects of covariates on the spatial structure
of the residuals, we ran our Bayesian models for 1,000

FIG. 2. Map of the two study regions showing total phosphorus (TP) data in each lake (a, b) and boxplot (c) showing the distri-
butions of covariates included in the spatial covariance portion of the model covariate distributions for each study region.
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iterations following a 300 iteration warm-up period for
each model, using an “adapt delta” parameter of 0.9.
For models that were used for ecological inference, these
specifications produced effective sample sizes that ran-
ged between 137 for percent urban’s effect on the aniso-
tropy angle and 2952 for maximum lake depth’s effect
on the mean.
Information criteria (e.g., Akaike information crite-

rion [AIC], Bayesian information criteria [BIC],
deviance information criterion [DIC], Watanabe-Akaike
information criterion [WAIC]) are routinely used to
compare statistical models and select one that is
expected to perform best for the purpose of out-
of-sample prediction. However, lakes included in the
LAGOS-NE database are known to be a biased sample
of all North American lakes (Stanley et al. 2019), mak-
ing it generally inappropriate to make predictions on
out-of-sample lakes based on these data. In addition,
interpolation to unobserved lakes is not our main
research focus for the current paper. In Bayesian data
analysis, even when prediction is not the goal, informa-
tion criteria can offer clues about the robustness of
model specification and the informativeness of priors.
To that end, we computed the WAIC (Watanabe 2013)
for the models that converged, in addition to other indi-
cators of MCMC performance (R-hat, Effective Sample
Size, divergent transitions). For ecological inference, we
validated the results of models with low effective sample

sizes by doubling the total number of iterations. Code
for accessing data, running models, and making figures
is available (see Open Research). Priors for each parame-
terization of the model are shown in Appendix S1:
Table S1.
To compare the performance of the model across each

parameterization, we examined three metrics of model
performance: the number of divergent transitions, the
smallest effective sample size (across all parameters),
and the largest R-hat statistic (across all parameters).
Divergent transitions can indicate potential pathological
areas in the posterior due to a problematic combination
of likelihood and priors and/or non-identifiability of
model parameters. Common problematic areas comprise
funnel-like shapes or, more generally, any region of
extreme curvature in the posterior (Betancourt 2017).
Model specifications that produce many divergent tran-
sitions indicate certain areas of the posterior have not
been sampled and therefore invalidates further inference.
A few divergent transitions can still occur for trivial
numerical errors in computing the posterior and there-
fore can still lead to valid inference. Small effective sam-
ple sizes reflect autocorrelation in successive MCMC
samples and are detrimental to posterior inference, often
indicating that chains are not efficiently exploring the
posterior. Finally, large R-hat statistics can indicate a
lack of convergence in MCMC chains, further invalidat-
ing posterior inference. Therefore, it is desirable to have
the smallest number of divergent transitions, the largest
effective sample size, and R-hat statistics that are closest
to 1.
We suspected that our non-stationary model would

perform better when the spatial covariance function was
parameterized with covariates that exhibit strong spatial
structure. We tested this prediction by first estimating
the Effective Degrees of Freedom (EDF) and % deviance
explained of a Generalized Additive Model smoothing
term on the spatial coordinates for each covariate, then
we graphically compared the EDF and % deviance of
each covariate to the three metrics of model perfor-
mance described above.

RESULTS

MCMC performance

Our metrics (number of divergent transitions, smallest
effective sample size, and the largest R-hat) suggest that
there is substantial variation in the ability of our
approach to reliably estimate the effects of covariates on
the residual spatial structure of our selected water qual-
ity variables. This variation in model performance was
not associated with any specific region, water quality
response variable (i.e., TP, TN, Chla, or N:P), or covari-
ate (N deposition, baseflow, or watershed land use/-
cover). However, the number of divergent transitions
was lower for covariates with stronger spatial structure,
as indicated by the EDF and % deviance explained of a

TABLE 1. Predictor variables from LAGOS-NEGEO v1.05
included in the stationary portion of the model for each
response variable and region.

