The VLDB Journal (2022) 31:253-286
https://doi.org/10.1007/s00778-021-00687-0

SPECIAL ISSUE PAPER l‘)

Check for
updates

PrefixFPM: a parallel framework for general-purpose mining of
frequent and closed patterns

Da Yan'® - Wenwen Qu? - Guimu Guo' - Xiaoling Wang? - Yang Zhou3

Received: 30 August 2020 / Revised: 27 April 2021 / Accepted: 10 July 2021 / Published online: 9 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

A frequent pattern is a substructure that appears in a database with frequency (aka. support) no less than a user-specified
threshold, while a closed pattern is one that has no super-pattern that has the same support. Here, a substructure can refer
to different structural forms, such as itemsets, subsequences, subtrees, and subgraphs, and mining such substructures is
important in many real applications such as product recommendation and feature extraction. Currently, there lacks a general
programming framework that can be easily customized to mine different types of patterns, and existing parallel and distributed
solutions are 10-bound rendering CPU cores underutilized. Since mining frequent and/or closed patterns are NP-hard, it is
important to fully utilize the available CPU cores. This paper presents such a general-purpose framework called PrefixFPM.
The framework is based on the idea of prefix projection which allows a divide-and-conquer mining paradigm. PrefixFPM
exposes a unified programming interface to users who can readily customize it to mine their desired patterns. We have adapted
the state-of-the-art serial algorithms for mining patterns including subsequences, subtrees, and subgraphs on top of PrefixFPM,

and extensive experiments demonstrate an excellent speedup ratio of PrefixFPM with the number of CPU cores.

Keywords Frequent pattern - Closed pattern - Parallel

1 Introduction

Frequent patterns are substructures that appear in a database
with frequency (called support) no less than a user-specified
threshold. For example, a subsequence, such as buying first a

Da Yan and Wenwen Qu are parallel first authors.

> Da Yan
yanda@uab.edu

B Wenwen Qu
wenwenqu@stu.ecnu.edu.cn

Guimu Guo
guimuguo@uab.edu
Xiaoling Wang
xlwang@cs.ecnu.edu.cn

Yang Zhou
yangzhou@auburn.edu

Department of Computer Science, The University of Alabama
at Birmingham, Birmingham, AL, USA

Shanghai Key Laboratory of Trustworthy Computing, East
China Normal University (ECNU), Shanghai, China

Department of Computer Science and Software Engineering,
Auburn University, Auburn, AL, USA

laptop, then a mouse, and then a mouse pad, if it occurs fre-
quently in a database of user shopping histories, is a frequent
sequential pattern.

The previous pattern « = (laptop, mouse, mouse pad), is
checked against a database D of the so-called transactions,
which are the individual elements of D. In our context, a
transaction is a sequence of purchasing history of one user,
such as s = (laptop, memory card, mouse, and mouse pad)
which is a super-sequence of « and thus supports « (or, con-
tributes 1 to o’s support).

A closed pattern is one that has no super-pattern that has
the same support. Referring back to the previous sequential
pattern « again, if we have a subsequence 8 = (laptop, mouse
pad) that has the same support as «, then § is not closed.
There are also other variants of frequent patterns such as
maximal patterns and high-utility patterns [14], which fall
in the algorithmic category that we study. Without loss of
generality, we simply use the term frequent pattern mining
(FPM) to mean this category of problems.

FPM has been at the core of data mining research for
over two decades [1], where numerous serial algorithms have
been proposed for mining various types of substructures. The
mined frequent substructures have also been widely used in

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00687-0&domain=pdf
http://orcid.org/0000-0002-4653-0408

254

D.Yanetal.

many real applications. For example, FG-index [5] constructs
a nested inverted index based on the set of frequent sub-
graphs, to speed up the finding of those graphs in a graph
database that contains a query subgraph, while [21] uses fre-
quent subgraphs as features for classifying labeled graphs
modeling real-world data such as chemical compounds.

With the popularity of Big Data and Hadoop, and the need
of FPM over Big Data, many parallel and distributed solu-
tions to FPM emerge such as those based on MapReduce
[2,24,32] and other dedicated ones [38,45]. However, as we
shall explain in Sect. 2, all these works adopt an Apriori
approach where frequent patterns of size (i + 1) are gener-
ated from all frequent patterns of size i, leading to an iterative
algorithm where Iteration i mines all frequent patterns of
sizei.

This simple approach has a catastrophic performance
impact when implemented in a distributed environment. For
example, data instances that contain size-i patterns need to be
transmitted across the network to various machines for grow-
ing size-(i + 1) patterns, and to get their frequency, another
round of communication is needed for pattern frequency
aggregation. This basically associates a data movement with
each computing operation (e.g., growing a pattern or adding
a frequency counter), but the former is the performance bot-
tleneck rendering CPU cores underutilized. The performance
is further exacerbated by the fact that the frequent patterns
found in each iteration often need to be dumped to Hadoop
Distributed File System (which replicates data) and then
loaded back in Iteration (i + 1).

As our experiments in Sect. 8.8 will show, Spark MLIib
can be 5x to 60x slower than our proposed single-machine
solution when running with one computing thread to mine
frequent sequential patterns, while Sect. 8.9 will show that an
existing MapReduce algorithm for mining frequent subgraph
patterns [2] running with 10 machines is found to be 56x
slower than even the serial program of gSpan [49]. Similar
observation holds for non-distributed parallel solutions such
as RStream [45], as we shall see in Sect. 8.5.

We propose a novel parallel framework called PrefixE PM
for frequent pattern mining (FPM) that is able to fully utilize
the CPU cores in a multicore machine. Instead of checking
patterns in breadth-first order using Apriori algorithms, Pre-
fixFPM adopts the prefix projection approach pioneered by
PrefixSpan [31] and followed by many later works on FPM.

As we shall explain in Sect. 3, prefix projection partitions
the workloads of pattern checking by divide and conquer,
which naturally fits in a task-based parallel execution model,
also, depth-first pattern-growth order allows a small memory
footprint as one does not have to keep all size-i patterns for
pattern growth, and it allows a pattern § that is grown from «
to only examine the subset of data that contain « (called o’s
projected database). PrefixFPM also features a user-friendly
programming model where users can customize it (by imple-

@ Springer

menting some user-defined functions) to mine different kinds
of patterns by adapting existing serial algorithms. The paral-
lel execution details are handled by PrefixFPM itself and are
transparent to users.

We remark that PrefixFPM currently focuses on min-
ing frequent patterns against a database with many small
to moderate-sized transactions, where pattern frequency is
a natural criterion satisfying the famous antimonotonicity
property. There also exists another problem setting in the
literature where one mines frequent itemsets (aka. coloca-
tion patterns) from a large set of spatial objects [4], or
mines frequent subgraphs in a big graph [10]. However,
frequency alone does not satisfy antimonotonicity in such
single-transaction scenario, and more advanced support mea-
sures are needed such as minimum image [3] for a big graph,
and fraction score for colocation pattern mining [4]. As
a result, different algorithms are needed with more com-
plicated support evaluation. We remark that our T-thinker
paradigm (foundation of PrefixFPM, see Sect. 2.1) still
applies to this setting, such as the recursive procedure Sub-
graphExtension of GRAMI [10], but our G-thinker [18,46]
framework for handling a single big graph is a more suitable
platform for such parallelization than PrefixFPM which tar-
gets a database of transactions. We will explore this direction
on top of G-thinker as a future work.

The main contributions of this work are summarized as
follows.

— As far as we know, PrefixFPM is the first programming
framework that unifies the mining of different types of
frequent patterns; the resulted program is additionally
efficient for parallel execution.

— We designed a general programming interface which can
be easily customized by users for their desired pattern
types; the interface also allows different FPM problems
to share the same backend for parallel execution.

— PrefixFPM adopts prefix projection to enjoy the benefit of
examining shrinking projected databases, and the divide-
and-conquer nature of prefix projection also enables a
task-based engine to concurrently examine different pat-
terns to fully utilize CPU cores.

— We have provided the parallel implementations of 7 state-
of-the-art serial pattern mining algorithms including
PrefixSpan [31], CloSpan [48], Sleuth [56], TreeMiner
[53], PrefixTreeSpan [59], gSpan [49], and Gaston [27]
on top of PrefixFPM, which demonstrate an excellent
speedup with the number of CPU cores.

This paper is a journal extension of our ICDE short paper
[50] where we originally only briefly discussed PrefixFPM,
and some results on PrefixFPM parallelization of PrefixSpan
[31], gSpan [49], and Sleuth [56]. This journal extension
now provides the complete PrefixFPM parallel algorithms

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 255

for all the 7 FPM algorithms listed above, including 4 new
algorithms so that a richer set of pattern types are covered
including closed patterns (i.e., CloSpan [48]), ordered (i.e.,
TreeMiner [53] and PrefixTreeSpan [59]) and unordered tree
patterns (i.e., Sleuth [56]), and a mixture of path, free tree,
and graph patterns (i.e., Gaston [27]).

This journal extension (i) presents implementations of the
user-defined functions in PrefixFPM for each application
with sufficient details; (ii) adds a new timeout mechanism
for task decomposition in the system design for better load
balancing compared with our ICDE version; and (iii) reports
more extensive experiments using both real and synthetics
datasets, including pros and cons of parallelizing different
algorithms for the same problem (e.g., TreeMiner v.s. Pre-
fixTreeSpan).

We have also open-sourced all our system and application
codes on GitHub' to be readily used by other researchers and
data mining practitioners.

The rest of this paper is organized as follows. Section 2
reviews existing Big Data solutions to various FPM prob-
lems and explains why their execution is IO-bound. Section 3
overviews the idea of prefix projection and how PrefixFPM
utilizes it for task parallelism. Section 4 introduces our pro-
gramming model for unifying FPM problems. Then, Sects. 5,
6, and 7 present our PrefixFPM algorithms to mine sub-
sequence patterns, subtree patterns, and subgraph patterns,
respectively. Finally, Sect. 8 reports the results of our exten-
sive experimental studies and Sect. 9 concludes this paper.

2 Related work

In this section, we first review the 10-bound performance
bottleneck issue that existing works have, as well as our T-
thinker paradigm to address this issue for divide-and-conquer
algorithms. We then review the existing works on parallel and
distributed FPM and motivate the need of PrefixFPM.

2.1 10 bottleneck issue and the T-thinker paradigm

Researchers have begun to realize the issue that IO-bound
Big Data frameworks can be ill-suited for compute-heavy
problems like our FPM. In [8], McSherry indicates that
“the current excitement about distributed computation (e.g.,
Hadoop, Spark) produced implementations that improve
when you give them more resources (they ‘scale’) but whose
performance never quite gets to where you would be with a
simple single-threaded implementation on a laptop.” Basi-
cally, the frameworks aggregate the IO bandwidth of disks
and/or network (NICs) of many machines in a shared-nothing
environment, but the aggregate throughput is still not beyond

! https://github.com/wenwenQu/PrefixFPM

that of a single CPU core. Specific to graph processing, [25]
found that even for IO-intensive problems such as comput-
ing PageRanks and connected components where the time
complexity is low, the performance of existing graph-parallel
systems is comparable and sometimes even slower than sim-
ple, single-threaded implementations using a high-end 2014
laptop.

This is of no exception in the context of FPM. For
example, Arabesque [38] was proposed in SOSP 2015 as a
distributed system that can handle frequent subgraph mining.
Later in OSDI 2018, RStream [45] was developed following
Arabesque’s programming model, but it utilizes relational
joins to run out-of-core on a single machine. Interestingly,
RStream is found to even beat Arabesque in performance,
which means that the mining throughput of Arabesque is
even lower than the IO bandwidth on a single machine. Since
FPM is NP-hard [51] and thus highly compute-intensive, it
is critical to develop novel frameworks that scale with the
number of CPU cores.

Recently, T-thinker [47] is proposed as a system paradigm
that targets divide-and-conquer algorithms and adopts a task-
based parallel execution design to achieve compute-intensive
workloads. T-thinker effectively utilizes the CPU cores in a
cluster by properly dividing a problem over a big dataset into
tasks over smaller subsets of the dataset for load-balanced
parallel computation. Two compute-intensive systems have
been developed under the T-thinker paradigm, including
G-thinker [18,46] for graph mining, and PrefixFPM [50]
for general-purpose frequent pattern mining, the conference
paper of which is extended to this journal paper.

2.2 Related work on parallel and distributed FPM

Since the advent of Hadoop and MapReduce, there have been
many efforts to scale FPM problems using Big Data frame-
works. In fact, dozens of papers have emerged for mining
frequent itemsets and subgraphs using MapReduce, most of
which just aim to make FPM work with MapReduce without
caring much about the actual mining throughput, and adopt
the straightforward approach of letting the i-th MapReduce
job mine size-i patterns from those size-(i — 1) frequent pat-
terns dumped to Hadoop Distributed File System (HDFS) in
the previous MapReduce job, leading to excessive 10 over-
heads.

Such breadth-first pattern generation and examination
approach is inefficient even when a dedicated design is
adopted other than using Hadoop MapReduce. For example,
Arabesque [38] is a distributed system that supports fre-
quent subgraph mining. Arabesque lets every machine load
the entire input graph into memory and constructs subgraph
instances of increasing size iteratively. In the i-th iteration,
Arabesque expands the set of subgraphs with i edges (or ver-
tices) by one more adjacent edge (or vertex), to construct

@ Springer

https://github.com/wenwenQu/PrefixFPM

256

D.Yanetal.

subgraphs with (i 4+ 1) edges (or vertices) for processing.
New subgraphs that pass a filtering condition (e.g., frequency
check) are further processed and then passed to the next
iteration. Obviously, Arabesque materializes all subgraph
data instances that match frequent subgraph patterns, so it
is IO-bound. As an in-memory system, Arabesque attempts
to compress the numerous materialized subgraphs using a
data structure called ODAG (Overapproximating Directed
Acyclic Graph), but it does not fundamentally address the
scalability limitation as the number of subgraphs grows expo-
nentially.

RStream [45] is a single-machine system which proposes a
so-called GRAS model to emulate Arabesque’s filter-process
model by utilizing relational joins. Their experiments show
that RStream is several times faster than Arabesque even
though it uses just one machine, but the improvement is
mainly because of eliminating network overheads. Also, the
execution of RStream is still IO-bound as it is an out-of-core
system.

Realizing the drawbacks of breadth-first pattern examina-
tion approaches, a number of seminal works explored the use
of depth-first pattern examination to reduce the IO overhead
of examining data instances (by using projected databases),
and the use of search space pre-partitioning to reduce the
number of MapReduce job iterations which are found to be
a major overhead due to the expensive shuffling stage.

For example, PFP [23] parallelizes the depth-first FP-
Growth algorithm for frequent itemset mining over MapRe-
duce. PFP partitions the computation in such a way that each
machine executes an independent group of mining tasks.
Such partitioning eliminates computational dependencies
between machines, and thereby, communication between
machines. However, there lacks such an efficient solution
to other patterns like subsequences, subgraphs, and subtrees.
The extension to these problems is non-trivial since the items
in an itemset have no order, so the FP-Growth algorithm can
define a total order over the items to build an FP-tree for
compressing data and eliminating redundancy, but item order
matters in sequences, graphs, and trees.

In the context of frequent subgraph mining (FSM), [24]
proposes a two-step filter-and-refinement approach using
MapReduce. The first step partitions the collection of graphs
among worker nodes, so that each worker W; obtains a local
portion of graphs G;; this allows W; to mine locally frequent
subgraphs over G;, which we denote as ;. The union U; F;
constitutes the input to the second step for refinement, since
if a subgraph pattern is not frequent in every G;, it cannot be
frequent in the entire graph database. This approach effec-
tively decomposes an FSM problem over a big graph database
into those over the smaller graph collections G;, but since it
is based on MapReduce, there are still three weaknesses:
(1) During the first step, all machines are mining local graph
collections and the communication bandwidth is wasted;

@ Springer

(2) the candidates U; F; are not tight and need to be dumped to
Hadoop Distributed File System (HDFS) for use by the sec-
ond step, which incurs expensive 10 overheads; and (3) in the
refinement step, each candidate is checked against every par-
tition J; to retain the globally frequent graphs, which incurs
additional overheads and complication in algorithm design
to reduce such overheads, such as the statistical threshold
mechanism and lightweight graph compression mechanism
designed by [24].

So far, we mainly discussed works in a distributed setting.
Many efforts have also been made to mine frequent itemsets
in a multicore environment, by parallelizing algorithms such
as FP-growth [19] and Eclat [54] which generate frequent
(i + 1)-itemsets by intersecting the transactions of frequent
i-itemsets. FP-Array [22], based on FP-Growth, utilizes a
cache-conscious FP-Array built from a compact FP-Tree and
a lock-free tree construction algorithm. MC-Eclat [35] is a
parallel method based on Eclat. ShaFEM [43] is a parallel
method that dynamically switches between FP-Growth and
Eclat based on dataset characteristics. However, these works
do not extend to more advanced patterns such as sequences,
trees, and graphs.

Similarly, a number of works have explored the use of
GPUs for mining frequent itemsets. GPUs have radically
different characteristics than CPUs, including the SIMT
model and the need of coalesced memory access, which
add additional difficulty in parallelization. As a result, most
GPU-based methods are based on Apriori: [12] represents a
transaction database as an n x m binary matrix, where n is the
number of itemsets and m is the number of transactions, so
that intersection operations on rows can be conducted with
a GPU to count support. GPApriori [57] generates a static
bitmap that represents all the distinct 1-itemsets and their
transaction ID sets. A GPU is only to parallelize the support
counting step, while candidate generation step is performed
using CPUs. In [36], the authors proposed a parallel version
of the Dynamic Counting Itemset algorithm (DCI) [30] where
two major DCI operations, intersection and computation, are
parallelized using a GPU. The above three Apriori-based
GPU methods cannot handle datasets larger than GPU mem-
ory. Frontier Expansion [58] can handle datasets larger than
GPU memory. Itis based on Eclat and utilizes multiple GPUs.
GMiner [6] further improves efficiency by mining patterns
from the first level of the enumeration tree rather than storing
and utilizing the patterns at the intermediate levels of the tree.

Our PrefixFPM is different from the above existing works
in that (1) it unifies the various FPM problems under one
framework for parallel execution, and that (2) it adopts pre-
fix projection for depth-first pattern examination to benefit
from the shrinking projected databases, massive parallelism
exposed by the divide-and-conquer algorithmic nature, and
a smaller memory footprint. We overview these points in
Sect. 3.

