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Abstract
Given a user-specified minimum degree threshold γ , a γ -quasi-clique is a subgraph where each vertex connects to at least γ
fraction of the other vertices. Quasi-clique is a natural definition for dense structures, so finding large and hence statistically
significant quasi-cliques is useful in applications such as community detection in social networks and discovering significant
biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive, and even a recent
algorithm for mining large maximal quasi-cliques is flawed and can lead to a lot of repeated searches. This paper proposes
a parallel solution for mining maximal quasi-cliques that is able to fully utilize CPU cores. Our solution utilizes divide and
conquer to decompose the workloads into independent tasks for parallel mining, and we addressed the problem of (i) drastic
load imbalance among different tasks and (ii) difficulty in predicting the task running time and the time growth with task-
subgraph size, by (a) using a timeout-based task decomposition strategy, and by (b) utilizing a priority task queue to schedule
long-running tasks earlier for mining and decomposition to avoid stragglers. Unlike our conference version in PVLDB 2020
where the solution was built on a distributed graph mining framework called G-thinker, this paper targets a single-machine
multi-core environment which is more accessible to an average end user. A general framework called T-thinker is developed
to facilitate the programming of parallel programs for algorithms that adopt divide and conquer, including but not limited to
our quasi-clique mining algorithm. Additionally, we consider the problem of directly mining large quasi-cliques from dense
parts of a graph, where we identify the repeated search issue of a recent method and address it using a carefully designed
concurrent trie data structure. Extensive experiments verify that our parallel solution scales well with the number of CPU
cores, achieving 26.68× runtime speedup when mining a graph with 3.77M vertices and 16.5M edges with 32 mining threads.
Additionally, mining large quasi-cliques from dense parts can provide an additional speedup of up to 89.46×.
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1 Introduction

Quasi-clique is a natural generalization of clique (i.e., com-
plete subgraph) useful in various applications, such as finding
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protein complexes or biologically relevant functional groups
[2,6,8,30], and social communities [21,25] that can be cyber-
criminals [40] and botnets [37,40].

Mining maximal quasi-cliques is notoriously expensive
[36], and the state-of-the-art algorithms [26,33,58] were only
tested on small graphs. In fact, [36] showed that even the
problem of detecting whether a given quasi-clique in a graph
is maximal is NP-hard. Recently, two efforts aim to scale
quasi-clique mining to bigger graphs. (1) Our conference
version in PVLDB 2020 [19] proposed a distributed divide-
and-conquer solution that is able to fully utilize CPU cores.
(2) Sanei-Mehri et al. [36] propose to directly mine large
quasi-cliques, by first mining dense parts that are faster to
find, and then expanding these “kernels” to generate the
desired large quasi-cliques. This approach is faster than
directly mining large quasi-cliques from the original graph.
However, we find that the expansion-searches from different
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kernels have a lot of overlaps in their search spaces, causing
wasted computations.

To make our solution more accessible to an average user
without access to a distributed cluster, in this paper, (i)wefirst
design a general-purpose programming framework called T-
thinker for writing divide-and-conquer programs for parallel
execution in a multi-core computer and then implement our
Quick+ [19] algorithm for mining maximal γ -quasi-cliques
on top; (ii) we also improve the algorithm of [36] for min-
ing largemaximal γ -quasi-cliques, by eliminating redundant
searches using a novel concurrent trie data structure that
tracks the mining progress for all threads.

The contributions of this work are listed as follows:

– We implement the efficient parallel quasi-clique min-
ing algorithm proposed in our conference version into
a single-machine environment more accessible to an
average end user. The new parallel solution inherits all
desirable features such as the prioritized scheduling of
long-running tasks for mining and decomposition, and
a timeout mechanism for task decomposition to avoid
stragglers.

– Our parallel solution is built on top of a new general-
purpose parallel framework, T-thinker, for divide-and-
conquer algorithms in general, including the maximal
quasi-clique mining problem this paper studies.

– For kernel-expansion-based approach to mining large
dense subgraphs [36], we propose a novel concurrent
trie data structure that tracks the mining progress for all
mining threads to avoid redundant searches. We remark
that even in a serial kernel-expansion algorithm, our trie
tracking method is still essential in avoiding redundant
searches. Our novel trie structure also supports concur-
rent access which is essential to enable efficient parallel
kernel expansions.

Before our solution, parallel dense subgraph mining was
not easy: [36] made it a future work “Can the algorithms
for quasi-cliques be parallelized effectively?”, while [15]
indicated that “We are not aware of parallel techniques for
implementing the all_plexes() sub-routine, and we leave this
for future work.” This work breaks new ground by provid-
ing such a general efficient programming framework called
T-thinker and provide redundancy-avoidance solution for
parallel kernel-expansion algorithms that mines large dense
subgraphs.

The efficiency of our parallel solution has been extensively
verified over various real graph datasets. When running with
32 mining threads, we are able to obtain 26.88× speedup
when mining 0.89-quasi-cliques on the Patent graph with
3.77M vertices and 16.5M edges: the total serial mining time
of 25,369 s are computed by our parallel solution in 943.86 s.

Additionally, mining large quasi-cliques from dense kernels
can provide an additional speedup of up to 89.46×.

The rest of this paper is organized as follows. Section 2
reviews those related work closely related to the mining of
quasi-cliques and other pseudo-clique structures, as well as
recent parallel solutions to dense subgraph mining. Section 3
formally defines our notations, the general divisible algo-
rithmic framework for dense subgraph mining which is also
adopted by ourQuick+, andwhich is amenable to paralleliza-
tion in T-thinker. Section 4 then demonstrates that the tasks
of Quick+ can have drastically different running time and
describes the straggler problem that we faced. Section 5 then
describes the design of our T-thinker framework, including
how it prioritizes long-running tasks for execution. Section 6
then outlines our Quick+ algorithm, and Sect. 7 presents
its adaptation on T-thinker including a timeout-based task
decomposition for load balancing. Section 8 then reviews
the kernel-expansion approach to find large dense subgraphs,
introduces the designof our concurrent trie data structure, and
presents how it is combined with our Quick+ algorithm to
avoid redundant searches. Finally, Sect. 9 reports our exper-
iments and Sect. 10 concludes this paper.

2 Related work

Algorithms for Quasi-CliqueMiningA few seminal works
devised branch-and-bound subgraph searching algorithms
formining quasi-cliques, such as Crochet [22,33] andCocain
[58] which finally led to the Quick algorithm [26] that inte-
grated all previous search space pruning techniques and
addedneweffective ones.However,we found that someprun-
ing techniques are not fully utilized byQuick, andQuick does
not handle a few boundary cases properly, which led to our
improved algorithm Quick+ [19]. Quick+ will be introduced
in Sect. 6. Yang et al. [57] studied the problem of mining a
set of diversified temporal subgraph patterns from a tempo-
ral graph, where each subgraph is associated with the time
interval that the pattern spans. The dense subgraph definition
uses γ -quasi-cliques, and the algorithm is essentially adapted
from Quick to include the temporal aspects.

Sanei-Mehri et al. [36] noticed that if γ ′-quasi-cliques
(γ ′ > γ ) are mined first using Quick which are faster to find,
then it is more efficient to expand these “kernels” to generate
γ -quasi-cliques than to mine them from the original graph.
Their kernel expansion is conducted only on those largest γ ′-
quasi-cliques extracted by post-processing, in order to find
big γ -quasi-cliques as opposed to all of them to keep the
running time tractable. However, this work does not fun-
damentally address the scalability issue: (1) it only studies
the problem of enumerating k big maximal quasi-cliques
containing kernels rather than all valid ones, and these sub-
graphs can be clustered in one region (e.g., they overlap on

123



Parallel mining of large maximal quasi-cliques

a smaller clique) while missing results on other parts of the
data graph, compromising result diversity; (2) the method
still needs to first find some γ ′-quasi-cliques to grow from
and this first step is still using Quick; and (3) the method
is not guaranteed to return exactly the set of top-k maximal
quasi-cliques. We remark that the kernel-expansion-based
acceleration is orthogonal to a parallel dense subgraph min-
ing algorithm and can be easily incorporated; however, as
Sect. 8 shall show, the current kernel-expansion solution suf-
fers from heavy redundancy in search space exploration and
is inefficient. We address this issue in Sect. 8 using a novel
concurrent trie structure.

Other than [36], quasi-cliques have seldom been consid-
ered in a big graph setting. Quick [26] was only tested on
two small graphs, one with 4,932 vertices and 17,201 edges,
and the other with 1,846 vertices and 5,929 edges. In fact,
earlier works [22,33,58] formulate quasi-clique mining as
frequent pattern mining problems where the goal is to find
quasi-clique patterns that appear in a significant portion of
small graph transactions in a graph database. Some works
consider big graphs but onlyfind those quasi-cliques that con-
tain a particular vertex or a set of query vertices [12,14,24]
to aggressively narrow down the search space by sacrificing
result diversity. Our prior distributed solution [19] imple-
mented on top of G-thinker [49,50] is the first exact parallel
algorithm that scales to graphs with tens of millions of ver-
tices and edges, and it achieves a good speedup with the
number of CPU cores used.

There is another definition of quasi-clique based on edge
density [1,14,32] rather than vertex degree, but it is essen-
tially a different kind of dense subgraph definition. As [14]
indicates, the edge-density-based quasi-cliques are less dense
than our degree-based quasi-cliques, and thus, we focus on
degree-based quasi-cliques in this paper as in [14]. Brunato
et al. [7] further consider both vertex degree and edge den-
sity. There are alsomany other definitions of dense subgraphs
[5,10,15–17,27,28,60], and they all follow a similar divide-
and-conquer algorithmic framework as Quick (c.f. Sect. 3).
Think-Like-A-Task (TLAT) Model The term think-like-a-
task (or, T-thinker) refers to a task-based programmingmodel
to process big data in parallel in order to achieve high CPU
utilization [51]. The target problems are usually solved by
a divide-and-conquer algorithm with a high time complex-
ity, so that a big task can be decomposed into sub-tasks over
smaller data subsets to balance the per-task cost of task cre-
ation (e.g., data fetching) and subsequent computation.

This is in contrast to existing big data frameworks such
as MapReduce and Pregel-like systems [29,41–46,52,53,55,
59] that promote a think-like-a-vertex (TLAV) programming
paradigm, whose execution is IO-bound. Those frameworks
are only suitable for problems with a low time complexity.
For example, in thePageRank application ofGoogle’s Pregel,

a vertex needs to first receive a value from its in-neighbor,
and then simply add it to the current PageRank value.

When applied to problemswith a relatively high time com-
plexity, the performance is often a catastrophe. For example,
even for triangle counting whose time complexity is only
O(|E |1.5)where E is the set of edges in an undirected graph,
[13] reported that the state-of-the-art MapReduce algorithm
for triangle counting uses 1,636machines and takes 5.33min
on a small graph, on which [13]’s single-threaded algorithm
uses less than 0.5 min. Several works including [34,47] have
noticed that TLAV frameworks are only efficient for iterative
computations where each iteration has O(n) cost and there
are constant or atmostO(log n) iterations, giving a time com-
plexity upper bound of O(n log n) where n is the number of
data items. McSherry et al. [9,31] have noticed that existing
Big Data systems are comparable and sometimes slower than
a single-threaded program since the aggregate IO throughput
of disks/network is not beyond that of a single CPU core.

Therefore, a novel compute-intensive framework is essen-
tial for dense subgraph mining problems that have a high
time complexity. Following our recent paradigm proposal
called T-thinker [48,51], we advocate the TLAT comput-
ing paradigm and have developed 2 parallel frameworks
under this paradigm: (1) G-thinker [49,50] for mining sub-
graph instances that satisfy certain requirements from a big
data graph; and (2) PrefixFPM [54,55] for frequent pattern
mining. Since G-thinker already targets a distributed cluster
environment, this work develops a single-machine parallel
counterpart in order to be accessible to a broader range of
end users.
Other Related Work on Parallel Graph Mining Besides
the above-mentioned TLAV and TLAT works for parallel
graph mining, we hereby review several other interesting
related works. A recent work proposed to use machine learn-
ing to predict the running time of graph computation for
workload partitioning [18], but the graph algorithms con-
sidered there are iterative algorithms (e.g., in the TLAV
paradigm) that do not have unpredictable pruning rules and
thus the running time can be easily estimated. This is not
the case in quasi-clique mining (c.f. Sect. 4) and dense sub-
graph mining in general, which adopt divide-and-conquer
(and often recursive) algorithms, calling for a new solution
for effective taskworkload partitioning. Besides quasi-clique
mining, k-plex mining is another problem that has recently
gained a lot of attention [5,15,16,60]. Here, k-plex is another
kind of clique relaxation definition which allows each ver-
tex to miss at most (k − 1) links to the other vertices in
a dense subgraph. Notably, both [16] and [60] follow the
set-enumeration search tree framework to be reviewed in
Sect. 3.2, so our solution can also be applied to parallelize
their algorithms.

Realizing the limitation of TLAV formining problems that
operate on subgraphs rather than individual vertices, many
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parallel and distributed systems were designed to directly
operate on subgraphs. However, while their subgraph-based
APIs are more convenient to write subgraph mining algo-
rithms, their execution engines are still IO-bound. Specif-
ically, NScale [35] constructs candidate subgraphs using
multiple rounds of MapReduce, leading to large amounts
of data shuffling and HDFS (Hadoop Distributed File Sys-
tem) read/write overheads. Arabesque [38] constructs and
examines subgraphs iteratively from small ones to large
ones, which materializes a huge number of candidate sub-
graphs. G-Miner [11] has a poor task scheduling scheme that
causes huge numbers of subgraph-tasks being buffered on
disks when an input graph is large and uses a list for remote
vertex caching which is a bottleneck of task concurrency.
RStream [39] is a single-machine out-of-core system that
utilizes relational joins for evaluation and is thus not very
multi-core friendly.Nuri [23] is for single-threaded execution
and may become IO-bound. Please refer to Sect. II of [50]
for a detailed comparison of these systems with G-thinker
which is the winner. Our T-thinker framework designed in
this paper inherits the benefits of G-thinker (c.f. Table I of
[50]).