Response Region Fixed effects

TN MW N deposition, Watershed % forest, Lake2
Depth, Lake Width to area ratio

NE N deposition, Watershed % forest, Lake
Depth, Lake Width to area ratio

TP MW Baseflow, Watershed % forest, Lake
Depth, Lake Connectivity

NE N deposition, Watershed % forest, Lake
Depth, Lake Width to area ratio

Chla MW Baseflow, Watershed % forest, Lake
Depth, Lake Connectivity, Total Lake
N and P

NE Baseflow, Watershed % forest, Lake
Width to area ratio, Lake Total N

N:P MW Baseflow, Lake Depth, Lake Connectivity
NE N deposition, Baseflow, Watershed %

forest, Lake Width to area ratio

Notes: We selected specific predictors for each parameteriza-
tion to avoid multicollinearity and to explain the most variation
for each response variable within a region according to ordinary
least squares regression. Each of these stationary portions of
the model was run with three different non-stationary portions
of the model. The non-stationary portion of the model (both
the angle and ratio) was specified by (1) baseflow and total N
deposition in the watershed, (2) baseflow and the percent urban
land use in each watershed, and (3) baseflow and the percent of
forest cover in each watershed (i.e. not developed for urban or
agricultural activities).
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Generalized Additive Model smoothing term estimated
for each covariate (Fig. 3a, b). Furthermore, there was
no clear relationship between the lowest effective sample
size, the highest R-hat and the strength of the covariates’
spatial structure (Fig. 3c–f).

Model comparison using WAIC

We used WAICs computed based on marginal log-
likelihood for those models that converged to produce
reliable results (Table 2). Compared with their stationary
counterparts, the non-stationary models attain a lower
marginal WAIC in all cases except for Chla in the
Midwest region. In that case, misspecification of the

non-stationary model is evident by the effective number
of parameters being unrealistically large. In other cases,
we show that non-stationarity among TP covariances is
best explained by baseflow and % urban in New York
and by baseflow and % forest in the Midwest. This result
is intuitive for New York because the credible intervals
for the two coefficients comfortably exclude 0 (Fig. 4a).
For the Midwest, only the credible interval for % forest
excludes 0, but this model still attains the lowest WAIC
among the three specifications tested. In all cases, the
effective number of parameters for the non-stationary
models is somewhat overestimated. Whereas the spatial
effects do not count toward effective parameters inside
the marginal WAIC, more research is needed to

FIG. 3. (a–f) Three metrics of model success as a function of the Effective Degrees of Freedom (EDF) and percent deviance
explained by a spatial smoothing term for each covariate estimated via a General Additive Models (GAMs). Covariates with higher
EDFs and % deviance explained reflect the presence of stronger spatial structure in the covariate values. Generally, confidence in
model parameter estimates increases with fewer divergent transitions, higher effective sample sizes, and lower R-hats. Error bars
represent standard errors across all indicators of water quality under consideration.
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understand how parameters inside the covariance func-
tion count toward the total number of effective parame-
ters.

Microscale and macroscale patterns in lake water quality

Our reformulated non-stationary model described the
effects of ecologically relevant covariates on the residual

spatial structure of TP and Chla. For TN and N:P, the
parameter estimates in the covariance function were
either unreliable (effective sample size < 100, and R-hat
values >1.03) or uninformative. The estimated effects of
baseflow, N deposition, and watershed percent forest on
N:P ratios in the Northeastern region overlapped with
zero. We focus on TP and Chla for the remainder of the
results. Residual spatial structure of TP and Chla varies

TABLE 2. Marginal Watanabe-Akaike Information Criteria (WAIC) for models that have converged.

Response† Covariance structure

Non-stationary model Stationary model‡

ELPD pWAIC WAIC ELPD pWAIC WAIC

New York
Chla baseflow + % forest −170.1 12.1 340.2 −178.6 4.4 357.3
TP baseflow + % forest −734.4 722.1 1468.8
TP baseflow + N dep. −321.1 280.7 642.2 −141.8 4.0 283.6
TP baseflow + % urban −136.5 32.5 273.1

Midwest
Chla baseflow + % forest −1908.1 1767 3816.3 −413.6 5.8 827.1
TP baseflow + % forest −325.8 22.5 651.5
TP baseflow + N dep. −335.8 12.5 671.6 −346.8 5.1 693.7
TP baseflow + % urban −334.6 19.2 669.1

Notes: Our reformulated non-stationary models are compared vs. stationary model for two regions (Midwest and New York),
two response variables (Chla and TP), and three covariance structure specifications (baseflow + forest, baseflow + N deposition,
baseflow + urban). ELPD is the Expected Log Predictive Density; pWAIC is the effective number of parameters; WAIC is the mar-
ginal WAIC. The model that attains the lowest WAIC for each response variable is bolded.
† All outcome variables were log-transformed prior to analysis.
‡ Stationary model has no covariates in its covariance function, therefore only one set of values per response variable is provided.

