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Given a data matrix D, a submatrix S of D is an order-preserving submatrix (OPSM) if there is a permutation

of the columns of S , under which the entry values of each row in S are strictly increasing. OPSM mining is

widely used in real-life applications such as identifying coexpressed genes and finding customers with similar

preference. However, noise is ubiquitous in real data matrices due to variable experimental conditions and

measurement errors, which makes conventional OPSMmining algorithms inapplicable. No previous work on

OPSM has ever considered uncertain value intervals using the well-established possible world semantics.

We establish two different definitions of significant OPSMs based on the possible world semantics: (1) ex-

pected support-based and (2) probabilistic frequentness-based. An optimized dynamic programming ap-

proach is proposed to compute the probability that a row supports a particular column permutation, with

a closed-form formula derived to efficiently handle the special case of uniform value distribution and an

accurate cubic spline approximation approach that works well with any uncertain value distributions. To

efficiently check the probabilistic frequentness, several effective pruning rules are designed to efficiently

prune insignificant OPSMs; two approximation techniques based on the Poisson and Gaussian distributions,

respectively, are proposed for further speedup. These techniques are integrated into our two OPSM mining

algorithms, based on prefix-projection and Apriori, respectively. We further parallelize our prefix-projection-

basedmining algorithm using PrefixFPM, a recently proposed framework for parallel frequent patternmining,

and we achieve a good speedup with the number of CPU cores. Extensive experiments on real microarray
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data demonstrate that the OPSMs found by our algorithms have a much higher quality than those found by

existing approaches.

CCS Concepts: • Information systems→ Uncertainty; Data mining; • Mathematics of computing→

Probabilistic algorithms;
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1 INTRODUCTION

Order-preserving submatrix (OPSM)mining is an important data mining problem which given
a datamatrix, discovers a subset of attributes (columns) over which a subset of tuples (rows) exhibit
a similar pattern of rises and falls in the tuples’ values. It is useful in many real applications such
as bioinformatics and customer segmentation.
For example, in bioinformatics, when analyzing gene expression data from microarray experi-

ments, genes (rows) with simultaneous rises and falls of mRNA expression levels across different
time points (columns) may share the same cell-cycle related properties [33]; columns may also
represent different experimental conditions as in Reference [12]. In this application, an OPSM
represents co-expressed patterns for large sets of genes, shared by a population of patients in a
particular stage of a disease, or with the same drug treatment, and so on [4]. In fact, OPSM is well-
known as the first bi-clustering method to overcome the drawback of clustering, which cannot
identify patterns that are common to only a part of the expression data matrix [4].
As another example, in a customer-product ratingmatrix from a recommender system, each row

(respectively, column) represents a customer (respectively, a product), and an OPSM represents a
group of users with a similar product preference; mining such user groups enables the making
of more effective advertising strategies. OPSM mining has also been successfully applied for ana-
lyzing indoor location tracking data [12], where visitors wearing RFID tags are tracked by RFID
readers, and an OPSM represents a group of visitors who likely share a common visiting subroute.
Formally, OPSMmining considers a data matrixD = (G,T ) with a set of rows (e.g., genes)G and

a set of columns (e.g., microarray tests)T . Each entryD[д][t] of thematrix is a numerical value, e.g.,
the expression level of gene д ∈ G under test t ∈ T . Consider the data matrix D shown in Figure 1.
For simplicity, let us denote D[дi ][tj ] by Di j ; then for row д1, we have D12 < D11 < D14 < D13, i.e.,
column value order is t2 < t1 < t4 < t3. Note that column value orders are also shown in Figure 1.
Given a column permutation t1 < t2 < t3, we can see from Figure 1 that rows д2, д3, and д4 support
this permutation while д1 does not (since D12 < D11).
An OPSM of an n ×m matrix D is given by a pair (G ′, P ), where G ′ is a subset of G, and P =

(ti1 , ti2 , . . . , tiℓ ) is a permutation of a subset ofT , such that for anyдj ∈ G
′,D ji1 < D ji2 < · · · < D jiℓ .

Here, we say thatд supports P and call P as the pattern of the OPSM. In Figure 1, (G ′, P ) is an OPSM
for G ′ = {д2,д3,д4} and P = (t1 < t2 < t3).