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 257

/ ¢D SID | Sequence SID | Sequence SID | Sequence SID | Sequence
b, s, | ABCBC é s, | _BCBC |£:> s, |_cBc | €[5 | BC
(1) % s, | BABC s, | BC s, | _C =0, B
s; | AB sy | B S3 | () Dlpc
@D Gy Lot om @

(a) The Pattern-Growth Tree (b) D

Fig.1 Illustration of PrefixSpan

3 PrefixFPM solution overview

The PrefixFPM framework is designed based on the idea
of prefix projection, which is pioneered by the PrefixSpan
[31] algorithm for mining frequent sequential patterns from
a sequence database.

To illustrate the idea of prefix projection and introduce our

notations, we first briefly review PrefixSpan.
A tour of PrefixSpan A prefix-projection-based algorithm
adopts a pattern-growth approach where a pattern of size i
is extended from a sub-pattern of size (i — 1) by adding
a new element e. Figure la shows a pattern-growth tree
for PrefixSpan over a database D of 4 sequences shown in
Fig. 1b, where each node in the tree corresponds to a pat-
tern ov. A serial prefix-projection algorithm usually traverses
the pattern-growth tree in depth-first order, so that only one
tree-path is active at any time. In Fig. 1, we assume that the
current sequential pattern being checked is A BC, and the cor-
responding active path of its pattern-growth is highlighted by
the red nodes in Fig. 1a.

For ease of presentation, throughout this paper, we use
notation « to denote a pattern, e to denote an element to
grow a pattern, and 8 to be a super-pattern grown from o« by
adding element e. In the context of PrefixSpan, a pattern is a
sequence, and thus, we can denote f = e, i.e., by appending
element e to . For example, in Fig. 1, pattern B = ABC is
obtained by extending pattern « = AB with elemente = C.

We also use the notation & C s to denote that a pattern «
occurs in transaction s in the database D. In the context of
PrefixSpan, o T s means that sequential pattern o occurs as
a subsequence of sequence s € D.

Given a pattern « and a transaction s, we use s|y to denote
the so-called «-projected transaction of s, which tracks what
remains to be matched in s (by super-patterns grown from o)
given that « has already been matched to the corresponding
elements in s. In the context of PrefixSpan, s|, is the suffix
y of s such that s = s’y with prefix s’ being the shortest
prefix of s satisfying @ T s’. To highlight the fact that y is
a suffix, we write it as _y. To illustrate, when « = BC and
s = ABCBC,wehave s’ = ABC and s|, = _y = _BC.

Given a pattern @ and a sequence database D, the o-
projected database D|, is defined to be the set {s|y | 5 €

D A a C s}. Note that if o Z s, 5|q does not exist and thus
s not considered in D|q.

Consider the sequence database D shown in Fig. 1b. The
projected databases D|4, D|ap and D|spc are shown in
Fig. 1c—e, respectively.

Let us define the support of a pattern o, denoted as sup («),
as the number of those transactions s € D where o C s. In
PrefixSpan, the support of « is simply the cardinality of D],
(i.e., the number of s|, therein).

PrefixSpan finds the frequent patterns (with support at
least 7,,) by recursively checking the frequentness of pat-
terns with growing lengths. In each recursion, if the current
pattern « is checked to be frequent, it will recurse on each
super-pattern 8 constructed by appending o with one more
element.

PrefixSpan checks whether a pattern g is frequent using
the projected database D|g, which is constructed from D], .
Figure 1 presents one recursion path when 7, = 2, where,
for example, s1|apc in D|4pc is obtained by removing the
element C from s1|op in D|aB.

We remark that the PrefixSpan algorithm presented here
is a simplified version where each element in a sequence can
be only one item. In general, each element can be an itemset
(e.g., goods in one supermarket transaction), and we refer
readers to [31] for more details.

PrefixSpan is just the simplest form of prefix projection.
We next explain how this idea on sequence data can be
extended to work with trees and graphs.

Prefix projection The key idea to generalize prefix pro-
jection beyond sequence data is to establish a one-to-one
correspondence between each subgraph/subtree pattern and
its sequence encoding, so that we can examine the pattern
encodings by a PrefixSpan-style algorithm. The challenge to
address by each specific algorithm is that different patterns
that are isomorphic to each other have different encodings,
but they actually refer to the same pattern and growing larger
patterns from them leads to a lot of redundant computation.

For example, consider the 3 trees shown in Fig. 2. The
Sleuth algorithm [56] encodes a tree T by appending ver-
tex labels to the sequence encoding in a depth-first preorder
traversal of T, and by adding a unique symbol “$”” whenever
we backtrack from a child to its parent. For example, the

@ Springer

258

D.Yanetal.

Fig.2 Tree patterns from Fig. 4 T1
of [56]

2-edge

n-edge

Fig.3 Pattern search space from Fig. 1 of [49]

encoding of T} in Fig. 2 is BAB$D$$BSCS, while the encod-
ing of 75 is BABSD$$CBS. Even though the two encodings
are different, if we consider unordered trees (meaning that
the order of children nodes does not matter), 77, T, and T3
all refer to the same subtree pattern.

To avoid processing redundant patterns, existing serial
algorithms define the canonical encoding of a pattern « as the
minimum encoding of all automorphisms of «. For example,
Lemma 4.2 of Sleuth [56] shows that if we reorder the chil-
dren of each tree node in non-decreasing order of their labels
(assuming “$” is larger than any label), then the encoding
of the resulting reordered tree is canonical. In Fig. 2, all the
three trees have the same canonical encoding which is that
of 7.

Let us denote the canonical encoding of a pattern o by
min(«), then we only examine a pattern « if its encoding
equals min(a). This method avoids redundant computation
since only one pattern in its automorphism group will be
checked to grow larger patterns.

Figure 3 illustrates the pattern-growth tree of the gSpan
algorithm [49] for mining frequent subgraph patterns that
are grown by adding adjacent edges. Each tree node in Fig. 3
represents a subgraph pattern « to examine, and the subtree
under the node contains those patterns grown from «o. Assume
that Gy and G are isomorphic and since only G¢’s encod-
ing equals its canonical encoding, only Gg is checked for
frequentness and for further pattern growth, while G (and
its potential pattern-growth subtree) is pruned.

A pattern « is extended by one more element to generate
a child-pattern §, and in PrefixSpan, we simply append «
with all possible labels. However, for a subgraph or subtree

@ Springer

Fig.4 Pattern extension from
Fig. 5 of [56]

pattern o, we cannot extend it with any adjacent edge since
some extensions have been considered by a prior node in
the depth-first pattern-growth tree. For example, in Fig. 4,
we can only extend the subtree pattern in the box using an
adjacent edge on its rightmost path CDB, since the extension
from vertex A has a smaller encoding than the subtree pattern
itself (CDAXx--- <CDAS$---) and has thus been considered
previously in the depth-first traversal order.

Task-based model of PrefixFPM PrefixFPM associates
each pattern o with a task #, which checks the frequent-
ness of « using its projected database D|y, and which grows
the pattern by one more element to generate the children
patterns {$} and their projected databases {D|g} (computed
incrementally from D|). These children patterns give rise to
new tasks {tg} which can then be added to a shared task queue
to be fetched by computing threads for further processing.

PrefixFPM runs a number of computing threads that fetch
pattern-tasks from a shared task queue Q;,sx for concurrent
processing. Since each task #, needs to maintain D], to com-
pute the projected databases of the child-patterns grown from
o, a depth-first task fetching priority in the pattern-growth
tree tends to minimize the memory footprint of patterns in
processing. This is because we tend to grow those patterns
that have been grown deeper, which are larger (and thus with
smaller projected databases) and are closer to finishing their
growth (due to the support becoming less than 7y,).

We thus implement the task queue Q:4sr as a stack
where newly pushed tasks are popped earlier for process-
ing. Note that PrefixFPM processes the pattern-growth tree
in a near-depth-first order but not strictly depth-first: When
the leftmost pattern-node « is being processed as a task #, by
some computing thread, its next sibling pattern-node will be
popped for processing by another available computing thread
(rather than the children of pattern-node «). This allows idle
computing threads to fetch patterns for processing ASAP to

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 259

keep CPU cores busy, but may require more memory than a
serial depth-first solution.

In fact, the memory cost is the same as a serial algorithm
if there is only one computing thread (as tasks are fetched in
exact depth-first order), but it is expected to increase with the
number of threads nj,¢q4, though bounded by 74j¢qq times
the RAM consumption of a serial algorithm since nodes (and
their projected databases) on the parent-to-root path could be
shared. Queue Q45 is protected by a lock (mutex) so that
only one thread can push or pop a task at a time.

Since fetching tasks from Q. and adding tasks to
QO:ask incur locking overheads, interaction with Q4 is only
worthwhile if each task contains sufficient computing work-
loads such that the locking cost of fetching it and inserting
child-pattern tasks is negligible. Therefore, when process-
ing a task 7y, we only add child-pattern tasks to Q,sx if
the number of projected transactions in D], is above a size
threshold ,;;/, so that the workloads of mining the pattern-
growth subtree rooted at « can be divided by other computing
threads; otherwise, #, is not expensive and the current com-
puting thread simply mines the entire pattern-growth subtree
in depth-first order directly as in a serial algorithm.

However, T,,;;; only considers the number of projected
transactions in D]y, and it is not sufficient to totally capture
the running time of 7, if it mines its entire pattern-growth
subtree, since the content of each s|, € D]y can affect the
mining time a lot (e.g., how long is the suffix y of s|, in Pre-
fixSpan). We find that setting y,;;; small will over-partition
a lot of tasks, adding burden to Q;4s«’s locking overhead,
while setting T,,;; large may cause some expensive tasks
to mine their entire pattern-growth subtree for a long time,
becoming the stragglers.

A better approach is to allow a task to mine its pattern-
growth subtree in depth-first order until a timeout happens,
after which we add the remaining tasks (or, nodes in the
pattern-growth subtree) into Q45 for concurrent processing.
We define the timeout threshold as 7:,.. Note that long-
running tasks are avoided since no task will mine for longer
than 74;,,¢, and this approach also guarantees that at last t;;e
time is spent on the actual mining if timeout is triggered, so
the additional cost of wrapping the remaining pattern-nodes
as new independent tasks and inserting them into Q,sx 1S
not dominating (but rather, remains negligible).

We therefore set 7yp;; large to allow obviously big tasks
to be split right away without time tracking, while leaving the
task-splitting decision of the remaining tasks to our timeout
mechanism. After tuning the parameters, we found that the
default setting with 7,,;; = 100 and ;e = 0.1 second
works well in all scenarios (c.f. Sect. 8.7) and is thus adopted.

To generate initial patterns {«} along with their pro-
jected databases from D (e.g., the root-node splitting case
in Fig. 1a), processing it as a single task in serial is not opti-
mal since D often contains many transactions and it can be

expensive to scan them to build { D|, }. In this initial case, we
recommend users to implement this scan as a parallel for-
loop, e.g., using OpenMP [29]. This effectively distributes
the workloads among all computing threads, which is impor-
tant in the initial stage when there are no other tasks.

Note that two different transactions s; and s that are
processed by two different OpenMP threads may both con-
tain the same initial pattern « and thus insert 51|, and s3]
concurrently to the children table entry for D|,. To be thread-
safe, one option is to let each table entry maintain a lock
(mutex) so that only one thread can insert an item to D|, at
a time.

We find, however, that this strategy generates a lot of
lock contention when there are many threads. We thus adopt
another lock-free solution where each thread 6 maintains
its own local children table childreng for inserting pro-
jected instances. At the end, we merge these local tables into
the final children table children, in which each projected
database D], is obtained by taking the union of those items
in the corresponding projected databases inside thread-local
tables {childreny}.

In general, for a task #,, we can check if D], is large, and
if so, we can let the scanning of D|, be parallelized. How-
ever, this means that not only different tasks may execute
concurrently, but each task itself may execute concurrently.
Such complicated concurrency scheduling often backfires in
our preliminary experiments where if we set the size thresh-
old of D|, as suboptimal, the execution time can be many
times longer than a solution where only the scanning of D
to generate root tasks is parallelized, due to the contention
of the many threads for the limited number of CPU cores.
Moreover, finding the optimal size threshold by our exten-
sive trials reveals that (i) the optimal threshold can vary a
lot and much larger than |D| itself since each tree/graph
transaction can have multiple projected transaction instances
in D]y, and that (ii) even with the optimal size threshold
found, the running time is only slightly reduced (always
by less than 10%), which does not justify the expensive
trial efforts. We, therefore, do not adopt this optimiza-
tion.

4 PrefixFPM programming model

PrefixFPM is a programming framework written as a set of
C++ header files defining some base classes and their virtual
functions for users to inherit in their subclasses and to spec-
ify the application logic. We call these virtual functions as
user-defined functions (UDFs). The base classes also contain
C++ template arguments for users to specify with the proper
data types (data structures) that fit their pattern mining appli-
cations.

@ Springer

260

D.Yanetal.

Pattern

// a and D],
UDF: print(ostream& fout)

Trans ProjTrans

int transaction_id
// transaction match

int transaction_id
// transaction data

Task <PatternT, ChildrenT, TransT>

PatternT pattern

ChildrenT children

UDF: setChildren()

UDF: Task* get_next_child() //”new” a task from a child pattern
UDF: bool pre_check(ostream& fout)

UDF: bool needSplit()

Entry Function: run(ostream& fout)

Worker <TaskT>

ifstream input_file

UDF: readNextTrans(vector<TransT>& D)
UDF: setRoot(stack<TaskT*>& Qss)
Entry Function: run()

UDF: finish()

Fig.5 PrefixFPM programming interface

We now introduce these base classes one by one, and Fig. 5
summarizes their key programming interfaces.
Trans The Trans class implements a transaction in the
input database with a predefined transaction ID field. Users
implement their transaction subclass by inheriting Trans and
including additional fields to store the target data instance
such as a sequence, a tree or a graph. Initially, the input
dataset is read into an in-memory transaction database D
which is simply an array of objects whose type is given by
the Trans subclass.
ProjTrans The ProjTrans class implements a projected
transaction s|, in a projected database D|,. A ProjTrans
object also has a transaction ID field indicating which trans-
action s € D this projected transaction corresponds to. The
user-defined ProjTrans subclass should also indicate how sy
is currently matched onto s, so that the matching status can
be incrementally updated as the pattern o grows. We remark
that a transaction s € D can have many matched instances
(i.e., projected transactions) in D|, for subgraph and subtree
patterns, though at most one in PrefixSpan.
Pattern The Pattern class specifies the data structure of a
pattern « and contains a (pure) virtual function print(fout)
specifying how to output the object of a Pattern subclass
into an output file stream fout. Recall that PrefixFPM runs
multiple task computing threads, and each thread actually
appends the frequent patterns found by it to a file of its own,
and the file streaming handle is passed into print(.) as fout.
When a job finishes, the frequent patterns are recorded by the
collection of all files written by the task computing threads.

A Pattern-subclass object for pattern « usually also
includes the projected database D|, as a field (e.g., whose
type can be an array of ProjTrans-subclass objects). In
print(fout), users may choose to output D|, along with «,
to indicate the matched transactions.

@ Springer

Task The base classes we saw so far are to specify data struc-
tures, and let us next look at two other base classes whose
aim is to specify the algorithm logic.

Recall that a task f, checks the frequentness of pat-
tern o« using its projected database D|, and grows « by
one more element to generate the children patterns and
their projected databases. Prefix-projection algorithms usu-
ally generate {D|g} for all children patterns {8} together in
one pass over D|,, since we can go through the elements of
eachs|y € Dly toincrementally generate s|g for every child-
pattern B. For example, consider s; inside D|4 of Fig. 1c
where by scanning its 4 remaining elements, we can gener-
ate s1|ap = _CBC into D|4p and generate s1|ac = _BC
into D|ac.

Following this practice, base class Task<PatternT, Chil-
drenT, TransT> takes 3 C++ template arguments:

— PatternT: the user-defined Pattern subclass (which often
also maintains D|y);

— ChildrenT: the type of a table children that keeps the
projected database of child-patterns {D|g};

— TransT: the user-defined Trans subclass.

A Task object t,, maintains 2 fields: a pattern « of type Pat-
ternT (often containing D],), and the children table children
that keeps {D|g}, which s typically implemented as std::map
with children[e] = D|g if B is grown from « with element
e.

TransT is needed since the Task class provides a function
to access the global static transaction database D for users
to call in their 7ask UDFs, which is useful since a projected
transaction s; | usually only keeps a compact matching status
towards s; € D, and in order to extend it with one more
element e in s; to generate s;|g, we need to access s; as
DIi] where i is the transaction ID field of s;|, (With type
ProjTrans-subclass).

Task has an internal function run(fout) which executes
the processing logic of the task #,. The behavior of run(.) is
specified by Task UDFs defined by users which are called in
run(.), and Fig. 6 shows the details.

Specifically, upon the beginning of 7, the task first records
the initial time 7y in Line 2 so that at any time ¢ during its
execution, it can obtain the task running time as (r — f), to
be used later in Line 8 to compare with the timeout threshold
Ttime- Then, in Line 3, ty first runs UDF pre_check(fout)
in which #, can check if « is frequent (and its encoding is
canonical if applicable), and if so, to output « to fout. If « is
not pruned, Line 5 then runs UDF setChildren(children) to
scan D|, and compute { D|g} to be inserted into the table field
children. Atthe end of UDF setChildren(.), we usually post-
process children to remove those infrequent child-patterns.
This is because for each s|, € D|y, we will grow s|, into
{s|g} with all applicable elements {e}, to be inserted to { D|g};

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 261

1 void run(ostream& fout){

2 {pseudocode: track task starting time here}
3 if(!pre_check(fout)) return;

4 //generate new patterns

5 setChildren(children);

6 //run new child tasks

7 while(Task* t= get_next_child()){

8 if(timeout){

9 g_mtx. lock();

10 queue().push(t);

11 while(Taskk t= get_next_child())
12 queue().push(t);
13 g_mtx.unlock();

14 return;

15 }

16 if(needSplit()){

17 q_mtx. lock();

18 queue().push(t);
19 g_mtx.unlock();
20 +

21 else{

22 t->run(fout);

23 delete t;

24 }

25 }

26 }

Fig.6 The run(fout) function of base class Task

therefore, only when the last s|, € D], is processed can
we finalize the size of every D|g to determine whether 8 is
frequent or not.