FIG. 4. Association of environmental covariates on the residual spatial structure of lake total phosphorus (TP) (a) and chloro-
phyll a (Chla) (b) in the Midwestern and Northeastern regions. Higher estimates reflect the presence of larger anisotropy ellipses,
indicating greater spatial homogeneity. Error bars indicate upper and lower 90% Highest Probability Density Intervals. Baseflow
was included as a covariate in all models, but the effect shown on TP is estimated from a model that includes watershed urban land
use as a covariate. Baseflow estimates from the other models for TP are not shown because they did not produce reliable estimates
(effective sample size < 100, and R-hat values >1.03). Similarly, N deposition and urban land use are not shown for Chla because
our models did not produce reliable estimates for these covariates.
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markedly across the Midwest and New York. Our model
describes this variation using ellipses of locally station-
ary kernels that vary in size and angle of orientation as a
linear function of different environmental covariates
(Figs. 5, 6).
Our model indicates that the covariates that explain

non-stationary correlation in the spatial structure of lake
TP and Chla in the Midwestern region are different from
those in the Northeast (Fig. 4). For TP in the Midwest,
the shapes of the ellipses were best described by forested
land cover in the lake watershed, such that more forested
areas produced larger ellipses, reflecting stronger spatial
dependence and therefore greater spatial homogeneity
(Fig. 4a). In the Northeast, we found that the shapes of
the ellipses were best described by baseflow and urban
land use in the lake watershed: higher baseflows and
watersheds with smaller percentages of urban areas were
associated with larger ellipses and therefore more spatial
homogeneity. Conversely, increases in both % forest and
baseflow produced smaller ellipses for Chla in the Mid-
west, indicating weak residual spatial dependence. In

other words, the mean function in the Midwest essen-
tially explains almost all geographic variation of Chla.
None of our covariates were strongly associated with the
residual spatial structure of Chla in the Northeast (Fig.
4b).

DISCUSSION

Consistent with previous work and our expectations,
our reformulated non-stationary spatial model showed
that the spatial dependence structure of environmental
data varies across space. Our model helps to explain
this structure using ecologically relevant covariates
whose effects can be interpreted intuitively. Because
these covariates were taken from multiple scales (e.g. at
the watershed and basin levels), our model effectively
integrates information across scales. Importantly, this
integration of scales provided novel insight into the
processes that lead to eutrophication, a complex and
pervasive environmental issue. We demonstrated the
presence of non-stationary spatial correlation of two

FIG. 5. Residual spatial process of lake total phosphorus (TP) in the Midwestern region (a) and Northeastern region (c).
Ellipses generated by our covariate-driven non-stationary model reflect the estimated effect of watershed percent forest in the Mid-
west (b) and baseflow and watershed percent urban in the Northeast (d). Percent forest (b) and percent urban (d) are shown with
ellipses for context.
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indicators of lake water quality (TP and Chla), identi-
fied several environmental drivers of this non-
stationary correlation, and showed that these drivers
are different in the Midwestern vs. Northeastern
United States. Our results suggest that the use of sta-
tionary models (either isotropic or anisotropic) may be
inappropriate for water quality variables and demon-
strate how micro and macroscale phenomena work
together to shape the water quality of lakes. Our model
not only satisfies these assumptions, but it improves our
understanding of the relationships between watershed
characteristics and indicators of water quality by using
these characteristics to explain additional variation in
spatial structure.

