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is to facilitate the design of network simulators, which are used to validate computer
networks before deployment. Another application is to plan the provisioning of
hardware and software resources. There has been extensive research on anomaly
detection, literally hundreds of articles, so we do not even attempt a review.
Chandolla et al. (2009) provide a comprehensive survey of anomaly detection
methods in various applications. Tsai et al. (2009) review 55 studies on intrusion
detection in internet networks. Bhuyan et al. (2014) comprehensively survey general
network anomaly detection methods, systems, and tools, in terms of the underlying
computational techniques, while Liao et al. (2013) summarize the network intrusion
detection with respect to different network scenarios, from the perspective of system
deployments, timeliness requirements, data sources and detection strategies. The
anomaly detection techniques and systems in specific network scenarios, for example,
wireless sensor networks, Xie et al. (2011), and internet of things, Zarpelao et al.
(2017), have been thoroughly reviewed with respect to the distinct characteristics of
their network anomalies and detection requirements. Paschalidis and Smaragdakis
(2009) consider a spatio-temporal framework for anomaly detection. Kallitsis et al.
(2016) describe a hardware–software framework for attack detection that operates

on live internet traffic.
In contrast to extensive research on anomaly detection, there is little work

on quantitatively describing the propagation of anomalies through a network. A
statistical model for anomaly occurrence and duration could enhance network design
and performance and help improve network intrusion detection systems. This low
level of understanding of the stochastic structure of anomalous traffic must also be
contrasted with a profound understanding of the structure of regular traffic over
the internet and its subnetworks. The groundbreaking work of Leland et al. (1994)
discovered the self-similar nature of such traffic, many elaborations on their work are
presented in Park and Willinger (2000). Most models for regular traffic over relatively
short time intervals postulate a fractal or multi-fractal structure with normal marginal
distributions. More recent references and a comprehensive network-wide predictive
model are given in, for example, Vaughan et al. (2013). We show that in contrast
to the self-similar, hence strongly dependent, Gaussian time series models used to
describe regular traffic, important aspects of anomalous traffic can be well described
by independent, but highly non-Gaussian random variables. We build on the work of
Bandara et al. (2014) and Kokoszka et al. (2020). Bandara et al. (2014) constructed
and described the database we use and presented a preliminary statistical model based
on exponential and normal distributions. Using probabilistic and statistical analysis,
Kokoszka et al. (2020) showed that light-tailed distributions are not appropriate to
describe times between the arrivals of anomalies, and one must use point processes
with heavy-tailed interarrival times. In this article, we present a model not just for
the times of arrivals of anomalies, but also for their duration and structure.

The remainder of the article is organized as follows. In Section 2, we introduce
the database of Internet2 anomalies used and our modelling approach. Section 3 is
dedicated to exploration of statistical properties of the data and model formulation.
Building on Section 3, we compute model likelihood in Section 4 and estimate model
parameters. Section 5 is dedicated to the study of the distribution of the waiting time
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Figure 1 A map showing 14 two-directional links of the Internet2 network

Source: www.internet2.edu

until the arrival of the next anomaly. We conclude with Section 6, where we discuss
the limits of our approach and possible future work.

2 Data and modelling approach

We use the database constructed by Bandara et al. (2014) who applied a frequency
domain filter to extract time periods of unusually high traffic. Bandara et al. (2014)
used traffic measured at the links of the Internet2 network shown in Figure 1 over
the period of 50 weeks starting 16 October 2005. Their approach treats periodic
and noise components of the measured traffic as usual traffic without anomalies.
To extract the anomalies, the 20 largest Fourier components that capture about
80% of the energy and represent the periodic component are removed from the
time-series. Then a threshold, between 2 and 3 times the standard deviation of the
detrended time-series, is applied. The deviations of the detrended data above or
below this threshold are considered anomalous. Generally, if there is an anomaly, the
detrended traffic exceeds the threshold by a wide margin, as illustrated in Figure 2.
Since a time period of 50 weeks is considered, the final resolution of the temporal
records is 5 minutes. For each link, these data can thus be reduced to a string of 0s
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Figure 2 Histograms of the detrended values that are considered anomalous; top-left: incoming

Atlanta–Houston, top-right incoming Chicago–Indianapolis, bottom-left: outgoing Denver–St. Louis,

bottom-right: the outgoing Houston–Los Angeles

and 1s, where 0 means normal traffic during a five minute-long time interval and
1 means that anomalous traffic occurred during that time interval. There are 14
connections in the graph in Figure 1. Each connection corresponds to two links, for
example Seattle→Denver and Denver→Seattle. Measurement devices are installed
at the hubs, the nodes of the network. For each link, we thus obtain two slightly
different 0–1 strings. For example, for the Seattle→Denver link, we have a 0–1 string
coding anomalies leaving Seattle and a different string of anomalies entering Denver.
We, thus, have 56 0–1 strings. Unless specified otherwise, the statistical analysis
presented below uses the incoming data. The strings are dominated by 0s, a cluster
of a few 1s generally occurs after hundreds of 0s. Anomalies are generally separated
by days of normal traffic.

Bandara et al. (2014) treat a group of consecutive 1s as a single anomaly, which
ends when a 0 occurs. However, examination of the data shows that very often there
is a break of just one or two 0s before the next 1. It is reasonable to assume that
two strings of 1s separated by a few 0s correspond to a single anomalous event.
The issue is then how big a separation should be used to ensure optimal modelling.
Using the separation of one recovers the original classification of Bandara et al.
(2014). The database does not identify the hundreds of anomalies in the various
links by associating them to some exogenously recorded events. We use statistical
modelling to determine which separation level leads to a model most likely to explain
the observed behaviour of the data.