We are interested in those OPSMswith long patterns supported by sufficient rows, which exhibit
statistical significance rather than occurring by chance. Given a row threshold τrow and a column
threshold τcol , an OPSM (G ′, P ) with P = (ti1 < ti2 < · · · < tiℓ ) is significant if |G

′ | ≥ τrow and
ℓ ≥ τcol . We call ℓ as the length of pattern P . In other words, a significant OPSM has at least τrow
rows and τcol columns.
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Fig. 1. Gene expression matrix without noise.

Fig. 2. Matrix with repeated measurements.

OPSM Mining on Noisy Matrices. Real data are often noisy. For example, in microarray tests,
each value in the matrix is a physical measurement that is subject to measurement errors, variable
experimental conditions, and instrumental limitations [12]. Also, a customer usually rates a prod-
uct using discrete scores (e.g., 1–5 stars), and even if two products both gain 4 stars, a customer
may prefer one over another, as each score actually represents a range of scores (e.g., [3.5, 4.5)).

Traditional OPSM mining algorithms are sensitive to such noise. For example, in Figure 1, if the
value of D31 is slightly increased from 65 to 69, then д3 will no longer support pattern t1 < t2 < t3.
One method to combat noise is to sample each entry multiple times, e.g., each microarray test
can be repeated to record multiple measurements. Figure 2 illustrates a dataset with three repeated
measurements (or replicates).
To handle such an expression data matrix, biologists usually take the average expression levels

as the values in the matrix, to strike for higher data quality. OPSMRM [33] takes all the replicates
into account and produces higher-quality OPSMs than those mined from the averaged matrix.
OPSMRM is based on the possible world semantics, which assumes that each matrix entry is a
random variable taking the value of each replicate with equal probability. For example, in the
matrix D shown in Figure 2, D11 is assumed to take value 49, 55, or 80 with 33.3̇% probability. The
OPSM significance is defined only based on “expected support” (see Section 2).

However, the data model of OPSMRM is restrictive. For D11 in Figure 2, if test t1 is conducted
on gene д1 to get another measurement, then the result is very likely to be a value between 49
and 80 (e.g., 60), but not any of 49, 55, and 80. To address this issue, Reference [12] proposes the
POPSM model, which converts the replicates for each entry in the matrix into an interval, and
produced higher-quality OPSMs than OPSMRM. Figure 3 shows this interval-based data model

for the data matrix shown in Figure 2. The interval model is sometimes even the only choice for
representing data uncertainty, such as in Reference [12]’s RFID location tracking applicationwhere
each row д of a matrix represents a loop-free object trajectory, each column t represents an RFID
reader (i.e., a location), and each entry D[д][t] records the time interval when д is detected by
reader t . There, location (or subroute) uncertainty is generated when two readers detect the same
object at the same time.
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Fig. 3. Gene expression matrix with intervals.

In the domain of uncertain database, the possible world semantics (PWS) is a robust proba-
bility model proven to be effective in handling data uncertainty in various applications [10], which
we aim to follow. In PWS, a database is viewed as a set of deterministic instances (called possible
worlds). As an illustration, Figure 1 is a possible world for Figure 2, occurring with a probability
of 1

312
. Figure 1 is also a possible world for Figure 3, but unlike Figure 2 with finite and countable

number of possible worlds, the number of possible worlds in Figure 3 is infinite and uncountable.
In PWS, results obtained from probabilistic data are also probabilistic, to reflect the confidence
placed on the mining results. Intuitively, we can mine OPSMs over each and every possible world
and then aggregate their results based on their occurring probabilities to obtain the confidence for
each OPSM to determine its significance. However, POPSM (the only OPSM mining model that
considers interval-based value uncertainty) is not defined based on the possible world semantics.
This article studies how to mine OPSMs with the interval-based uncertain model based

on the well-established possible world semantics, which is shown to generate higher-quality
OPSMs than POPSM (cf. Section 7). A key challenge that we tackle is how to efficiently evaluate
the OPSM significance without directly working on the infinite number of possible worlds, the
latter of which is infeasible. Our contributions are summarized as follows:

• This is the first work that studies OPSMmining when matrix entry is modeled with interval
and pattern significance is evaluated based on possible world semantics. This model is more
robust than both OPSMRM and POPSM and is shown to generate higher-quality OPSMs.
• Under the possible world semantics, we study two different definitions of OPSM significance:
(S1) expected support and (S2) probabilistic frequentness. Note that OPSMRM only considers
“(S1),” while POPSM does not even follow the possible world semantics.
• A basic operation in our mining problem is to compute the probability that a row д supports
a pattern P = (ti1 < ti2 < · · · < tiℓ ), which is challenging, since intervals D[д][ti ] may
overlap. We propose a dynamic programming (DP) algorithm to efficiently compute this
probability.We further design a smart pay-as-you-gomethod to reuse DP computationwhen
growing patterns.
• We derive a closed-form formula for computing the above-mentioned support probability
when the value distribution is uniform in its interval, which enables very efficient evaluation.
For more general value distributions, we propose an approximation approach based on cubic
spline that is both accurate and generally applicable.
• Once the above probability is computed for all rows, we then propose efficient algorithms
to check the significance of a pattern P under both “(S1)” and “(S2).” A few efficient pruning
rules are checked to prune insignificant pattern P before the more expensive significance
check for P . Checking “(S2)” is non-trivial and an efficient algorithm is designed based on
Fast Fourier Transform (FFT) to reduce the time complexity compared with a straightfor-
ward method. Two linear-time approximation techniques are proposed to further improve
the efficiency.
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• Using the above algorithms to check the significance of each pattern P , two pattern-
growth-based OPSM mining algorithms are proposed using different techniques: (1) prefix-
projection and (2) Apriori. Both algorithms have pros and cons, but they both output higher-
quality OPSMs than existing approaches using comparable running time if not better, as
verified in our experiments.
• We further parallelize our prefix-projection-based mining algorithm using PrefixFPM [29,
30], a recently proposed general-purpose framework for parallel frequent pattern mining.
Experiments show that the parallel algorithm achieves a good speedup with the number of
CPU cores.

This manuscript is the journal extension of our previous conference paper. Due to the double-
blind review requirement, we hereby summarize the differences from our conference paper as
follows:

• We added a cubic spline approximation approach in Section 3.4 to support any value distri-
butions in an uncertain value interval, while our conference paper only considered uniform
value distributions.
• We added a parallel prefix-projection-based mining algorithm that achieves a good speedup
with the number of CPU cores.
• We added two approximation techniques in Section 4.4 to speed up the examination of pat-
tern frequentness, while our conference paper only had the exact algorithms.
• In Section 7, we have run experiments using more biology datasets such as GDS2712, as well
as an RFID user trace dataset, in addition to the datasets in our conference paper. We also
reported more extensive results using various metrics, and on more parameters, which were
not included due to the space limitation of our conference paper.
• Also due to the space limitation, we had to omit the proofs of all our theorems and pruning
rules in our conference paper. This journal version now includes all proofs in our online
appendix to allow a more complete reading experience.
• This journal extension provides a more comprehensive related work section in Section 8 to
better position our work in the context of data uncertainty research.

Article Organization. The rest of this article is organized as follows: Section 2 formally defines
the concept of significant OPSMs under our interval-based uncertain data model, using expected
support and probabilistic frequentness. Section 3 presents our dynamic programming algorithm
to compute row supporting probability for a pattern P and the pay-as-you-go technique for com-
putation reuse. Given the row supporting probabilities for P , Section 4 presents our algorithm for
evaluating the significance of pattern P , rules for pruning insignificant patterns, and linear-time
approximation of probabilistic frequentness. Then, Section 5 introduces our complete mining algo-
rithms that grow patterns and examines their significance, and Section 6 presents a parallel version
of our prefix-projection-based mining algorithm. Finally, Section 7 empirically compares our algo-
rithms with existing algorithms, Section 8 reviews the related work, and Section 9 concludes this
article.

2 PROBLEM DEFINITION

We assume that different rows of a data matrix are independent, and for each row, its different
column entries are independent; we shall justify these assumptions in Sections 3 and 4. We mine
significant OPSMs in two steps: (1) finding the frequent patterns with length at least τcol and
(2) selecting the rows that support each frequent pattern.

Above all, we need to first define pattern frequentness under the interval-based uncertain model.
Given a pattern P = (ti1 < ti2 < · · · < tiℓ ), for each matrix row д, let us denote the probability that
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д supporting P by pд :

pд = Pr {row д supports pattern P }.