3 Preliminaries

This section first prepares the notations for subsequent algo-
rithmic description and formally defines our problem. We
then provide the intuition of the set-enumeration tree frame-
work for search space partitioning.

3.1 Notations and problem definition

Notations. Table 1 summarizes the set of notations used
throughout this paper for a quick reference.

We consider an undirected graph G = (V , E) where V
(resp. E) is the set of vertices (resp. edges). The vertex set of a
graphG can also be explicitly denoted as V (G).We useG(S)

to denote the subgraph of G induced by a vertex set S ⊆ V
and use |S| to denote the number of vertices in S. We also
abuse the notation and use v tomean the singleton set {v}.We
denote the neighbor set of a vertex v inG by N (v) and denote
the degree of v inG by d(v) = |N (v)|. Given a vertex subset
V ′ ⊆ V , we define NV ′(v) = {u | (u, v) ∈ E, u ∈ V ′}, i.e.,
NV ′(v) is the set of v’s neighbors inside V ′, and we also
define dV ′(v) = |NV ′(v)|.

To illustrate the notations, consider the graph G shown
in Fig. 1. Let us use va to denote Vertex a (the same for
other vertices), we have N (vd) = {va, vc, ve, vh, vi } and
d(vd) = 5. Also, let S = {va, vb, vc, vd , ve}, then G(S) is
the subgraph of G consisting of the vertices and edges in red
and black in Fig. 1.

Table 1 Notations

Symbol Meaning

G = (V , E) Input graph G with vertex (edge) set V (E)

V (G) Vertex set of a graph G

ext(S) Set of vertices that can extend a vertex set S into
a valid γ -quasi-clique

TS Set-enumeration subtree rooted at a node with
vertex set S

G(S) Subgraph of G induced by a vertex set S

|S| Number of elements in set S

v A vertex, or a singleton vertex set {v}
N (v)(, NS(v)) Set of neighbor vertices of v (inside S)

d(v)(, dS(v)) Degree of vertex v (inside S)

B(v) Set of vertices in G within two hops from v

B>v(v) Set of vertices in B(v) that are ordered after v

CS(u) Set of vertices in ext(S) that are covered by u

US(, LS) Upper (lower) bound US (LS) on the number of
vertices in ext(S) to be added to S to form a
valid γ -quasi-clique

γ, τsi ze A valid γ -quasi-clique has at least τsi ze vertices

τbig The minimum number of vertices in ext(S) for a
task to be considered “big”

τtime Task timeout duration threshold

nθ Number of computing threads in T-thinker

data_array Data items loaded by T-thinker’s main thread

next_position Next position in data_array to spawn a new task

task_queue T-thinker task queue (including Qbig and Qreg)

Qreg , Qbig Regular task queue, big task queue

Creg , Cbig Capacity (maximum # of tasks) of Qreg , Qbig

τmin
reg , τmin

big Task refill is triggered when # of tasks in Qreg ,
Qbig is less than or equal to τmin

reg , τmin
big

n f ile
reg , n f ile

big # of tasks in Qreg , Qbig to be spilled as a file

Lreg , Lbig File lists of tasks spilled from Qreg , Qbig

Fig. 1 An illustrative graph

Given two vertices u, v ∈ V , we define δ(u, v) as the
number of edges on the shortest path between u and v. We
call G as connected if δ(u, v) < ∞ for any u, v ∈ V .
We further define Nk(v) = {u | δ(u, v) = k} and define
N+
k (v) = {u | δ(u, v) ≤ k}. In a nutshell, N+

k (v) are the
set of vertices reachable from v within k hops, and Nk(v)

are the set of vertices reachable from v in k hops but not in
(k − 1) hops. Then, we have N0(v) = v and N1(v) = N (v),
and N+

k (v) = N0(v) + N1(v) + . . . + Nk(v). For 2-hop
neighbors, we define B(v) = N2(v) and B(v) = N+

2 (v).
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To illustrate using Fig. 1, we have N (ve) = {va, vb, vc, vd},
B(ve) = {v f , vg, vh, vi }, andB(ve) consisting of all vertices
in Fig. 1.
Problem Definition. We formally define our problem:

Definition 1 (γ -quasi-clique) A graph G = (V , E) is a γ -
quasi-clique (0 ≤ γ ≤ 1) if G is connected and for any
v ∈ V , we have d(v) ≥ �γ · (|V | − 1)	.

If a graph is a γ -quasi-clique, then its subgraphs usually
become uninteresting, so we only mine maximal γ -quasi-
clique as follows:

Definition 2 (Maximal γ -quasi-clique) Given graph G =
(V , E) and a vertex set S ⊆ V , G(S) is a maximal γ -quasi-
clique of G if G(S) is a γ -quasi-clique, and there does not
exist a superset S′ ⊃ S such that G(S′) is also a γ -quasi-
clique.

To illustrate using Fig. 1, consider S1 = {va, vb, vc, vd}
(i.e., vertices in red) and S2 = S1∪ve. If we set γ = 0.6, then
both S1 and S2 are γ -quasi-cliques: every vertex in S1 has at
least 2 neighbors in G(S1) among the other 3 vertices (and
2/3 > 0.6), while every vertex in S2 has at least 3 neighbors
in G(S2) among the other 4 vertices (and 3/4 > 0.6). Also,
since S1 ⊂ S2, G(S1) is not a maximal γ -quasi-clique.

In the literature of dense subgraph mining, researchers
usually only strive to find big dense subgraphs, such as
the largest dense subgraph [15,24,27,28], the top-k largest
ones [36], and those larger than a predefined size threshold
[15,16,26]. There are two reasons. (i) Small dense subgraphs
are common and thus statistically insignificant and not inter-
esting. For example, a single vertex itself is a quasi-clique for
any γ , and so is an edge with its two end-vertices. (ii) The
number of dense subgraphs grows exponentially with the
graph size and is thus intractable unless we focus on finding
large ones. In fact, it has been shown that even the problem
of detecting if a given quasi-clique is maximal is NP-hard
[36]. Following [26], we use a minimum size threshold τsi ze
to return only large quasi-cliques as described below.

Definition 3 (Problem Statement) Given a graph G =
(V , E), a minimum degree threshold γ ∈ [0, 1] and a mini-
mum size threshold τsi ze, we aim to find all the vertex sets S
such that G(S) is a maximal γ -quasi-cliques of G, and that
|S| ≥ τsi ze.

For ease of presentation, when G(S) is a valid quasi-
clique, we simply say that S is a valid quasi-clique.

3.2 Subgraphmining by set-enumeration search
tree

In a general pseudo-clique mining problem (such as our
quasi-clique problem), the giant search space of a graph

Fig. 2 Set-enumeration tree

G = (V , E), i.e., V ’s power set, can be organized as a set-
enumeration tree [26]. Figure 2 shows the set-enumeration
tree T for a graph G with four vertices {a, b, c, d} where we
assume an order a < b < c < d. Each tree node represents
a vertex set S, and only those vertices larger than the largest
vertex in S are used to extend S. For example, in Fig. 2, node
{a, c} can be extended with d but not b as b < c; in fact,
{a, b, c} is obtained by extending {a, b} with c.

Let us denote TS as the subtree of T rooted at a node with
set S. Then, TS represents a search space for all possible
pseudo-cliques that contain all vertices in S. In other words,
for any pseudo-clique Q found in TS , Q ⊇ S. We represent
the task of mining TS as a pair 〈S, ext(S)〉, where S is the
set of vertices assumed to be already included, and ext(S) ⊆
(V − S) keeps those vertices that can extend S further into a
γ -quasi-clique. As we shall see, many vertices cannot form a
γ -quasi-clique together with S and can thus be safely pruned
from ext(S), making ext(S) much smaller than (V − S).

Note that the mining of TS can be recursively decomposed
into themining of the subtrees rooted at the children of node S
in TS , denoted by S′ ⊃ S. Note that since ext(S′) ⊂ ext(S),
the subgraph induced by nodes of a child task 〈S′, ext(S′)〉
tends to become smaller.

This set-enumeration approach typically requires post-
processing to remove non-maximal pseudo-cliques from the
set of valid pseudo-cliques found [26]. For example, con-
sider Fig. 2: when processing a task that mines T{b}, vertex a
is not considered and thus, the task has no way to determine
that {b, c, d} is not maximal, even if {b, c, d} is invalidated
by {a, b, c, d} which happens to be a valid pseudo-clique,
since {a, b, c, d} is processed by the task mining T{a}. But
this post-processing is efficient especially when the num-
ber of valid pseudo-cliques is not big (as we only find large
pseudo-cliques).

4 Challenges in load balancing

We explain the straggler problem using two large graphs
YouTube andPatent that are summarized in Table 4 of Sect. 9.
We show that (1) the running time of tasks spans a wide
range, (2) even those tasks with subgraphs of similar size-
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Table 2 Features of 10 most
expensive tasks on YouTube

|V | |E | Max degree |E |/|V | Core # Task time Predicted time

2570 72,678 1583 28.28 43 13,033 899.67

3588 82,727 1417 23.06 37 13,407 1128.13

3228 100,177 2,127 31.04 49 13,623 1505.75

2646 75,747 1646 28.63 44 13,893 969.04

2755 78,375 1597 28.45 45 15,011 1,028.77

5074 162,249 2721 31.98 50 15,015 1924.41

3177 101,008 1850 31.80 49 15,267 1521.73

2321 55,094 1320 23.74 38 15,584 529.61

3723 113,828 1849 30.58 46 16,881 1745.78

26,235 694,686 7105 26.48 51 3,645,905 1015.08

Table 3 Features of 10 most
expensive tasks on Patent

|V | |E | Max degree |E |/|V | Core # Task time Predicted time

109 4232 93 38.83 64 729,769 5.53

93 3197 80 34.38 60 1,006,208 3.84

104 3914 88 37.63 64 1,053,326 4.99

95 3332 82 35.07 60 1,083,755 4.07

69 1786 65 25.88 43 1,198,085 1.48

78 2282 69 29.26 48 1,220,241 2.32

72 1950 66 27.08 45 1,411,622 1.75

79 2346 69 29.70 49 1,757,738 2.43

88 2873 75 32.65 55 2,658,704 3.32

76 2167 68 28.51 47 2,878,700 2.11

and degree-related features can have drastically different run-
ning time, and hence (3) expensive tasks cannot be effectively
predicted using regression models in machine learning.

Specifically, we ran quasi-clique mining using T-thinker
where each task is spawned from a vertex v and mines the
entire set-enumeration subtree T{v} in serial without generat-
ing any subtasks. As shall be clear from rules (P1) and (P2)
in Sect. 6.3, vertices with low degrees can be pruned using
a k-core algorithm, and vertices in ext(S) have to be within
f (γ ) hops from v. Our reported experiments have applied
these pruning rules so that (i) low-degree vertices are directly
prunedwithout generating tasks, (ii) the subgraphs have been
pruned not to include vertices pruned by (P1) and (P2).

Also,we only report the actual time ofmining T{v} for each
task, not including any system-level overheads for task cre-
ation and scheduling, though the latter cost is not a bottleneck.
Table 2 (resp. Table 3) shows the task-subgraph features of
the top-10 longest-running tasks on YouTubewith τsi ze = 18
and γ = 0.9 (resp. Patent with τsi ze = 20 and γ = 0.89)
including the number of vertices and edges, the maximum
and average vertex degrees, the k-core number (aka. degen-
eracy) of the subgraph, the actual serial mining time on the
subgraph, along with the predicted time using support vector
regression (SVR). The tasks are listed in ascending order of

running time (c.f. Column “Task Time”), and the time unit is
millisecond (ms).

In Table 2, the last task takes more than 1 h (3645.9 s) to
complete, much longer than all the other tasks. In fact, even if
we sum the mining time of all tasks, the total is just 5.5 times
that of this straggler task, meaning that the speedup ratio is
locked at 5.5× if we do not further decompose an expen-
sive task. In contrast, our T-thinker program with proper task
decomposition only takes 17 min and 25 s to complete this
job with 32 mining threads.

In Table 3, the last 9 tasks all take more than 1000 s, so
unlike YouTube with one particularly expensive task, Patent
has a few of them, so the computing thread that gets assigned
most of those tasks will become a straggler. In fact, on both
graphs, there are tasks taking less than 1 ms, so the task
time spans 8 orders of magnitude! In contrast, our T-thinker
program with proper task decomposition only takes 15 min
and 19 s to complete this job with 32 mining threads.

Note that in the tables, we already have size- and degree-
based features of a task-subgraph, as well as the more
advanced feature of subgraph degeneracy that reflects graph
density. We have extensively tested the various machine
learning models for task-time regression using those sub-
graph features along with the top-10 highest vertex degrees
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Fig. 3 Subgraph features versus task time on YouTube

and top-10 vertex core indices, but none of the models can
effectively predict the time-consuming tasks. In bothTables 2
and3, the last column shows the predicted timeusing anSVM
(RBF kernel) trained with all the task statistics, and we can
see that the predicted times are way off the ground truth.

We remark that this difficulty is because the cost of set-
enumeration search is exponential in nature, and the timing
when pruning rules are applicable changes dynamically dur-
ing the mining depending on the vertex connections and
cannot be effectively predicted other than conducting the
actual divisible mining.