The data are binary and hence can be modelled as a realization of a random
sequence, {Dt}, of Bernoulli random variables that are neither independent nor
identically distributed. Since each string is dominated by 0s, a natural starting point
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is to concatenate these long runs of consecutive 0s and record the length of each.
Upon doing so, it is clear that the 1s are arriving in clusters and are not individually
scattered. The context suggests that it is appropriate to model this time-series by
considering any potential time point to fall into one of two categories, those being
active periods, where we observe many 1s, and inactive periods, where we find long
stretches of 0s in the data. The active periods correspond to anomalies and the
inactive periods to regular internet traffic. Thus, we partition the discrete time axis
into segments of length Xn, n = 1, 2, . . .. The length of the nth segment is decomposed
as Xn = Rn + An, where Rn is the length of the nth inactive period and An is the length
of the nth active period. As noted above, a modelling challenge is how to define the
active (A) and inactive (R) periods. There are potentially 0s during active periods;
if there are many consecutive 0s, it may be suitable to say that the active period
has actually ended and the process is in an inactive period. In the definitions that
follow, we postulate that an active period has ended at the time after which the
process exhibits M consecutive zero. The value of M ≥ 1 is arbitrary at this point.
The statistical analysis that follows will help us determine the optimal range of M
for the internet anomalies data. The value of M and other statistical properties of the
0–1 processes will define the statistical model.

Since for each link our data begin with 0, we assume that we start in the middle
of an inactive period. For mathematical consistency, we assume that S0 = 0 is the
beginning of the first, 0th, (R, A) pair. The event time Sn will be the arrival of the nth
(R, A) pair. Formally, we define

R1 = inf{k > 0 : Dk = 1},

A1 = inf{k > R1 : Dk = 0, . . . , Dk+M = 0} − R1,

S1 = R1 + A1.

We see that R1 is the time when the first 1 occurs, so R1 is the length of the first
inactive period. We then find the smallest k exceeding R1 such that it Dk = 0, and it
is the beginning of a string of M 0s. This is the end of the first active period. After
subtracting R1, we obtain A1, the length of the first active period. We repeat this
process. For n = 1, 2, . . ., we define

Rn+1 = inf{k > Sn : Dk = 1} − Sn,

An+1 = inf{k > Sn + Rn+1 : Dk = 0, . . . , Dk+M = 0} − (Sn + Rn+1),

Sn+1 = Sn + (Rn+1 + An+1).

To illustrate, consider the following (fictitious) data string:

Dk 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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Setting, M = 2, we obtain

S0 = 0, R1 = 2, A1 = 4,

S1 = 6, R2 = 4, A2 = 2,

S2 = 12, R3 = 4, A3 = 4,

S3 = 20, . . . .

Observe that DSn
= 0 and

Sn =

n∑

k=1

Xk =

n∑

k=1

(Rk + Ak), n = 1, 2, . . . .

In the next section, we study distributional and dependence properties of the above
model and propose a suitable statistical model.

The modelling approach outlined above can be described as an alternating renewal
process. A good introduction to models of this type is given in Section 3.7 of
Ross (1996). However, as we will see in Section 3, the commonly used exponential
regeneration times are not suitable for the internet anomaly data.

3 Independence and distributional properties of the model

We first analyse the dependence structure of the segments Xn, Rn and An. Next we
propose models for the distributions of the Rn’s and Ans. Since each active period is
allowed to contain zeros, as well as ones, we need to model the distribution of the
ones (or zeros) within an active period. Once this is completed, we will have enough
information to construct and estimate a likelihood function.

Figure 3 presents plots of the sample autocorrelations of the time-series {An}
and {Rn}. Examination of analogous plots for other links indicates that it is
reasonable to assume that the sequences {An} and {Rn} consist of uncorrelated
identically distributed random variables. This conclusion is the same for all values of
1 ≤ M ≤ 30. If the sequences {An} and {Rn} each consist of iid observations and are
also mutually independent, then the event times {Sn} and the companion counting
process {N(t), t > 0} are known as the alternating renewal process. It is fairly difficult
to establish that a given sequence, say {Yn}, can be considered a realization of an
iid white noise, not just an uncorrelated white noise. An approach established in
practice is to compute autocorrelations of transformed observation f (Yn) for several
functions f . If the Yn are iid, then the f (Yn) are iid, and hence uncorrelated. We
have conducted such an exercise, and determined that the independence assumptions
stated above hold to a reasonable approximation. To illustrate, Figure 4 shows the
autocorrelations for {log(1 + An)} and {log(1 + Rn)}. Cross covariances do not show
dependence either. We, therefore, proceed with the assumption that {An} and {Rn}
are iid sequences independent of each other. In our model, each interrenewal, or
interarrival, time Xn = Sn − Sn−1 is partitioned into ‘off’ and ‘on’ periods. The ‘off’
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Figure 3 Autocorrelation of lengths of active (left) and inactive (right) periods for the Atlanta→Houston

link for M = 5. Top panels are for incoming anomalies, bottom for outgoing anomalies. The plots do not

suggest any significant autocorrelations. The plots for different values of M look similar

period corresponds to no anomalous traffic and the ‘on’ period to the presence of an
anomaly.

We begin by finding a family of distributions suitable for modelling the length of
the inactive periods, the Rn. Since the construction described in Section 2 dictates
that Ri > M, we fit the distributions to the shifted observations R̃i := Ri − M. The
inactive periods can be very long, and their distribution is definitely heavy-tailed.
Our first approach was to fit the discrete Pareto distribution with mass function

p(x) =
[
ζ(α + 1)xα+1

]−1
, x = 1, 2, ..., α > 0,
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Figure 4 Autocorrelations of natural logarithms of the inputs described in the caption of Figure 3

where ζ is the Riemann Zeta function. However, as seen in Figure 5 this approach
resulted in a poor fit. Using a continuous Pareto distribution did not result in any
improvement. These distributions lack flexibility in the middle of the data distribution
as evidenced by Figure 5. The Pareto Positive Stable (PPS) distribution, see Guillen
et al. (2011) and Sarabia and Prieto (2009), is a much more flexible continuous
distribution whose distribution function is given by

F(x) = 1 − exp
{
−λ

[
log(x/ξ)

]ν}
, x ≥ ξ.