We call pд the supporting probability hereafter, and we will discuss the computation of pд in Sec-
tion 3. To decide whether pattern P is frequent, we evaluate it using (i) the supporting probabilities
of all rowsand (ii) the row threshold τrow .
We define pattern significance using “expected support” and “probabilistic frequentness,” two

well-established semantics for defining pattern frequentness in mining uncertain data [26]. They
both follow the possible world semantics.

Expected Support. Let us consider the expected number of rows that support pattern P . For each
row д, we define a random variable Xд as follows:

Xд =

{

1 if д supports P
0 otherwise.

Obviously, Xд follows the Bernoulli distribution and its expectation E (Xд ) = pд . The number of
rows that support pattern P is a random variable X =

∑

д∈G Xд , and we have

E (X ) = E
���
∑

д∈G

Xд
��� =
∑

д∈G

E (Xд ) =
∑

д∈G

pд .

Therefore, the expected support is simply the summation of pд for all rows д ∈ G, and pattern P is
frequent if and only if its expected support is not smaller than τrow .

Probabilistic Frequentness. “Expected support” does not consider the distribution of X but
merely its expectation. To be more accurate, “probabilistic frequentness” (p-frequentness) con-
siders the probability mass function (PMF) of X .
Given a matrix D with row set G = {д1,д2, . . . ,дn }, the support of P is depicted by the PMF of

X , denoted as fP (c ) where c = 0, 1, . . . ,n:

fP (c ) = Pr {c rows in D support pattern P }.

The PMF fP (c ) can be computed using pд of all rows д ∈ G with the realistic assumption that rows
are independent of each other, and we shall present more details in Section 4.
Let us denote the cumulative distribution function (CDF) by FP (c ) =

∑c
i=0 fP (i ). Given a

user-specified probability confidence threshold τprob , pattern P is probabilistically frequent (or
p-frequent) if and only if

Pr {X ≥ τrow } ≥ τprob , (1)

where the L.H.S. can be represented as

Pr {X ≥ τrow } =

n
∑

c=τrow

fP (c ) = 1 − FP (τrow − 1). (2)

If we find that a pattern P is frequent, then we only output P if its length is at least τcol .

Row Selection. The second step of OPSM mining is to select the rows that support each frequent
pattern. Since the rows are considered as independent to each other, row д is favored over row д′

if supporting probability pд > pд′ .
There are several possible methods for selecting rows into an OPSM: (a) selecting k rows

whose supporting probabilities are the highest; (b) selecting all rows whose supporting proba-
bilities are at least τcut , where τcut is a user-specified “inclusion threshold” (different from τprob in
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Table 1. Notations

Symbol Meaning

D = (G,T ) Data matrix with row set G and column set T
д ∈ G, t ∈ T A row of D, a column of D
дi ∈ G, tj ∈ T The ith row of D, the jth column of D
Di j = D[дi ][tj ] The entry of D at Row i and Column j

n,m The number of rows in D, the number of columns in D

P A pattern of the form P = (ti1 < ti2 < · · · < tiℓ )

ℓ The length of pattern P

S A submatrix of D, or a subset of D’s rows when P is given
τrow , τcol The minimum numbers of rows and columns required for a result

OPSM
pд or pд (P ) The probability that row д supports a given pattern P

τprob The probability confidence threshold for a pattern to be probabilisti-
cally frequent

τcut The inclusion threshold that selects all rows whose supporting proba-
bility is at least τcut to an OPSM

{Ii }
s
i=1 A subinterval partitioning for a row д (see Figure 4 for an illustration)

Ii = [ℓ(Ii ), r (Ii )] The ith subinterval for a row д

∆i = r (Ii ) − ℓ(Ii ) The length of subinterval Ii
ft (.) The probability density function (PDF) of D[д][t] given a row д

PIk (ti1 < · · · < tiℓ ) The probability of the event ti1 < ti2 < · · · < tiℓ with ti1 , . . . , tiℓ located
in Ik

A[j][k] The probability of the event ti1 < · · · < ti j with ti1 , . . . , ti j located in

the first k subintervals, i.e.,
⋃k

i=1 Ii
A The dynamic programming array (DP-array)
Xд The indicator variable on whether row д supports P
X =
∑

д∈G Xд The support of P , which is a random variable
Di The first i rows of the data matrix D
fi (c ) The probability mass function (PMF) of the support of P in Di