Line 7 then wraps each child-pattern § in table children
as a task tg for checking one by one. For each child-task 74,
we first check if timeout happens (i.e., — o > Trime), and if
so, we process it in Lines 9—14 which we will explain shortly.
Otherwise, we then call the UDF needSplit() in Line 16
which usually checks if | D|g]| is large (and hence t4 is time-
consuming), and if so, we add fg to the task queue Quk
(Lines 17-19) to be fetched by available task-computing
threads. (Recall that Q. is a global last-in-first-out task
stack protected by amutex.) Otherwise, ¢4 is considered inex-
pensive and we recursively call 75°s run(fout) in Line 22 to
process the entire checking and extension of B by the current
thread, which avoids contention on Q;,sk. Finally, note that
Line 23 deletes 74 including its maintained D|g, so only the
projected databases of those patterns being actively mined
are kept in memory.

Now, let us get back to the timeout processing in Lines 9—
14. Specifically, we will lock the task queue Q51 once (see
Lines 9 and 13) and insert all remaining child-tasks (see
Lines 11-12) and then exit the current run(.) function which
runs fy. Since run(.) is recursive (see Line 22), the thread
running #, will then return to the task of the parent pattern of
o, denoted by pa(w), for which its run(.) will exit the call of
tqy— >run(.) at Line 22 and move on to the next child-pattern
of pa(a) (see Line 7).

Figure 7 illustrates this process assuming that we run the
root task using the timeout mechanism in PrefixSpan, and that
timeout happens when we enter the processing of task 4 ¢
in Line 8. Before timeout occurs, the pattern-growth tree is
traversed in depth-first order where tree-nodes are processed

t9 > Time

“ 00—
s
©

"iii;;::;;;;-"‘~s

t7 > Ttime

N o

Fig.7 Tllustration of task split upon timeout

in the time order 1, t, ..., t5. Since tg > Trime, task taBc
gets added to Qg as the last child-task of 74 5. Then, the
execution backtracks to 74 g, and in its level there is only one
more task 74 ¢. Since the visit time 17 > Tsjme, task f4¢ is also
added to Qs before the execution backtracks to 74. Finally,
the remaining two tasks in this level, 7p and ¢¢, are added to
Qask- Note how the timeout mechanism only expands a task
to its necessary granularity, e.g., fp will not be split until it
is fetched again from Qs for further processing.

Existing frameworks such as Arabesque [38] and RStream
[45] over-emphasize simplicity of programming, but the per-
formance becomes 10-bound. Consider, for example, the
so-called embedding-centric level-by-level subgraph growth
API of [38]. In contrast, our PrefixFPM framework focuses
on the ease of adapting an existing prefix-projection algo-
rithm (e.g., in a day) for CPU-bound parallel execution, not
the simplicity of prefix-projection algorithms themselves. In
fact, those serial algorithms are designed to be sophisticated
to exploit the superior performance over simplistic methods,
but with such a serial program at hand, sorting out how to
reorganize its code into PrefixFPM is easy and quick.
Worker A PrefixFPM program is executed by subclassing
the Worker<TaskT> base class, and call its run() function.
Here, TaskT refers to the user-defined 7ask subclass, from
which Worker derives the other necessary types such as
TransT.

The run() function (1) keeps calling UDF getNextTrans()
to read transactions from an input file and appends them to
the transaction database D, (2) calls the UDF setRoot() to
generate root tasks (where « contains only one element) into
Qrask, and (3) creates k task-computing threads to process
the tasks in Q4.

Note that the element type is different for different pat-
tern mining problems. For example, an element in sequential
pattern mining is just a label, while that for subgraph/subtree
pattern mining is an edge since patterns are grown with adja-
centedges. As aresult, we do not provide a base class Element
and let users freely define their own types.

@ Springer

262

D.Yanetal.

Also, note that implementing Worker::setRoot(.) is similar
toimplementing Task::setChildren(.): Instead of constructing
{D|g} from D|y, we construct {D|.} from D. Each seed task
te = (e, D|.) is then added to Qs to initiate the parallel
task computation.

Since D is large, UDF Worker::setRoot(.) can scan its
transactions in parallel, i.e., users can use OpenMP parallel
for-loop in their implementation. There are 2 ways: (1) to let
each OpenMP thread lock the container children[e] for stor-
ing D|, when appending anew s/, projected froms € D with
element e, which causes a lot of lock contentions among the
k OpenMP threads, and (2) to create an array of k children-
tables, one for use by each OpenMP thread, so that there
is no contention for appending s|, during the parallel scan-
ning of D, but the computing thread needs to merge the k
tables into the final table children which leads to additional
overheads. We tested both choices and find that the lock-free
method “(2)” beats “(1)” consistently and the gap is larger
with increasing k, as the table merging is found to be very
fast compared with the parallel scanning of D. We thus rec-
ommend users to always implement Worker::setRoot(.) using
Method “(2).”

Atthe beginning of Worker::setRoot(.), we also need to get
the element frequency statistics and eliminate infrequent ele-
ments (i.e., they are not considered when growing patterns),
which is a commonly used and effective pruning technique.
Depending on the mining problem, computing the statistics
may need multiple passes on D. For example, when trans-
actions are labeled graphs, one pass is needed to filter out
infrequent vertex and edge labels, followed by another pass
over transactions in D to (1) eliminate data edges containing
those infrequent edge labels, and data edges whose end ver-
tices have those infrequent vertex labels, and to (2) count the
frequency of pattern edges (decided by the edge label and the
labels of an edge’s end vertices).

During parallel task computation, each computing thread
keeps fetching a task 7, from Q45 to call its run(fout) func-
tion, and it gets suspended to release the occupied CPU core
when it cannot find a task in Q.. Note that while Qqsx
is currently empty, another thread may be processing a task
and could add more child-tasks back to Q;,sx. The job ter-
minates only if all k task computing threads are suspended
and no task is found in Q.

Every 100 ms, the Worker::run() main thread checks if
all threads are suspended. If not, it wakes up all computing
threads to continue task processing; otherwise, it wakes up
all computing threads to terminate.

Finally, the main thread runs Worker::finish() where some
post-processing operations can be conducted before the job
terminates.

We use C++11 condition variable’s wait and notify_all
functions to implement the thread suspension and main
thread wakeup notification, and the number of threads sus-

@ Springer

pended is maintained with an atomic counter (atomic<int>
in C++11).

5 Sequential pattern mining with PrefixFPM

Starting from this section, we will describe how to implement
popular pattern-mining algorithms on top of PrefixFPM. This
section considers frequent and close sequential pattern min-
ing from a sequence database.

5.1 Mining frequent sequential patterns

We have reviewed PrefixSpan in Sect. 3. We now describe
how we adapt the serial PrefixSpan implementation of [34]
to PrefixFPM for parallel mining.

Transaction A transaction object here is simply imple-
mented as a sequence.

Projected Transaction Instead of keeping a suffix, a pro-
jected transaction object here only keeps the position of
the last match (in addition to the transaction ID of class
ProjTrans), i.e., “_” in Fig. 1, to minimize the memory con-
sumption occupied by projected databases.

Pattern A pattern object here maintains a sequence « along
with the projected database D|,.

Task The most important UDF is setChildren(). Given a pat-
tern o, to extend a projected transaction s|, in D|y by an
element e, we first (1) get the sequence in D using the trans-
action ID of 5|, and then (2) continue to scan the remaining
elements starting from the next position after “_" as follows.
Recall that PrefixSpan looks for the minimal (i.e., earliest)
prefix match. Therefore, whenever we scan to an element e
that has not appeared before during our scan of 5|y, we insert
s|gtochildren|e] (i.e., D|g) where B = ae. Here, s|g keeps
the position of e scanned for future expansion.

At the end of setChildren(), another pass over the table
children is conducted to delete those table entries (8, D|g)
where |[D|g| < Tsup. Since infrequent child-patterns have
been removed, every extended pattern is guaranteed to be
frequent, and therefore, UDF pre_check(fout) can directly
output pattern f.

Finally, UDF needSplit simply checks if |D|g| > Tspiis

where 7y, is a user-defined threshold beyond which the
task is added to Qyqsr rather than recursively processed by
the current thread.
Worker The implementation of UDF setRoot(Q;4si) 1S the
same as Task::setChildren(.) except that D is scanned using
OpenMP parallel-for loop (rather than D |, scanned in serial),
and it generates each task 7, = (e, D|.) and adds it to Qs
only if e is frequent (i.e., [D|g| > Tyup).

Besides, infrequent singleton patterns e which are also
infrequent elements are marked so that in future task process-

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 263
SID | Sequence 0: (afydea l:eab 2: e (abf) (bde)
0 |(af)d s A N/ 5 A A
aj)aea Stored as
T Teab > |a|s|a]d]-1]e]1]a|2]e]-1]a]a]o|1]2]e]-1]alb|r]-1]0]a]e]|1]2
2 |e(abf)(bde) Position: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Fig.8 Illustration of transaction database in CloSpan

ing (e.g., the scan of the suffix of 5|, in Task::setChildren(.)),
such elements are directly skipped.

5.2 Mining closed frequent sequential patterns

PrefixFPM can also be used to parallelize frequent pattern
mining algorithms with other constraints, such as finding
closed patterns, maximal patterns, and patterns with gap con-
straints. This subsection illustrates how we can implement the
CloSpan algorithm [48] for mining closed sequential patterns
in PrefixFPM, by parallelizing its implementation at [7].

We remark that so far, we have been assuming that each
element in a sequence can be only one item for ease of pre-
sentation, but in the literature, each element can itself be an
itemset, which is adopted by the implementation at [7]. For
example, to extend a sequential pattern « = AB with an
item ¢ = C, we can either do the so-called I-Step exten-
sion [48] to obtain B = A(BC) which means the second
element is an itemset {B, C}, or S-Step extension [48] to
obtain B = ABC. To be compatible with prefix projection,
a lexicographic order is defined to order the child-patterns
in the pattern-growth tree, where an item-extended sequence
is considered less than sequence-extended sequence if their
prefixes are the same. For example, A(BC) < ABC.

Unlike in Sect. 5.1 where a transaction database D is

implemented as an array (std::vector) of sequences which
are themselves item (or itemset) arrays, CloSpan keeps the
entire D as one big array where transactions are separated
by special labels “—2” (regular item labels are encoded as 0,
1,2, ...), while itemsets in the same sequence are separated
by “—1,” as Fig. 8 illustrates. This representation is used to
compute hash keys needed in CloSpan to identify non-closed
sequences (to be introduced soon). We next explain the idea
of CloSpan, followed by our parallel implementation in Pre-
fixFPM.
Closed sequential patterns A sequential pattern « is closed
if there does not exist a super-sequence whose support
is the same as sup(«). For example, Fig. lc, d shows that
sup(A) = sup(AB) = 3, and thus, A B invalidates pattern
A from being closed.

We usually mine closed patterns that are also frequent,
i.e., with support at least ty,,,. The benefit is that the number
of closed frequent patterns is much smaller than the full set
of frequent patterns, while the expressive power remains the
same [48].

diof

(a) backward sub-pattern (b) backward super-pattern

Fig.9 Transplanting descendants, from Fig. 3 of [48]

Early termination rule The efficiency of CloSpan compared
with PrefixSpan lies in its early termination rule. The insight
is illustrated in Fig. 9.

Specifically, (Case 1) let us assume that a pattern « = af
has been mined in the pattern-growth tree as shown in Fig. 9a.
When we reach another pattern y = f and find that D|, =
D, , then the pattern growth process is exactly the same in
the subtrees under both « and y. We can thus hook y directly
to o (meaning that the children list of y is pointed to that of
o) to avoid repeated subtree pattern-growth. Moreover, since
« is a super-sequence of y, y is not closed and thus pruned.

In Fig. 9b, (Case 2), we assume that a pattern « = b
has been mined in the pattern-growth tree, and we then reach
another pattern y = eb and find that D], = DJ|,,. In this case,
we can similarly hook y directly to « to reuse the constructed
tree under «. The difference is that now y is a super-sequence
of «, and thus, « is not closed and hence should be pruned
with its pattern-growth subtree taken over by y.

Note that since the pattern-growth tree is mined by the

serial CloSpan algorithm in depth-first order, the subtree
under « must have been fully constructed when we reach
y. However, since different tree branches could be mined
in parallel in PrefixFPM, in our parallel scenario when we
reach y, the subtree under o may still be under construction.
But we can still hook y to « as before to avoid construct-
ing the subtree under y: When the subtree under « is finally
constructed, it is also reused by y anyway.
Efficient rule checking Note that a key requirement in the
above rule is D|, = D], which is inefficient to check
directly. Fortunately, without loss of generality if we assume
y is a super-sequence of «, then we only need to check
if len(D|y) len(Dl|,) to ensure D|, = D|,, where
len(D|y) is the length of D|, defined as the number of
items in D|,. For example, for the database in Fig. 8,
Dlwupy = {sol@s), s2lwp} = {_dea,_(bde)}, and thus
len(DI(af)) =6.

@ Springer

264

D.Yanetal.

To see why the above theorem is correct, note that since
y is a super-sequence of «, more items are prefix-matched
leaving suffixes shorter, i.e., s|,, must be a suffix of s|y, and
len(s|,) < len(sly).Iflen(D|y) = len(D],), then we must
havelen(s|y) = len(s|,) forany s in the projected databases.
This is only possible if s|, = s, since 5], is a suffix of s]4.

The above proof still holds if we assume « is a super-
sequence of y, i.e., if len(Dl|y) = len(D]|,), then D|, =
D|, . Therefore, when we reach y in the pattern-growth tree,
we just need to find all patterns « already processed in the tree
where (i) len(D|y) = len(D|,), and (ii) « is either a super-
sequence or a sub-sequence of y, which gives the following
2 cases. (Case A): if some patterns {«} are found to be sub-
sequences of the current pattern y, they are not closed and
should be pruned, and their subtrees are the same and only
one copy is retained for y to hook to for reuse. (Case B): if
any pattern « is found to be a super-sequence of y, y is not
closed and thus should be pruned, while we hook y to « to
avoid repeated subtree pattern-growth.
Hash-based fetching of « Now that we know we can simply
check len(D|y) = len(D|,) rather than D|, = D|,, one
problem remains: how can we fetch all such patterns {«}
efficiently from the set of all patterns currently processed?
There are 2 implications here: (1) We need to maintain all
currently processed patterns in memory for later fetching,
rather than streaming each frequent pattern found to an output
file stream fout as in our PrefixFPM algorithm for PrefixSpan;
(2) we do not want to scan all currently processed patterns,
as only those with len(D|y) = len(D],) are relevant.
For implication (1), we respect the assumption of CloSpan
[48] that “based on today’s technology and our experience, it
is easy to maintain a million sequences in memory.” Although
another algorithm BIDE [44] has been proposed later that is
shown to perform better than CloSpan when a database is
large without need of keeping all patterns in memory, our
goal here is to show the generality of PrefixFPM’s API, and
so we respect and reuse all the original in-memory design
of CloSpan. BIDE follows the same recursive algorithmic
framework as PrefixSpan (though with additional pruning
rules) and is straightforward to parallelize in PrefixSpan.

Another note is that while CloSpan’s early termination
rule prunes patterns that are not closed, there is no guarantee
that all such patterns are captured by the rule and pruned
[48]. Therefore, a post-processing step over the pattern-
growth tree (or more accurately, “lattice” since subtrees are
merged by the pruning rule) recursively to enumerate all
closed patterns [48]. We conduct this post-processing in UDF
Worker::finish() to write closed patterns to the output file
which is executed by the main thread at the end. While this
recursive process can be parallelized like the recursive serial
PrefixSpan algorithm, we find it to be very lightweight com-
pared with the pattern-growth tree mining process, and thus
we leave it to run simply by the main thread.

@ Springer

Hash Table: <key,s>

Fig. 10 Hashing for fast rule checking, from Fig. 5 of [48]

For implication (2), a straightforward solution is to maintain
patterns using a hash table where the key is len(.): when we
reach y, we use the key len(y) to obtain only those already
processed patterns « with len (o) = len(y) for rule checking
(i.e., Cases A and B mentioned before). More specifically,
Fig. 10 shows the hash table 7 where the table entry for key
k saves a list of patterns T'[k] = {«} with len(a) = k, and
each list element is actually a pointer to the node of « in the
pattern-growth tree (or more accurately, lattice) for ease of
node hooking. In Case A where some patterns {«} are found
to be sub-sequences of the current pattern y, their subtrees
are the same and merged for y to hook to for reuse, and
they are removed from the list 7[k] as they are not closed.
In Case B where if any « is found to be a super-sequence of
y, ¥ is not closed and thus not inserted to 7'[k]. If no such
super-sequence « is found after scanning 7 [k], we will add
y to T[k].

However, directly using /en(.) as the hash key may still
lead to a long T'[k] list. To allow hash keys to span a larger
value range, CloSpan [48] actually adopts a key that adds
len(y) with a summation £(D|,) that sums up the distance
between the start position of a projected sequence s, and
the end position of the whole database D. For the example
shown in Fig. 8, we have L(D|y)) = (26 — 1) + (26 —
20) = 31. Obviously, if D|, = D|,, then the hash keys
(len(a) + L(Dly)) and (len(y) + L(D],)) must be equal.
However, since the reverse may not be true, foreach« € T[k]
we should first check whether len(«) = len(y), and skip «
if not, before checking Cases A and B to update T and the
pattern-growth lattice.

We next describe our implementation in PrefixF'PM.
Transaction A transaction object here is implemented as an
array representing each transaction sequence. As an illustra-
tion, Fig. 8 shows how we represent each of the 3 sequences
on the right-hand side of the arrow, and the transaction
database D is simply an array that concatenates those trans-
action sequence arrays.

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 265

Projected transaction Due to the existence of itemset ele-
ment, for each transaction, we now need to track all the
prefix-matched positions rather than only the first one, or
we may miss matched projected transactions. To see this,
consider a transaction s = (ac)(abc)b. If we only con-
sider the first match for pattern a, i.e., s|, = (_c)(abc)b,
then we will miss s|(p) when growing from s|, since the
matched a is in the first itemset of s|, but b is in the sec-
ond itemset. We thus need to keep track of all matches
sla = ((Ce)(abe)b, (Lbe)b).

We define a ProjTrans object directly as the projected
database D|, of a pattern «, rather than a projected trans-
action s|y in D/, as we did for PrefixSpan.