Note that by taking ν = 1, it reduces to a standard Pareto distribution. There are two
ways that we can think of this distribution: the first is by considering it to be the
distribution of an exponentiation of a Weibull random variable; so in some sense,
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Figure 5 Histograms of the lengths of inactive periods shifted by M = 5 (left) and M = 30 (right), with the

black line being the fitted PPS density, and the dotted line the fitted Pareto density for the Chicago→ NYC

link. The PPS density provides a much better fit for the middle portion of the distribution that the Pareto

density

we can think of F as being a ‘Log-Weibull’ distribution. A perhaps more insightful
way of thinking about this distribution is to let X|α ∼ Weibull(α, ξ), and let α ∼ G,
where G is a positive stable distribution with Laplace transform φG(s) = exp{−λsν},
for ν ∈ (0, 1). Then X ∼ PPS(λ, ξ, ν), and so it follows that F can also be seen as
a continuous mixture of a Pareto distribution and a positive stable distribution.
In Figure 6, visual diagnostics indicate that the PPS distribution fits the data well.
We obtained similar plots for other links. The estimated parameters of the PPS
distribution depend on the value of M. Table 1 reports estimated parameters for the
values of M selected by the likelihood procedure described in Section 4. Application
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Figure 6 Diagnostic plots visualizing the goodness of fit of the PPS distribution to the data for R − M for

the Atlanta→Houston link, and M = 5. The first plot gives the fitted PPS density. The second compares the

fitted PPS cdf to the empirical cdf. The third is a log-log rank plot which determines tail behaviour (if R − M

has a Pareto tail, the line should be straight). The last plot is a double log rank plot which indicates the

overall goodness of the data to the PPS distribution

of standard goodness-of-fit tests shows that the the PPS distribution fits well. (These
tests strongly reject the exponential distribution.)

We now turn to a model for the active periods. In this case, the discrete Pareto
distribution fits the data fairly well visually, as evidenced by Figure 7. However, a
potential issue with fitting a Pareto distribution to the active periods is that the
maximum observed value can be relatively small for small M. For M = 30, the
observed values can get fairly large, but for M = 5, no value exceeds 25 for the
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Figure 7 Histograms of the lengths of active periods for M = 5 and M = 30 for the Chicago→NYC link. The

black line is the fitted mixed geometric distribution. The dashed line is the Pareto distribution

data shown in Figure 7, with similar bounds for other links. Therefore, it is not
reasonable that a heavy-tailed distribution is a useful model for the active periods.
By inspection, we observe that for all links, after a large spike at length An = 1, the
histogram frequencies decrease in a manner that one could argue is geometric. So, we
propose modelling the lengths of the active periods with a mixture of a point mass
at one and a geometric distribution, that is,

p(x; π, q) = πδ1(x) + (1 − π)(1 − q)qx−1, x = 1, 2, . . . , π, q ∈ (0, 1).

This distribution, as evidenced by Figure 8, provides a good fit for the data. In
addition, the third panel, the log-log rank plot, indicates that the data do not follow
a power law, and so the Pareto distribution is inappropriate.
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Figure 8 Diagnostic plots visualizing the goodness of fit of the PPS distribution to the data for R − M for

the Atlanta→Houston link, and M = 5. The first plot shows the fitted mixed geometric density. The second

compares the fitted mixed geometric cdf to the empirical cdf. The third is a log-log rank plot which

determines tail behaviour (if A has a Pareto tail, the line should be straight). The last plot is a double log

rank plot which indicates the overall goodness of the data to the mixed geometric distribution

The remaining piece needed to model the binary string is to model the behaviour
of the string during its active periods. Figure 9 shows evidence of a relationship
between the length of the active period and the proportion of one’s seen during
the active period, which is something that should be taken into account. By the
construction of the process, we define that the active periods begin after a one has
been observed, so it follows that the first element of the string during an active period
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Figure 9 Plot of the proportion of one’s during an active period against the length of the active period for

the Atlanta→Houston link with M = 30

is a one. The high proportion of one’s thus follows from construction combined with
the fact that there are many anomalies that last less than five minutes. As the length
of the active period increases, the proportion of one’s decreases, which can also be
attributed to how the model is constructed, especially for larger values of M. Thus,
we propose a logistic regression model with the predictors being the length of the
active period and the current time within the active period. In other words, if we
let {Dt}

A
t=1 be a binary string representing the values during the activity period, the

probability of a one occurring at the tth time during the period is

p(t, A) =
exp{β0 + β1t + β2A}

1 + exp{β0 + β1t + β2A}
, t = 2, . . . , A − 1, β0, β1, β2 ∈ R,

where we note that D1 = 1 by our construction. (The time in the logistic regression
starts from the beginning of the active period.) We experimented with other models
for the probability of 1s as a function of the length of the active periods, but they
did not change the likelihoods computed in Section 4 much. So we continue with the
logistic regression formulated above.
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With all components of the statistical model in place, we turn in the next section
to the computation of the likelihood function and parameter estimation.

4 Model likelihood and estimation

To derive the model likelihood, we use the recursions introduced in Section 2 together
with the independence properties and distributional models proposed in Section 3.
The components of the parameter vector

θ := (θA, θR, θL)

are defined by

θA = (π, q), θR = (λ, ξ, ν), θL = (β0, β1, β2).

To understand the principle of constructing the likelihood function, let us consider
the toy example of Section 2. Denote by A a random variable with the same
distribution as each Ak, and define R analogously. Set

p(t, A|θL) = p(t, A|β0, β1, β2) =
exp{β0 + tβ1 + Aβ2}

1 + exp{β0 + tβ1 + Aβ2}
, 2 ≤ t ≤ A − 1.

Then,

P(D0 = 0, D1 = 0, D2 = 1, D3 = 1, D4 = 0, D5 = 1)

= P(R1 = 2, A1 = 4, D3 = 1, D4 = 0)

= P(D?
2 = 1, D?