To visualize how each subgraph feature impacts the task
running time, we plot the impacts of vertex number, average
degree, and core number in Fig. 3 for the YouTube graph,
where we excluded the sole straggler task that takes 3645.9 s
which would otherwise flatten other points to near 0 on the
y-axis.We see that for about the same feature values, the time
can vary a lot along the vertical direction, and this happens
unless the subgraph is very small (e.g., less than 1000 vertices
or average degree less than 20). Nowonder that the expensive
tasks cannot be predicted from these features. Complete plots

on both graphs can be found in the technical report [20] of
our PVLDB 2020 version.
Solution Overview. We address the above challenges from
both the algorithmic and the system perspectives. Algorith-
mically, straggler tasks need to be divided into subtasks
with controllable running time even though the actual run-
ning time needed by a task is difficult to predict; this will
be addressed in Sect. 7. However, even with effective task
decomposition algorithms, the system still needs to have a
mechanism to schedule straggler tasks early so that its work-
loads can be partitioned and concurrently processed as early
as possible; we address this first in Sect. 5 below.

5 The T-thinker framework

To parallelize our Quick+ algorithm [19], we develop a
general-purpose task-based programming framework called
T-thinker and implement the parallel Quick+ on top. This
section first describes the programming interface of T-thinker
and then, introduces the design of its execution engine. Sec-
tion 6 will then describe our Quick+ algorithm, and Sect. 7
will introduce how we use T-thinker’s API to parallelize
Quick+.

We remark that the design of T-thinker has its ownmerit by
providing a generic framework to parallelize any algorithms
that adopt divide and conquer.

5.1 T-thinker programming interface

T-thinker is written as a set of C++ header files defining some
base classes and their virtual functions for users to inherit in
their subclasses and to specify the application logic. We call
these virtual functions as user-defined functions (UDFs). The
base classes also contain C++ template arguments for users
to specify with the proper data structures.

Figure 4 shows the API of these base classes along with
some global variables that a programmer needs to be aware
of when implementing parallel algorithms in T-thinker. We
now introduce them as follows.

There are three base classes, Task, Comper and Worker.
(1) A Task object is the basic unit of computing, with its con-
tent specified by type<ContextT>which keeps the variables
related for task computation. (2)AWorker object implements
the main thread of a T-thinker program, which creates a pool
of nθ computing threads (aka. compers) for computing tasks.
(3) A Comper object implements a computing thread that
keeps fetching and computing tasks.

There are also a few global variables. As Fig. 4 shows,
(1) a T-thinker program maintains an array data_array of
data items that are loaded by the main thread initially from a
data file. Tasks are spawned from individual data items, and
(2) the global variable next_position tracks the progress of
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Fig. 4 The T-thinker programming API

task spawning, i.e., the next position in data_array to spawn
the next task (all previous data items have spawned tasks).
Finally, (3) a task queue task_queue is maintained for the
computing threads (or, compers) to fetch tasks for comput-
ing.

Both data_array and task_queue are initialized by the
main thread (i.e., the Worker object) when a job begins,
where types <DataT> and <TaskT> are obtained from the
user-defined Comper subclass which is specified inWorker’s
template argument <ComperT>.

To use the base classes, users need to subclassComper and
Worker with their UDFs specified by the application logic;
but since Task<ContextT> has no UDF, users only need to
specify the concrete type for template argument<ContextT>

and to rename the new type using “typedef” for ease of use.
For example, in our set-enumeration search tree-based min-
ing introduced in Sect. 3.2, a task that mines the subtree TS
can be denoted by tS , which keeps content such as S, ext(S)

and the subgraph induced by S ∪ ext(S) for checking vertex
connectivity; so <ContextT> should be a class that keeps
these fields.

Recall thatComper is a class that implements a computing
thread which fetches and computes tasks from task_queue. A
Comper subclass requires a programmer to specify the type
of a data item, <DataT>, and the type of a task, <TaskT>

(whose <ContextT> has been specified). Comper provides
two UDFs: (i) task_spawn(o), where users may create tasks
from a data item o (from data_array), and call add_task(t) to
add each created task t to task_queue. (ii) compute(t .context),
which specifies how a task t (from task_queue) is computed;
the computation operates on the variables in t .context. If a
task t is expensive, a user can decompose it into smaller tasks

in compute(.) and call add_task(.) to add them to task_queue
for parallel processing.

AT-thinker program is initiated by subclassing theWorker
base class, calling its UDF load_data(.) to load data from the
input file into data_array (and to conduct proper preprocess-
ing), and then calling its run() function to execute the mining
program.

5.2 Execution engine design overview

In Worker::run(), (i) the main thread actually first fills
task_queue with Creg tasks by spawning from the first Creg

data items in data_array (if available), where Creg is capac-
ity of a regular task queue Qreg (see Sect. 5.3 formore details
on Qreg), i.e., themaximum number of tasks allowed in Qreg

to keep memory consumption bounded. This is exactly why
UDF task_spawn(.) is replicated from Comper to Worker
again, so that the main thread can call it to spawn initial
tasks. The initial task creation from the Creg data items can
be conducted using a parallel-for loop (e.g., in OpenMP) to
fully utilize multi-cores. Then, (ii) the main thread creates
nθ compers to fetch tasks from task_queue for concurrent
processing. Since task_queue has abundant initial tasks, the
compers can be kept busy. Finally, (iii) the main thread peri-
odically (every 0.1 s) checks the job end-condition and sets
an end flag to notify compers to terminate if it finds that all
tasks have been processed. Since themain thread sleeps most
of the time, its CPU occupancy is low so CPU cores are fully
utilized by the compers to compute tasks in parallel.

During the job execution, each comper repeats the fol-
lowing 4 operations: it (1) refills task_queue if it finds that
task_queue is about to become empty, (2) fetches a task t
from task_queue, (3) calls UDF compute(t .context) to com-
plete its computation and then (4) deletes the task object to
release its memory resources. Note that operation (1) keeps
task_queue with abundant tasks to keep all compers (and
hence CPU cores) busy unless there are not enough remain-
ing tasks to refill.

A comper is suspended if there is no task to fetch from
task_queue, and the T-thinker job terminates only if all com-
pers are suspended. This condition is probed by the main
thread every 0.1 s: (i) if it holds, the main thread will set
the end flag and then wake up all compers to terminate (as
they will see the end flag and exit rather than repeat the 4
operations); otherwise, (ii) if there are tasks in task_queue,
the main thread will wake up all compers to continue task
processing; otherwise, (iii) while task_queue is empty, at
least one comper is still processing tasks and may add more
tasks to task_queue due to task decomposition, but since now
task_queue is empty andneednomore compers to fetch tasks,
the main thread will suspend itself immediately to wait for
next round of probe to occur 0.1 s later.
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5.3 Task queues and system parameters

Big versus Regular Tasks It is desirable to schedule those
tasks that tend to be long-running (called big tasks) early, so
that they can be computed and decomposed earlier to improve
load balancing. For example, in our set-enumeration search
(c.f. Sect. 3.2), a task tS = 〈S, ext(S)〉 tends to be more
expensive if |ext(S)| is large. To enable big task prioritiza-
tion, we implement task_queue as two task queues: Qbig to
hold big tasks, and Qreg to hold regular tasks. Our Com-
per class actually has another UDF is_bigTask(t .context)
which is specified to return if a task t is big or not (e.g.,
if |ext(S)| ≥ τbig where τbig is a user-specified threshold).
This UDF is used by Comper to decide which queue (Qbig

or Qreg) to add a task t when add_task(t) is called. If users
do not specify this UDF, the default implementation returns
false so all tasks are regular.
Task Spilling and Refill Now, we explain how tasks are
added to and fetched from task_queue which consists of two
queues Qbig and Qreg . We require Qbig (resp. Qreg) to have
amaximumcapacity ofCbig (resp.Creg) tasks,whereCbig =
16 (resp. Creg = 512) by default. However, it is possible for
a big task to generate many decomposed tasks to be inserted
into Qbig and Qreg , causing either queue to overflow. To keep
the number of in-memory tasks bounded, if Qbig (resp. Qreg)

is full but a new task is to be inserted, we spill a batch of n f ile
big

(resp. n f ile
reg ) tasks at the end of Qbig (resp. Qreg) as a file to

local disk to make room, where n f ile
big = 4 (resp. n f ile

reg = 32)
by default. Note that tasks spilled from Qbig (resp. Qreg) are
written to the disk (and loaded back later) in batches of size
n f ile
big (resp. n f ile

reg ) each, to achieve serial disk IO. We use
a file list Lbig (resp. Lreg) to track those files spilled from
Qbig (resp. Qreg) to be loaded back to Qbig (resp. Qreg)
later when it needs a task refill. Task spilling is automatically
handled by the add_task(t) function in T-thinker.

Also,whenever a comper that checks Qbig (resp. Qreg) for
task fetching finds that there are less than τmin

big (resp. τmin
reg )

tasks in Qbig (resp. Qreg), it will refill tasks either from a
task file, or by spawning new tasks. By default, τmin

big = 8

(resp. τmin
reg = 128). We shall return to the refill details later.

Since Qbig (resp. Qreg) needs to be refilled from the head
of the queue and to spill tasks from the tail by all compers,
we implement Qbig (resp. Qreg) as a deque protected by a
mutex. Also, to spill tasks, a comper first locks Qbig (resp.

Qreg) and fetches n f ile
big (resp. n f ile

reg ) tasks at the tail of the
queue and then unlocks the queue so that other compers can
access it; the comper then serializes the fetched tasks to a file
and deletes those tasks frommemory, without holding queue
lock.

Recall that before a comper fetches a task, it first checks if
task_queue needs a refill. The sources for task refill include
Lbig , Lreg and data_array (for spawning new tasks), and

we always prioritize Lbig and Lreg before data_array for
refill so that the number of tasks kept on disk is minimized
(i.e., new tasks are spawned only if both Lbig and Lreg are
empty). Also, a comper always checks Qbig for task fetching,
and only if Qbig is empty will the comper fetch a task from
Qreg . We next detail the steps for a comper to fetch a task.
Task Fetching by a Comper There are 6 cases. A comper
first (1) checks if Qbig has less than τmin

big tasks; if so, it refills
Qbig by a task file from Lbig and obtains a big task from
Qbig for computation. (2) But if Lbig is found to be empty
when the comper is conducting refill, it will just fetch a big
task from Qbig to compute. (3) if Qbig has no task to fetch,
the comper will then check if Qreg has less than τmin

reg tasks;
if so, it refills Qreg by a task file from Lreg and obtains a
task from Qreg for computation. (4) But if Lreg is found to
be empty when the comper is conducting refill, it will then
spawn up to nspawn (= 32 by default) tasks from data_array
for refill (if enough unspawned data items are available).
During this process, if any spawned task t is found to be big,
the task spawning stops and the comper fetches t to compute.
This avoids generating many big tasks out of one refill (that
may cause cascaded task spilling from Qbig), since a big
task may itself be decomposed into many big subtasks to
be added into Qbig . (5) Otherwise, the comper should have
spawned nspawn regular tasks and refilled them into Qreg , it
then fetches a task from Qreg to compute. (6) if there is no
task to fetch in Qreg (e.g., there is no more task to spawn in
data_array), the comper then suspends itself to be awakened
by the main thread during its next probe.

The default system parameters described so far (which
are illustrated in Fig. 5) have been extensively tuned to
consistently deliver the near-optimal performance across all
datasets we tested. For example, a comper can only refill
n f ile
big = 4 tasks to Qbig with capacity Cbig = 16 at a time,

while a comper can only refill n f ile
reg = 32 or nspawn = 32

tasks to Qreg with capacity Creg = 512 at a time. This
makes sense since multiple compers may detect the need
of a queue refill due to low queue occupancy, and simulta-
neously conduct task refill. Our scheme ensures that even
in such cases, the collectively refilled tasks are not likely to
cause task spilling which would otherwise cause the thrash-
ing issuewhere some task gets repeatedly refilled and spilled.

5.4 Discussion of T-thinker contributions

Compared with G-thinker [50] which is tailor-made for
subgraph finding, T-thinker has amore general API for paral-
lelizing any algorithm that adopts divide and conquer. Also,
T-thinker only requires a single machine for execution rather
than a computer cluster as in G-thinker, so T-thinker is acces-
sible to more users.
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Fig. 5 Illustration of T-thinker’s Default System Parameters

As we shall see in Sect. 9, T-thinker is memory-efficient
and a typical modern server with 64 GB memory is more
than sufficient in vast majority of the graph datasets. This is
thanks to T-thinker’s task spilling and refill design that keeps
a low memory usage by tasks; in fact, most memory space
is used to hold the large input graph. While a distributed
system like G-thinker can partition a large input graph using
distributedmemory,mostmodern graphs can alreadyfit in the
memory of a server. Moreover, quasi-clique mining is very
expensive and graphs larger than the memory capacity of a
server are not computationally tractable anyway, which is in
contrast to less expensive problems such as triangle counting
and maximum clique finding that G-thinker also targets [50],
so T-thinker is a proper and sufficient platform for mining
maximal quasi-cliques.

Finally, while G-thinker also uses separate queues for big
and regular tasks for effective prioritization of big tasks, T-
thinker’s design makes proper adaptions to be efficient in
a single-machine multi-core setting. Specifically, since the
slower machine-wise data and task transmissions are totally
eliminated, a task does not need towait for remote data, so the
UDF compute(.) is just called once for each task to complete
task computation, rather than called for multiple iterations as
in G-thinker to allow data waiting between iterations. Sec-
ondly, instead of letting compers spawn tasks from local data
items as in G-thinker, T-thinker lets the main thread gener-
ates a pool of Creg tasks initially to ensure sufficient tasks to
keep compers busy. Notably, while initial tasks are generated
by one main thread, it can use OpenMP’s parallel for-loop to
utilize multiple CPU cores, so there is no sacrifice in paral-
lelism. Thirdly, since tasks are generated and processed in a
faster speed than inG-thinker, the task queues need to support
higher parallelism, which leads to some changes in the sys-
tem design and parameter choice. For example, in G-thinker,
a thread refills Creg/3 (resp. Cbig/3) tasks to Qbig (resp.
Qreg) at a time, but we find that this design will slow down
T-thinker’s processing. This is because when the task queue
is locked by a comper to refill a relatively large task batch,

other compers cannot fetch tasks from the queue. To prevent
undesirable comper stall, T-thinker uses amuch smaller batch
size for task spilling and refill (i.e., n f ile

big or n f ile
reg ) compared

with queue capacity Cbig or Creg , so that the queue locking
time is significantly reduced, while even if multiple compers
detect the need of refill, their consecutive refill operations are
not likely to cause task thrashing.