Specifically, our ProjTrans-subclass object keeps an array

of the matched positions in D to minimize the memory con-
sumption occupied by projected databases. To illustrate using
D in Fig. 8, for D|r) we keep an array of two positions 1
and 20 that match the last pattern-element f to extend. To
avoid repeatedly incrementing support for multiple pattern-
matches in the same transaction, we only increment the
support counter each time when our scan in D reaches a
“«_nn
Pattern A pattern object here maintains a sequence « along
with the projected database D|, whose type is defined by the
above-mentioned ProjTrans subclass.
Task Given the pattern « of task object #,, the UDF
pre_check(four) first tries to add « to the pattern hash table
T (that tracks the current set of mined patterns) for later out-
put, which will trigger our early termination rule checking.
If « is determined to be not closed, pre_check(fout) returns
false to skip the pattern growth from «; note that run(four)
will exit directly as shown in Line 3 of Fig. 6. Otherwise,
pre_check(four) returns true so that the UDF serChildren()
will then be called to grow « and set the children table.

Specifically, we will use the position pointers in our
ProjTrans-subclass object for D], to scan D to identify fre-
quent child-patterns {8} (i.e., sup(B8) > Tsyp). For each such
B, we have two cases which are differentiated based on a con-
cept of “growth-support” defined as follows: if a projected
transaction s|g € D|g is fully matched to pattern B, i.e., the
suffix becomes empty, then we do not increment 3’s growth-
support; while if the suffix is not empty, we increment 8’s
growth-support. Intuitively, 8’s growth-support defines an
upper bound on sup(y) for any pattern y that is extended
from g.

In UDF setChildren(), therefore, we have two cases for
each frequent child-pattern §. (i) If 8’s growth-support is less
than 7y, then B cannot be extended to generate a frequent
pattern and is thus not added to table children. However,
since g itself is frequent, we try to add it to the pattern hash
table T for later output, which will trigger our early termi-
nation rule checking. (ii) Otherwise, we add the table entry

T, Ty T,

a [

® ® ®

& @ ® @ Q© (®)
& © ¢ @& ©o W _©

Fig. 11 Embedded subtree pattern illustration

Embedded Subtree

children[B] = D|g sothat B will be extended to grow longer
patterns.

Finally, UDF needSplit simply checks if the array of posi-

tion pointers maintained by D|g (of type being our ProjTrans
subclass) is larger than 7y, and returns true if so, and
returns false otherwise.
Worker UDF setRoot(Q;qsk) scans D and generates a task
te = (e, D|,) for each frequent item-label e. If the growth-
support of such a single-item pattern e is at least y,,, we add
to to Qyqsk for pattern growth; otherwise, we cannot extend
e to generate frequent patterns, but since e is still frequent,
we try to add it to the pattern hash table T for later output,
which will trigger our early termination rule checking. Note
that the infrequent singleton patterns e can be marked so that
they can be ignored during pattern growth.

Finally, UDF finish() outputs closed frequent patterns at
the end of the job, by visiting nodes of our constructed
pattern-growth lattice.

6 Parallel embedded subtree pattern mining

Mining frequent subtree patterns in a tree database (or, forest)
is useful in domains such as bioinformatics and mining semi-
structured data. This section describes how to implement
popular subtree mining algorithms, PrefixTreeSpan [59] and
Sleuth [56], on PrefixFPM.

We consider the problem of mining embedded subtrees
in a database of rooted and labeled trees. Here, “rooted”
means that the tree root matters, and “embedded” means that
the tree edge in a subtree pattern only needs to capture the
ancestor-descendant relationship (i.e., can skip nodes in the
middle) rather than a direct parent-child edge (the latter is
called “induced”).

We illustrate the concept of an embedded subtree pattern
using Fig. 11, which shows a database of three trees. The sub-
tree shown in the box is considered frequent since it appears
in all the three trees 7T,, T and T, obtained by skipping the
“middle” node in each tree, even though this subtree is the
induced subgraph of only 7} alone.

Overview of the algorithms For rooted and embedded sub-
tree patterns, there are still two cases: ordered and unordered.
Here, “ordered” (resp. “unordered”) means that the order of
children nodes matters (resp. does not matter). Referring to

@ Springer

266 D.Yanetal.
Pattern Tree Data Tree Projected Forest
R) 1 1 1 1
O Encoding: BAB -1 D -1-1B-1C -1 -1
- 4 S35 Position: 0 1 2 3 4 5 6 7 8 9 10 1
(,\14 e @ Partner: 11 6 3 -1 5 -1 -1 8 -1 10 -1 -1

Fig. 12 Forests after pattern projection

the 3 trees shown in Fig. 2 again, they are considered different
(resp. the same) if they are ordered (resp. unordered).

Among the algorithms that we will review, PrefixTreeSpan
[59] and TreeMiner [53] are for mining ordered subtree pat-
terns, while Sleuth [56] extends TreeMiner to mine unordered
subtree patterns.

All these algorithms adopt prefix projection to enumer-
ate patterns in the pattern-growth tree. Recall that in Fig. 2,
if we encode each tree pattern by appending “$” whenever
we backtrack from a child to its parent, we obtain encod-
ing BAB$D$$BSCS for 77, BABDSSSCS$BS for 7>, and
BCBSABDSS for T3. For the Sleuth algorithm which con-
siders trees as unordered, 7, T, and T3 are considered the
same and Sleuth only checks and grows pattern 77 whose
encoding is canonical (i.e., the smallest alphabetically among
the three). In contrast, PrefixTreeSpan and TreeMiner do not
perform such canonical encoding test to prune patterns.

As the Sleuth paper [56] indicates, finding the canonical
encoding of a tree only requires reordering the children of
each tree node by their labels. So a baseline approach called
“canonical extension” [56] is proposed which extends each
canonically encoded pattern o with one more adjacent edge
on its rightmost path. In other words, if we denote the fre-
quent size-i pattern set by J;, then the canonical extension
approach simply obtains F; 41 by “joining” F; and F7, where
“join” means that we are joining the matched transaction
instances in their projected databases. This is also the pattern-
extension approach followed by PrefixTreeSpan [59].

Sleuth joins the projected databases of two patterns F;
that share the same size-(i — 1) edges to obtain ;1| and its
projected database, which is more selective and thus efficient
since two matched instances have to share (i — 1) edges to
be joinable.

Unlike Apriori algorithms that explore the pattern-growth
tree in breadth-first order, Sleuth still explores in depth-first
order where each tree node represents the shared size-
(i — 1) pattern “prefix.” This allows it to be implemented
in our PrefixFPM framework for easy parallelization. We
next describe our PrefixFPM adaptions of PrefixTreeSpan
and Sleuth.

6.1 Mining ordered subtree patterns in PrefixFPM

Recall that the data tree in Fig. 12 is encoded (by Sleuth)
as BAB$SDS$$BSCS following preorder traversal that finally

@ Springer

Fig. 13 PrefixTreeSpan tree encoding

returns back to root B. To facilitate prefix projection, Prefix-
TreeSpan encodes this tree in a similar manner as shown in
Fig. 13, where backtracking is encoded with “—1" which
is like “$.” However, PrefixTreeSpan lets each node be
paired with a corresponding partner “—1” in the encod-
ing so that the first B is now also paired with a “—1” at
last. The part between a node and its partner is called the
node’s scope, which enables a quick checking of ancestor-
descendant relationships. For example, in Fig. 12, after
prefix projection by the pattern tree, the data tree gets split
into a so-called “postfix-forest” with two trees, the node
of which can be used to further extend the current pat-
tern.

To see how this is achieved, PrefixTreeSpan requires the
scanning of the data tree (i.e., its preorder encoding) to start
from right after the position that matches the last node in
the pattern subtree. For the example in Fig. 12, we should
start from after “A” at the second position of the above
encoding. Based on A’s scope we can obtain the first tree
in the projected forest as shown in Fig. 12, encoded as B-
1D-1 which is hooked to Node 1 in the pattern tree (1 is
encoded due to preorder traversal of the pattern). Continuing
the scanning, we will obtain the second projected postfix-tree
encoded as B-1C-1 which is hooked to Node 0 in the pattern
tree.

We remark that by scanning the data tree encoding from
the last matched position, we effectively extend a pattern
along its rightmost path. Referring to Fig. 4, for example,
we will not consider extending Node 2 since the last pattern
node matched to a data tree is Node 3.

Note that we do not materialize the postfix-forest of a tree
transaction 7; since it is implicitly maintained by the 7;’s
encoding. Next, we present the implementation of Prefix-
TreeSpan in PrefixFPM.

Transaction A transaction object here is simply an encod-
ing array as illustrated in Fig. 13. Besides, we also maintain
another array called partner also shown in Fig. 13. For a
data-tree node encoded in the i-th position of the encoding
array, partner[i] keeps the position of its paired “—1" in the
encoding array for getting the node’s scope in O (1) time.
The partner array can be easily pre-constructed by scanning
the encoding array.

Projected transaction Besides the ID of the matched tree
transaction 7;, each projected transaction object also keeps
an array M that saves the positions of previously matched
nodes in the encoding array of T;.

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns

267

/b

A)

e@ @

Transaction_ID =2

@
Fu

Transaction_ID =1

0 M:

® @

/D |AB-1-1 %\

Transaction_ID =2

oWnn =
© @ ©

Transaction_ID =1
\ Transaction_ID y

Fig. 14 PrefixTreeSpan prefix projection

Consider the example in Fig. 14 with two tree transactions,

and a two-node subtree pattern encoded by o« = AB-1-1
where if we code the tree nodes by preorder traversal, Node A
(resp. B) in the pattern tree o are with ID O (resp. 1). Then,
for the projected transaction that is matched to 77, we have
M[0] = 7 (resp. M[1] = 8) indicating that Node A (resp. B)
in the pattern tree o are matched to 77 ’s data node at position 7
(resp. 8) in T7’s encoding array. Recall that pattern extension
should continue from after position 8 of 77’s encoding array,
and hence the projected transaction only has one child D left
in postfix-tree.
Pattern A pattern object here maintains an encoded pattern
tree o along with the projected database D|,. For example,
Fig. 14 shows the pattern object for « = A-1 and @ = AB-
1-1.

Let us consider pattern tree « = A-1, and we have marked
the three nodes with label A in D in red. Each of these three
nodes generates a projected transaction in D|a_; with trans-
action ID along with an array M saving the position of match
to A in the encoding array.

Task The most important UDF is setChildren(). Given a tree
pattern «, we extend it by an edge (or, element) e that is
represented by a pair (pa, X) where pa is the ID of the
parent node in «, and X is the node label. For example, in

Tl T2
T |B|A|C|E|-1|[-1|-1|A|B|-1|D|-1]-1]-1
T,/A|B|B|-1D|-1|-1|C|-1]|-1
\0 1 2 3 4 5 6 7 8 9 10 11 12%

Qansaction_lD =1 D |A-1J

0
Pattern Subtree: @

0
()
1

Pattern Subtree:

Fig. 14, pattern AB-1-1 is obtained by extending pattern A-1
with edge e = (0, B).

To extend a projected transaction s|, in D], where
transaction_id(s|y) = i by an edge, we only need to scan
the encoding of 7; starting from right after the last matched
position (i.e., the last element of array M of s|y).

For example, consider D|4_; in Fig. 14. Here, the first pro-
jected transaction of 77 has the root node matched to 77[1]
in the encoding, and it can be extended with ¢ = (0, C) or
(0, E). (Recall that we consider embedded patterns.) Simi-
larly, the second projected transaction of 77 has the root node
matched to 77 [7] in the encoding, and it can be extended with
e = (0, B) or (0, D).

When scanning each element 7;[o] in the postfix-forest of
s|o», we can identify its parent node p € M in o by checking
whether data node T;[M[p]]’s scope contains o (i.e., p is
0’s ancestor) and p is the last such node in M; if so, we
need to append the new projected transaction (extended by
o) into D|g where B is the tree pattern extending o with
e = (p, Tilo]).

In UDF serChildren(), for each s|, in D|y, (i) we conduct
the above postfix-forest element scanning, where for each
element o, we append the newly extended projected transac-

@ Springer

268

D.Yanetal.

tion s|g to the projected database D|g that is maintained in
children]e].

Then, when all s|, € D], are processed, (ii) we scan

the table children to remove the entry for every infrequent
child-pattern 8 (i.e., sup(B) < Tsup). Note that there could
be multiple projected transactions with the same transaction
ID, sup(B) only counts them once.
Worker UDF setRoot(Q;qsk), instead, (i) scans each tree
transaction 7; € D using OpenMP parallel-for loop. For each
tree node X at position j of 7;’s encoding array, we create a
projected transaction s|x.; with M[0] = j and append s|x
to D|x.; which is recorded by children[X].

Then, when all 7; € D are processed, (ii) we scan the
table children to remove the entry for every infrequent tree
pattern X-1 (i.e., label X occurs in less than 7, transac-
tions). Besides, (iii) we also mark every infrequent label X
so that in future task processing (e.g., the scan of the postfix-
forest elements in projected transactions), elements with X
are directly skipped.

6.2 Mining unordered subtree patterns in PrefixFPM

Sleuth [56] mines tree patterns that are frequent, node-
labeled, rooted, unordered, and embedded. Since the order
of children nodes does not matter, we need to prune non-
canonical pattern encodings. Recall that in Fig. 2, only the
first pattern 77 is considered canonical.

To capture the ancestor—descendant relationship among
nodes similarly as the scope-based encoding of Prefix-
TreeSpan, Sleuth assigns each node v an interval [£, r] called
v’s scope, where £ is the rank of v in a preorder traversal
of the tree, and r is the rank of the rightmost node in the
subtree rooted at v (i.e., the largest node rank in the sub-
tree). For example, for tree Ty in Fig. 15, Node 0 has scope
[0, 3], Node 1 has [1, 1], and Node 3 has [3, 3]. Then, the
ancestor—descendant relationship can be judged by the scope
containment relationship. For example, Nodes 1 and 3 are
both the descendant of Node 0 since [1, 1], [3, 3] C [0, 3],
but Node 3 is not a child of Node 1 since [1, 1] N [3, 3] =
7

Since a pattern « can have multiple matches in a tree trans-
action, Sleuth represents each projected transaction in D],
as a pair (tid, scope) where tid is the transaction ID of the
tree transaction 7; whose subtree matches «, and scope is
the scope of last matched node in 7; that matches the last
extended node in pattern o (which is also o’s rightmost node
as edge extension is along the rightmost path). For example,
Fig. 15 shows the vertical representation of initial patterns
a = A, B, C, D, and E. The rectangle for pattern B, which is
called its scope list, contains 3 matched instances in tree 77,
corresponding to Nodes 0, 2, and 4, respectively.

In Sect. 3, we saw that Sleuth encodes a tree T by adding
vertex labels to the encoding in a depth-first preorder traver-

@ Springer

sal of T, and by adding “$” whenever we backtrack from a
child to its parent. This sequence encoding of T is also called
its horizontal format as shown in Fig. 15. Sleuth adopts prefix
projection to enumerate patterns by their horizontal encod-
ings.

To avoid redundancy, a pattern is checked and extended

only if its horizontal encoding is canonical. Recall from
Sect. 3 that finding the canonical encoding of a tree only
requires reordering the children of each tree node by their
labels, so a simple approach to implement Sleuth is to follow
PrefixTreeSpan’s framework to grow patterns by one edge
along the rightmost path, but with canonical pattern filtering,
which is called canonical extension in [56].
Equivalence class-based extension Compared with canon-
ical extension, [56] finds that another approach called
equivalence class-based extension is more efficient. While
canonical extension extends a pattern o with one edge, equiv-
alence class-based extension generates a size-(k + 1) pattern
from two size-k patterns that share the same size-(k — 1) pre-
fix encoding. Obviously, the latter is more selective and thus
reduces mining workloads.

This is where scope-lists come into play. Referring back to
Fig. 4 again, we have a size-3 prefix encoding P = CDAS$B
(as there are 3 solid edges), from which we can grow size-4
patterns (i.e., using each of the 4 dashed edges). Let each
dashed edge be denoted by (i, x) where i is the hooked node
IDin P, and x is a node label. Let us denote the new pattern
extended with (i, x) by B = P, then all {P!} constitute an
equivalence class where patterns share the prefix P, denoted
by [P]. .

To build the equivalence class [P}] where patterns share
the prefix P;, we can extend P; using another edge (j, y) €
[P]. _

Sleuth keeps a projected database D|g for each g = P,
which is represented as a scope list described before. To
incrementally compute D|, for the pattern y obtained by
extending P! with (j, y), we can join the scope list of P!
with the scope list of every P){. e [P].

The idea of join is simple (see [56] for details): Two
scopes (tidy, scopey) and (tid>, scope) can be joined only
if tid, = tid, (i.e., the match is from the same transaction
T), the matched prefix occurrences (i.e., their node IDs in T
which are also saved) are the same, and y’s matched node
in T is a descendant or cousin of x’s matched node (need
to check scope; and scopes). Since we always order scope
list items by ¢tid, the joining of two scope lists requires only
one pass over the two lists similar to the merge operation in
merge sort.

However, the joined new patterns may not be canonical
and such patterns need to be pruned. There are other details
such as a smart algorithm for canonical form checking (illus-
trated in Fig. 6 in [56]), but these are implemented in [37]

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 269

Database D of 3 Trees
Tree TO Tree T2

D in Horizontal Format : (tid, string encoding)

0
1031 A) l07’/@0\
1 3

(TO, AC$BDS$$)
(T1, BAB$SDS$$BSCS)
(T2, ACBSEABSCDS$$$9)

D in Vertical Format: (tid, scope) pairs

A B C D E
0,[0,3] | 0,[2,3] | O,[1,1] | 0,[3,3] | 2,[3,7]
1,[1,3] | 1,[0,5] | 1,[5,5] | 1,[3,3]

2,[0,71 | 1,12,2] | 2,[1,2] | 2,[7,7]
2,[4,71 | 1,[4,4] | 2,[6,7]

2,12,2]

2,[5,5]

[2.2] (3.3]

Fig. 15 Scope lists from Fig. 3 of [56]

already and we can directly reuse them when adapting the
implementation to PrefixFPM. We omit these details and
refer interested readers to [56].

TreeMiner TreeMiner [53] mines ordered trees like in Pre-
fixTreeSpan rather than unordered ones, so it does not
perform canonical pattern filtering. Otherwise, the algorithm
is exactly the same as Sleuth, where equivalence class-based
extension is adopted.