3 = 0|A1 = 4)P(A1 = 4)P(R1 = 2)

= p(2, 4|θL)(1 − p(3, 4|θL))P(A = 4)P(R = 2),

where D?
t denotes the tth value in an active period. Similarly,

P(D6 = 0, D7 = 0, D8 = 0, D9 = 0, D10 = 1, D11 = 1)

= P(A = 2)P(R = 4)

because the active period of length 2 has two 1s, which must occur with probability
one by construction. For the third interarrival period,

P(D12 = 0, D13 = 0, D14 = 0, D15 = 0, D16 = 1, D17 = 1, D18 = 0, D19 = 1)

= p(2, 4|θL)(1 − p(3, 4|θL))P(A = 4)P(R = 4).

Finally, we have the remainder term, P(D20 = 0, D21 = 0) = P(R ≥ 2). The likelihood
function for the toy string introduced in Section 2 thus is

L(θ) = p(2, 4|θL)2(1 − p(3, 4|θL))2P(A = 4)2P(A = 2)P(R = 2)P(R = 4)2P(R ≥ 2).
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The probabilities P(A = k) and P(R = k) are, respectively, functions of the parameter
vectors θA and θB computed as follows. Since the PPS distribution is continuous and
the data are discrete, we discretize the distribution by setting P(R = 1) = FPPS(1.5), and
P(R = n) = FPPS(n + .5) − FPPS(n − .5), for each n ≥ 2, where FPPS is the distribution
function of the PPS distribution. The distribution of A is already discrete, so no
adjustments need to be made.

We now specify likelihood in the general case. Let n be the length of the string
for a specific link and let K be the count of renewals, K = max{k : Sk ≤ n}, which is
a function of the data. Additionally, define d, {ak}, {rk} and {sk} to be realizations of
D, {Ak}, {Rk} and {Sk} respectively. The observed data are d, all other quantities are
functions of d and M. Set also

p?(t, a|θL) =

{
p(t, a|θL), if D?

t = 1,

1 − p(t, a|θL), if D?
t = 0.

For each M, the likelihood function then is

L(θ) = P(R ≥ SK)

K∏

k=1

{
ak−1∏

t=2

p?(t, a|θL)

}
P(A = ak)P(R = rk).

Observe that

L(θ) = LA(θA|{ak}) LR(θR|{rk}) LL(θL|{dak
}{ak}),

with

LA(θA|{ak}) =

K∏

k=1

P(A = ak),

LR(θR|{rk}) = P(R ≥ SK)

K∏

k=1

P(R = rk),

LL(θL|{dak
}{ak}) =

K∏

k=1

ak−1∏

t=2

p?(t, a|θL).

This implies that performing maximum likelihood estimation can be achieved by
performing partial likelihood estimation on each individual component, easing the
complexity of an optimization routine.

Note that in general the final observation of the data will not be the end of
the last interrenewal, so for the likelihood to be complete, we need to consider the
likelihood of the observations (dSK+1, · · · , dn). This can be calculated explicitly, but
the derivation is quite complicated, and does not change the likelihood function
significantly, so it is therefore omitted.
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In fact, explicit formulas for the MLEs of the parameters of the distribution can
be derived. Consider the distribution

p̃(x; π̃, q̃) = π̃δ1(x) + (1 − π̃)q̃(1 − q̃)x−2
1(x ≥ 2),

and note that here we recover our original distribution by setting π = π̃−q̃
1−q̃

and q = q̃.

Note that it is indeed possible in this case for π to be negative, which does not violate
any of the conditions on the distribution if the domain of π is extended, but the
interpretation of the distribution is no longer valid. However, given the appearance
of the histograms of the active periods this occurrence is unlikely. Though the MLEs
for π, q cannot be explicitly calculated, the MLE’s for π̃, q̃ can be calculated quite
simply. Let L̃A be the likelihood function for the transformed parameters. Then,

L̃A((π̃, q̃); x) =

n∏

i=1

p̃(xi; π̃, q̃) =

[ ∏

i:xi=1

p̃(xi; π̃, q̃)

]
×

[ ∏

i:xi>1

p̃(xi; π̃, q̃)

]

=

[ ∏

i:xi=1

π̃

]
×

[ ∏

i:xi>1

(1 − π̃)q̃(1 − q̃)xi−2

]

=

[
π̃n1(1 − π̃)n−n1

]
×

[ ∏

i:xi>1

q̃(1 − q̃)yi−1

]
,

where we define n1 := |{i : xi = 1}|, and yi = xi − 1, i ∈ {i : xi > 1}.
Noting that the first term is the likelihood function of a binary random variable,

we know that π̃MLE = n1

n
. The second term is the likelihood function of a geometric

random variable, and so q̃MLE = 1
ȳ

= n−n1∑
i:xi>1(xi−1)

= n−n1∑n
i=1(xi−1)

. By properties of MLE’s,

πMLE = π̃MLE−q̃MLE

1−q̃MLE
is also a MLE of our original distribution, as is qMLE = q̃MLE.

Lastly, we define

M̂ = argmax1≤M≤30L(θ; d),

that is, M̂ is the value of M producing the maximum likelihood. Table 1 reports
the values of M̂ for each link together with all estimated parameters for this specific
value of M. We included only the estimates for the incoming anomalies, the general
picture is very similar for the outgoing anomalies. the estimates are very similar. We
emphasize, that for the anomalies in an A → B link, the A(out) and B(in) strings can
differ in many positions; 1 is likely to change to 0 because there are mostly zeros
in the strings. The parameter estimates are very similar though. Following Bandara
et al. (2014), we use the following four-letter abbreviations: Atlanta (atla), Chicago
(chin), Denver (dnvr), Houston (hstn), Indianapolis (ipls), Kansas City (kscy), Los
Angeles (losa), New York (nycm), Sunnyvale (snva), Seattle (sttl) and Washington
DC. (wash).
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Table 1 The optimal values of M and parameter estimates for these values for each link for the incoming