6 The Quick+ Algorithm

The next two sections present our Quick+ algorithm [19,20]
for maximal γ -quasi-clique mining, and how to parallelize
it using T-thinker. Notably, to tackle the load balancing issue
described earlier in Sect. 4, a timeout mechanism is proposed
in our T-thinker algorithm to break down long-running tasks
for parallel execution.

6.1 Pruning rules

The key to an efficient set-enumeration search is the pruning
strategies that are applied to remove entire branches from
consideration [4]. Without pruning, the search space is expo-
nential. Quick [26] uses the most complete set of pruning
rules for mining maximal quasi-cliques. Our PVLDB 2020
conference version [19] further improves Quick with new
pruning rules and fixes some missed boundary cases. Since
our main focus is to parallelize Quick+ on T-thinker, and
the complete Quick+ has a lot of details, this section only
briefly overviews Quick+ and presents those rules necessary
for understanding our parallelization. The complete details
and proofs are in our Quick+ technical report [20].

Refer to the set-enumeration tree in Fig. 2 again, where
each node represents a mining task tS = 〈S, ext(S)〉 which
mines the set-enumeration subtreeTS : it assumes that vertices
in S are already included in a result quasi-clique to find, and
continues to expandG(S)with vertices of ext(S) into a valid
quasi-clique. Task tS can be recursively decomposed into
tasks mining the subtrees {TS′ }where S′ ⊃ S are child nodes
of node S. Quick+ examines the set-enumeration search tree
in depth-first order, and our parallel algorithm in the next
section will utilize the concurrency among child nodes {S′}
of node S in the set-enumeration tree.

We consider two types of pruning rules: Type I: Pruning
ext(S): in such a rule, if a vertex u ∈ ext(S) satisfies certain
conditions, u can be pruned from ext(S) since there must not
exist a vertex set S′ such that (S ∪ u) ⊆ S′ ⊆ (S ∪ ext(S))

and G(S′) is a γ -quasi-clique. Type II: Pruning S: in such a
rule, if a vertex v ∈ S satisfies certain conditions, there must
not exist a vertex set S′ such that S ⊆ S′ ⊆ (S∪ ext(S)) and
G(S′) is a γ -quasi-clique, and thus, there is no need to extend
S further. Type-II pruning invalidates the entire TS . A variant
of Type-II pruning invalidatesG(S′), S ⊂ S′ ⊆ (S∪ext(S))
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from being a valid quasi-clique, but node S is not pruned
(i.e., G(S) may be a valid quasi-clique).

We identify 7 groups of pruning rules [20] summarized
below as (P1)–(P7), where each rule either belongs to Type I,
or Type II, or both.
(P1) Graph-Diameter-Based Pruning Theorem 1 of [33]
defines the diameter upper bound of a γ -quasi-clique as a
function f (γ ), and f (γ ) = 2 if γ ≥ 0.5. Without loss
of generality, we use 2 as the diameter upper bound in our
algorithm description, but it is straightforward to generalize
to the case γ < 0.5 by considering vertices f (γ ) hops away.
Since a vertex u ∈ ext(S) must be within 2 hops from any
v ∈ S, we have ext(S) ⊆ ⋂

v∈S B(v). This is a Type-I
pruning rule since if u /∈ ⋂

v∈S B(v), u can be pruned from
ext(S).
(P2) Size-Threshold-BasedPruningAvalidγ -quasi-clique
Q ⊆ V should contain at least τsi ze vertices (i.e., |Q| ≥
τsi ze), and therefore for any v ∈ Q, its degree d(v) ≥ �γ ·
(|Q|−1)	 ≥ �γ ·(τsi ze−1)	. We thus can prune any vertex u
with d(u) < �γ ·(τsi ze−1)	 fromG. Let k = �γ ·(τsi ze−1)	,
then this rule shrinks G into its k-core, i.e., the maximal
subgraph of G where every vertex has degree ≥ k. The k-
core of a graph G = (V , E) can be computed in O(|E |)
time using a peeling algorithm [3]. We thus shrink a graph G
into its k-core before mining, which effectively reduces the
search space.
(P3) Degree-Based Pruning Four kinds of degrees are fre-
quently used by pruning rules: (1) SS-degrees: dS(v) for
all v ∈ S; (2) SE-degrees: dS(u) for all u ∈ ext(S);
(3) ES-degrees: dext(S)(v) for all v ∈ S; and (4) EE-degrees:
dext(S)(u) for all u ∈ ext(S).

Three groups of pruning rules utilize these degrees:
(i) degree-based pruning that solely uses the degrees of a
vertex itself, (ii) upper-bound-based pruning and (iii) lower-
bound-based pruning that look at the degrees of multiple (or
even all) vertices in S and ext(S). Each of the three groups
contains two rules: one Type-I rule and one Type-II rule.
Please refer to [20] for these rules.
(P4 & P5) Upper- and Lower-Bound-Based Pruning For
each task tS = (S, ext(S)), Quick [26] defined an upper
bound US (resp. lower bound LS) on the number of vertices
in ext(S) to be added to S to form a γ -quasi-clique, based
on the above-mentioned degrees. We found that additional
Type-II pruning not considered by Quick can happen when
computing US (resp. LS), and please see [20] for details.
(P6) Critical-Vertex-Based Pruning Given the above-
mentioned lower bound LS , we call any vertex v ∈ S as
a critical vertex if dS(v)+ dext(S)(v) = �γ · (|S|+ LS − 1)	.
Quick [26] showed that if v is a critical vertex, then for any
vertex set S′ such that S ⊂ S′ ⊆ (S ∪ ext(S)), if G(S′) is
a γ -quasi-clique, then S′ must contain every neighbor of v

in ext(S), i.e., Next(S)(v) ⊆ S′. In other words, if we find

that any v ∈ S is a critical vertex, we can directly include all
vertices in Next(S)(v) to S for further mining.
(P7) Cover-Vertex-Based Pruning Given a vertex u ∈
ext(S), Quick [26] defined a vertex set CS(u) ⊆ ext(S)

such that for any γ -quasi-clique Q generated by extending
S with vertices in CS(u), Q ∪ u is also a γ -quasi-clique. In
other words, Q is not maximal and can be pruned. We say
that CS(u) is the set of vertices in ext(S) covered by u, and
that u is the cover vertex.

To utilize CS(u) for pruning, we put vertices of CS(u)

after all the other vertices in ext(S) when checking the next
level in the set-enumeration tree (see Fig. 2) and only check
until all vertices of ext(S) − CS(u) are examined (i.e., the
extension of S using V ′ ⊆ CS(u) is pruned). To maximize
the pruning effectiveness, we find u ∈ ext(S) that tends to
have a large |CS(u)|. We refer readers to [20] for the formula
of computing CS(u).

As a degenerate special case, initially when S = ∅, we
haveCS(u) = N (u), i.e., we only need to find u as the vertex
with the maximum degree. Note that for any γ -quasi-clique
Q constructed out of vertices in CS(u) = N (u), adding u
to Q still produces a γ -quasi-clique. We find u as the vertex
with the maximum degree after k-core pruning by (P2) to
avoid selecting a high-degree vertex without pruning power
(e.g., center of a star).

6.2 The iterative pruning sub-procedure

IterativeNature ofType-I PruningRecall that Type-I prun-
ing shrinks ext(S), which will reduce vertex degrees such as
dext(S)(v) of some v ∈ S, which in turn will update bounds
US and LS that are defined on the degrees. This essen-
tially means that Type-I pruning is iterative: each pruned
vertex u ∈ ext(S) may change degrees and bounds, which
affects the various pruning rules including Type-I pruning
rules themselves; these Type-I pruning rules will thus be
checked again, and new vertices in ext(S) may be pruned
due to Type-I pruning, triggering another iteration. As this
process repeats, US and LS become tighter until no more
vertex can be pruned from ext(S), which has 2 cases:

– C1: ext(S) becomes empty. In this case, we only need to
check if G(S) is a valid quasi-clique;

– C2: ext(S) is not empty but cannot be shrunk further by
pruning rules. Then, we need to check S and its exten-
sions.

Sub-procedure for Pruning Algorithm 1 shows how to
apply our pruning rules to (1) shrink ext(S) and to (2) deter-
mine if S can be further extended to form a valid quasi-clique.
This is a pruning sub-procedure used by our recursivemining
algorithm Quick+.
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Algorithm 1 Iterative Bound-Based Pruning
Function: iterative_bounding(S, ext(S), γ , τsi ze)
Output: true iff the case of extending S (excluding S itself) is pruned;
ext(S) is passed as a reference; elements may be pruned after return
1: repeat
2: Compute dS(v) and dext(S)(v) for all v in S and ext(S)

3: Compute upper bound US and lower bound LS
4: if a vertex v ∈ S is a critical vertex then
5: I ← ext(S) ∩ N (v)

6: S ← S ∪ I , ext(S) ← ext(S) − I
7: Update degree values, US and LS
8: for each vertex v ∈ S do
9: Check Type-II pruning conditions of (P3), (P4) and (P5)
10: return true if Type-II pruning applies
11: for each vertex u ∈ ext(S) do
12: Check Type-I pruning conditions of (P3), (P4) and (P5)
13: if some Type-I pruning condition holds for u then
14: ext(S) ← ext(S) − u
15: until ext(S) = ∅ or no vertex in ext(S) was Type-I pruned
16: if ext(S) = ∅ then
17: if |S| ≥ τsi ze and G(S) is a γ -quasi-clique then
18: Append S to the result file
19: return true
20: return f alse

The iterative pruning caused by Type-I rules that shrink
ext(S) is given by the loop of Lines 1–15, which ends if the
condition in Line 15 is met, corresponding to the above two
cases C1 and C2.

Algorithm 1 returns a Boolean tag indicating whether S’s
extensions (but not S itself) are pruned, and the input argu-
ment ext(S) is passed as a reference and may be shrunk due
to Type-I pruning by the function.

Since ext(S) can be pruned to become empty, we design
this pruning sub-procedure to guarantee that it returns f alse
only if ext(S) �= ∅. Therefore, if the loop of Lines 1–15
exits due to ext(S) = ∅, we have to return true (Line 19) as
there is no vertex to extend S, but we need to first examine if
G(S) itself is a valid quasi-clique in Lines 17–18. Note that
G(S) is not Type-II pruned as otherwise Line 10 would have
returned true to exit pruning.

Now, let us focus on the loop body in Lines 2–14 about
one pruning iteration, which can be divided into 3 parts:
(1) Lines 2–7: critical vertex pruning, (2) Lines 8–10: Type-II
pruning, and (3) Lines 11–14: Type-I pruning. To keep Algo-
rithm 1 short, we omit some details, but they are described
in the narrative below.

First, consider Part 1. We compute the degrees in Line 2,
which are then used to compute US and LS in Line 3. In
Line 3, recall from (P4& P5) that Type-II pruning may apply
when computing US and LS , in which case we return true
to prune S’s extensions.

Then, Lines 4–6 apply the critical-vertex pruning of (P6).
We find all critical vertices in S and move their neighbors
from ext(S) to S. Such movement will update degrees and
bounds which are then updated in Line 7 if a critical vertex

is ever found. Similar to Line 3, Line 7 may trigger Type-II
pruning so that the function returns true directly. Since the
updates may generate new critical vertices in the updated S,
we actually loop Lines 4–7 until there is no more critical
vertex in S.

Quick+ also performs the following pruning: if any neigh-
bor u ∈ ext(S) of a critical vertex v1 ∈ S is found to be
more than 2 hops away from another vertex v2 ∈ S, or from
another neighbor u′ ∈ ext(S) of v1, then Type-II pruning is
triggered so that the function returns true directly. This is
because neither {u, v1, v2} nor {u, v1, u′} can co-exist in a
valid quasi-clique, but since v1 is a critical vertex, u and u′
have to be included into S, leading to a contradiction.

Recall from (P6) that S′ in critical-vertex pruning does not
include S itself, so it is possible that all extensions of S lead to
no valid quasi-cliques, making G(S) itself a maximal quasi-
clique. Quick misses this check. Quick+ considers this case
by first checking G(S) as in Lines 17–18 before expanding
S (i.e., Line 6). While Quick+ may output S while G(S)

is not maximal, post-processing will remove non-maximal
quasi-cliques.

Next, consider Part 2 on Type-II pruning as in Lines 8–10.
These lines assume that Type-II rules prune the entire subtree
TS if any vertex v ∈ S satisfies the rule conditions. Finally,
Part 3 on Type-I pruning checks every u ∈ ext(S) and tries
to prune u using a Type-I pruning condition as shown in
Lines 11–14, which may create new pruning opportunities
for next iteration.

6.3 The recursive mainmining algorithm

Algorithm 2 shows our Quick+ main algorithm for mining
valid quasi-cliques extended from S (including G(S) itself).
This algorithm is recursive (see Line 21) and starts by calling
recursive_mine(v, B>v(v), γ , τsi ze) on every v ∈ V where
B>v(v) denotes those vertices in B(v) (i.e., within 2 hops
from v) that are ordered after v (e.g., in Fig. 2, we have the
order a < b < c < d). Note that according to Fig. 2, we
should not consider the other vertices inB(v) to avoid double
counting.