We next adapt the serial Sleuth implementation of [37]
to PrefixFPM. We remark that unlike the other algorithms
we describe where a Pattern object maintains just one pat-
tern « and its projected database D|y, in Sleuth, a Pattern
object now maintains a prefix encoding P along with a list
of extending edges of the form (i, x) € [P], each associated
with the scope list for 8 = P; (i.e., projected database D|g).
Note that a Pattern object now maintains multiple projected
databases {D|g} instead of one D], .

Transaction A transaction object here is simply imple-
mented as an array that keeps the horizontal encoding of
a tree transaction.

Projected transaction Refer to the vertical encodings in
Fig. 15 again: For the singleton-node pattern = A, its scope
list D|y has 4 pairs where the first pair is (tid, scope) =
(0, [0, 3]). In general, besides (tid, scope), each projected
transaction s|, also keeps an array M tracking the prefix-
matched nodes in 7};4 just like in PrefixTreeSpan.

To summarize, a projected transaction object keeps three
fields: (i) the transaction ID tid, (ii) the array M of prefix-
matched nodes, and (iii) the scope which is an interval
defining the range of the subtree rooted at the last-matched
node (i.e., the last element in M).

Eqnode This class defines the edge (i, x) used to extend
a prefix P. An Egnode object maintains three fields: (i) the

1: for each (i, x) € [P]

2 if P,/ is not canonical: continue

3 L, < scope list of P!

4 for each (j, y) € [P]

5: if i <j: continue

6 L, — scope list of P/

7 Oy «join(L,, L,) // note that Q = P,
8

if O/ is frequent: children[Q].append(Qy)

Fig. 16 Algorithm of SleuthTask::setChildren(.) in PrefixFPM

node i in prefix-tree P to hook the edge, (ii) the label x of the
hooked node, and (iii) the scope list (or, projected database)
D|g where f = Pi.

Pattern A pattern object here defines an equivalent class
[P] of patterns that share the same prefix P. It maintains two
fields: (i) the prefix P and (ii) an array of Egnode objects
each of which is for one edge (i, x) and keeps D|g where
B =Pl

Task Recall that each task maintains a pattern object. Thus,
UDF setChildren(.) is to compute every pattern object [Q]
where Q = P;. (We use Q in replace of g for the notation
to be consistent with P.)

Note that to compute a pattern object [Q], we need to
compute its array of Eqnode objects, or equivalently, the
extending edges (j, y) € [Q] and their scope lists.

Figure 16 shows the algorithm for setChildren(.). Note
that each children table entry children[Q] to construct is
a pattern object [Q]. Specifically, for each extending edge
(i,x) in [P] (Line 1), we check if O = P; is canonical
(Line 2). If not, Q is pruned; otherwise, we continue to build
[Q] to be added to children[Q] (Line 8).

Specifically, Lines 4-7 join the scope list of Q with the
scope list of every Pyj € [P] to generate the scope list of the

@ Springer

270

D.Yanetal.

new pattern Qé, which are then appended to children[Q]
one by one (if Q; is frequent which is judged using its
scope list). After all (j,y) € P are processed (Line 4),
children[Q] now contains the complete [Q] with all Egnode
objects {Q7} constructed.

UDF get_next_child(.) (recall Line 7 of Fig. 6) then wraps
eachchildren[Q]intoatask t thatprocesses [Q] for further
processing. Since tp needs to join the scope lists of {Q{,}
and join operations are merge-like and thus with a linear
time complexity, we estimate the task computation cost of
to as the sum of the lengths of scope lists {Qi,}. In UDF
needSplit(), we return true only if this sum is at least Ty,
for divide and conquer.

Worker The UDF setRoot(.) first scans D to count label
frequencies and remove infrequent node labels. Let the set
of frequent labels be 1, the UDF then counts the frequencies
of edges e = (X, Y) with a counter array of size |F1| x | Fi|
by scanning D. Note that in subsequent edge extension, only
frequent (labeled) edges (denoted by F>) will be considered.
The UDF then builds the pattern object [e] for each e € F>
and wraps them as the set of initial tasks to be added to Q;4sk-

7 Subgraph pattern mining with PrefixFPM

This section first reviews the state-of-the-art gSpan [49] algo-
rithm for mining frequent subgraph patterns from a graph
database and then describes how we implement a parallel
version of gSpan in PrefixFPM.

Finally, we wrap up this section with a description of the
GrAph/Sequence/Tree extractiON (Gaston) algorithm [27]
that aims a quickstart in frequent subgraph pattern mining
by searching first for frequent paths, then frequent free trees,
and finally, frequent cyclic graphs, followed by our paral-
lelization of Gaston with PrefixFPM.

7.1 gSpan review

gSpan [49] considers a database of labeled graph transac-
tions D = {G;|i = 1,2,---,n} where each vertex and

Fig. 17 DFS tree and its
forward/backward edges [17]

@ Springer

each edge can have a label. For simplicity, we assume that
each transaction G; is an undirected and simple graph. The
goal is to find all subgraph patterns whose support is at least
Tsup, Where we say that G; supports a subgraph pattern o if
« is isomorphic to a subgraph of transaction G;. Note that
even if G; has multiple subgraph instances that match «, it
still only contributes 1 to sup(«). However, these subgraph
instances should all be extended when generating the pro-
jected database of child-patterns.

To encode a graph G into a sequence for prefix projection,
gSpan builds a so-called DFS code tree over G as follows:
Depth-first search (DFS) is conducted on the nodes of G
starting from some initial node, and each node is assigned
an ID that equals the order that it is first visited in G by
DEFS. Figure 17a shows a graph G, and Fig. 17b—d shows 3
different DFS visits of G with different starting nodes and
different edge selection orders.

For example, Fig. 17b shows a DFS visit of nodes vy,
v1, ..., V4. Edges (vg, v1), (v1, v2), (v2, v3), and (v, v4) are
traversed in order, and they are called forward edges which is
defined as (v;, v;) withi < j. There are also two backward
edges (v2, vp) and (v3, v1) which are not in the DFS code
tree.

gSpan grows subgraph patterns by edges, so each graph G
isencoded into an edge sequence. To define a unique mapping
from G to its edge sequence given a DFS code tree 7', gSpan
orders edges such that whenever we reach a vertex v; dur-
ing DFS, we first traverse all backward edges starting from
v; before moving forward with (v;, v;41). Moreover, for two
backward edges (v;, v;) and (v;, vi), the former is before the
latterif k < j.For example, Fig. 17b gives the edge sequence
(vo, v1), (v1, v2), (V2, Vo), (V2, V3), (V3, V1), (V1, V4). In gen-
eral, givenany twoedges (v, v},) and (v;,, v},), the previous
edge total order can be defined based on the value comparison
of i1, iz, j1 and jo (see Theorem 1 of [17]).

We have not considered labels so far. If we incorporate
labels, each edge (v;, v;) can be expanded into a quintuple
(@@, j, L(v;), L(v;, vj), L(v;)) where L(.) means the label.
This will expand the previous sequence for Fig. 17b into
©0,1,X,a,Y),(1,2,Y,b, X),---.Suchasequence of edge-
quintuples is called the DFS code of G given DFS code tree 7.

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 271

(a) (b) (c) (d) (e)

Fig. 18 gSpan pattern growth [17]

Note that a graph G can have many different DFS codes:
For the same graph in Fig. 17a, ¢ gives another DFS
code (0,1,Y,a, X), (1,2, X,a, X), ---. We can compare
different DFS codes in lexicographic order, where each
element (i.e., edge-quintuple) is also compared in lexico-
graphic order. For example, for the previous two DFS codes,
since X < Y, we have (0,1, X,a,Y) < (0,1,Y,a, X),
and since the first element already breaks the tie, DFS
code (0,1,X,a,Y), (1,2,Y,b, X), --- is smaller than
©0,1,Y,a,X),(1,2,X,a,X),---.

So far, we have defined a way of encoding a graph G
given a DFS code tree T of it. Given a subgraph pattern o,
different DFES orders over o generate different DFS codes
and we define the minimum DFS code among them as the
canonical encoding of «. This allows prefix projection to be
applicable by enumerating DFS codes representing subgraph
patterns, but to avoid redundancy, we only check and extend
a pattern « if its DFS code is canonical. (Recall Fig. 3.)

Due to the DFS nature of a DFS code tree, to grow the
DFS code of pattern § from the DFS code of pattern o by
adding one adjacent edge e, e must grow from vertices on
the rightmost path of «’s DFS code tree (to avoid pattern
redundancy). As Fig. 18b—c shows, backward edges can only
extend from the rightmost vertex, while Fig. 18d—f shows that
forward edges can extend from any vertex on the rightmost
path.

7.2 gSpan implementation in PrefixFPM

We next adapt the serial gSpan implementation of [16] to Pre-
JixFPM. We remark that the previous review of gSpan is kept
simple and there are actually a lot of additional algorithmic
details, such as an enumerating engine to find all projected
instances G;|g from G|y (in D|y) by edge backtracking in
G, and the pruning rules in Sect. 5 of [17]. However, we can
directly use their implementation in [16] and so only details
relevant to adaption were reviewed.

Transaction A transaction object here keeps a graph G; as a
list of labeled vertices, each of which maintains an adjacency
list of labeled adjacent edges.

Projected transaction Given a pattern « with i edges
ordered as ej, ez, ..., ¢, a projected transaction G|, that
projects o over G; keeps an array M of edge pointers, each

pointing to a matching edge in G;. Specifically, M[i] points
to the matching edge of ¢; in G;.

Pattern A pattern object keeps the pattern o as a sequence
of DFS codes (i.e., edge-quintuples), as well as the projected
database D|,. The DFS code sequence contains the whole
information of a pattern graph «, so we can recover graph o
for printing. Note that D|, may contain multiple projections
Gi|q (i.e., subgraph instances of G; that match «), but they
should count only once to «’s support.

In contrast, since every instance needs to be edge-extended

when building child-patterns’ projected databases {D|g}, we
should compare the size of D|, (i.e., every instance counts)
with g, in UDF Task::needSplit() to decide whether to
process a task tg itself or to add it to Q k-
Task The UDF setChildren(.) extends each instance G;|y
by checking the potential edges in G; to extend « as shown
in Fig. 18. If such an edge e (on the new rightmost path)
is found in G;, we append the extended instance to table
entry children[e] (which keeps D|g where child-pattern 8
is obtained by extending o with ¢). Note that the children
table’s entry keys depend on the edges in the matched trans-
actions, so no entry is created if such an edge (v;, a, v;) (i.e.,
L(v;, vj) = a) does not exist in the transactions.

Finally, for each children table entry (e, D|g) we check
if B is frequent (computed using D|g), and infrequent child-
patterns are removed from the table.

In UDF get_next_child(.), we then create a task from a

children table entry (e, D|g) (where 8 is guaranteed to be
frequent) by constructing B’s DFS code sequence. Given this
sequence, we can decide if it is canonical. A task #g is created
only if the B is canonical.
Worker The UDF setRoot(Q;4sk) scans D to collect unique
labeled edges (X, a, Y) and their supports. The set of fre-
quent edges are found as F. Another pass over D then
removes all infrequent edges (i.e., not in F) from the graph
transactions. It also handles other details like giving each
edge a unique ID so that later, a visited edge can be marked
without repeated edge growth.

The UDF sefRoot(.) then scans every G; € D, and
for every vertex v € G, it inserts every forward edge
e = (X,a,Y) originating from v into a root-level entry
children[(X, a, Y)] thatkeeps D|.. Note that the processing
is done by parallel for-loop. Finally, each table entry gener-
ates a root-level task 7, that is added to Q¢ to initiate the
mining.

7.3 Gaston and its PrefixFPM implementation

As [28] indicates, experiments with molecular databases
reveal that the largest numbers of frequent substructures in
such databases are actually free trees. Simpler structures
such as paths and free trees can be mined with more efficient
algorithms compared with subgraphs, which motivates the

@ Springer

272

D.Yanetal.

Cyclic graphs

L=(y,\,
L=(y. A a)
L=(w, N\,
I,=(%,A,b)
ls=0y, %W

Free Trees

(a) Pattern Growth

DFGraphMiner (A graph code C, a leg [, a set of legs L)
(1) C":= p(C,1)
(2
3

)

) if C’ is not canonical then return

) output graph C’

(4) L' := {U'|l' is a necessary leg of C’, support(p(C’,l'), D) > minsup,
" € L, or I’ connects to the node introduced by [,

if 1 is a node refinement }

(5) for all I’ € L' do DFGraphMiner (C’, ', L')

° L X ”l;‘ X X

Backbone strings:
Backbone:

(b) Depth-First Graph Mining Workflow

{) Centre/bicentre

bxbxb bxbxc
bxbxbxbxc

bxbxa
axbxbxbxbxb

Backbone strings: bxbxb

Backbone:

(c) Free Trees, (Bi)centers and Backbones

Fig. 19 Gaston algorithm overview (figures are directly obtained from [27] and [28])

Gaston algorithm that divides the frequent graph discovery
process into phases, from paths to free trees, and finally to
subgraphs. In each phase, a dedicated algorithm is used to
mine the respective patterns only to the extent of algorithm
complexity needed for such patterns, so simpler patterns can
be mined much more efficiently, achieving an overall perfor-
mance much better than gSpan.

Studying Gaston is interesting since it unifies all the appli-
cations that we discussed so far: frequent sequence (aka.
path), subtree, and subgraph pattern mining, into one mining
algorithm. It is also easy to parallelize since the serial code
of Gaston is available at [15]. The details of the entire algo-
rithm are complicated and require much space to present, so
this section focuses on a high-level overview of the Gaston
algorithmic workflow.

Gaston algorithm overview As shown in Fig. 19a, b, Gaston
grows patterns by one edge at a time, similar to gSpan. In
Gaston terminology, there are two types of edge extensions:

— Node refinement, where a subgraph G is extended with
anew (forward) edge e = (u, v) with u being an existing
vertex in G and v being a new vertex.

— Cycle closing refinement, where a subgraph G is
extended with a (backward) edge ¢ = (u, v) with both u
and v being existing vertices in G.

The extending edges are called legs, as illustrated by [y, [,
I3, and 4 in Fig. 19a. Figure 19b provides a simplified view
of the depth-first graph mining algorithm, where in Line 1,
the refinement operator p (G, [) refines a graph G by adding

@ Springer

leg I, and Line 2 skips non-canonical patterns to avoid redun-
dancy. Line 4 then computes leg candidates for child-pattern
extension in Line 5: Specifically, only frequent candidate
legs from the previous parent-pattern and those connecting
to the lastly added vertex are considered as leg candidates for
pattern extension.

A pattern is grown in 3 phases, initially as paths, then free
trees (i.e., unrooted trees), and finally cyclic graphs. (Note
that paths and free trees are acyclic.) This allows simpler
patterns to use more efficient algorithms for pattern growth.
The algorithms are similar to those we have seen so far with
some necessary changes.

For example, a path can be regarded as a sequence only
when the path orientation is determined, such as axaxb and
bxaxa. (a, b are vertex labels, and x is an edge label.) To
avoid generating this path from both axb (by leg I; = bxa
on the left) and bxa (by leg [= axb on the right), Gaston
only allows the lexicographically smaller leg /> to extend.

As another example, we previously only considered rooted
trees, but a path or free tree can be extended by node refine-
ment into another free tree, and it is important to determine
the pattern canonicality of a free tree. As Fig. 19¢ shows,
Gaston converts a free tree into one rooted tree (aka. a cen-
tered tree), or two rooted trees with roots connected (aka. a
bicentered tree). This is utilizing the property that one can use
the center(s) of a free-tree path with maximal length to make
a free tree uniquely rooted. As a result, a backbone string
can be defined by concatenating the two lexicographically
lowest paths from the root(s). Gaston restricts that free trees
can only grow from a free tree with the same backbone, and

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 273

that all free trees of a backbone grow from the path that cor-
responds to that backbone. Gaston utilizes a duplication-free
enumeration approach to avoid generating redundant patterns
for canonicality checking, which makes it more efficient than
gSpan for free trees.

Gaston implementation on PrefixFPM As we can see from
Fig. 19b, the mining procedure of Gaston directly follows the
pattern-growth procedure that PrefixFPM requires for paral-
lel adaptation, so we hereby only briefly discuss how we
adapted the serial code [15].

Specifically, even though Fig. 19b provides a unified algo-
rithmic workflow, the actual data structures and algorithms
used in each stage are different; therefore, we maintain the
stage number as a field in a Pattern object which is used
by the UDFs of our Gaston’s Task subclass to branch to the
appropriate operations.

As Fig. 19a shows, a path is allowed to be extended by a
node refinement into either a path or a free tree, and by a cycle
closing refinement into a cycle (which is a graph). Similarly,
a free tree is allowed to be extended by a node refinement
into another free tree, and by a cycle closing refinement into
a graph; finally, a graph is allowed to only be extended by a
cycle closing refinement into another graph.

For projected databases, we follow Gaston to keep for each
pattern an embedding list that keeps the pattern embeddings
(i.e., projected transactions) of the input graph transactions.
The serial code [15] keeps embeddings incrementally, where
each projected transaction (i.e., embedding) only keeps the
matching information for the last leg, followed by a pointer
to the embedding of the parent-pattern, so that the projected
databases of all predecessor patterns are needed to recover the
information of an embedding. While this approach is space-
efficient, a task 7, in PrefixFPM generates child-tasks and
may then be released before the computation of a child-task
15, so we cannot assume that #g is able to access the projected
databases of the predecessor patterns. We, therefore, mate-
rialize the embeddings into the projected database of every
child-pattern instead.

8 Experiments

We evaluate the performance of PrefixFPM using the 7 FPM
applications described in Sects. 5, 6, and 7, i.e., the paral-
lel versions of PrefixSpan [31], CloSpan [48], Sleuth [56],
TreeMiner [53], PrefixTreeSpan [59], gSpan [49], and Gas-
ton [27] on top of PrefixFPM. For ease of presentation, we
refer to these PrefixFPM algorithms by directly using the
names of their serial algorithms.