direction

Link M λ ξ ν π q

atla-hstn 6 3.25E-05 6.61E-02 4.95 0.35 0.22

atla-ipls 3 2.32E-05 2.32E-02 4.80 0.44 0.27

atla-wash 2 3.81E-05 1.85E-02 4.62 0.26 0.29

chin-ipls 3 1.56E-05 2.35E-02 5.10 0.20 0.31

chin-nycm 2 4.16E-05 4.53E-02 4.75 0.29 0.32

dnvr-kscy 2 1.57E-04 2.03E-02 4.02 0.26 0.35

dnvr-snva 3 1.43E-04 3.72E-02 4.28 0.28 0.32

dnvr-sttl 2 1.12E-04 2.42E-02 4.17 0.23 0.31

hstn-atla 3 5.99E-05 6.98E-02 4.69 0.37 0.24

hstn-kscy 4 2.33E-06 1.01E-02 5.64 0.49 0.19

hstn-losa 4 2.57E-05 3.52E-02 4.90 0.32 0.24

ipls-atla 2 7.11E-05 3.13E-02 4.41 0.48 0.30

ipls-chin 3 8.69E-06 2.21E-02 5.35 0.27 0.33

ipls-kscy 2 1.35E-05 1.07E-02 5.01 0.28 0.35

kscy-dnvr 2 3.02E-05 1.94E-02 4.79 0.22 0.39

kscy-hstn 4 3.28E-05 5.99E-02 4.90 0.51 0.25

kscy-ipls 3 1.17E-05 3.92E-02 5.31 0.33 0.31

losa-hstn 3 2.56E-05 2.08E-02 4.81 0.36 0.25

losa-snva 3 7.38E-05 3.34E-02 4.47 0.38 0.28

nycm-chin 3 3.25E-06 1.95E-02 5.75 0.11 0.31

nycm-wash 1 2.21E-05 2.23E-02 4.89 0.25 0.38

snva-dnvr 3 7.63E-05 2.76E-02 4.42 0.36 0.26

snva-losa 3 1.26E-04 3.56E-02 4.32 0.30 0.31

snva-sttl 4 1.28E-05 5.39E-02 5.27 0.77 0.21

sttl-dnvr 5 8.87E-05 9.01E-02 4.45 0.33 0.18

sttl-snva 5 2.60E-05 6.03E-02 5.00 0.63 0.22

wash-atla 3 2.51E-05 4.56E-02 4.96 0.30 0.25

wash-nycm 3 8.76E-06 3.01E-02 5.27 0.26 0.25

We see that the parameter estimates are comparable across all links, so the selected
statistical model appears to be appropriate; a misspecified model might work for some
links, but not for others. Perhaps the most interesting finding is that the estimated
values of ν in the PPS distribution are relatively large. Recall that ν = 1 would
correspond to a Pareto distribution, which was used to model tails of Xn = Rn + An

in Kokoszka et al. (2020) and Kim and Kokoszka (2020). We note that even with
the introduction of the separation parameter M, the histograms of Xn and Rn are
not very different, especially in the tails, because the active periods An are relatively
short. For the Pareto distribution, the tail probability is P(X > x) = cx−α; for the PPS
distribution, it is P(X > x) = exp

{
−λ[log(x/ξ)]ν

}
. For the Pareto distributions, tails

become heavier as α → 0; for the PPS distribution if λ → 0 and ν → 0 (ξ is a location
parameter). Thus, with the small values of λ in Table 1, the relatively large parameter
ν allows us to model the centre of the distribution.

While the other parameters describe distributions, the value of M actually has a
physical interpretation in the context of the problem. One can interpret M as the
maximum duration of inactivity during an activity period. Since the time difference
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Figure 10 Plots of the log-likelihoods as a function of M for both the Atlanta→Houston link (left) and the

Kansas City→Denver link (right). The log-likelihoods for the incoming and outgoing links are shown by ‘∗’

and ‘+’ respectively. As one can see, the choice of M = 1 does not maximize the likelihood for any of the

curves, and there appears to be a peak value for the likelihood in M for each

between two points corresponds to five minutes, it would be preferable for M to be
reasonably small. Figure 10 shows the log-likelihood functions plotted as a function
of M for two links representing cases with a clearly pronounced maximum at M a
few units larger than 1, and a weak maximum at M = 2. Plots for other links are
of one type or the other, or somewhere in between. The maximum is attained at
M = 1 for only one link. In some cases, the value of M can make a large improvement
in the log-likelihood, where as in other cases the improvement is much smaller or
not a noticeable improvement at all. Furthermore, after the first several values, the
log-likelihoods have a decreasing trend as M increases, which is visible in all of the
links. Our modelling approach thus shows that if an inactive period last roughly
more than half an hour, one should assume that the anomaly has passed though the
link. The explicit values for M̂ are shown for all of the incoming links in Table 1.
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However, if we limit our information to that given merely by the interarrivals, and
calculate the distribution of Xn = Rn + An, our model reduces further to the model
given in Kokoszka et al. (2020), which provides a distribution as a mixture of a
non-negative student-t distribution and a Weibull distribution for Xn explicitly. The
model presented in this article does not explicitly state the distribution of Xn, but it
is calculated as a convolution of Rn and An (since we determined Rn is independent
of An). Thus, to compare the models in a meaningful way, we will calculate the
maximum log-likelihoods for each model across the 28 links.

Given that the model in this circumstance is a basic renewal process, calculating
the likelihood function in theory is simple and can be written generally as L(θ; x) =∏K

k=1 P(X1 = xk). From here the likelihood for the model of Kokoszka et al. (2020)
can be calculated in a straightforward manner. The likelihood for the model presented
in this article employs a Fast Fourier Transform to compute the distribution of
Rn + An. Performing optimization on this convolution did not prove to be particularly
stable, but using the parameters estimated for the complete model, the likelihood
was an improvement over its counterpart regardless, so solving this problem was
unnecessary.

Table 2 gives evidence that our model indeed yields the higher likelihood with the
same number of parameters. In addition, our model provides a better framework for
taking into account both active and inactive periods separately, whereas in doing any
further work along the lines of Kokoszka et al. (2020), we would need to define the
distribution of the active periods conditional upon the length of the inter-arrivals,
which is nontrivial. Thus, the model where we allow M to vary not only is an
improvement in terms of this modelling component but also in terms of the fact that
we are performing maximum likelihood estimation on the entire binary sequences
rather than a reduction that tells us when the next activity period starts.