S A row subset of the rows of D
X S The support of P in S , which is a random variable
f S (c ), F S (c ) The PMF and (cumulative distribution function) CDF of the support of

P in row set S
cnt (P ) Cardinality of the set {д ∈ G | pд (P ) > 0}

“p-frequentness”). Like Reference [12], we adopt the latter approach for row selection, since it is
difficult to ask end-users to set a proper k for the former approach. For example, setting k as the
expected support

∑

д∈G pд or as the row threshold τrow is often an insufficient underestimate, since
each of the k rows has pд (P ) < 100%, while both support and τrow are defined with respect to a de-
terministic possible world; however, it is unclear howmuch larger k should be set to be. Section 7.4
will compare the two row selection methods.

Notations. Table 1 summarizes the notations used throughout this article for a quick reference.
While D and S denote the data matrix and a submatrix of it, respectively, when the context of a
pattern P = (ti1 < ti2 < · · · < tiℓ ) is clear, we also use D and S to denote all the rows of the data
matrix and a row subset, respectively.
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Fig. 4. Preprocessing of row д1 in Figure 3.

3 SUPPORTING PROBABILITY COMPUTATION

In this section, we introduce how we compute the probability that a row д supports a pattern P ,
i.e., pд (P ). We abbreviate it as pд when P is clear from the context.

We compute pд (P ) by dynamic programming. For ease of presentation, let us first assume that
each element value in a data matrix follows uniform distribution within an interval. Wewill extend
our dynamic programming method to handle arbitrary value distribution at the end of this section.

3.1 Preprocessing

Before applying the dynamic programming algorithm, we first need to preprocess each row д =

〈[ℓ1, r1], [ℓ2, r2], . . . , [ℓm , rm]〉 to obtain a set of subintervals demarcated by ℓi , ri (i = 1, . . . ,m).
These subintervals, denoted by I1, . . . , Is , are ordered in increasing order of value. Note that s ≤ 2m.
We also denote the interval of Ii as [ℓ(Ii ), r (Ii )].

Figure 4 shows the subintervals obtained by preprocessing row д1 in the data matrix in Figure 3:
I1 = [38, 49], I2 = [49, 50], I3 = [49, 79], I4 = [79, 80], I5 = [80, 81], I6 = [81, 110], and I7 =

[110, 115].
Obviously, for each row д, given an interval element D[д][t] and a subinterval Ii , we must have:

either (1) Ii ⊆ [ℓt , rt ] or (2) Ii ∩ [ℓt , rt ] = ∅ or {ℓt } or {rt }. For example, in Figure 4, I2 ⊆ t1, I2 ⊆ t2,
I2 ∩ t3 = ∅, and I2 ∩ t4 = r (I2) = ℓ4 = {50}.

Since each D[д][t] is assumed to be uniform, we have:

Property 1. Let ft (x ) be the PDF of D[д][t] on subinterval Ii , then we have

ft (x ) =

{

1/(rt − ℓt ) if Ii ⊆ [ℓt , rt ],
0 otherwise.

(3)

Therefore, we can obtain the constant probability density of D[д][t] on any subinterval Ii in
O (1) time by checking whether Ii ⊆ [ℓt , rt ]. Since ft (x ) is constant on Ii , we abbreviate it as ft
from now on. For example, in Figure 4, consider д1 and subinterval I2: f1 = 1/31, since I2 ⊆ [49, 80],
while f4 = 0 except at the boundary 50 (which is immaterial for continuous distribution). As we
shall see next, Property 1 is critical to the efficiency of computing supporting probability.

Assume data matrix D is n ×m, preprocessing each row into intervals I1, . . . , Is requires sorting
s ≤ 2m values with the cost of O (s log s ) time. Overall, processing the n rows of D takes
O (ns log s ) = O (nm logm).

3.2 Dynamic Programming Formulation

Given a row д, a pattern P = (ti1 < ti2 < · · · < tiℓ ), and the subintervals I1, I2, . . . , Is by preprocess-
ing д, we compute pд (P ) using dynamic programming (DP) as follows. We abuse the notation
ti to mean the interval D[д][ti ], since д is given.