The PrefixFPM framework and the 6 applications on top
are open-sourced at:

https://github.com/wenwenQu/PrefixFPM

Table 1 Sequence datasets

Dataset #{transactions } #{labels} AVG seq length
S10 16,000,000 10,000 10

S50 400,000 10,000 50

Plan 202,071 366 199.3

To thoroughly test the scale-up capability of PrefixFPM,
we ran our PrefixFPM programs on the BlueBlaze server
donated by IBM to the Department of Computer Science, the
University of Alabama at Birmingham, which is equipped
with 5 IBM POWERS8 CPU (32 cores, 3491 MHz), 1 TB
RAM, and 2TB HDD. Since there are 5 x 32 = 160 cores,
we are able to thoroughly test the scalability with 1, 2, 4, 8,
16, 32, 64, and 128 cores. Every experiment was repeated
for 5 times, and the reported results were averaged over the
5 runs; we find that the difference of different runs is small
and consistently within 5%.

For each dataset, we set the frequency threshold 7,
such that running with 16 computing threads takes a few
minutes. This is because the mining time grows quickly as
Tsup decreases, and our focus is on evaluating the multicore
speedup ratio and we want to keep the total running time of
each experiment tractable.

Recall that a task #, of PrefixFPM puts a child-task #g to
Qrask rather than processes tg by itself if |Dly| > Tspiiss
and meanwhile, if a task runs for more than t;;,,. seconds, a
timeout happens and all remaining tasks are added to Q4 -
Unless otherwise stated, we use the default setting where
Typtir = 100 and 7/, = 0.1 second. We will also present
experiments that tune the two parameters to justify our default
choice later in this section.

The rest of this section first describes the scalability results
of each of our 7 applications presented in order, followed by
the study of the effects of 7y, and 7/ime, and finally by
a comparison with existing distributed solutions on Apache
Hadoop and Spark.

8.1 PrefixSpan scalability on PrefixFPM

Data For sequential pattern mining, we use two synthetic
sequence datasets and one real sequence dataset for experi-
ments. Table 1 summarizes the 3 datasets.

The first two datasets are generated using the sequence
generator of IBM Synthetic Data Generator [20], which mim-
ics real-world transactions where people buy a sequence
of items. We generate two datasets, one with 400,000
sequences of average length 50, denoted by S50; the other
with 16,000,000 sequences of average length 10, denoted by
S$10. We use the default value of 10,000 by [55] for the num-
ber of labels. Note that the mining time grows quickly with

@ Springer

https://github.com/wenwenQu/PrefixFPM

274 D.Yan et al.
Table 2 Scalability results of PrefixSpan
#{cores} S10 (s) Speedup RAM (GB) S50 (s) Speedup RAM (GB) PLAN (s) Speedup RAM (GB)
Serial 1335.96 - 3.0 1455.60 - 0.4 387.56 - 1.2
1 1,447.87 1 3.1 1,646.77 1 0.4 434.06 1 1.0
2 739.74 1.96 32 830.73 1.98 0.4 229.50 1.89 1.2
4 389.55 3.72 32 419.36 3.93 0.4 117.53 3.69 1.7
8 211.86 6.83 4.2 211.44 7.79 0.4 84.22 5.15 1.7
16 119.13 12.15 4.2 109.39 15.05 0.4 40.24 10.79 2.0
32 85.11 17.01 4.2 71.04 23.18 0.6 25.54 16.99 2.5
64 68.64 21.09 5.2 56.84 28.97 0.8 18.86 23.02 2.9
128 64.61 22.41 5.2 48.22 34.15 14 17.71 24.51 3.8
351 5 s10
1600 —¢ S10 30/ —® 550
—~ —e— S50 1
E 1400 —=— PLAN —&- PLAN
1 25 -
© 1200 1 RS
n T
21000 < 20+
Q
= | =
g 800 T 151
£ 9]
£ 600 o
c Y 10+
=]
x 400 -
Q
S 200 57
01 0

1 2 4 8 16 32 64 128

Number of Task Computing Threads

Fig.20 Scalability of PrefixSpan

sequence length but linearly with the number of sequences,
so we let S70 have many more sequences than S50, while
$50 is used to test the performance with long sequences.

One real dataset, denoted by Plan, is from [33], which
is obtained from a planning domain. The input consists of
a database of plans for evacuating people from one city to
another. Each plan represents a sequence of events, and the
dataset only contains 202,071 bad plans that lead to failure.
Scalability results We adapted the serial PrefixSpan imple-
mentation of [34] to PrefixFPM for parallel mining. For all
the three datasets, we fix 7y, = 50 in this set of experiments.

Table 2 and Fig. 20 show the scalability results on our
three datasets with an increasing number of task comput-
ing threads. Specifically, Table 2 reports the running time,
speedup ratio and peak memory consumption, while Fig. 20
plots the running time and speedup ratio curves. Moreover,
the first row of Table 2 also reports the results when running
the serial program of [34] as a comparison, the performance
of which is similar to running our PrefixFPM program with a
single computing thread. We can see that the speedup ratio is
very good for up to 16 computing threads and keeps improv-
ing significantly with more threads.

@ Springer

1 2 4 8 16 32 64 128

Number of Task Computing Threads

Also, even though using more threads consumes more
memory, the space does not increase much as the number
of threads increases. This is because the sequence transac-
tions occupy most of the space, and the space consumed
by the tasks’ projected databases is limited since each pro-
jected transaction only keeps the position of the last match
and the transaction ID (recall Sect. 5.1) rather than the actual
sequence.

The speedup is better on S50 and Plan than on SI0,
because S50 and Plan have much longer sequences that allow
the search space tree to grow deeper, giving more task paral-
lelism opportunities.

8.2 CloSpan scalability on PrefixFPM

We also use the three datasets in Table 1 to evaluate the
scalability of CloSpan which finds closed frequent sequential
patterns.

We adapted the serial CloSpan code from [7] to Pre-
fixSpan. The serial CloSpan code of [7] supports sequence
elements that are itemsets, and for this purpose, it has to
extend every projected transaction of a transaction s € D

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 275
Table 3 Scalability results of CloSpan
#{cores} S10 (s) Speedup RAM (GB) S50 (s) Speedup RAM (GB) PLAN (s) Speedup RAM (GB)
Serial 3258.69 - 1.8 1736.94 - 0.5 2147.42 - 0.9
1 3301.20 1 2.5 1775.45 1 04 2609.16 1 2.7
2 1807.10 1.83 2.7 909.32 1.95 0.4 1184.45 2.20 53
4 943.14 3.50 3.1 509.03 3.49 0.7 645.53 4.04 7.8
8 604.71 5.46 3.7 329.06 5.40 1.5 377.13 6.92 16.8
16 421.26 7.84 5.1 283.90 6.25 2.8 286.17 9.12 29.8
32 371.04 8.90 52 299.04 5.94 42 243.62 10.71 57.2
64 418.70 7.88 12.9 313.39 5.67 11.0 204.86 12.74 100.5
128 435.50 7.58 25.4 339.62 523 21.5 217.65 11.99 221.7
—%— S10 12 -
~ 3000 - —e— S50
2 - PLAN
o 10 A
@ 2500 - 0
< T
ES o 81
é:, 2000 1 o
T]
2 1500 - g 6
prer] Q.
c (%]
2 1000 1 4
Q
2 500 27

1 2 4 8 16 32 64 128

Number of Task Computing Threads

Fig.21 Scalability of CloSpan

rather than only the minimal (i.e., earliest) prefix match as in
our PrefixSpan program.

Surprisingly, this small difference creates a lot of mining
overheads, making the CloSpan program much more time-
consuming. Therefore, we use larger support thresholds to
avoid a very long running time. For S50 and Plan, we use
Tsup = 1000, and for S10, we use T, = 5000.

Table 3 and Fig. 21 show the scalability results on our
three datasets with an increasing number of task comput-
ing threads. Specifically, Table 3 reports the running time,
speedup ratio, and peak memory consumption, while Fig. 21
plots the running time and speedup ratio curves. Moreover,
the first row of Table 3 also reports the results when running
the serial program of [7] as a comparison, the performance
of which is similar to running our PrefixFPM program with a
single computing thread. We can see that the speedup ratio is
good for only up to 4 computing threads with further notice-
able improvement all the way up to 16 computing threads,
and there is very limited performance improvement (if not
degradation) beyond 16 threads.

The poor scalability when the number of CPU cores
becomes large is due to the lock contention on a shared

1 2 4 8 16 32 64 128
Number of Task Computing Threads

hash table for early termination rule checking, as we have
described in Sect. 5.2. In fact, the performance degrades on
all three datasets when the number of cores increases from 64
to 128 due to the big overheads for hash table contention. On
the other hand, the memory consumption does increase with
the number of threads since more tasks and hence projected
databases are maintained, but the memory v.s. CPU cores
(i.e. threads) ratio is reasonable, bounded by 1.73 for PLAN
when using 128 cores, while being one order of magnitude
smaller on the other 2 datasets.

Also, S10 and Plan have more transactions than S50, and
so, §10 and Plan tend to have more frequent patterns, and
hence, their speedup ratios are better.

8.3 Sleuth scalability on PrefixFPM

Data For subtree pattern mining, we use one synthetic tree
dataset and one real tree dataset for experiments. Table 4
summarizes the two datasets.

TreeGen is a synthetic tree transaction database generated
using a synthetic data generator [40] that creates a database
of artificial website browsing behavior: A website browsing

@ Springer

276

D.Yanetal.

Table 4 Tree datasets

Dataset #{trees} #{labels} AVG node fan-out AVG non-leaf fan-out
TreeGen 10,000,000 10 0.6 1.3
TreeBank 52,581 189 1 2.2
;T:l:fhs Scalability results of #{cores} TreeGen (s) Speedup RAM (GB) TreeBank (s) Speedup RAM (GB)
Serial 2689.49 - 6.4 1667.54 - 7.6
1 217541 1 12.2 1409.43 1 5.8
2 1228.36 1.77 722 863.35 1.63 8.7
4 701.48 3.10 124.2 542.62 2.60 11.8
8 390.11 5.58 133.2 540.12 2.61 13.9
16 224.20 9.70 135.2 521.89 2.70 14.5
32 157.10 13.85 143.2 539.13 2.61 15.5
64 143.64 15.14 145.2 535.24 2.63 14.1
128 151.36 14.37 145.2 545.00 2.59 16.0
2250 A — TreeGen —— TreeGen
_ 2000 —8— TreeBank 14 1 —@— TreeBank
©
S 1750 121
O
4 o
/1500 Z 10
= 1250 A i
2 S 8-
) el
2 1000 o
= =3 6
S 750+
s . ° —o— ° *——o 41
=l 500
250 1 27
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

Number of Task Computing Threads

Fig.22 Scalability of Sleuth

“master tree” is first created based on parameters supplied
by the users; then, one can generate random subtrees of the
master tree as the tree transactions for mining. The details of
data generation can be found in [53].

We use the default parameters for master tree: depth =
5, fan-out factor = 5, number of labels = 10, and we set
the number of nodes in the master tree as 50 to generate
10,000,000 subtree transactions.

The other dataset, TreeBank [41], is a real XML dataset
derived from computation linguistics. It models the syntactic
structure of English text and provides a hierarchical repre-
sentation of the sentences in the text by breaking them into
syntactic units based on part of speech. The dataset is deep
and comprises highly recursive and irregular structures.
Scalability results We adapted the serial Sleuth implementa-
tion of [37] to PrefixFPM for the parallel mining of unordered
tree patterns. For TreeGen, we use Ty, = 50, and for Tree-
Bank, we use Ty, = 30,000.

@ Springer

Number of Task Computing Threads

Table 5 and Fig. 22 show the scalability results on
our datasets with an increasing number of task comput-
ing threads. Specifically, Table 5 reports the running time,
speedup ratio, and peak memory consumption, while Fig. 22
plots the running time and speedup ratio curves. Moreover,
the first row of Table 5 also reports the results when running
the serial program of [37] as a comparison, the performance
of which is similar to running our PrefixFPM program with
a single computing thread. (PrefixFPM with 1 thread is even
faster since we avoided some unnecessary deep-copy over-
heads in [53]’s implementation.) We can see that the speedup
ratio is good for up to 4 computing threads, but the improve-
ment beyond 16 cores is not significant. This is because
Sleuth adopts equivalence class-based extension, where each
task is coarse-grained and handles an equivalence class [P]
of multiple patterns P)é each with its own projected database
(i.e., scope list). This coarse task granularity limits the poten-
tial of parallelism.

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 277
;::elggn Scalability results on #{cores} TreeMiner (s) Speedup RAM (GB) PrefixTreeSpan (s) Speedup RAM (GB)
Serial 699.66 - 4.8 - - -
1 746.24 1 7.9 2877.87 1 5.9
2 405.97 1.84 8.9 1632.68 1.76 5.7
4 228.59 3.26 11.8 890.28 3.23 8.3
8 134.49 5.55 14.6 468.08 6.15 11.9
16 91.18 8.18 20.4 259.35 11.1 16.3
32 79.79 9.35 16.1 187.68 15.33 21.3
64 88.02 8.48 15.3 137.30 20.96 19.5
128 96.86 7.7 16.1 119.76 24.03 18.6
3000 25
—— TreeMiner —%— TreeMiner
- —&— PrefixTreeSpan —&— PrefixTreeSpan
T 2500 A
C 20 4
3
¢ 2000 o
o © 4
i S 15
= 1500 s
() el
£ ¢ 101
€ 10004 =3
=}
4
€ 500+ 3]
01 ; ; ; ; ; g A 0+— . . . ; ; ; .
1 2 4 8 16 32 64 128 1 P 4 8 16 32 64 128
Number of Task Computing Threads Number of Task Computing Threads
Fig. 23 Scalability on TreeGen
25000 —»— TreeMiner 401 —*— TreeMiner
. —e— PrefixTreeSpan 35 {[~®= PrefixTreeSpan
2 20000 -
S 30
3 2
i 15000 A 5 251
C
=} S 20
€ 10000+ 3
£ 8 151
= 2]
& 10 -
o 5000+
o 5 4
0+ 0-

4 8 16 32 64 128

Number of Task Computing Threads

Fig.24 Scalability on TreeBank

In fact, Fig. 22 shows that Sleuth’s performance saturates
on TreeBank with merely 4 CPU cores. This is because with
Tp = 30,000, we find that the mining focuses only on
several branches in the pattern-growth tree, leaving only 2—
4 tasks in Q4 for most of the time, hence leading to poor
speedup. We also tried to reduce T, to 10,000 and found that
there are enough tasks in Q. to keep computing threads
busy, but since there are now many more frequent patterns

1 2 4 8 16 32 64 128

Number of Task Computing Threads

each requiring an expensive canonical encoding judgement,
the running time is too long (> 24 h) and thus we have to cut
the execution of the program.

However, as we shall see in the next subsection, TreeMiner
is able to finish with 7, = 10,000 since it is mining ordered
subtree patterns and thus canonical encoding judgement is
not needed.

@ Springer

278 D.Yan et al.
;:::;anScalability results on #{cores} TreeMiner (s) Speedup RAM (GB) PrefixTreeSpan (s) Speedup RAM (GB)

Serial 24,937 - 3.8 - - -

1 23,870 1 11.5 19,802 1 2.6

2 12,034 1.87 18.2 9640.55 2.05 4.2

4 5654.08 343 21.4 4729.50 4.19 6.7

8 2856.68 6.36 25.1 2391.62 8.28 9.3

16 1532.53 10.65 344 1243.89 15.92 15.5

32 1418.09 15.06 49.6 799.09 24.78 26.3

64 1262.75 17.48 76.7 576.68 34.34 43.7

128 1287.82 19.88 67.6 505.15 39.20 79.3
8.4 Scalability of TreeMiner and PrefixTreeSpan Table 8 Graph datasets

Dataset #{graphs} AVGIEI AVGIVI

We also use the two datasets in Table 4 to evaluate the scala-
bility of TreeMiner and PrefixTreeSpan, both of which find ~ GraphGen 1000,000 50 50
ordered subtree patterns. For TreeGen, we use Ty, = 50, OpenNCI 265,242 41.76 40.48
and for TreeBank, we use 75, = 10,000. We adapted Enamine 735,147 21.81 22.93
the serial TreeMiner implementation of [42] to PrefixFPM, DBLP 317,080 7.62 27.67
but since PrefixTreeSpan does not have a code release, we Yeast 79,601 21.54 22.84

directly implemented our PrefixFPM version of it according
to the algorithm description in [59]. For TreeGen, we use
Toup = 50, and for TreeBank, we use T, = 30,000.

Recall that in PrefixTreeSpan, each task is associated with
one subtree pattern, while TreeMiner is like Sleuth, where
each task is associated with an equivalent class [P] of mul-
tiple patterns that share the prefix P.

Scalability on TreeGen Table 6 and Fig. 23 show the scal-
ability results on our datasets with an increasing number of
task computing threads. Specifically, Table 6 reports the run-
ning time, speedup ratio, and peak memory consumption,
while Fig. 23 plots the running time and speedup ratio curves.
Moreover, the first row of Table 6 also reports the results
when running the serial TreeMiner program of [42] as a com-
parison, the performance of which is similar to running our
PrefixFPM program for TreeMiner with a single computing
thread. We can see that TreeMiner is consistently faster than
PrefixTreeSpan which is because TreeMiner joins two length-
k projected transactions to generate a length-(k+ 1) projected
transaction, which is more selective than PrefixTreeSpan’s
growth by frequent edges and hence has much less mining
workloads. On the contrary, the speedup ratio is good for Pre-
JfixTreeSpan but not good for TreeMiner, which is because
TreeMiner has a larger task granularity which reduces the
opportunity for parallelism.

Scalability on TreeBank Table 7 and Fig. 24 show the scal-
ability results on our datasets with an increasing number
of task computing threads. Surprisingly, PrefixTreeSpan is
consistently faster than TreeMiner and, meanwhile, achieves
a higher speedup ratio. After looking into the mining pro-
cess, we find that the projected databases (i.e., scope lists)

@ Springer

of patterns in TreeBank are big, making the scope-list join
operations very expensive, which slows down TreeMiner sig-
nificantly.

Also, note that TreeMiner can now finish the mining in
a reasonable amount of time even though we use 7y, =
10,000, which was intractable in Sleuth due to the expensive
canonical encoding checking that is not needed by TreeM-
ner.

8.5 gSpan Scalability on PrefixFPM

Data For subgraph pattern mining, we use one synthetic
graph dataset and four real graph datasets for experiments.
Table 8 summarizes the 5 datasets.