5 Distributions of the waiting times

An important application of a statistical model for the distribution of interarrival
times in a renewal process is that it can be used to compute waiting times. Denote
the current time by t. The anomalies arrive at times Vk = Sk−1 + Rk, k = 1, 2, . . ., so
the first anomaly after time t arrives at time VN(t), where N(·) is the counting process
defined by N(t) = max{k : Vk ≤ t}, that is, N(t) is the count of anomaly arrivals up
to and including time t. Therefore, the waiting time is

W(t) = VN(t)+1 − t.

Somewhat counter-intuitively, the waiting time is stochastically larger than the
interarrival time Vk − Vk−1. This is because an arbitrary time t has a greater chance
of falling into a long interarrival time than a short one, and so there is a higher
probability that the time until the next arrival will be long. This effect is particularly
well pronounced if the interarrival times are heavy-tailed, that is, long interarrival
times occur with a relatively high probability. Waiting times are important for
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Table 2 Comparison of the maximum log-likelihoods computed in this article, log LM,R,A(θ̂), with the

maximum log-likelihoods computed using the model of Kokoszka et al. (2020), log LX (θ̂)

Link log LM,R,A(θ̂) log LX (θ̂)

1 atla-hstn −1 984.17 −2 452.70

2 atla-ipls −1 405.37 −1 709.17

3 atla-wash −1 917.59 −2 250.87

4 chin-ipls −2 334.30 −2 746.73

5 chin-nycm −2 012.67 −2 357.23

6 dnvr-kscy −1 851.24 −2 120.46

7 dnvr-snva −2 821.96 −3282.38

8 dnvr-sttl −1 615.24 −1 924.53

9 hstn-atla −1 982.83 −2 308.84

10 hstn-kscy −1 732.67 −2 147.71

11 hstn-losa −1 855.38 −2 158.22

12 ipls-atla −1 720.52 −2 020.23

13 ipls-chin −2 552.88 −3 003.55

14 ipls-kscy −2 605.01 −3 135.67

15 kscy-dnvr −2 588.83 −3 109.10

16 kscy-hstn −1 730.80 −2 037.54

17 kscy-ipls −2 225.82 −2 597.07

18 losa-hstn −1 890.74 −2 165.33

19 losa-snva −2 171.13 −2 522.85

20 nycm-chin −2 536.60 −3 081.83

21 nycm-wash −2 011.27 −2 336.96

22 snva-dnvr −2 085.05 −2 488.28

23 snva-losa −2 730.21 −3 169.85

24 snva-sttl −1 718.03 −2 034.74

25 sttl-dnvr −1 356.06 −1 643.61

26 sttl-snva −1 858.32 −2 268.92

27 wash-atla −1 830.40 −2 190.69

28 wash-nycm −1 518.81 −1 857.49

network design and provisioning of resources. Their distribution was investigated
in Kokoszka et al. (2020) using a simpler model containing only anomaly arrival
times.

Before comparing distributions derived from our model to those obtained by
Kokoszka et al. (2020), we need to explain how the distribution of the waiting
time can be computed, see Section 7.4.4 of Pinsky and Karlin (2011), or any other
comprehensive textbook on renewal processes. Using the key renewal theorem, one
can show that the equilibrium tail probabilities of W(t) are given by

lim
t→∞

P(W(t) > x) =
1

τ

∫ ∞

x

(1 − G(u))du,

where

τ = E[Vk − Vk−1], G(u) = P(Vk − Vk−1 ≤ u).
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Table 3 Estimated 25th, 50th, 75th, 90th and 95th percentiles of the waiting time distribution (first

columns) and the interarrival time distribution (in parentheses) for the incoming direction for each link. The

table suggests the waiting time distribution is significantly stochastically larger than the interarrival

distribution

Link 25th 50th 75th 90th 95th

atla-hstn 121 (33) 337 (123) 749 (452) 1 543 (804) 2 218 (1 236)

atla-ipls 178 (54) 529 (194) 1 400 (534) 2 728 (1 150) 3 605 (2 064)

atla-wash 115 (55) 298 (199) 707 (442) 1 495 (820) 2 052 (1 286)

chin-ipls 92 (27) 257 (118) 719 (308) 2 182 (564) 3 178 (770)

chin-nycm 107 (50) 289 (165) 760 (350) 1 886 (689) 2 799 (1 026)

dnvr-kscy 136 (20) 355 (130) 832 (419) 1 839 (859) 2 443 (1 228)

dnvr-snva 78 (14) 215 (78) 571 (223) 1 460 (478) 1 981 (674)

dnvr-sttl 156 (47) 427 (196) 1 040 (500) 1 911 (1 093) 2 444 (1 838)

hstn-atla 115 (34) 319 (140) 790 (365) 1 685 (827) 2 313 (1 246)

hstn-kscy 134 (70) 378 (196) 956 (462) 1 957 (953) 2 585 (1 539)

hstn-losa 134 (32) 363 (139) 832 (432) 1 720 (864) 2 372 (1 299)

ipls-atla 139 (33) 372 (166) 814 (511) 1 436 (1 029) 1 969 (1 388)

ipls-chin 83 (35) 220 (120) 497 (295) 1 163 (589) 1 886 (782)

ipls-kscy 79 (40) 215 (116) 529 (286) 1 234 (603) 1 791 (820)

kscy-dnvr 82 (17) 220 (99) 526 (268) 1 377 (561) 2 040 (713)

kscy-hstn 135 (64) 399 (151) 1 045 (448) 2 147 (861) 2 870 (1 480)

kscy-ipls 100 (40) 263 (140) 589 (406) 1 566 (628) 2 242 (860)

losa-hstn 133 (25) 384 (128) 1 009 (352) 2 230 (849) 3 012 (1 259)

losa-snva 111 (24) 301 (121) 861 (339) 2 005 (560) 2 680 (1 078)

nycm-chin 81 (37) 224 (103) 541 (294) 1 626 (556) 2 254 (710)

nycm-wash 107 (42) 286 (160) 695 (364) 1 863 (728) 2 728 (943)

snva-dnvr 118 (16) 322 (103) 832 (352) 1 957 (698) 2 514 (1 054)

snva-losa 83 (20) 230 (90) 606 (254) 1 626 (491) 2 171 (732)

snva-sttl 126 (79) 372 (174) 962 (427) 1 981 (1 049) 2 585 (1 358)

sttl-dnvr 190 (57) 504 (252) 1 129 (661) 1 935 (1 496) 2 397 (2 262)

sttl-snva 123 (61) 354 (157) 952 (386) 1 888 (907) 2 398 (1 478)

wash-atla 124 (56) 344 (163) 791 (445) 1 852 (843) 2 776 (1 268)

wash-nycm 149 (87) 398 (252) 1 005 (560) 2 220 (941) 2 967 (1 547)