Recall from (P7) that we have a degenerate cover-vertex
pruningmethod that finds the vertex vmax with the maximum
degree, so that any quasi-clique generated from only vmax ’s
neighbors cannot be maximal (as it can be extended with
vmax ). To utilize this pruning rule, we order the vertices so
that vmax is at position 0, while vertices of N (vmax ) are after
all other vertices, i.e., they are listed at the end in the first
level of the set-enumeration tree illustrated in Fig. 2 (as they
only extend with vertices in N (vmax )). If we order vertices
as such, recursive_mine(v, B>v(v), γ , τsi ze) only needs to
be called on every v ∈ V − N (vmax ).

Algorithm 2 keeps a Boolean tag TQ_ f ound to return (see
Line 26), which indicates whether some valid quasi-clique
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Algorithm 2 Extending S for Valid Quasi-Cliques
Function: recursive_mine(S, ext(S), γ , τsi ze)
Output: true iff a valid quasi-clique Q ⊃ S is found
1: TQ_ f ound ← f alse
2: Find cover vertex u ∈ ext(S) with the largest CS(u)

3: {If not found, CS(u) ← ∅}
4: Move vertices of CS(u) to the tail of the vertex list of ext(S)

5: for each vertex v in the sub-list (ext(S) − CS(u)) do
6: if |S| + |ext(S)| < τsi ze then
7: return TQ_ f ound
8: if G(S ∪ ext(S)) is a γ -quasi-clique then
9: Append S ∪ ext(S) to the result file
10: return true
11: S′ ← S ∪ v, ext(S) ← ext(S) − v

12: ext(S′) ← ext(S) ∩ B(v)

13: if ext(S′) = ∅ then
14: if |S′| ≥ τsi ze and G(S′) is a γ -quasi-clique then
15: TQ_ f ound ← true
16: Append S′ to the result file
17: else
18: Tpruned ← iterative_bounding(S′, ext(S′), γ , τsi ze)
19: {here, ext(S′) is Type-I-pruned and ext(S′) �= ∅}
20: if Tpruned = f alse and |S′| + |ext(S′)| ≥ τsi ze then
21: T f ound ← recursive_mine(S′, ext(S′), γ , τsi ze)
22: TQ_ f ound ← TQ_ f ound or T f ound
23: if T f ound = f alse and |S′| ≥ τsi ze and G(S′) is a

γ -quasi-clique then
24: TQ_ f ound ← true
25: Append S′ to the result file
26: return TQ_ f ound

Q extended from S (but Q �= S) is found. Line 1 initializes
TQ_ f ound as f alse, but it will be set as true if any valid
quasi-clique Q is later found.

Algorithm 2 examines S, and it decomposes this problem
into sub-problems of examining S′ = S ∪ v for all v ∈
ext(S), as described by the loop in Line 5. Before the loop,
we first apply the cover-vertex pruning of (P7) in Lines 2–4
to compute a cover set CS(u) so that those vertices in CS(u)

can be skipped in Line 5. If we cannot find a cover vertex
(see Line 3), then Line 5 iterates over all vertices of ext(S).

Now, consider the loop body of Lines 6–25. Line 6 first
checks if S, when extended with all vertices in ext(S), can
generate a subgraph larger than τsi ze; if not, the current and
future iterations (where ext(S) further shrinks) cannot gen-
erate a valid quasi-clique and are thus pruned, and Line 7
directly returns TQ_ f ound which indicates if a valid quasi-
clique is found by previous iterations.

For a vertex v ∈ ext(S), the current iteration creates S′ =
S∪v for examination in Line 11. Before that, Lines 8–10 first
checks if S extended with the entire current ext(S) creates
a valid quasi-clique; if so, this is a maximal one and is thus
output in Line 9, and further examination can be skipped
(Line 10). This pruning is called the look-ahead technique
in Quick [26]. Note that G(S ∪ ext(S)) must satisfy the size
threshold requirement since Line 6 is passed.

The look-ahead technique is important since if G(S ∪
ext(S)) is dense, its subgraphs tend to be dense and node
S ∪ ext(S) can generate a large set-enumeration subtree if
not pruned. If the look-ahead technique does not prune the
search, then Line 11 creates S′ = S ∪ v and excludes v from
ext(S). The latter also has a side effect of excluding v from
ext(S) of all subsequent iterations, which matches exactly
how the set-enumeration tree (c.f. Fig. 2) avoids generating
redundant nodes.

Then, Line 12 shrinks ext(S) into ext(S′) by ruling out
vertices that are more than 2 hops away from v according to
(P1) diameter-based pruning, which is then used to extend
S′. If ext(S′) = ∅ after shrinking, then S′ has nothing to
extend, but G(S′) itself may still be a valid quasi-clique and
is thus examined in Lines 14–16.

If ext(S′) �= ∅, Line 18 then calls Algorithm 1 to apply
the pruning rules. Recall that the function either returns
Tpruned = f alse, indicating that we need to further extend
S′ using its shrunk ext(S′); or it returns Tpruned = true to
indicate that the extensions of S′ should be pruned,whichwill
also outputG(S′) if it is a valid quasi-clique (see Lines 16–19
in Algorithm 1).

If Line 18 decides that S′ can be further extended (i.e.,
Tpruned = f alse) and extending S′ with all vertices in
ext(S′) still has the hope of generating a subgraph with τsi ze
vertices or larger (Line 20), we then recursively call our
algorithm to examine S′ in Line 21, which returns T f ound

indicating if some valid maximal quasi-cliques Q ⊃ S′ are
found (and output). If T f ound = true, Line 22 updates the
return value TQ_ f ound as true, but G(S′) is not maximal.
Otherwise (i.e., T f ound = f alse), G(S′) is a candidate for a
validmaximal quasi-clique and is thus examined inLines 23–
25.

Finally, as inQuick,Quick+also requires a post-processing
step to remove non-maximal quasi-cliques from the results
of Algorithm 2. Also, we only run Quick+ after the input
graph is shrunk by the k-core pruning of (P2). Additionally,
we find that the vertex order in ext(S) matters (Algorithm 2
Line 5) and can significantly impact the running time. To
maximize the success probability of the look-ahead tech-
nique in Lines 8–10 of Algorithm 2 that effectively prunes
the entire TS , we propose to sort the vertices in ext(S) in
ascending order of dS(v) (tie broken by dext(S)(v)) follow-
ing [4] so that high-degree vertices tend to appear in ext(S)

of more set-enumeration tree nodes.

7 Parallel Quick+ implementation in
T-thinker

We next parallelize Algorithm 2 on T-thinker, where a long-
running task is divided into smaller subtasks for concurrent
processing. Recall from Sect. 5.1 that users write a T-thinker
program by implementing 3 UDFs: (1) load_data(file) for
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loading data (i.e., vertices of a graph) into data_array;
(2) task_spawn(v) for spawning a task from each vertex v

(i.e., a data item in data_array); (3) compute(t .context) for
computing a task t . We next describe how we specify them
for Quick+.
UDF load_data(file). When a T-thinker program begins,
the main thread will call load_data(file) to load vertices into
data_array, where each data item corresponds to a vertex v ∈
V . To provide an intuition using Fig. 2, UDF load_data(file)
basically loads vertices a, b, c, and d at Level 1 of the set-
enumeration tree into data_array, so that they can spawn
initial tasks tS for S = {a}, {b}, {c}, {d}.

In our implementation of load_data(file), after loading the
graph G from an input file, we additionally compute the k-
core of G where k = �γ · (τsi ze − 1)	 according to (P2), to
prune those vertices that cannot be in any valid quasi-clique
of size at least τsi ze. We only add the remaining vertices into
data_array so that less taskswill be spawned, and ext(S) of a
task will also not include those vertices with degree less than
k. We also sort vertices in data_array in ascending order of
degree to allow effective look-ahead pruning. Finally,we also
conduct the initial cover-vertex-based pruning as introduced
in (P7) to mask out those vertices v ∈ N (u) where u is the
vertex with the maximum degree in G, so that they will not
call task_spawn(v) to spawn tasks.
UDF task_spawn (v). Let us denote each initial task as tv
that mines subtree T{v}. We would like to construct a much
smaller graph into tv.context to be memory-efficient since
task_queue will contain a pool of tasks. Recall that accord-
ing to (P1), tv only needs to consider vertices within 2 hops
from v, i.e.,B(v). Additionally, among those vertices inB(v),
tv does not need to consider any vertex whose position is
before v in data_array, since according to Fig. 2, T{v} does
not contain any vertex before v (e.g., the subtree T{c} does not
contain a and b). Here, we are using the position of vertices
in data_array to determine their total order, and to facili-
tate such vertex pruning (fromB(v)), load_data(file) actually
also scans data_array to build a reverse map from their ver-
tex IDs to their positions in data_array, so that for any vertex
u ∈ B(v), we can obtain the positions of u and v in O(1)
time to check if u > v. Only those vertices in B>(v) are
copied from G into tv.context for task computation.

In our implementation, if v is not masked by the ini-
tial cover-vertex-based pruning, we then create a task tv
with its context containing S = {v} and graph G(B>(v)),
and call add_task(tv) to add the task to task_queue. Recall
that task_spawn(v) is called in two places, one place is by
worker to generate and fill an initial batch of Creg tasks into
task_queue (big tasks are added to Qbig , while other tasks
are added to Qreg), and the other place is by compers during
their refill of task_queue.

Additionally, if task_spawn(v) finds that all vertices in
data_array have finished calling task_spawn(.), then the

input graph G is no longer needed and thus, task_spawn(v)

frees G from memory to save memory space.
Timeout Mechanism to Avoid Stragglers To avoid long-
running tasks that we demonstrated in Sect. 4, a timeout
strategy is used to limit the time that any task can perform its
computation without being decomposed into smaller tasks.
Specifically, when a task tS begins its mining, we record
its starting time t0. During the depth-first recursive min-
ing of set-enumeration subtree TS , if timeout happens, i.e.,
tcur − t0 > τtime where tcur is the current time and τtime is
the timeout duration threshold, we create a new task tS′ for
each vertex set S′ to be checked, rather than continue to mine
it recursively as in Algorithm 2 Line 21.

Figure 6 illustrates how the timeout strategyworks for task
ta . The algorithm recursively expands the set-enumeration
tree in depth-first order, processing 2 tasks until entering
{a, b, c, d} for which the entry time t3 times out; we then
wrap {a, b, c, d} as a subtask and add it to task_queue and
backtrack the upper-level nodes to also add them as subtasks
(due to timeout). Note that subtasks are at different granu-
larity and not over-decomposed. Also note that this strategy
guarantees that each task spends at least a duration of τtime

on the actual mining by backtracking (which does not mate-
rialize subgraphs) before dividing the remaining workloads
into subtasks (which needs to materialize their subgraphs),
and we will show that the time spent by a task on subgraph
materialization for its subtasks is very small compared with
the time spent on the actual mining, so only a small overhead
is incurred to improve load balancing and prevent straggler
tasks.
UDF compute(t .context). Algorithm 3 details our UDF
compute(t .context), which calls a recursive function time_
delayed(S, ext(S), t0) by giving input 〈t .S, t .ext(S), tcur 〉.

Here, time_delayed(S, ext(S), t0) mines TS recursively as
in Algorithm 2, but decomposes the task if timeout occurs.
Specifically, time_delayed(.) in Algorithm 3 now considers
2 cases. (1) Lines 18–24: if timeout happens, 〈S′, ext(S′)〉 is
wrapped into a new task t ′ to add to task_queue; (2) Lines 25–
30: we perform backtracking as in Algorithm 2, where we
recursively call time_delayed(.) to process 〈S′, ext(S′)〉 in
Line 26.

Fig. 6 Timeout-based divide and conquer
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Algorithm 3 UDF compute(t .context)
UDF: compute(t .context)
1: time_delayed (t .S, t .ext(S), current_time)

{t .t0 = current_time}
Function: time_delayed(S, ext(S), initial_time)
1: TQ_ f ound ← f alse
2: Find cover vertex u ∈ ext(S) with the largest CS(u)

3: {If not found, CS(u) ← ∅}
4: Move vertices of CS(u) to the tail of the vertex list of ext(S)

5: for each vertex v in the sub-list (ext(S) − CS(u)) do
6: if |S| + |ext(S)| < τsi ze then: return f alse
7: if G(S ∪ ext(S)) is a γ -quasi-clique then
8: Append S ∪ ext(S) to the result file; return f alse
9: S′ ← S ∪ v, ext(S) ← ext(S) − v

10: ext(S′) ← ext(S) ∩ B(v)

11: if ext(S′) = ∅ then
12: if |S′| ≥ τsi ze and G(S′) is a γ -quasi-clique then
13: TQ_ f ound ← true
14: Append S′ to the result file
15: else
16: Tpruned ← iterative_bounding(S′, ext(S′), γ , τsi ze)
17: {here, ext(S′) is Type-I-pruned and ext(S′) �= ∅}
18: if current_time − initial_time > τtime then
19: if Tpruned = f alse and |S′| + |ext(S′)| ≥ τsi ze then
20: Create a task t ′
21: t ′.S ← S′; t ′.ext(S) ← ext(S′)
22: add_task(t ′)
23: if |t ′.S| ≥ τsi ze and G(t ′.S) is a γ -quasi-clique then
24: Append t ′.S to the result file
25: else if Tpruned = f alse and |S′| + |ext(S′)| ≥ τsi ze then
26: T f ound ← time_delayed(S′, ext(S′), initial_time)
27: TQ_ f ound ← TQ_ f ound or T f ound
28: if T f ound = f alse and |S′| ≥ τsi ze and G(S′) is a

γ -quasi-clique then
29: TQ_ f ound ← true
30: Append S′ to the result file
31: return TQ_ f ound

Recall thatAlgorithm2 is recursivewhere Line 21 extends
S with another vertex v ∈ ext(S) for recursive process-
ing. Now in time_delayed(.) when timeout happens, we will
instead create a new task t ′ with t ′.S = t .S∪v (Lines 20–21),
which is essentially tS′ and add it to task_queue (Line 22).
However, we still want to apply all our pruning rules to see
if TS′ can be pruned to avoid creating t ′ at the first place
(Lines 6–17); if not, we will add t ′ to T-thinker in Line 22
so that when a comper becomes available, t ′ is scheduled for
processing by calling time_delayed(S′, ext(S′), t0). Here, we
shrink t ′’s subgraph to be induced by S′ ∪ ext(S′) so that the
subtask is on a smaller graph, and since t ′.ext(S) shrinks
(due to pruning) as the node level becomes deeper and t ′.g
also shrinks, the computation cost becomes smaller.