GraphGen is a synthetic graph database generated as fol-
lows: We first randomly generate a master graph with 100
vertices and 100 edges, where the label of each vertex is
randomly sampled from 0, 1, ---, 9; we then create graph
transactions by sampling each edge with a probability of
50%. Altogether 1,000,000 graph transactions are generated
by this edge sampling method. The use of a master graph
allows the graph database to have patterns rather than being
totally random.

Four real graph datasets are also shown in Table 8, includ-
ing three real-world molecular structure datasets OpenNCI
[26], Enamine [11], and Yeast [52], and a graph database
DBLP of author ego-networks built according to the proce-
dures mentioned in [2]. Compared with [2], we use a more
up-to-date DBLP collaboration network from [9] consider-

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns

279

ing publications in the year range 1992-2012 to build DBLP.
Each graph in DBLP is the ego-network of a distinct author
u; vertices in this graph are u and his/her collaborators, and
an edge between a pair of vertices represents one or more
co-authorship events between the corresponding authors.
Mining frequent subgraphs from this dataset is interesting,
because it generates subgraph patterns that correspond to a
group of authors who collaborate more frequently.
Scalability results We adapted the serial gSpan implemen-
tation of [16] to PrefixFPM. We choose Ty, for each graph
to avoid very long execution time as follows: 7y, = 50 for
GraphGen, ty,, = 60,000 for OpenNCI, t5,, = 200,000
for Enamine, ty,, = 153 for DBLP, and ty,, = 16,000 for
Yeast.

Table 9 and Fig. 25 show the scalability results on our
five datasets with an increasing number of task comput-
ing threads. Specifically, Table 9 reports the running time,
speedup ratio, and peak memory consumption, while Fig. 25
plots the running time and speedup ratio curves. Moreover,
the first row of Table 9 also reports the results when running
the serial gSpan program of [16] as a comparison.

Note that unlike previous applications, the serial program
here is much faster than our PrefixFPM program with a single
computing thread. This is because in the serial algorithm, a
projected transaction G;|, only keeps the last matched edge
(actually a pointer to that edge in the transaction G; € D)
since the previously matched edges can be obtained from the
predecessor patterns. In contrast, PrefixFPM has to mate-
rialize all edges (actually their pointers to edges in G;) in
a Pattern object’s projected database, since the correspond-
ing task’s parent-task could have finished with its pattern
object released. As a result, the materialization of projected
transactions causes additional overheads compared with the
serial program. We can eliminate the materialization cost
during recursive processing (i.e., Line 3 of Fig. 6) and only
conduct materialization of projected transactions when new
tasks need to be added to the task queue (i.e., Lines 10 and 18
of Fig. 6), but additional implementation in the application
code would be needed to realize such an optimization.

In Fig. 25, we show the running time on DBLP and Yeast
with separate plots since their running times are very different
from the other 3 datasets. In particular, mining on DBLP is
much more time-consuming, since it has some dense clique-
like structures for publication collaborations that cause the
number of patterns to grow exponentially. We can see that
the speedup ratio on GraphGen, OpenNCI and DBLP is good
for up to 8 computing threads, and continues to improve
beyond 16 threads. In contrast, the speedup ratio on Enamine
and Yeast is fair and there is no improvement beyond 16
threads. After examining the mined patterns, we find that they
share common ancestor structures causing mining to focus
on only a few branches of the pattern-growth tree, leaving
many threads idle without tasks to process.

Table 9 Scalability results of gSpan

#{cores} GraphGen (s) Speedup RAM (GB) OpenNCI (s) Speedup RAM (GB) Enamine (s) Speedup RAM (GB) DBLP (s) Speedup RAM (GB) Yeast(s) Speedup RAM (GB)

0.6
0.9

48.51

14,004.10 — 2.3

6.3

474.07

6.0
114

1239.76
4,281.99

7.2

2764.29
3837.63
2048.12

Serial

1

92.52

0.6
0.6

76,886.00 1

1 7.2

1,230.30
645.51

1

11.5

1

1.1

2.04
3.70
5.16
5.27
5.29
5.17
5.21

38,395.50 2.00 45.33

1.91
3.

18.0
24.0

2113.00 2.03
4.07

11.8

1.87

1.7
2.5

25.00
17.93
17.56
17.50
17.90
17.76

19,590.10 3.92 0.7

11.2

22

382.63

1,053.26
563.94

1119.75 3.43

603.68

4

0.8

9,977.37 17.71
1

15.2
252

5.31

231.79

37.7
54

7.59

124
124
13.9
17.5
2

6.36

2.7
2.5

15.15

5,074.77
3,193.69 24.07

173.03 7.11

1

11.58
18.16

21.18

369.67

10.65
15.06
17.48
19.88

360.48

16
32
64

1.3

2

432

7.27

169.18

94.5

235.80

254.87

4.2

31.63
31.05

2,430.83

7.11 54.2

173.10

136.9
178.5

202.14

219.58

5.2

33

2,475.95

6.94 61.2

177.29

201.06 21.3

0.9

193.03

128

@ Springer

280 D.Yan et al.
—%— GraphGen 80000 —¥— DBLP
_ 4000 1 —e— OpenNCl 70000
° —&— Enamine 5
< c
S S 60000 A
& 3000 g
= o 50000 -
c c
2 2 40000 A
gC_J 2000 - o
5 £ 30000+
c c
g 5
o 1000 A jlot 20000
o o
- — 10000
01— , : 01, . . : : . . :
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Task Computing Threads Number of Task Computing Threads
90 - A Yeast —¢— GraphGen
5 301 o OpenNCl
S 80 - —&— Enamine
b 251 =¥ DBLP
l_/‘f 701 o —A— Yeast
£ 601 £ 207
=) o
@ 50 3 151
£ @
= 40 &
=] 10 A
[~4
3 301 5
201 & A A & A
. . . : - - : : 01
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

Number of Task Computing Threads

Fig.25 Scalability of gSpan

Comparison with RStream [45] Recall from Sect. 2 that
RStream also supports frequent subgraph mining (FSM),
which runs in iterations where the i-th iteration constructs
subgraph patterns with i edges. However, RStream mines
patterns from a big graph rather than a collection of small
graph transactions, and therefore, we consider each graph
dataset in Table 8 as a big graph made up of all graph trans-
actions (with vertex IDs recoded to avoid ID conflict), which
can then be input to RStream. Note that the frequent sub-
graphs found as such by RStream are different from those
from a transaction database, since subgraph frequency is not
anti-monotonic on a big graph and “minimum image-based
support” metric is used instead [45], but this is the closest
setting that we can compare with RStream.

The RStream program [39] takes the maximum pattern
Size imqx as an input and builds patterns for i,,,, iterations
(may not yet find all frequent subgraph patterns). As an out-
of-core system, RStream also partitions the data so that only
necessary data need to be loaded to memory, but since our
BlueBlaze server has 1'TB RAM space, we simply set the
number of partitions to be 1 to avoid this data movement
overhead. This allows RStream to report the fastest perfor-
mance since the IO overhead is minimized.

@ Springer

Number of Task Computing Threads

We run RStream on the small Enamine for a comparison,
as RStream is very slow on big datasets. In our PrefixFPM
experiments on Enamine, the average pattern size we find is
5.6 and the maximum pattern size is 11. We run RStream
with i,,,x = 6, which takes 32.344 GB RAM and 1708 s to
run. This is already longer than 1230s taken by PrefixFPM
with just 1 task computing thread (c.f. Table 9). If we use
imax = 10, RStream takes 211.46 GB RAM and 11,138s to
complete. In contrast, the RAM consumption by PrefixFPM
is only 7.2, 8.2, 11.2, 15.2, 25.2, 43.2, 54.2 and 61.2 GB,
respectively, for 1,2, 4, 8, 16, 32, 64, 128 threads. Moreover,
PrefixFPM finds all frequent patterns rather than those with
length up to i,qy-

8.6 Gaston scalability on PrefixFPM

We also use the five datasets in Table 8 to evaluate the scal-
ability of Gaston, with the same 7y, setting as in our gSpan
experiments.

Scalability results We adapted the serial Gaston implemen-
tation of [15] to PrefixFPM. Table 10 and Fig. 26 show the
scalability results on our five datasets with an increasing
number of task computing threads. Specifically, Table 10

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 281

Table 10 Scalability results of Gaston

Speedup RAM (GB) Yeast (s) Speedup RAM (GB)

#{cores} GraphGen (s) Speedup RAM (GB) OpenNCI (s) Speedup RAM (GB) Enamine (s) Speedup RAM (GB) DBLP

0.5

42.20
51.39

0.3
27.11

2936.79 -

3.8

403.24

4.3

619.30

4.6
14.3
1

2069.81

Serial

1.3
1.8
22

1

3680.84 1 0.3

1 13.7

509.90

1 16.4

1171.62
675.36

1

2353.74

1.90
3.06
3.58
3.41
3.36
3.42
3.46

0.3

1874.78 1.96

19.3

1.75
2.60

290.65

24.8
3

1.73
2.78
4.94
6.58
6.92
6.81
7.02

5.3

1.74
3.02
5.25
9.20

1350.00
778.22

16.77
14.34
15.07
15.28
15.01
14.83

3.83 0.3

7.59

961.49

195.86

1.1

421.08

20.2
242
352

34.9

0.4

484.99

18.3
18.6
19.2

3.73
19.8

136.71

44

237.37

448.44

22
2.6
2.7

14.87
24.98

247.58

332 141.94 3.59
31.6

36.8
36.2

178.02

255.94

16
32
64

147.35

3.76

135.58

169.35

13.09
15.71
15.57

179.77

35.26
45.09

104.39
81.64

3.72

136.91

172.06

31.3
23.1

149.83

32

3.73 20.1

136.56

166.78

151.18

128

reports the running time, speedup ratio, and peak mem-
ory consumption, while Fig. 26 plots the running time and
speedup ratio curves. Moreover, the first row of Table 10 also
reports the results when running the serial gSpan program of
[16] as a comparison.

Comparing Table 10 with Table 9, we can see that even
though the speedup ratios of Gaston on some datasets such
as OpenNCI and Enamine are not as good as gSpan (due to
a smaller task computing workloads to be distributed to the
threads), the absolute time used by Gaston is always smaller
than that by gSpan, showing that Gaston is a safely better
choice than gSpan in all scenarios, thanks to its ability to use
simpler and hence more efficient algorithms when mining
simpler structures such as paths and free trees.

Another important observation from Table 10 is that unlike
gSpan, Gaston’s serial program is only slightly faster than
the PrefixFPM program running with one computing thread,
showing that the system overhead for task scheduling is small
for Gaston. This demonstrates the superiority of Gaston for
parallelization with PrefixFPM. In fact, the speedup ratio is
also good for up to 8 threads which is a common setting in
most modern PCs/laptops, though more cores beyond 8 often
do not help for Gaston due to the smaller mining workloads
of Gaston, where most tasks are fast to complete and will not
trigger a timeout for decomposition.

An exception is on DBLP where our Gaston program
achieves 45.09x speedup with 128 CPU cores, even higher
than that of gSpan in Table 9, thanks to the more supe-
rior performance of Gaston when the number of labels (i.e.,
authors in the DBLP database) is large. In fact, Gaston is a
clear winner for such datasets: When running 128 threads
on DBLP, Table 10 shows that Gaston takes merely 81.64 s,
while Table 9 shows that gSpan needs 2,475.95s, which is
over 30 times slower.

Also, note from Table 10 and Table 9 that Gaston tends
to use smaller amount of RAM thanks to its use of simpler
operations when mining simpler patterns. However, the RAM
consumption of Gaston’s PrefixFPM program running with
1 computing thread is still a few times higher than the serial
Gaston program, which is for the same reason as in gSpan: In
the serial program, a projected transaction G;|, only keeps
the last matched edge (actually a pointer to that edge in the
transaction G; € D) since the previously matched edges
can be obtained from the predecessor patterns; in contrast,
PrefixFPM has to materialize all edges (actually their pointers
to edges in G;) in a Pattern object’s projected database, since
the corresponding task’s parent-task could have finished with
its pattern object released.

In Fig. 26, we show the running time of different graphs
with 3 separate plots since their running times are very dif-
ferent. We can see that the speedup ratio on DBLP is great,
followed by GraphGen, and the speedup ratios on the other
3 datasets are limited: Running with 4-8 threads is enough to

@ Springer

282 D.Yanetal.
3500 - —%— GraphGen 1200 —8— OpenNCl
—¥— DBLP —— Enamine
2 2
& 3000 S 1000
(9} |9
Q (]
Vv 2500 0
= = 800 1
S 2000 =
(] Q
£ 1500 £ 6001
& 1000 & |
3 3 400
= 500 -
2 200 1
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Task Computing Threads Number of Task Computing Threads
50 - —A— Yeast —— GraphGen
. 401 —8— OpenNCI
‘g 45 4 —&— Enamine
S —¥— DBLP
% 40 4 ‘8 30 —A— Yeast
= 8
5 35 1 o
° 3
o | i
g% g%
=y [oX
é 25 A i
10 A
S 201
. 01
1 2 4 8 16 32 64 128

Number of Task Computing Threads

Fig.26 Scalability of Gaston

achieve a few times speedup, but no benefit can be achieved
when running more computing threads.

8.7 Effect of system parameters

Recall that we have been using the default setting where
Typtir = 100 and 74, = 0.1 second so far. We have actu-
ally extensively tested different values of both parameters to
achieve this default setting that works consistently well in all
cases. In fact, the performance is more sensitive to the value
of Tyime-

In this section, we report the effect of 7;;,,,, on the running
time using three datasets of different transaction types: Plan
(sequence transactions), Enamine (graph transactions), and
TreeGen (tree transactions). We vary the value of 7y, as
0.01,0.1, 1, 10, 100 s while keeping 7,,;;; = 100 and observe
how the performance is impacted.

Table 11 and Fig. 27 show the results on Plan with varying
Trime and varying number of task computing threads.

Table 12 and Fig. 28 show the results on Enamine with
varying ;i and varying number of task computing threads.

Table 13 and Fig. 29 show the results on TreeGen with
varying T;ime and varying number of task computing threads.

@ Springer

Number of Task Computing Threads

Table 11 Effect of 7/, on Plan: running time

Ttime

#{cores} 0.01 0.1 1 10 100

1 532.99s 467.99s 486.00s 408.44s 462.97s
2 255.02s 226.88s 227.11s 265.13s 260.07 s
4 138.58 s 140.00s 127.04s 134.84s 125225
8 6291 s 81.26s 72.94 s 89.89 s 111.98 s
16 53.88s 4221s 41.57 s 49.38 s 105.58 s
32 24.76 s 23.96 s 3447 s 38.06 s 110.84 s
64 20.41s 1991 s 21.61s 36.19 s 103.18 s
128 21.77 s 1749 s 17.67 s 36.59 s 103.19 s

From the above results, we can obtain the following obser-
vations:

— The impact of ;. is not significant when there are only
1 to 2 threads, which is within expectation since there are
enough tasks to keep the 1 to 2 computing threads busy
even without timeout-triggered task decomposition.

— The impact of 7y, is significant when the number of
computing threads goes beyond 4. In particular, when

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 283

—— Tgime = 0.01
2000+ ~— Time =01
'g —W— Tiime = 1
8 —¥— Ttime = 10
g 1500 - —A— Ttime = 100
C
2
£ 10001
=
e
3
o
-5‘ 500

1 2 4 8 16 32 64 128
Number of Task Computing Threads

Fig.27 Effect of 74y, on Plan

Table 12 Effect of 7/, on Enamine: running time

Ttime
#{cores} 0.01 0.1 1 10 100
1 1241.53s 1234.02s 1241.71s 120523 s 1192.53 s
2 617.04s 61551s 62595s 73143s 663.09s
4 329.55s 329.52s 331.77s 34899s 456.42s
8 225.88s 21790s 20535s 218.68s 406.24s
16 164.84s 171.59s 162.72s 183.11s 383.28s
32 165.04s 163.27 s 171.01 s 173.22s 388.16s
64 171.68s 168.27s 172.57 s 174.07s 392.04 s
128 178.59s 179.00s 17738 s 179.13s 386.03 s
12004 —— Tyme = 0.01
—®— Ttme = 0.1

bl & Tyme=1

S 1000 A ¥ Tyme = 10

& —A— Tyime = 100
£ 800+

2

Q

£ 600+

€

&

a 400

L=

200 A

1 2 4 8 16 32 64 128
Number of Task Computing Threads

Fig.28 Effect of 74,y on Enamine

Trime = 100s, the running time becomes a few times
longer on all our datasets. This is because some tasks can
run for up to 100s before being decomposed as smaller
tasks to be added into Qy,sk, leaving many other threads
idle and hence a load balancing issue.

— In all experiments, the best performance is achieved
either when t;;,,. = 0.1 or 1 second, which justifies our
default choice of 7;;,,. = 0.1 second.

Table 13 Effect of 7/, on TreeGen: running time Numbers

Ttime
#{cores} 0.01 0.1 1 10 100
1 2175.25s 2175.39s 217036s 2179.11s 2173.71s
2 125046 s 1253.25s 1158.80s 1125.88s 1108.65s
4 71433s 705.10s 621.07s 595.86s 698.25s
8 390.63s 398.71s 33532s 323.74s 512.17s
16 22499s 233.50s 197.29s 197.13s 497.10s
32 156.81s 158.08s 144.08s 150.86s 463.13s
64 142.88s 139.63s 132.01s 136.59s 518.45s
128 151.55s 151.77s 14281s 143.03s 515965
—— Ttime = 0.01

2000 —o— Tyme = 0.1

T B Ttime = 1

o —¥— Time = 10

& 15004 —A— Ttime = 100
2

E 1000 A

€

3

&

—E 500 A

1 2 4 8 16 32 64 128
Number of Task Computing Threads

Fig.29 Effect of 7/, on TreeGen

8.8 Comparison with Apache Spark

Spark MLIib is currently the de facto standard for parallel
and distributed data mining, but it only has limited support
for frequent pattern mining, currently just FP-Growth (for
itemsets) and PrefixSpan. We, therefore, can only compare
with Spark for the application of PrefixSpan, using our three
sequence datasets Plan, S50 and S10 (c.f., Table 1).

We install Spark 3.0.0 on an on-premise cluster of 16
machines each with 64 GB RAM, AMD EPYC 7281 CPU,
and 22TB disk, where each machine runs a Spark executor.
We vary the number of machines (i.e., executors) as 1, 2,4, 8,
and 16 and compare the results with PrefixFPM’s PrefixSpan
with 1, 2, 4, 8, and 16 CPU cores, respectively. The results
are shown in Table 14.