We note that the parameters τ and G(·) do not depend on n because the interarrival
times have the same distribution. Denoting suitable estimators by τ̂ and Ĝ(·), we
estimate the cdf of the waiting time by

F̂W(x) = 1 −
1

τ̂

∫ ∞

x

(1 − Ĝ(u))du.

A central issue is to determine which estimators to use. Essentially the only consistent
estimator of the cdf G(·) is the empirical cdf Ĝ(·) defined by

Ĝ(x) =
1

n

n∑

k=1

1
{
Vk − Vk−1 ≤ x

}
.
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Recall that n is the count of anomalies in a specific link. A comprehensive comparison
of various estimators of τ presented in Kokoszka et al. (2020) revealed that a very
good choice for the internet anomalies data is the estimator which can be derived
directly from the empirical cdf Ĝ(·) via

τ̂ =

∫ ∞

0

(1 − Ĝ(x))dx.

Using the above estimators, we computed the quantiles shown in Table 3. Note that
since the interarrival lengths depend upon M, the choice of M affects the waiting

time distribution. So, to appropriately calculate the distributional estimate, M̂ was
selected for each link to calculate the interarrival times. Given the distributions for
the active and the inactive periods, one may infer the waiting time distribution would
behave similarly to the waiting time distribution of the PPS distribution. Note that
the hazard function of the PPS distribution converges to zero for ν > 1, which is
a significant difference from the hazard function being constant. Thus, one would
expect that the waiting times would be significantly stochastically larger than the
interarrival times, which is validated by Table 3.

Table 4 compares the sample quantiles of the waiting time distribution for the
model presented in this article and the model proposed by Kokoszka et al. (2020). The
quantiles are slightly larger for our model. This can be explained by the introduction
of the separation parameter of M. Since larger values of M will increase the length
of both the active and inactive periods, the quantiles of our model should be larger.
Essentially very short inactive periods are eliminated in our approach and treated
as parts of active periods. However, the differences are rather small, and may be
negligible from point of view of network engineering. This, in a sense, confirms our
model, because it essentially agrees with a simpler model in an aspect where a simpler
model might be sufficient.

A somewhat unexpected conclusion of the statistical model of Kokoszka et al.
(2020) is that the expected waiting time for the arrival of the next anomaly is infinite.
While infinite waiting times do occur in various stochastic models, their practical
consequences are difficult to quantify and use. We now explain why the waiting time
is infinite in the model of Kokoszka et al. (2020) and finite in our model. Denote by
W the positive random variable whose distribution is the equilibrium distribution of
the waiting time, that is, FW

P(W > x) =
1

τ

∫ ∞

x

[1 − G(u)]du.

Denote by XG the random variable whose cdf is G, that is, XG has the same
distribution as the interarrival times. Direct verification shows that for p > 0,

EWp =
EX

p+1
G

(p + 1)τ
.
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Table 4 Estimated 25th, 50th, 75th, 90th and 95th percentiles of the waiting time distribution for our

model (first columns) and the model of Kokoszka et al. (2020) (in parentheses) for the incoming direction

for each link. The quantiles given appear to be slightly larger for our, which due to the inclusion of the

separation parameter M into the model

Link 25th 50th 75th 90th 95th

atla-hstn 121 (118) 337 (334) 749 (743) 1 543 (1 531) 2 218 (2 206)

atla-ipls 178 (175) 529 (526) 1 400 (1 400) 2 728 (2 728) 3 605 (3 605)

atla-wash 115 (112) 298 (294) 707 (701) 1 495 (1483) 2 052 (2 052)

chin-ipls 92 (86) 257 (238) 719 (624) 2 182 (1898) 3 178 (2 965)

chin-nycm 107 (101) 289 (270) 760 (678) 1 886 (1614) 2 799 (2 420)

dnvr-kscy 136 (135) 355 (355) 832 (832) 1 839 (1839) 2 443 (2 443)

dnvr-snva 78 (76) 215 (214) 571 (568) 1 460 (1 460) 1 981 (1 981)

dnvr-sttl 156 (152) 427 (423) 1 040 (1 033) 1 911 (1 898) 2 444 (2 443)

hstn-atla 115 (112) 319 (316) 790 (790) 1 685 (1 697) 2 313 (2 313)

hstn-kscy 134 (131) 378 (375) 956 (944) 1 957 (1 946) 2 585 (2 585)

hstn-losa 134 (131) 363 (360) 832 (826) 1 720 (1 720) 2 372 (2 372)

ipls-atla 139 (138) 372 (372) 814 (814) 1 436 (1 436) 1 969 (1 957)

ipls-chin 83 (81) 220 (217) 497 (497) 1 163 (1 157) 1 886 (1 886)

ipls-kscy 79 (77) 215 (211) 529 (523) 1 234 (1 234) 1 791 (1 780)

kscy-dnvr 82 (82) 220 (220) 526 (526) 1 377 (1 377) 2 040 (2 040)

kscy-hstn 135 (132) 399 (396) 1 045 (1 039) 2 147 (2 135) 2 870 (2 870)

kscy-ipls 100 (98) 263 (261) 589 (586) 1 566 (1 566) 2 242 (2 242)

losa-hstn 133 (131) 384 (381) 1 009 (1 003) 2 230 (2 218) 3 012 (3 012)

losa-snva 111 (109) 301 (298) 861 (849) 2 005 (1 993) 2 680 (2 657)