Another difference is with Line 23 of Algorithm 2, where
we only check ifG(S′) is a valid quasi-cliquewhenT f ound =
f alse, i.e., the recursive call in Line 21 verifies that S′
fails to be extended to produce a valid quasi-clique. Here
in time_delayed(.), however, the recursive call now becomes
an independent task t ′ (Lines 20–22), and the current task

t has no clue of the result from t ′. Therefore, we have to
check if G(S′) itself is a valid quasi-clique (Lines 23–24) in
order not to miss it if it is maximal. A subtask may later find
a larger quasi-clique containing t ′.S = S′, making G(S′)
non-maximal, but post-processing will safely remove it.
Memory Optimization Recall that in UDF task_spawn(v),
we create a task tv with its context containing S = {v} and
graph G(B>(v)) and then, calls add_task(tv) to add the task
to task_queue. However, such an implementation has a prob-
lem: the worker initially generates and fills an initial batch of
Creg = 512 tasks into task_queue, and each task tv is associ-
ated with a big initial subgraph G(B>(v)), consuming a lot
of memory.

To avoid this issue, we delay the subgraph creation for
the initial vertex-spawned tasks to UDF compute(t .context)
rather than in UDF task_spawn(v). That is, if a task t finds
in compute(t .context) that |t .S| = 1 (t .S is obtained from
t .context), then t is an initial tasks (rather than a decomposed
one) andwewill (1) first create its subgraphG(B>(v))where
v is the only vertex in t .S, (2) then increment the atomic
counter for tracking howmany initial tasks have created their
subgraphs (for proper deletion of G), and (3) proceed to the
original task computation shown in Algorithm 3.

Assume that we have 32 compers, then in the worst case,
every comper is computing an initial vertex-spawned task
with the task subgraph created in memory, leading to at most
32 large initial subgraphs rather thanCreg = 512 ones, hence
much more memory-efficient.

8 Parallel kernel expansion

Recall fromSect. 2 that [36] proposed amethod to find k large
maximal γ -quasi-cliques by kernel expansion. Specifically,
the method first (1) mines γ ′-quasi-cliques (γ ′ > γ ) using
Quick, and then (2) selects the k′ largest γ ′-quasi-cliques
as “kernels.” For each kernel S, it then (3) expands S into
γ -quasi-cliques that are maximal locally in G(S ∪ ext(S)),
i.e., it mines maximal γ -quasi-cliques in the set-enumeration
subtree TS . (4) For all the γ -quasi-cliques found by expand-
ing the k′ kernels, the top-k largest results are then returned.
In a nutshell, a kernel-expansion job can be represented by a
parameter quadruple (γ ′, k′, γ, k) besides the minimum size
threshold τsi ze, and it finds k large γ -quasi-cliques with at
least τsi ze vertices (if available).

This kernel expansion method can be generalized to other
dense subgraph mining problems, where we first mine sub-
graphs denser than are actually required, so that only nodes in
the top levels of a set-enumeration search tree are examined
leading to faster mining; then, mining of the targeted dense
subgraphs can begin only from the top-k′ largest nodes rep-
resenting the k′ denser kernel subgraphs, skippingmost other
tree branches that tend to generate smaller dense subgraphs.
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Fig. 7 The trie that incorporates all sets in Fig. 2

Referring to Fig. 2 again, we can first mine k′ = 2 ker-
nels like S1 = {a, c} and S2 = {b, c}, and then continue to
mine γ -quasi-cliques in TS1 and TS2 , which leads to result
subgraphs such as {a, c, d} and {b, c, d}.

However, expansions from different kernels may search
the same set-enumeration tree nodes repeatedly, causing the
total nodes searched to be even more than the entire set-
enumeration search tree shown in Fig. 2 without redundancy.
As we observed in [20], this kernel expansion solution can be
even less efficient than mining all maximal γ -quasi-cliques
directly using Quick+.

To illustrate why the problem arises, let us consider the
following two scenarios. Scenario 1: there is only one kernel
S1 = {a, c} found. In this case, if we use the node ordering
a < b < c < d as in Fig. 2, we will only find quasi-clique
{a, c, d} butwillmiss {a, b, c} even if the latter is a large valid
result. To find {a, b, c} from S1, we need to assume that a and
c are before all other nodes in ordering, so c < b and b should
be included in ext(S1) unlike in Fig. 2 where we assume
b < c. While this assumption avoids missing results, it can
lead to redundant search aswe explain next.Scenario 2: there
are two kernels S1 = {a, c} and S2 = {b, c}. According to
our discussion above, when expanding S1 we are assuming
a < b (i.e., a, c ∈ S1 and b ∈ ext(S1)) so S1 can be expanded
with b, but when expanding S2 we are assuming b < a (i.e.,
b, c ∈ S2 and a ∈ ext(S2)) so S2 can be expanded with a. As
a result, the expansions from both S1 and S2 will reach node
{a, b, c}, meaning that both of them search for the entire set-
enumeration subtree T{a,b,c}! And such redundancy is pretty
common among other vertex pairs beyond (a, b)!

Our proposed solution is to maintain a concurrent data
structure T to keep all those nodes that have been explored
by compers, so that, for example, if the expansion from S1
has visited node {a, b, c}, it will be detected by the expan-
sion from S2, so this expansion will skip node {a, b, c} and
hence, the entire T{a,b,c}, which is already being explored by
the expansion from S1. Note that since we are only expand-
ing from k′ kernels, we expect the number of nodes being
searched to be acceptable so that T can keep all of them in
memory.

A trivial solution is to keep T as a mutex-protected set,
but this is inefficient since elements of T are themselves
vertex sets such as {a, b, c} and {a, b, d}, so here a and b
are kept twice. Trie (i.e., prefix tree) is a more compact data
structure choice that avoids such redundancy. For example,
Fig. 7 shows a trie that encodes all the sets in Fig. 2, and we
can see that fewer elements are saved comparedwith in Fig. 2.
In fact, the red parts in Fig. 7 are those resulted after inserting
both {a, b, c} and {a, b, d} into trie T , and we can see that a
and b are kept only once for these 2 sets. Note that each trie
node x is also associatedwith a flag σ(x) indicating if S ∈ T ,
where S is a set represented by the path from the root to x .
For example, if we consider the red subtree in Fig. 7 resulted
from inserting {a, b, c} and {a, b, d} into an empty T , then
we have σ(c) = σ(d) = true, but σ(a) = σ(b) = f alse
since {a}, {a, b} /∈ T . If later {a, b} is inserted into T , σ(b)
will be set to true.

We remark that a trie basically executes a fixed vertex
ordering. For example, in Fig. 7 we assume a < b < c < d.
While different kernel expansions may use different vertex
orders, when they check a node S against T for redundancy
avoidance, S is basically reordered using the vertex ordering
of trie T .

However, since aT-thinker job searches the set-enumeration
trees from kernel expansions in parallel, we need a thread-
safe trie structure that supports high concurrency, but we are
not aware of any such off-the-shelf concurrent trie library.
In the sequel, we first present our T-thinker algorithm for
the kernel expansion method to find large maximal γ -quasi-
cliques, assuming that T is a thread-safe trie that supports
high concurrency; we will then introduce howwe implement
such a concurrent trie data structure.

8.1 Kernel expansion algorithm in T-thinker

The kernel expansion algorithm can be implemented with
two T-thinker jobs. (1) The first job runs exactly our parallel
Quick+ program that was described in Sect. 7, to output max-
imal γ ′-quasi-cliques fromwhich we select the top-k′ largest
ones (if available) as the kernels. These kernels are saved in
a kernel file. (2) The second job then reads the k′ kernels and
use them to create initial tasks for further expansion to find
maximal γ -quasi-cliques, from which the k largest ones are
the final results. We next describe the second job.

One way to implement the second job is to put the k′
kernels in data_array to spawn initial kernel tasks for fur-
ther expansion. The benefit is that when k′ is large, T-thinker
will spawn and refill task_queue on demand to keep memory
consumption bounded. However, it is usually not neces-
sary since k′ is expected to be small (since the main goal
is to reduce the number of nodes searched by the second
job). So, we choose to directly create all the k′ kernel tasks
into task_queue in UDF load_data(.) by reading the ker-
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nel file, and since data_array is empty, UDF task_spawn(o)
will never be called and can be left empty. As for UDF
compute(t .context), the logic is almost the same as in Algo-
rithm 3, except that after Line 9, we need to add a new line “if
S′ ∈ T then continue” to skip S′ if another kernel expansion
has visited it.

Note that UDF load_data(.) still needs to load the input
graph G initially and use it to create a task tS for each kernel
S, and then call add_task(tS). The creation of different kernel
tasks can be parallelized using OpenMP’s parallel for-loop.
Finally, load_data(.) frees G from memory.

For each kernel S, load_data(.) generates task tS =
〈S, ext(S)〉 as follows. We construct graph tS .G = G(

⋂
v∈S

B(v)) to be added to tS .context based on (P1) diameter-
based pruning. Then, tS .G is updated into its k-core where
k = �γ · (τsi ze − 1)	, and if some vertex in S is pruned, we
directly delete tS rather than add it to task_queue. Otherwise,
we add those remaining vertices that are not in S into ext(S),
sort vertices in ext(S) in ascending order of degree to allow
effective look-ahead pruning. Other pruning rules mentioned
in Sect. 6.3 can then be applied over 〈S, ext(S)〉 for further
pruning.

8.2 Concurrent trie implementation

Wenow introduce how our concurrent trie T is implemented.
Figure 8a shows the data structure of a trie node, and Fig. 8b
shows a trie when four vertex sets S1, S2, S3 and S4 have been
inserted, assuming that we define an order a < b < c < d.
In the actual implementation, we directly order vertices by
their IDs when inserting the vertex sets of a node S into T .

Note that to insert a set S into T , we actually treat S as
a sequence with its elements ordered and scan the elements
one at a time and match each element to a trie node starting
from the root node of the trie T .

As shown in Fig. 8a, each trie node ηmaintains two fields.
(1) The field η. f lag indicating whether S ∈ T where S is a
vertex set that consists of the elements on the path from root
toη. For example, in Fig. 8b, the flag is not set for the trie node
b below a since {a, b} /∈ T , while the flag is set for the node
c below a since {a, c} = S3 ∈ T . (2) The field η.children is
a table where entry η.children[ηc] keeps a pointer to a child
trie node of η (if it exists). For example, in Fig. 8b, the trie
node b below a has a table children containing two child
nodes (actually pointers to them) which are created when
inserting S1 and S2, while the node c below a has a table
children containing only one child node d which is created
when inserting S4.

Note from Fig. 8a that η. f lag is protected by a read-write
lock η. f lag_lock, while η.children is protected by another
read-write lock η.lock. We use read-write lock rather than
mutex for high concurrency. For example, consider the trie
node b below a in Fig. 8b, it will be frequently visited as a

(a)

(b) (c)

Fig. 8 The concurrent trie data structure

bridging node by different compers if they insert (or search
for the existence of) sets that contain elementsa andb, andwe
would like these visits to happen in parallel without blocking
each other, which is possible if a node η protects its fields
(i.e., for thread safety) using read-write locks.

As Fig. 8c shows, there is only one function insert(S)

for compers to call: if S /∈ T , S will be inserted and the
function returns true to signal insertion success; otherwise,
the function returns false to indicate that S is already in T ,
so that a comper will prune the set-enumeration subtree TS .

Wenext explain the insertion algorithmofFig. 8c, andnote
that S has been encoded into a sequence seq for path traversal
in T . Starting from the root node (Line 1), we match the next
element e in seq to the trie nodes one by one as specified
by the for-loop in Line 2. Specifically, we want to see if a
child trie node e has already been created due to a previous
insertion (Line 5); here, to safely visit the children table
of the current node, we add read-lock for children first in
Line 3, and if e is in children, we directly move to the child
node (Line 10), and unlock the previous read-lock (Lines 4
and 11).

While if node e has never been created before (Line 5), we
upgrade the lock on children to a write-lock in Lines 6–7 to
exclusively hold children, so that a new trie node is created
for e and its pointer is added to children (Line 9), afterwhich
we move to this new node (Line 10) and unlock children
for other compers to visit (Line 11). Note that we need to
recheck if e has already been created again in Line 8 right
after gaining the write-lock in Line 7, since it is possible that
another comper θ first gained the write-lock on children in
Line 7 and already updated children as in Line 9, and the
current comper was waiting on Line 7 till θ releases its write-
lock in Line 11. Without this recheck, a new trie node copy
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of e will overwrite the one created by θ , losing everything
under that old trie node.