As we can see, when the number of transactions is not
large as in Plan and S50, (1) running PrefixFPM with one
thread is around 5 times faster than running MLIib with one
machine; (2) while PrefixFPM achieves very good speedup
up to 16 cores, MLIib’s speedup plateaus beyond 2 machines
likely due to the communication bottleneck, though the per-
formance with 2 machines is a bit more than 2x that with
1 machine, likely because the overhead of the master node

@ Springer

284

D.Yanetal.

Table 14 Scalability comparison with spark

#{cores} PrefixFPM (s) #{machines} Spark MLIib (s)
(a) Scalability comparison on Plan

1 434.06 1 2410.46

2 229.50 2 1078.55

4 117.53 4 962.86

8 84.22 8 1055.78
16 40.24 16 1167.96
(b) Scalability Comparison on S50

1 1646.77 1 7941.22

2 830.73 2 3373.08

4 419.36 4 3255.51
8 211.44 8 3323.52
16 109.39 16 3048.56
(c) Scalability Comparison on S10

1 1447.87 1 90,731.62
2 739.74 2 44,548.87
4 389.55 4 25,364.66
8 211.86 8 15,831.12
16 119.13 16 9403.22

occupies an amount of machine resource that is not negligi-
ble.

In contrast, when the number of transactions is large as in
§10, MLIib’s scalability with the number of machines is good
as shown in Table 14(c). However, the problem is that MLlib
running on one machine is over 60x more expensive than
PrefixFPM running with one core, and this large performance
gap makes MLIib even less competitive than PrefixFPM even
when the number of cores/machines is 16.

8.9 Comparison with subgraph mining on Hadoop

Since Spark MLlIib does not have support for more advanced
frequent patterns such as subgraphs, we explored other
research on Hadoop for frequent subgraph pattern mining
(FSM). While there are some works, many of them either do
not have open-source code or cannot run through smoothly.
We finally identified one work, FSM-H [2], which uses
an iterative MapReduce-based framework for FSM, which
claims to be efficient as it applies all the optimizations that
the latest FSM algorithms adopt, and which has open-source
code at [13].

To replicate the exact environment of [2], we used Google
Cloud to create 10 machine nodes, one as the Hadoop mas-
ter and the other 9 as worker nodes. The machine type of
each node is e2-standard-8 with 8 vCPUs, 32GB RAM, and
500GB SSD upon which the Hadoop Distributed File System
(HDFS) was built.

@ Springer

10000 - BN Yeast

9,243

Job Runtime (Unit: Second)

1 3 5 7 9

Number of Hadoop Worker Nodes

Fig.30 Horizontal scalability of FSM-H on Yeast

All experimental settings were strictly following those of
[2]: The graph database was partitioned so that each file par-
tition contains 100 graphs; the number of reducers is set to
be 90% of the number of vCPUs available. (Remaining 10%
are for the operating system.) We vary the number of worker
nodes as 1, 3, 5, 7, and 9 to obtain the job running time.
Unfortunately, among the 5 datasets in Table 8, only Yeast
(which is the smallest dataset) can finish within 24 h. This is
within expectation since FSM-H adopts an IO-bound itera-
tive Apriori algorithm where size-(i + 1) patterns are mined
after size-i ones, rather than using our PrefixFPM’s prefix
projection method.

On Yeast, we obtain 796 file partitions, and we use Ty, =
16,000 as before. Figure 30 shows the horizontal scalabil-
ity of FSM-H on Yeast, where we can see that the running
time reduces as the number of worker nodes increases. How-
ever, even with 9 worker nodes, the mining still takes 2717
s. In contrast, recall from Table 9 that our parallel gSpan pro-
gram on PrefixFPM only needs 92.52 s with just 1 computing
thread on Yeast, and merely 17.93 s with 8 threads; even the
serial gSpan code only needs 48.51s (56 x faster than FSM-
H). Also, recall from Table 10 that parallel Gaston program
only needs 51.39 s with just 1 computing thread, and merely
14.34 s with 8 threads; even the serial Gaston code only needs
42.20s (over 64 x faster than FSM-H).

The experiments in Sects. 8.8 and 8.9 verify that existing
Big Data solutions for FPM on Hadoop and Spark merely
scale (i.e., can run even when data volume goes beyond what
one machine can accommodate), but the performance can
be much worse than even a single-threaded program, not to
mention vertical scalability to effectively utilize multicore
hardware. PrefixFPM effectively fills this gap.

9 Conclusion

We proposed the PrefixFPM framework for general-purpose
frequent pattern mining, which is based on the idea of prefix

PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns 285

projection and divide and conquer to exploit massive paral-
lelism in a modern multicore environment.

A key advantage of PrefixFPM is that it provides a gen-
eral programming interface which can be easily customized
by users for their desired pattern types; the interface also
allows different FPM problems to share the same backend
for parallel execution.

We have shown that PrefixFPM demonstrates excellent
vertical scalability with the number of task computing threads
and scales well in acommon modern multicore machine with
8—16 CPU cores. Further improvements can also be achieved
when more CPU cores are available.

As a future work, we plan to migrate PrefixFPM to a dis-
tributed environment, where there is still potential to fully
utilize CPU cores since when D|, is small enough, we can
send the data to some machine (with linear IO cost) which
will then mine it to check and extend pattern o, the comput-
ing cost of which is exponential to the size of D|,. As long
as the mining tasks (i.e., computation) are well overlapped
with the data requests (i.e., communication), the CPU cores
in the cluster can be kept busy.

Another further work is to further extend the applications
on top of PrefixFPM beyond the 6 applications that we have
already developed in this paper, making it a comprehensive
library for parallel FPM.

A third further work is to consider the different problem
context of a big dataset such as a large social network or
knowledge graph, rather than a database of individual trans-
actions. An example is the GRAMI algorithm for FSM on a
big graph using the antimonotonic support measure of min-
imum image [3]. GRAMI follows a similar pattern-growth
recursive procedure and is perfect to address using our task-
based G-thinker [18,46] framework for handling a single big
graph, on top of which we can reuse many classes of the
PrefixFPM API that we laid out in Fig. 5 (though some com-
ponents such as class Trans are no longer useful).

Acknowledgements Da Yan and Guimu Guo were supported by NSF
OAC-1755464 and NSF DGE-1723250. Guimu Guo acknowledges
financial support from the Alabama Graduate Research Scholars Pro-
gram (GRSP) funded through the Alabama Commission for Higher
Education and administered by the Alabama EPSCoR. Wenwen Qu
and Xiaoling Wang were supported by NSFC grants (No. 61972155),
the Science and Technology Commission of Shanghai Municipality
(20DZ1100300), and the Open Project Fund from Shenzhen Institute
of Artificial Intelligence and Robotics for Society.

References

1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer,
Berlin (2014)

2. Bhuiyan, M., Hasan, M.A.: An iterative mapreduce based frequent
subgraph mining algorithm. IEEE Trans. Knowl. Data Eng. 27(3),
608-620 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

28.
29.
30.

31.

. Bringmann, B., Nijssen, S.: What is frequent in a single graph? In:

Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A., (eds) PAKDD,
vol. 5012 of Lecture Notes in Computer Science, pp. 858-863.
Springer, Berlin (2008)

. Chan, H.K,, Long, C., Yan, D., Wong, R.C.: Fraction-score: a new

support measure for co-location pattern mining. Presented at the
(2019)

. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-

free query processing on graph databases. In: SIGMOD, pp. 857—
872 (2007)

. Chon, K., Hwang, S., Kim, M.: Gminer: a fast gpu-based frequent

itemset mining method for large-scale data. Inf. Sci. 439-440, 19—
38 (2018)

. CloSpan Package. https://sites.cs.ucsb.edu/~xyan/software/
Clospan.htm
. COST in the Land of Databases. https://github.com/

frankmcsherry/blog/blob/master/posts/2017-09-23.md

. DBLP Collaboration Network. http://networkrepository.com/ca-

dblp-2012.php

Elseidy, M., Abdelhamid, E., Skiadopoulos, S., Kalnis, P.. GRAMI:
frequent subgraph and pattern mining in a single large graph. Proc.
VLDB Endow. 7(7), 517-528 (2014)

Enamine Dataset. https://enamine.net/

Fang, W., Lu, M., Xiao, X., He, B., Luo, Q.: Frequent itemset min-
ing on graphics processors. In: DaMoN, pp. 34—42. ACM (2009)
FSM-H Code. http://dmgroup.cs.iupui.edu/Mansurul_FSMH.php
Gan, W., Lin, J.C., Fournier-Viger, P., Chao, H., Tseng, V.S., Yu,
P.S.: A survey of utility-oriented pattern mining. IEEE Trans.
Knowl. Data Eng. 33(4), 1306-1327 (2021)

Gaston Implementation. https:/liacs.leidenuniv.nl/~nijssensgr/
gaston/

gSpan Implementation.
master/src-gspan

gSpan Technical Report. https://sites.cs.ucsb.edu/~xyan/papers/
gSpan.pdf

Guo, G., Yan, D., Ozsu, M.T,, Jiang, Z., Khalil, J.: Scalable mining
of maximal quasi-cliques: an algorithm-system codesign approach.
Proc. VLDB Endow. 14(4), 573-585 (2020)

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. Presented at the (2000)
IBM Synthetic Data Generator.
IBMGenerator

Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to
graph classification. In: NIPS, pp. 729-736 (2004)

Li, E., Liu, L.: Optimization of frequent itemset mining on multiple-
core processor. In: VLDB, pp. 1275-1285. ACM (2007)

Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: Pfp: paral-
lel fp-growth for query recommendation. In: Proceedings of the
2008 ACM Conference on Recommender Systems, RecSys 2008,
Lausanne, Switzerland, October 23-25, 2008, pp. 107-114 (2008)
Lin, W., Xiao, X., Ghinita, G.: Large-scale frequent subgraph min-
ing in mapreduce. In: ICDE, pp. 844-855 (2014)

McSherry, F.,, Isard, M., Murray, D.G.: Scalability! but at what cost?
In: HotOS, USENIX Association (2015)

NCI Dataset. https://cactus.nci.nih.gov/download/nci/

Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining
can make a difference. In: KDD, pp. 647-652. ACM (2004)
Nijssen, S., Kok, J.N.: The gaston tool for frequent subgraph min-
ing. Electron. Notes Theor. Comput. Sci. 127(1), 77-87 (2005)
OpenMP. https://www.openmp.org/

Orlando, S., Lucchese, C., Palmerini, P., Perego, R., Silvestri, F.:
kdci: a multi-strategy algorithm for mining frequent sets. In: FIMI,
vol. 90 of CEUR Workshop Proceedings. CEUR-WS.org (2003)
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal,
U., Hsu, M.: In: Prefixspan: Mining Sequential Patterns by Prefix-
Projected Growth, pp. 215-224, Heidelberg, Germany (2001)

https://github.com/rkwitt/gboost/tree/

https://github.com/zakimjz/

@ Springer

https://sites.cs.ucsb.edu/~xyan/software/Clospan.htm
https://sites.cs.ucsb.edu/~xyan/software/Clospan.htm
https://github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-09-23.md
http://networkrepository.com/ca-dblp-2012.php
http://networkrepository.com/ca-dblp-2012.php
https://enamine.net/
http://dmgroup.cs.iupui.edu/Mansurul_FSMH.php
https://liacs.leidenuniv.nl/~nijssensgr/gaston/
https://liacs.leidenuniv.nl/~nijssensgr/gaston/
https://github.com/rkwitt/gboost/tree/master/src-gspan
https://github.com/rkwitt/gboost/tree/master/src-gspan
https://sites.cs.ucsb.edu/~xyan/papers/gSpan.pdf
https://sites.cs.ucsb.edu/~xyan/papers/gSpan.pdf
https://github.com/zakimjz/IBMGenerator
https://github.com/zakimjz/IBMGenerator
https://cactus.nci.nih.gov/download/nci/
https://www.openmp.org/

286

D.Yanetal.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Peng, Z., Wang, T., Lu, W., Huang, H., Du, X., Zhao, F., Tung,
A.K.H.: Mining frequent subgraphs from tremendous amount of
small graphs using mapreduce. Knowl. Inf. Syst. 56(3), 663—-690
(2018)

Plan Dataset. https://www.cs.rpi.edu/~zaki/software/plandata.gz
PrefixSpan Implementation. http://chasen.org/~taku/software/
prefixspan/prefixspan-0.4.tar.gz

Schlegel, B., Karnagel, T., Kiefer, T., Lehner, W.: Scalable frequent
itemset mining on many-core processors. In: DaMoN, p. 3. ACM
(2013)

Silvestri, C., Orlando, S., gpudci.: Exploiting gpus in frequent item-
set mining. In: PDP, pp. 416-425. IEEE (2012)

Sleuth Implementation. https://github.com/zakimjz/SLEUTH
Teixeira, C.H.C., Fonseca, A.J., Serafini, M., Siganos, G., Zaki,
M.J., Aboulnaga, A.: Arabesque: a system for distributed graph
mining. In: SOSP, pp. 425-440 (2015)

The RStream system. https://github.com/rstream-system

Tree Generator. http://www.cs.rpi.edu/~zaki/software/TreeGen.
tar.gz

TreeBank. http://aiweb.cs.washington.edu/research/projects/
xmltk/xmldata/www/repository.html#treebank

TreeMiner Implementation. https://github.com/zakimjz/
TreeMiner
Vu, L., Alaghband, G.: Novel parallel method for mining frequent

patterns on multi-core shared memory systems. In: DISCS@SC,
pp. 49-54. ACM (2013)

Wang, J., Han, J.: BIDE: efficient mining of frequent closed
sequences. In: Ozsoyoglu, Z.M., Zdonik, S.B., (eds) ICDE, pp.
79-90 (2004)

Wang, K., Zuo, Z., Thorpe, J., Nguyen, T.Q., Xu, G.H.: Rstream:
marrying relational algebra with streaming for efficient graph min-
ing on a single machine. In: OSDI, pp. 763-782 (2018)

Yan, D., Guo, G., Chowdhury, M.M.R., Ozsu, M.T., Ku, W.-S., Lui,
J.C.: G-thinker: a distributed framework for mining subgraphs in a
big graph. ICDE (2020)

@ Springer

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

Yan, D., Guo, G., Chowdhury, M.M.R., Ozsu, M.T,, Lui, J.C.S.,
Tan, W.: T-thinker: a task-centric distributed framework for
compute-intensive divide-and-conquer algorithms. Presented at the
(2019)

Yan, X., Han, J., Afshar, R.: Clospan: mining closed sequential
patterns in large datasets. In: SDM, pp. 166—177. SIAM (2003)
Yan, X., Han, J.: gspan: Graph-based substructure pattern mining.
In: ICDM, pp. 721-724 (2002)

Yan, D., Qu, W., Guo, G., Wang, X.: Prefixfpm: a parallel frame-
work for general-purpose frequent pattern mining. In: ICDE (2020)
Yang, G.: The complexity of mining maximal frequent itemsets
and maximal frequent patterns. Presented at the (2004)

Yeast Dataset. https://sites.cs.ucsb.edu/~xyan/dataset.htm

Zaki, M.J.: In: Efficiently mining frequent trees in a forest, pp.
71-80. , Edmonton, Alberta, Canada (2002)

Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans.
Knowl. Data Eng. 12(3), 372-390 (2000)

Zaki, M.J.: SPADE: an efficient algorithm for mining frequent
sequences. Mach. Learn. 42(1/2), 31-60 (2001)

Zaki, M.J.: Efficiently mining frequent embedded unordered trees.
Fundam. Inform. 66(1-2), 33-52 (2005)

Zhang, F., Zhang, Y., Bakos, J.D.: Gpapriori: Gpu-accelerated fre-
quentitemset mining. In: CLUSTER, pp. 590-594. IEEE Computer
Society (2011)

Zhang, F., Zhang, Y., Bakos, J.D.: Accelerating frequent itemset
mining on graphics processing units. J. Supercomput. 66(1), 94—
117 (2013)

Zou,L.,Lu, Y., Zhang, H., Hu, R.: Prefixtreeespan: a pattern growth
algorithm for mining embedded subtrees. In: Aberer, K., Peng, Z.,
Rundensteiner, E.A., Zhang, Y., Li, X., (eds) WISE, vol. 4255 of
Lecture Notes in Computer Science, pp. 499-505. Springer (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://www.cs.rpi.edu/~zaki/software/plandata.gz
http://chasen.org/~taku/software/prefixspan/prefixspan-0.4.tar.gz
http://chasen.org/~taku/software/prefixspan/prefixspan-0.4.tar.gz
https://github.com/zakimjz/SLEUTH
https://github.com/rstream-system
http://www.cs.rpi.edu/~zaki/software/TreeGen.tar.gz
http://www.cs.rpi.edu/~zaki/software/TreeGen.tar.gz
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#treebank
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#treebank
https://github.com/zakimjz/TreeMiner
https://github.com/zakimjz/TreeMiner
https://sites.cs.ucsb.edu/~xyan/dataset.htm

	PrefixFPM: a parallel framework for general-purpose mining of frequent and closed patterns
	Abstract
	1 Introduction
	2 Related work
	2.1 IO bottleneck issue and the T-thinker paradigm
	2.2 Related work on parallel and distributed FPM

	3 PrefixFPM solution overview
	4 PrefixFPM programming model
	5 Sequential pattern mining with PrefixFPM
	5.1 Mining frequent sequential patterns
	5.2 Mining closed frequent sequential patterns

	6 Parallel embedded subtree pattern mining
	6.1 Mining ordered subtree patterns in PrefixFPM
	6.2 Mining unordered subtree patterns in PrefixFPM

	7 Subgraph pattern mining with PrefixFPM
	7.1 gSpan review
	7.2 gSpan implementation in PrefixFPM
	7.3 Gaston and its PrefixFPM implementation

	8 Experiments
	8.1 PrefixSpan scalability on PrefixFPM
	8.2 CloSpan scalability on PrefixFPM
	8.3 Sleuth scalability on PrefixFPM
	8.4 Scalability of TreeMiner and PrefixTreeSpan
	8.5 gSpan Scalability on PrefixFPM
	8.6 Gaston scalability on PrefixFPM
	8.7 Effect of system parameters
	8.8 Comparison with Apache Spark
	8.9 Comparison with subgraph mining on Hadoop

	9 Conclusion
	Acknowledgements
	References