Enhancing the interpretability of non-stationary models

Our reformulated model detects areas where spatial
correlation varies systematically at some regional or

continental scale. However, even in non-stationary mod-
els, valid variance–covariance matrices require homoge-
nous spatial correlation at very fine scales. In other
words, non-stationary models require local stationarity.
To this end, Paciorek and Schervish (2006) used Gaus-
sian processes to ensure that their spatial kernels vary
smoothly in space. In contrast, our non-stationary
model improves interpretability by linking the direction
and strength of spatial dependence to environmental
covariates via linear models. This essentially mandates
that the spatial correlation changes with each covariate
and ignores the effect of covariates on local stationarity.
Intuitively, covariates that themselves are spatially
smooth and therefore exhibit strong spatial structure are
better candidates to explain non-stationary correlation
in a way that produces a locally stationary process. Con-
versely, covariates with geographic patterns that resem-
ble checker-board patterns would probably require
spatial correlation to change too abruptly to preserve

FIG. 6. Residual spatial structure of lake chlorophyll a (Chla) in the Midwestern region (a) and Northeastern region (c). Ellipses
generated by our covariate-driven non-stationary model reflect the effect of baseflow and watershed percent forest in the Midwest
(b) and Northeast (d) on the spatial covariance of the residuals. Percent forest (b) and smoothed residuals (d) are shown with
ellipses for context.

Article e02485; page 12 CHARLOTTE F. NARR ET AL.
Ecological Applications

Vol. 32, No. 1



local stationarity. We find evidence to support this
assertion with poor model performance when percent
urban land use is used inside the covariance function
(Fig. 3).
With any Bayesian analysis, priors are important for/

exert a strong influence over parameters that are not
well-identified by the data. In our model, and also in
our experience with stationary anisotropic models, we
find that anisotropy angles are relatively poorly defined
compared with anisotropy ratios. Therefore, we recom-
mend experimenting with informative priors for the spa-
tial process for angles, whereas one may leave priors as
weakly informative or uninformative for ratios. A major
aim of our analysis was to evaluate the robustness of the
model, so we kept our priors as weakly informative or
uninformative as possible.

Model comparison via information criteria

Model comparison and selection using information
criteria – despite being routinely applied to select the
“best” model – remains an open question in statistics.
Gelman and Hwang (2014) contrast several commonly
used criteria (AIC, DIC, WAIC) and conclude that each
can be flawed in certain circumstances. For example, the
WAIC can be poorly defined with structured data, and
the DIC fails (Spiegelhalter et al., 1999, 2014), among
other cases, when posterior distributions are poorly sum-
marized by their means. Some researchers go further to
question the entire premise of selecting a statistical
model based on a single criterion (e.g., see Christian P.
Robert’s comment published alongside Spiegelhalter
et al., 2014).
The task is more complex in the context of spatial

models because the analyst must decide whether it is
more sensible to use the marginal or the conditional log-
likelihood as the basis of their chosen criterion. This
choice results in vastly different values and is referred to
as the selection of “model focus,” which has been com-
prehensively discussed by Millar (2009) and Celeux,
(2006), among others. Computational considerations
often influence the analyst’s decisions as well: Banerjee
et al. (2015) note that marginal likelihoods are often bet-
ter behaved in spatial models with a Gaussian outcome.
However, marginal likelihoods may be intractable when
the distribution of the outcome is not Gaussian. To this
end, Millar (2018) and Li et al. (2016) recommend using
marginal information criteria whenever possible, espe-
cially when the number of observations per “cluster” is
low, as is common with spatial data.
Among our models that converged, the non-

stationary models attained a lower marginal WAIC for
all but one response variable. The number of effective
parameters – often considered an indicator of misspecifi-
cation – was expectedly larger in non-stationary models
and remained generally close to the number of parame-
ters being estimated. Whereas the spatial effects do not
count toward effective parameters inside the marginal

WAIC, more research is needed to understand how
parameters inside the covariance function count toward
the total number of effective parameters. Model evalua-
tion via the conditional WAIC, or the newly developed
Leave-One-Out Information Criterion (Vehtari and Gel-
man 2017) was outside the scope of our work but could
be explored in future analyses.