The DP algorithm first creates a 2D array A with ℓ rows and s columns. The element A[j][k]
denotes the probability of the event ti1 < · · · < ti j with ti1 , . . . , ti j located in the interval consisting

of the first k subintervals, i.e.,
⋃k

i=1 Ii . Note that the value of A[ℓ][s] is exactly pд (P ).
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Our algorithm assumes that different column intervals of a row are independent, which is nat-
ural, since different microarray tests or RFID readers are usually independent. This assumption
is used in many places below, such as the Proof of Theorem 3.1 and the last term’s product in
Equation (6).

Probability Evaluation on One Subinterval. Before describing the recursive formula for com-
puting A[j][k], we first explain how to compute the probability of the event ti1 < ti2 < · · · < tiℓ
with ti1 , . . . , tiℓ located in Ik . We denoted this probability by PIk (ti1 < · · · < tiℓ ).

Theorem 3.1. Given an interval [ℓ, r ], let ∆ = r − ℓ. If we have a set of random vari-

ables x1,x2, . . . ,xn , where each variable xi has constant probability density pi on [ℓ, r ], then

Pr {(x1, . . . ,xn ∈ [ℓ, r ]) ∧ (x1 < x2 < · · · < xn )} =
(

∏n
i=1 pi

)

· ∆
n

n! .

Proof. See Appendix A.1. �

Theorem 3.1 implies the following corollary for row д:

Corollary 3.2. Let us define ∆k = r (Ik ) − ℓ(Ik ), and let fti be the probability density of D[д][ti ]
on subinterval Ik as computed by Equation (3). Then,

PIk (ti1 < ti2 < · · · < ti j ) =
��

j
∏

z=1

ftiz
�� ·

∆
j

k

j!
. (4)

Evaluation ofA[j][k]. Now, we are ready to present the recursive formula for computingA[j][k].
Let us first consider the base case when k = 1. In this case,

A[j][1] = PI1 (ti1 < ti2 < · · · < ti j ), (5)

which can be computed using Equation (4).

When k > 1, the event “ti1 < ti2 < · · · < ti j with ti1 , ti2 , . . . , ti j ∈
⋃k

i=1 Ii ” can be decomposed
into the following disjoint events:

• ti1 < · · · < ti j with ti1 , . . . , ti j ∈
⋃k−1

i=1 Ii ;
• ti1 < · · · < ti j with ti1 , . . . , ti j ∈ Ik ;

• ti1 < · · · < tiz with ti1 , . . . , tiz ∈
⋃k−1

i=1 Ii , and tiz+1 < · · · < ti j with tiz+1 , . . . , ti j ∈ Ik , where z
can take values 1, 2, . . . , j − 1.

According to the above discussion, we obtain

A[j][k] = A[j][k − 1] + PIk (ti1 < · · · < ti j ) +

j−1
∑

z=1

A[z][k − 1] · PIk (tiz+1 < · · · < ti j ). (6)

In fact, if we define A[j][0] = 0 for any j, then we can even compute A[j][1] using Equation (6).
Note that computing A[j][k] involves:

• The values A[1][k − 1], . . . ,A[j][k − 1], which should have already been computed;
• Computing PIk (tiz < · · · < ti j ) for z = 1, . . . , j.

According to Equation (4), computing PIk (tiz < · · · < ti j ) takesO (j−z+1) time. Thus, computing

A[j][k] takes
∑j

z=1O (j − z + 1) = O (j2) time if we compute each PIk (tiz < · · · < ti j ) individually.
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Fig. 5. Pay-as-you-go DP-array evaluation.

We can actually compute A[j][k] in O (j ) time as follows: From Equation (4), we can derive the
following recursive formula for computing PIk (tiz < · · · < ti j ):

PIk (tiz < · · · < ti j )

=

⎧⎪⎨⎪⎩
ftij · ∆k if z = j
ftiz ·∆k

j−z+1 · PIk (tiz+1 < · · · < ti j ) if z < j .
(7)

Therefore, if we compute PIk (tiz < · · · < ti j ) with z from j down to 1, then each PIk (tiz < · · · <

ti j ) can be computed from PIk (tiz+1 < · · · < ti j ) using Equation (7) in O(1) time. Thus, computing

A[j][k] takes
∑j

z=1O (1) = O (j ) time.
Accordingly, computing pд (P ) requires computing all elements in the ℓ× s arrayA, which takes

∑

ℓ

j=1

∑s
k=1O (j ) = O (ℓ2s ) = O (ℓ2m) time (recall that s ≤ 2m). We can further optimize the compu-

tation: If we find ftiz = 0 when evaluating PIk (tiz < · · · < ti j ), then we can terminate early, since
according to Equation (4), PIk (tiz′ < · · · < ti j ) = 0 for any z ′ ≤ z.