nycm-chin 81 (76) 224 (209) 541 (485) 1 626 (1 329) 2 254 (2 029)

nycm-wash 107 (101) 286 (267) 695 (624) 1 863 (1 554) 2 728 (2 313)

snva-dnvr 118 (118) 322 (322) 832 (832) 1 957 (1 957) 2 514 (2 514)

snva-losa 83 (80) 230 (227) 606 (595) 1 626 (1 614) 2 171 (2 159)

snva-sttl 126 (124) 372 (369) 962 (956) 1 981 (1 981) 2 585 (2 585)

sttl-dnvr 190 (184) 504 (494) 1129 (1 116) 1 935 (1 946) 2 397 (2 396)

sttl-snva 123 (121) 354 (349) 952 (938) 1 888 (1 874) 2 398 (2 396)

wash-atla 124 (122) 344 (340) 791 (790) 1 852 (1 839) 2 776 (2 751)

wash-nycm 149 (146) 398 (396) 1 005 (1 003) 2 220 (2 230) 2 967 (2 965)

If XG has Pareto tail, P(XG > x) ∼ cx−α with 1 < α < 2, as in Kokoszka et al. (2020),
then EX2

G = ∞, implying EW = ∞. Our model leads to long waiting times whose
expected values are however finite, as we now explain. By the independence of the
random variables R and A, Var[XG] = Var[R] + Var[A]. Even without independence,
EX2

G ≤ 2[ER2 + EA2], so the expected waiting time is finite if ER2 < ∞ and EA2 <

∞. The random variable A has a geometric tail, so all its moments are finite. A
sufficient condition for ER2 < ∞ is ν > 1, see Sarabia and Prieto (2009). For all
estimated ν in Table 1, ν > 4, so we can safely conclude that our model implies
EW < ∞ for all links.

We emphasize that the infinite waiting time following from the work Kokoszka
et al. (2020) does not imply that its distribution will necessarily have larger quantiles
than the distribution used in this article. To illustrate, if a positive random variable
X satisfies EX = ∞, then for any c > 0, E[cX] = ∞, but choosing c sufficiently small,
any finite quantile of cX can be made arbitrarily small.
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6 Summary and next steps

Our work has focused on developing a statistical model for the propagation of
internet anomalies in a US-wide network. The same model applies to all links, the
parameters depend on the link. There are several novel elements in our approach
that could potentially be useful in similar contexts. First, we showed how to
conduct an exploratory analysis of an alternating renewal process to establish
distributional and independence properties needed to construct a realistic statistical
model. Second, we proposed nonstandard distributional models for the length of
the inactive periods. Third, we proposed a regression approach to modelling the
proportion of 1s as a response to the length of the active period. Fourth, we
showed that the separation between the active periods, M, can be estimated. While
probabilistic properties of alternating renewal processes have been studied in-depth,
there has been little work on constructing a realistic statistical model with a complete
estimation methodology. This is where the novelty and the main contribution of our
work lies.

A remaining question is how to describe the interaction between anomalies in
various links. Through extensive experiments, we came to the conclusion that this
would be very difficult within the framework considered in this article, and generally
within a framework of statistical rather than engineering modelling. We now discuss
the relevant issues and speculate on possible approaches.

Large hubs, the nodes of the network, play a significant role. Hardware and
software placed at each node are designed to deal with anomalies. They never do it
perfectly, so some anomalies, generally in a modified form, may travel to connecting
links. What happens to an anomaly at a node depends on whether it is detected,
and if so, how it is classified. A node can also be a source of an anomaly, for
example, if a local network it serves is under attack or fails in some way. No such
information is contained in our data. We speculate that due to such factors, there
is no apparent connection between anomalous traffic at various links, as illustrated
in Figure 11.

As the caption of Figure 11 emphasizes, and as has been noted earlier, for each
unidirectional link, we actually have two datasets. This is because no measurements
can be made in the link itself, which can be, for example, an optical fibre cable.
Measurements are made by servers placed at certain locations in the hubs. Thus, say
for an Atlanta→Houston link, we have incoming measurements (in Houston) and
outgoing measurements (in Atlanta).

There is a statistical dependence between the incoming-outgoing pairs, as
illustrated in Figure 12 The plots suggest that there may be significant correlation
between the time series of the incoming-outgoing pairs. The lag structure of this
correlation appears to be haphazard, we could not discern any pattern that would
apply to all links.

The discussion above highlights the limits of modelling that can be done based on
the available 0–1 strings. A more complete model would need to involve the action of
the nodes and precise labelling of anomalies. The action at a note could potentially be
described by an input–output model with multiple inputs and/or outputs. A model of
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Figure 11 Cross-correlation plots for the interarrival times for the incoming Atlanta→Houston and

Chicago→Indianapolis (top-left), incoming Denver→Sunnyvale and Indianapolis→Atlanta (top-right),

outgoing Houston→Kansas City and Indianapolis→Atlanta (bottom-left), and outgoing Kansas

City→Denver and Sunnyvale→Denver (bottom-right) links. These plots suggest no significant

cross-correlation between these different links. From this, one would not expect that incoming and

outgoing interarrivals corresponding to distinct links would not possess correlation

this type for brain networks was recently proposed by Sienkiewicz et al. (2017), but it
focuses on the node action, and there are no fixed links in the brain. A comprehensive
hybrid engineering/statistical model would need to connect the statistical properties
of anomalies propagation thorough the links to the action of the nodes. A much more
comprehensive and detailed database would need to be constructed before advances
in this direction can be made. The model developed in this article could be used to
validate any future more comprehensive model, which would need to predict the
properties we discovered and quantified.

Finally, it would be of interest to investigate if the model remains valid, or how it
would need to be modified, for anomalies extracted from internet traffic over a more
recent time period. We hope that our research will motivate network engineers to
construct a suitable database on which the model could be tested.
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Figure 12 Cross-Correlation plots for the Atlanta→Houston, Atlanta→Indianapolis,

Chicago→Indianapolis, and Denver→Sunnyvale incoming-outgoing pairs for M = 5
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