Model inferences for water quality

Our results indicate that the spatial dependence
structure of TP concentrations among lakes is best
described by watershed percent forest in the Midwest-
ern States of Iowa, Illinois and Wisconsin, but, in the
State of New York, it is best described by urbanization
and baseflow. Multiple studies link freshwater P inputs
to watershed percent forest, urbanization, and base-
flow, but we are unaware of any work examining the
effects of these watershed characteristics on the spatial
structure of P concentrations among lakes. It is gener-
ally expected that forested areas have lower levels of
anthropogenic P inputs than urbanized ones (Noe and
Hupp 2005, Ellison and Brett 2006, Wakida et al.
2014). Our results suggest that lakes in forested areas
are also more similar to one another in terms of P
concentration than those in urban areas. The increased
heterogeneity of lake P concentrations in urban areas
suggests that P concentrations in the lakes of urban-
ized watersheds are governed by fine-scale processes,
while those in forested watersheds are controlled by
broader scale processes. This is consistent with the well
documented diversity of point and non-point P sources
in urban landscapes and the complex structural matrix
through which these inputs are transported into aqua-
tic ecosystems (Kaushal and Belt 2012). High base-
flows appear to counteract the effects of urbanization
on the spatial dependence structure of lake P. Baseflow
probably increases homogeneity in lakes P by increas-
ing P transport among lakes.
While TP concentrations were more spatially homoge-

nous among lakes in watersheds with high % forest and
baseflows, Chla concentrations were more spatially
heterogenous among lakes in Midwestern watersheds
with these attributes. These results indicate that Chla is
governed by finer scale processes than TP in forested,
high baseflow catchments, and they highlight the com-
plex relationship between lake nutrient concentrations
and trophic status. TP is often directly related to Chla in
lakes, but the strength of this relationship is spatially
structured (Fergus et al. 2016). This structure may be
particularly pronounced in forested water sheds where
light limitation reduces the effect of nutrients on chloro-
phyll (Lowe and Golladay 1986) and wooded wetlands
magnify it (Wagner et al. 2011).
We successfully applied this spatial modeling

approach for TP and Chla. However, our model did not
produce reliable estimates of the effects of covariates on
the spatial dependence structure of lake TN in either
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region or lake N:P ratios in the Midwestern region.
Where our model produced reliable estimates for predic-
tors of the spatial dependence of lake N:P ratios (in the
Northeast), they overlapped with zero. We were sur-
prised that we were unable to explain the spatial struc-
ture of lake TN. Previous studies using both TN and TP
as response variables have produced similar results for
both elements (e.g., Read et al. 2015, Collins et al.
2017). One potential explanation for the lack of success
detecting the spatial dependence structure of lake TN is
that the average time series for N data in LAGOS-NE is
much shorter than P or Chla (Stanley et al. 2019). As a
result, the decadal medians we used in the analysis were
based on fewer data points and, potentially, noisier data.
We were not surprised that our model failed to detect
effects of our covariates on the spatial dependence struc-
ture of lake N:P ratios. Spatial patterns in stoichiometric
ratios are relatively difficult to explain with the geo-
graphic and lake characteristics in LAGOS (Collins
et al. 2017).

Application to other ecological datasets

The past decade has produced new insights about
macrosystems biology and new data products that can
be used to address ecological questions at regional to
continental scales. Some databases (including data from
LAGOS-NE used in this manuscript) are compilations
of numerous existing data collection efforts that were
harmonized into a single database (Soranno et al.
2015). The ample amount of water quality data col-
lected by state, federal, university, tribal and citizen
monitoring programs across the United States led to
spatial data coverage in LAGOS-NE that had a suffi-
cient density of sampling sites over space to successfully
employ this modeling approach. Monitoring programs
that are designed specifically to collect data for a partic-
ular project or agency (e.g., NEON, US EPA National
Lakes Assessment) have some sampling design advan-
tages, such as the capacity to select sites in a stratified
random design, or a more even availability of data
across sites, but these programs typically include fewer
collection sites at a lower density. Fitting spatial models
to data products with more limited spatial coverage
(i.e., fewer sites clustered in close proximity, and fewer
sites overall) may be challenging, but our results suggest
that we should rise to the challenge because non-
stationary spatial modeling approaches can lend new
insights into macroscale ecological questions. The high
spatial coverage of remotely sensed water quality data
(e.g. Ross et al. 2019) is particularly suitable for the
application of our non-stationary models. In general,
spatial locations that are evenly spaced throughout the
study region are known to be optimal for prediction,
whereas locations that are clustered together are known
to be optimal for parameter estimation (e.g., Zhu and
Zhang 2006). To this end, we expect that lake locations
in LAGOS-NE should lend themselves well to

successful estimation of model parameters. Intuitively,
databases that carry water quality data sampled from
locations that are clustered together, would make better
candidates for future application of our non-stationary
models.
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