3.3 The Pay-as-you-go Approach

From now on, let us call the array for dynamic programming as DP-array. We mine patterns by
pattern-growth, i.e., pattern ti1 < · · · < ti j < ti j+1 is checked after pattern ti1 < · · · < ti j .

We now consider how to reuse the DP-array for ti1 < · · · < ti j to compute the DP-array for
ti1 < · · · < ti j < ti j+1 .

In the base case, the pattern is a singleton ti . Assume that the interval of D[д][ti ] is
[ℓi , ri ], then there is only one subinterval I1 = [ℓi , ri ] and the DP-array is a 1 × 1 array with
A[1][1] = PrI1 (ti ) = 1.

We now consider how to incrementally compute the DP-array of a pattern grown by one more
interval. Referring to the data matrix in Figure 3 again, let us focus on the computation of pд1 (t3 <
t4 < t1).

Figure 5 illustrates the evaluation process, where the array on the left is the DP-array for pattern
t3 < t4 that is already computed, and the array on the right is the DP-array for pattern t3 < t4 < t1
that is to be computed. The split points of subintervals are also marked above the DP-arrays. Note
that A[j][k] = Pr {(ti1 < · · · < ti j ) ∧ (ti1 , . . . , ti j < r (Ik ))}. For example, the value of cell E in the
left array is the probability of the event t3 < t4 with t3, t4 < 110. Obviously, the value of cell E in
the right array is exactly the same. In fact, we can copy the values of cells A–F in the left array
directly into the corresponding cells in the right array.
However, for pattern t3 < t4 < t1, the introduction of t1 with interval [49, 80] adds two more

split points. For example, I2 = [79, 110] of the left array is now split into two subintervals for the
right array: I3 = [79, 80] and I4 = [80, 110]. However, the value of cell 4 (the probability of the
event t3 < t4 with t3, t4 < 80), for example, is not computed in the left array, and therefore it has
to be computed using Equation (6). In fact, the values of cells 1–9 have to be computed over the
right array using Equation (6).
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ALGORITHM 1: Computing DP-Array for P = (ti1 < · · · < ti j )

Input: DP-Array A0 for pattern ti1 < · · · < ti j−1 ; Split point list L0 of array A0; D[д][ti j ] = [ℓi j , ri j ]
Output: DP-Array A1 for pattern ti1 < · · · < ti j ; Split point list L1 of array A1

1: {L0 = {ℓ(I
0
1 ), r (I

0
1 ), r (I

0
2 ), . . . , r (I

0
s0
)}, starting with index 0}

2: L1 ← merge_ordered_list(L0, {ℓi j , ri j })

3: {L1 = {ℓ(I
1
1 ), r (I

1
1 ), r (I

1
2 ), . . . , r (I

1
s1
)}}

4: {Compute the first (j − 1) rows of A1}
5: for row = 1 to j − 1 do
6: pos ← 1 {Current pivot position in A0[row]}
7: for col = 1 to s1 do

8: if L1[col] = L0[pos] then
9: A1[row][col]← A0[row][pos]
10: pos ← pos + 1
11: else

12: Compute A1[row][col] using Equations (5) or (6)
13: {Compute the last row of A1}
14: for col = 1 to s1 do

15: Compute A1[j][col] using Equations (5) or (6)

Algorithm 1 shows how we compute the DP-array A1 for pattern ti1 < · · · < ti j from the DP-
array A0 for pattern ti1 < · · · < ti j−1 and the interval [ℓi j , ri j ] for ti j . First, the new ordered list of
split points, L1, is constructed by merging {ℓi j , ri j } with the old split point list L0 in Line 2, which
takes O (s1) time (s1 = |L1 |). Then, Lines 5–12 compute the first (j − 1) rows of A1: If the column-
right-marks of the elements A1[row][col] and A0[row][pos] are the same (Line 8), then the value
of A1[row][col] is copied from A0[row][pos]; otherwise, A1[row][col] has to be computed using
the dynamic programming formula (Line 12). Finally, sinceA0 does not have the jth row, elements
A1[j][col] have to be computed using dynamic programming (Lines 14–15).