Once we reach the end of seq (Line 12), we need to check
if the current node is already flagged which requires a read-
lock on the flag to allow concurrent checks (Lines 13–16).
If not, we need to run Lines 17–22 to upgrade the flag-lock
to a write-lock and then set the flag to indicate that S ∈ T .
Similar to locking children, here we also need to recheck
the flag after gaining the write-lock (Lines 18–19) since the
write-lock could have been gained by another comper θ for
setting S’s flag (in which case TS will be mined by θ rather
than the current thread), and if this is the case, Lines 23–24
are executed instead to skip the flag setting and return false
indicating that TS can be skipped by the current task.

9 Experiments

This section reports our experiments. We have released the
code of T-thinker and quasi-clique mining on GitHub at:
https://github.com/yanlab19870714/Tthinker.
Datasets.Weused 12 real graph datasets as shown in Table 4:
biological networksCX_GSE1730 andCX_GSE10158, arXiv
collaboration network Ca-GrQc, email communication net-
work Enron, product co-purchasing network Amazon, social
networksHyves and YouTube, patent citation networkPatent,
protein k-mer graph kmer, USA road network USA Road,
a temporal Q&A interaction network StackOverflow, and
friendship network Pokec. These graphs are selected to cover
different graph type, size, and degree characteristics.

Notably, StackOverflow and Pokec are very dense with an
average degree of 10.91 and 13.66, respectively. We have
extensively tested various public graph datasets and find that
such average degree values are the largest for datasets to be
tractable on our server. We plan to mine denser and larger
graphs using supercomputing as a future work. On the other
hand, the absolute size of a graph is not a hurdle for process-
ing as long as the memory space required to hold the graph
does not exceed our server’s RAM limit, as can be seen from
USA Road and kmerwhich have over one order of magnitude
more vertices but a low average degree |E |/|V |.
Algorithms&Parameters.By default, we use the T-thinker
algorithm described in Algorithm 3 with the timeout mech-
anism that decomposes tasks running beyond a time period
of τtime, and we denote this algorithm by Atime. We also
consider another baseline without task decomposition (i.e.,
τtime = ∞) for comparison purpose, and we denote this
variant by Abase.

We use the tuned default system parameters for T-thinker
as described in Sect. 5.3 in our experiments, which are
summarized by Fig. 5. We also have a pair of algorithm
parameters (τbig, τtime), where a task is considered a big one
iff |ext(S)| ≥ τbig , which is used by the add_task(t) function Ta
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Parallel mining of large maximal quasi-cliques

of T-thinker. Aswe shall demonstrate later in this section, our
tuned default algorithm parameters (τbig, τtime) = (200, 1 s)
work consistently near-optimal and are thus adopted in this
section unless otherwise stated.

While many graph-parallel systems have been proposed,
none of them have ever implemented quasi-clique mining
as an application on top, likely due to the complication
of a quasi-clique mining algorithm such as Quick [26].
The latest work implementing Quick is published in IEEE
BigData 2018 [36], so we name the implementation by
BigData’18. Their implementation is released on GitHub1,
containing both an implementation of the basic Quick algo-
rithm, as well as the kernel expansion technique to find
large quasi-cliques. Since BigData’18 is single-threaded and
does not support parallel execution, we also compare our
single-threaded Quick+ algorithm with BigData’18 in this
section.

Regarding thequasi-cliquedefinitionparameters (γ, τsi ze)

(recall Definition 3), we will study their effects next. In a
nutshell, if we set their values too large, we cannot find any
valid quasi-cliques, while if we set their values too small,
there would be overwhelmingly many results for examin-
ing. We tested various value combinations of (γ, τsi ze) on
our datasets and obtained the default ones as summarized in
Table 4, which lead to selective results for users to examine,
andmeanwhile, have sufficient miningworkloads to run for a
reasonable amount of time that isworth parallel computation.

Notably, we find that StackOverflow is too expensive to
mine from scratch due to the high average degree of 10.91
andmaximumdegree of 44,065. Fortunately,mining itsmax-
imum clique (with 55 vertices) using our G-thinker program
proposed in [50] is efficient with a running time of merely
48.88 s, so we only report experiments that expand large
quasi-cliques from that maximum clique found by G-thinker
as the only kernel. To emphasize this special setting, we
append the name StackOverflow with a star in our tables,
i.e., StackOverflow*. All the other datasets are mined from
scratch unless otherwise stated.
Experimental Setup. Our experiments were run on a server
equipped with IBM POWER8 CPU (32 cores, 3491 MHz)
and 1TB RAM. Unless otherwise stated, our T-thinker pro-
gram was run with 32 compers. All reported results were
averaged over 3 repeated runs. T-thinker requires only a very
small amount of disk space to buffer tasks in all experiments
thanks to our prioritizing disk-buffered tasks over spawning
new tasks for task refill, so we omit disk consumption inmost
reported results.

We remark that while we used a powerful server with 1TB
RAM, most of our experiments only need a small fraction
of RAM that can easily fit in a typical modern server with
64 GB RAM or less. The only exception is StackOverflow*

1 https://github.com/beginner1010/topk-quasi-clique-enumeration

which consumesmost of ourRAM, but aswe have previously
explained, this dataset is very challenging to mine quasi-
cliques upon; for such datasets or even larger ones, we plan
to explore more scalable solutions using supercomputing in
the future.
Effect of Problem Parameters (γ, τsi ze). We next demon-
strate how the mining time ofAtime varies with quasi-clique
problem parameters γ and τsi ze. Without loss of generality,
we use three datasetsPatent,Hyves andEnron for illustration.
We fix one parameter and vary the other with four different
values to show its effect.

Table 5 shows the number of results (denoted by column
#{Results}) found by Atime and the number of maximal
ones after post-processing (denoted by column #{Maxi-
mal}), along with the job running time and the peak memory
usage, when we fix τsi ze and change γ . We only tested 3 val-
ues for γ on Patent since the number of results already vary
from 0 to over 44 million.

From Table 5, we obtain the following observations:

– A small change of γ can have a significant impact on
the result number: for example, when changing (γ, τsi ze)

from (20, 0.9) to (20, 0.89) on Patent, the result number
increases from 256 to over 44 million; and when chang-
ing (γ, τsi ze) from (23, 0.88) to (23, 0.86) on Enron, the
result number increases from 191 to over 100,000.

– As γ decreases, we see a stepped increase in the result
number, where #{Maximal} remains in the same level for
a few changes and then jumps to a next level with a num-
ber one order of magnitude larger (or more). This shows
that real graphs often have different density levels similar
to the 1-core, 2-core, 3-core, · · · , in core decomposition,
but not exactly the same as we explain next.

– In the same #{Maximal} level, the result number may
even slightly drop as γ decreases. For example, as γ

changes from 0.90 to 0.88 and then to 0.86 on Enron,

Table 5 Effect of γ

Dataset τsi ze γ Runtime (s) #{Results} #{Maximal}

Patent 20 0.91 28.537 0 0

0.90 274.632 256 256

0.89 943.855 44,083,823 44,080,758

Hyves 22 0.92 15.634 0 0

0.88 18.608 2,352 1,433

0.84 35.285 555,387 148,333

0.80 548.472 51,570,125 6,343,942

Enron 23 0.92 7.754 0 0

0.90 11.078 335 200

0.88 33.792 351 191

0.86 226.534 308,915 107,451
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the result number first reduces from 200 to 191 and then
increases to 107,451. This happens because two or more
valid subgraphs may merge into a larger valid quasi-
clique, while the reduction of γ is not yet enough to bring
a lot of new results in the next density level.

We remark that the post-processing cost of removing non-
maximal results is small compared with the job running time,
by using a prefix tree organization of the result vertex sets.
For example, post-processing the 256 results of Patent when
γ = 0.9 takes 0.002 s, while post-processing the over 44
million results when γ = 0.89 takes 282.38 s.

In reality, users are unlikely to check 44 million results,
so we allow users to specify a threshold τmax for the max-
imum number of results allowed. If our T-thinker program
has found more than τmax results by all compers collectively,
the main thread will set the end flag to terminate the job
so that users can adjust (γ, τsi ze) with larger values to find
denser (and fewer) structures that are more selective. When
the result number is reasonable, the post-processing time is
always negligible so we omit it in our report.

So far, we have discussed the effect of γ . The effect of
τsi ze is similar, and we show the results in Table 6. For exam-
ple, when changing (γ, τsi ze) from (24, 0.9) to (21, 0.9) on
Hyves, the result number jumps from 6 to 11,087, which
crosses multiple density levels.

Since the mining goal is to find a selective pool of largest
valid subgraphs for prioritized examination, trials of differ-
ent parameter values of (γ, τsi ze) are necessary given that
different graphs have different characteristics, and therefore,
it is important that each trial should run efficiently like using
our T-thinker program.
Default Problem and Algorithm Parameters. As users
need trials to obtain a proper pair of problem parameters
(γ, τsi ze) that can find the most selective dense quasi-cliques

Table 6 Effect of τsi ze

Dataset τsi ze γ Runtime (s) #{Results} #{Maximal}

Patent 22 0.9 73.847 0 0

21 273.223 256 256

19 282.965 256 256

17 321.248 640 640

Hyves 24 0.9 15.323 6 6

23 17.096 168 114

22 17.539 2345 1,480

21 19.198 20,431 11,087

Enron 24 0.9 10.962 15 15

23 11.078 335 200

22 14.811 4616 2,424

21 19.233 47,031 20,742

Table 7 Effect of (τbig, τtime)

τtime τbig

1000 500 200 100 50

(a) Running time (second) on YouTube

20 1249.35 1254.63 1255.42 1254.45 1248.32

10 1243.52 1252.54 1245.02 1244.91 1236.73

5 1234.78 1224.00 1239.66 1236.86 1241.58

1 888.77 1183.15 1176.19 891.54 901.23

0.1 885.96 902.69 899.87 901.81 909.91

0.01 909.03 910.03 906.31 912.90 915.84

(b) Peak Memory (MB) on YouTube

20 58,546 57,937 56,946 57,571 56,266

10 58,473 58,464 56,300 56,240 57,114

5 57,751 58,444 56,383 57,953 58,210

1 58,479 58,147 57,226 57,402 58,268

0.1 59,099 59,608 57,625 56,879 56,148

0.01 59,095 59,871 57,926 55,641 56,593

(c) Running time (second) on enron

20 1125.16 1144.77 1134.06 1146.88 1136.37

10 1129.27 1131.18 1137.26 1142.78 1143.27

5 1132.16 1125.65 1148.78 1138.57 1142.17

1 1161.39 1173.48 1199.71 1449.56 1327.47

0.1 2145.76 2029.60 2287.66 1988.69 2801.24

0.01 5676.18 5191.41 5990.86 6854.88 7424.53

(d) Peak Memory (MB) on Enron

20 2235 1387 799 669 609

10 2529 1178 743 665 747

5 2232 1301 793 711 655

1 2041 1409 802 686 659

0.1 1766 1624 758 725 716

0.01 1259 1153 982 807 792

(e) Running time (second) on CX_GSE1730

20 18.617 18.634 18.628 18.629 18.628

10 12.226 12.117 12.226 12.223 12.217

5 7.221 7.322 7.217 7.322 7.223

1 2.514 2.512 2.419 2.421 2.517

0.1 1.021 1.116 1.124 1.115 1.121

0.01 1.017 1.118 1.124 1.115 1.016

(f) Peak Memory (MB) on CX_GSE1730

20 22 13 16 16 16

10 15 15 10 25 20

5 11 13 11 11 19

1 8 20 13 8 11

0.1 21 16 14 7 7

0.01 18 4 13 16 24

for each dataset, we tune them to contain abundant but not
too many results while ensuring that the job runs for a rea-
sonable amount of time so that parallel computing helps. We
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fix the tuned default problem parameters in the subsequent
experiments, which are summarized in Table 4.

Regarding algorithm parameters, as we shall present next,
we find that (τbig, τtime) = (200, 1 s) consistently delivers
near-optimal performance across all our tested datasets and
thus, are adopted by default, including experiments already
reported in Tables 5 and 6.
Effect of Algorithm Parameters (τbig, τtime). We have
tested the various pairs of values for (τbig, τtime) on all our
datasets. Since we have 12 datasets in total, to save space,
without loss of generality, we demonstrate the runtime and
peak memory for YouTube, Enron, CX_GSE1730 in Table 7.

From Tables 7(a), (c) and (e), we can see that using
(τbig, τtime) = (200, 1 s) consistently delivers either the
fastest performance or close to the fastest for Atime. Other
settings may slightly reduce the running time on some
datasets, but can lead to a significant increase in time on
others and are thus not stable. For example, Table 7(a) shows
that smaller τtime such as 0.1 s or 0.01 s delivers better perfor-
mance on YouTube, but Table 7(c) shows that they can lead
to many times slower performance on Enron.
Comparison of Abase andAt ime. To see how effective our
timeout mechanism can improve load balancing and elim-
inate stragglers, we compare Atime with Abase by mining
quasi-cliques using the default parameters shown in Table 4.
Recall that τtime = 1 second in Atime while τtime = ∞ in
Abase.

Tables 8 and 9 show the results ofAbase andAtime, respec-
tively, on all our datasets, where we report the job running
time, the peak memory and disk usage. We can see that
for graphs that are time-consuming to mine with Abase, our
Atime algorithm significantly speeds up the mining process.

For example, on Enron,Abase takes 17,797 s whileAtime

takes 1,172.80 s, a 15.2× speedup! As another example, on
StackOverflow*, Abase takes 11,035.98 s while Atime takes

1,202.85 s, a 9.2× speedup. This also holds similarly for
GX_GSE1730, YouTube, Patent and Hyves, which shows the
need of task decomposition to handle the straggler problem,
and the advantage of our timeout strategy.

For those caseswhere there are no stragglers (e.g., on kmer
andUSARoad),Atime andAbase have a similar running time,
showing that task creation causedby task decomposition does
not add much overhead, thanks to our timeout mechanism
that does not over-decompose a task beyond the necessary
level (c.f., Fig. 6). We will show with additional experiments
soon that the cost of task creation is small compared with the
cost of task computation.

The RAMusage is also very scalable thanks to T-thinker’s
task spilling and refill design. For example, as Table 9 shows,
Atime uses only 55.55GBmemory evenwhen processing the
big graph YouTube, and only 10.66 GB when processing the
dense graphHyves, and less than 10 GB when processing all
the other graphs except for StackOverflow*. In other words,
except for StackOverflow*, all other graphs can be easily
processed with a modern server with 64 GB or less memory
space.

As we have indicated earlier, StackOverflow is a very
challenging dataset and mining it from scratch runs out of
memory even with our server that has 1TB RAM space,
because of its high average and maximum vertex degree. As
Table 9 shows, even when mining StackOverflow by expand-
ing from its maximum clique, Atime consumes 785.80 GB
RAM and takes 1,202.85 s to find only 11 valid 0.9-quasi-
cliques with size ≥ τsi ze = 92. This shows the necessity of
the kernel expansion method when processing graphs that
are both dense and large.

Task spilling is mostly light. One exception is Atime on
Enron where the peak disk space used by spilled tasks is
given by 36.44 GB, which is because big tasks are kept
being decomposed and spilled. However, this overhead is

Table 8 Performance of Abase with default (γ, τsi ze)

Dataset τbig τtime Runtime (s) #{Results} #{Maximal} Memory (MB) Disk (MB)

CX_ GSE1730 200 ∞ 18.62 460,461 79,356 25 60

CX_ GSE10158 200 ∞ 1.01 29,580 17,245 12 2

Ca-GrQc 200 ∞ 0.62 115,627 43,399 13 8

Enron 200 ∞ 17,797.00 358,629 50,676 308 46

Amazon 200 ∞ 0.56 16 13 100 0

Hyves 200 ∞ 142.27 1,729,934 490,610 10,944 259

YouTube 200 ∞ 5464.80 4072 2556 68,698 8

Patent 200 ∞ 767.49 256 256 3071 2

kmer 200 ∞ 53.03 201 63 6742 0

USA Road 200 ∞ 20.62 16 16 2659 0

StackOverflow* 200 ∞ 11,035.98 11 11 720,341 4

Pokec 200 ∞ 2169.42 10 6 21,453 11
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Table 9 Performance of Atime with default (γ, τsi ze)

Dataset τspli t τtime Runtime (s) #{Results} #{Maximal} Memory (MB) Disk (MB)

CX_ GSE1730 200 1 2.51 460,461 79,356 17 51

CX_ GSE10158 200 1 1.01 29,580 17,245 7 2

Ca-GrQc 200 1 0.62 115,627 43,399 4 11

Enron 200 1 1172.80 358,629 50,676 812 37,318

Amazon 200 1 0.56 13 13 42 0

Hyves 200 1 76.35 1,729,934 490,610 10,911 674

YouTube 200 1 1,191.21 4072 2556 56,884 1233

Patent 200 1 273.79 256 256 3075 2251

kmer 200 1 52.71 201 63 7031 0

USA Road 200 1 21.25 16 16 2,672 0

StackOverflow* 200 1 1202.85 11 11 806,446 23,551

Pokec 200 1 2070.15 10 6 21,205 11

Table 10 BigData’18 versus Quick+ (single-threaded)

Dataset BigData’18 Quick+ Single-Threaded

Runtime (s) Memory (MB) #{Maximal} Runtime (s) Memory (MB) #{Maximal}

CX_ GSE1730 11,477.37 460 4475 17.6 14 79,356

CX_ GSE10158 633.00 417 9656 1.0 7 17,245

Ca-GrQc >12h N/A N/A 1.1 4 43,399

Enron >12h N/A N/A 30,654.3 370 50,676

Amazon 18.13 162 13 1.5 13 13

Hyves 20,309.94 1251 47,001 1923.8 11,093 490,610

YouTube >12h N/A N/A 21,613.8 56,560 2556

Patent >12h N/A N/A 6781.5 2403 256

kmer 1230.04 27,847 63 64.5 7290 63

USA Road 476.12 10,114 16 27.7 2860 16

StackOverflow* >12h N/A N/A 15,150.6 777,282 11

Pokec >12h N/A N/A 35,070.9 22,313 6

Table 11 Total versus subgraph
materialization time on Patent

τtime Runtime (s) Total l Total subgraph mate-
rialization time

Total versusmaterial-
ization time ratio

50 284.264 8195.601 20.228 405.160

20 288.414 8212.309 21.574 380.662

10 277.950 8,220.621 24.320 338.014

1 273.403 8,205.839 75.433 108.784

0.5 276.608 8,158.877 183.625 44.432

0.1 298.851 7,847.789 620.876 12.640

0.01 952.488 7,139.440 4,145.621 1.722

acceptable and the better load balancing resulted in a 15.17×
speedup overAbase which only uses 46 MB disk space at its
peak.Another exception is StackOverflow*whereAtime uses
20.71 GB disk space at its peak, but this is understandable
given the expensive cost of mining the large and dense Stack-
Overflow graph as we have previously explained. The disk

space consumed by all the other experiments is negligible,
which shows that our task refilling strategy that prioritizes
spilled tasks for refill is effective in reducing the chance and
data volume of task spilling.

Finally, consider the number of subgraphs outputted
before post-processing (to remove non-maximal ones), as
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Table 12 Total versus subgraph
materialization time on Hyves

τtime Runtime (s) Total time of
all tasks

Total subgraph mate-
rialization time

Total versusmaterial-
ization time ratio

50 91.267 1952.653 44.454 43.925

20 78.834 1985.455 46.899 42.334

10 77.604 1976.065 51.642 38.264

1 76.656 1931.759 109.286 17.676

0.5 77.244 1905.852 145.241 13.122

0.1 80.709 1915.606 237.618 8.062

0.01 89.116 1801.483 447.759 4.023

indicated by Column #{Results} in Tables 8 and 9. The sub-
graph numbers in Table 8 are almost the same as those in
Table 9, but slightly higher in some cases, such as 16 ver-
sus 13 on Amazon. Recall that in Algorithm 3, the recursive
call of time_delayed(.) now becomes an independent task t ′
(Lines 20–22), and the current task t has no clue of the result
from t ′, i.e., whether t ′ will find a valid quasi-clique that
extends S′. Therefore, we have to check if G(S′) itself is a
valid quasi-clique (Lines 23–24) in order not to miss it if it
is maximal, which could result in more number of outputted
subgraphs than Abase. Fortunately, in all our experiments,
we find that the number of such additional non-maximal out-
puts are very limited and mostly 0, as Tables 8 and 9 have
demonstrated.
Quick+ versus BigData’18 Since BigData’18 [26] imple-
ments the serial Quick algorithm [36], we also compare
our single-threaded Quick+ algorithm with BigData’18, by
repeating the experiments in Tables 8 and 9. The results are
shown in Table 10, where we can see that our Quick+ is
much faster than BigData’18, often by one to two orders
of magnitude. We believe that besides better implementa-
tion, the improved pruning rules of Quick+ also plays a part
in achieving better performance. In fact, BigData’18 cannot
finish in 12 h on 6 out of the 12 datasets, and on the other 6
it misses results on 3 of them, possibly due to some bugs in
their implementation. For example, Table 10 shows that on
Hyves, BigData’18 only finds 47,001 of the 490,610 results
using 20,309.94 s, while Quick+ finds all results in 1923.8 s;
moreover, Table 9 shows that using 32 compers,Atime is able
to reduce the time to 76.35 s!
Cost of Task Decomposition Recall from Algorithm 3 that
if a timeout happens, we need to generate subtasks with
smaller overlapping subgraphs (see Lines 18-22), the sub-
graph materialization cost of which is not part of the original
mining workloads. The smaller τtime is, the more often task
decomposition is triggered, and hence more subgraph mate-
rialization overheads are generated. Our tests show that the
additional time spent on task materialization is not signifi-
cant compared with the actual mining workloads, especially
when we use the default timeout threshold τtime = 1 s.

For example, Table 11 shows the profiling results on
Patent, including the job running time, the sum of task
processing time spent by all tasks, the sum of subgraphmate-
rialization time spent by all tasks, and a ratio of the latter two.
We can see that decreasing τtime does increase the fraction
of cumulative time spent on subgraph materialization due to
more frequent occurrences of task decompositions, but this
cost is very small compared with the total task processing
time: for example, with the default setting of τtime = 1 s,
the materialization overhead accounts for only 1/108.8 of
the total task processing time, which can be reduced signif-
icantly if we increase τtime further. So, only a small cost is
paid for better load balancing, and recall from Tables 8 and 9
that such a timeout mechanism reduces the runtime from
142.27 s to only 76.35 s.

As another example using Hyves which is shown by
Table 12, the default setting of τtime = 1 s gives a mate-
rialization overhead that accounts for only 1/17.7 of the total
task processing time. So, only a small cost is paid for bet-
ter load balancing, and recall from Tables 8 and 9 that such
a timeout mechanism reduces the runtime from 132.37 s to
only 70.24 s.
Vertical Scalability As an illustration of the scalability of
our T-thinker program with the number of CPU cores used,
Figs. 9 and 10 show the vertical scalability ofAtime onEnron
and Patent, respectively. We can see that the speedup ratio is
close to ideal: when there are 32 compers, the speedup ratio
is 26.06× and 24.81× on Enron and Patent, respectively,
which is not far from 32. More importantly, when there are
16 compers, the speedup ratio is ideal (i.e., nearly 16×) in
all our datasets, meaning that our T-thinker program is able
to fully utilize all CPU cores in a 16-core machine.

Figures 9 and 10 also show that the memory cost slightly
increases with the number of compers, since more compers
means more concurrent tasks (with subgraphs maintained)
being generated (e.g., by refill) and processed. Note that the
RAM usage increases slowly while we double the number of
compers, since the task queue capacity is fixed, and there is
a base RAM cost required to hold the input graph.
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Fig. 9 Vertical scalability on Enron

Fig. 10 Vertical scalability on Patent

Effectiveness of Kernel Expansion Recall from Sect. 2
that [36] first mines quasi-cliques with γ ′ > γ , then finds
the top-k′ largest result subgraphs as “kernels” which are
then expanded to generate γ -quasi-cliques and return top-k
maximal ones from the results. Thus, a job of [36] takes a
parameter quadruple (γ ′, k′, γ, k). We use their default set-
ting k′ = 3k and k = 100 for experiments. We conducted
some experiments where we choose values of τsi ze, γ and γ ′
such that mining γ ′-quasi-cliques is significantly faster than
directly mining γ -quasi-cliques. Table 13 shows the perfor-
mance of the two stages running with our T-thinker program,
where we denote the time for γ ′-quasi-clique kernel gen-
eration by t1 and the time for kernel expansion by t2. As a
comparison, we also show t1 and t2 used byBigData’18 [36],
which are two or more orders of magnitude longer than the
time by T-thinker. Notably, BigData’18 cannot finish Stage 1
for kernel generation on Patent within 12 h, so Stage 2 can-
not run and t2 is thus N/A. Interestingly, while the kernel
expansion approach of BigData’18 could miss results as we
explained in Sect. 8, this does not occur in our tested experi-
ments: the top-k results found by our T-thinker program and
BigData’18 are all the same.

To evaluate the result quality of the kernel expansion tech-
nique, we define the concept of “top-k recall” as the fraction
of the exact top-k largest γ -quasi-cliques that are within the Ta
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Table 14 Effectiveness of Kernel expansion

Dataset Kernel-Technique
Runtime (s)

Top-50 Recall
(%)

Top-100
Recall (%)

Top-200
Recall (%)

Without Kernel
Runtime (s)

Speedup Ratio

CX_ GSE1730 0.524 100 97 98.5 31.23 59.60

CX_ GSE10158 0.218 100 100 100 1.81 8.29

Hyves 29.649 58 79 89.5 546.16 18.42

Enron 13.385 30 65 48.5 1197.41 89.46

YouTube 767.843 94 90 45 2062.01 2.69

Patent 337.205 100 100 100 1097.58 3.25

top-k largest quasi-cliques found by Stage 2. Intuitively, top-
k recall measures how many large quasi-cliques are missed
when using kernel expansion rather than exact mining. Note
that the result precision is always 100% since Stage 2 always
finds valid quasi-cliques that meet the (γ, τsi ze) requirement.

Table 14 reports the top-k recall for k = 50, 100, 150. We
can see that the recall is highly data-dependent, with some
reaching 100% (on CX_GSE1730 and Patent) while others
reaching as low as 30% (on Enron). Note that the recall value
is not monotonic to k, since as k changes, so is the set of top-
k exact largest quasi-cliques that determine the numerator
of the recall ratio computation (although the denominator
increases with k). Table 14 also reports the total time of our
kernel-based technique (i.e., (t1 + t2)) as well as the time t3
to mine γ -quasi-cliques directly (Column “Without Kernel
Runtime”). The speedup ratio is thus given by t3/(t1 + t2).
From Table 14, we can see that kernel expansion can be quite
effective on some datasets: for example, on Enron the time
drops from t3 = 1, 197.41 s to only 13.39 s (89.46×). From a
few times up to 59.60× speedup can be reached on the other
datasets.

10 Conclusion

We proposed a task-based parallel framework called T-
thinker that is able to fully utilize CPU cores, and implement
maximal quasi-clique mining on top. We also proposed a
novel trie-based solution for redundancy-free kernel expan-
sion. Compared with our distributed quasi-clique mining
solution in our prior PVLDB2020 paper, the current program
is more accessible to users as multi-core machines are read-
ily available. Extensive experiments showed that our parallel
solution achieves excellent speedups on various real graph
datasets.
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