We now analyze the cost of this incremental computation ofpд (ti1 < · · · < ti j ). Since atmost two
new split points ℓi j and ri j are introducedwhen a pattern is grownwith ti j , for each of the first (j−1)
rows in the DP-array, there are at most two elements to compute using dynamic programming.
Together with the new jth row, there are totally 2(j − 1) + (s − 1) = O (j ) elements (note that the
number of split points s < 2j) to compute using dynamic programming, which takes O (j2) time.
The remaining (j − 1) · s elements are copied from the old DP-array, which takes O (j · s ) time.
Therefore, the total time complexity is O (j2), quadratic to the pattern length j.

For a pattern P of length ℓ, time complexity of computing pд (P ) is reduced from O (ℓ2m) in

Section 3.2 to O (ℓ2) here.

3.4 Extension to Arbitrary Distributions

We have been assuming that each matrix entry conforms to a uniform distribution defined over
its interval, which is a proper assumption to avoid inductive bias when there are only several
replicates.
When there are sufficient number of replicates, we can infer the underlying distribution (e.g.,

Gaussian distribution) and learn the parameters from the replicates or fit the underlying distribu-
tion by kernel density estimation. Then, we can discretize the PDF using an equi-width or equi-
depth histogram. Note that our dynamic programming framework is still applicable here, though
each entry may now introduce more than two split points. In fact, if we discretize each distribution
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Fig. 6. Gaussian vs. cubic spline.

into ns ranges (i.e., ns + 1 split points), then for a pattern P of length ℓ, time complexity of comput-
ingpд (P ) is increased fromO (ℓ2) in Section 3.3 toO (n2s ·ℓ

2) here. The weakness of histogram-based
approximation is that, the probability density within each range is treated as uniform, so we need
to discretize a PDF with many small ranges to reach reasonable accuracy, but the time complexity
of computing pд (P ) grows quadratically with ns .
We consider an alternative solution that fits a PDF with a cubic spline, which is a spline con-

structed of piecewise third-order polynomials passing through a set of control points. This ap-
proach is generally applicable to the PDF of an arbitrary distribution. We next illustrate this ap-
proach using the Gaussian distribution that is commonly used to model noises in measurements,
as well as the exponential distribution as a second example. We also provide a discussion on how
to choose appropriate control points for a general distribution.

Control Points for the Gaussian Distribution. Given a set of replicates for a matrix entry, we
compute the sample mean μ and variance σ 2 to obtain a Gaussian distribution N (μ,σ 2); we then
fit its PDF with a cubic spline using critical points at μ − 4σ , μ − 3σ , μ − 2σ , μ − σ , 0, μ + σ ,
μ + 2σ , μ + 3σ , μ + 4σ . Figure 6 illustrates the PDF ofN (0, 1) as well as the cubic spline fit from the
PDF’s nine critical points; we can see that the cubic spline matches tightly with the Gaussian PDF,
so the probability approximation is much more accurate. Also, since 99.73% values in a Gaussian
distribution lies within [μ − 3σ , μ + 3σ ], we only consider the six intervals [μ − 3σ , μ − 2σ ], [μ −
2σ , μ − σ ], [μ − σ , 0], [0, μ + σ ], [μ + σ , μ + 2σ ], [μ + 2σ , μ + 3σ ] when computing pд (P ), but we
also use μ ± 4σ as critical points to ensure smooth fitting on the border of μ ± 3σ . For each matrix
entry D[д][tj ], we now have seven split points μ −3σ , μ −2σ , μ −σ , 0, μ +σ , μ +2σ , μ +3σ , and the
PDF between any two consecutive split points is determined by a unique third-order polynomial

p (j ) (x ) = a
(j )
0 + a

(j )
1 x + a

(j )
2 x2 + a

(j )
3 x3.

Control Points for the Exponential Distribution. Given a set of replicates for a matrix entry,
{v1,v2, . . . ,vk }, we compute shift parametermin = mini {vi }, shifted mean μ = 1

N

∑

i (vi −min),

and rate parameter λ = 1
μ
to obtain an exponential distribution Exp (λ,min) whose PDF is given by

λe−λ (x−min) (x ≥ min). Figure 7 illustrates the PDF of a standard exponential distribution Exp (1, 0)
as well as the cubic spline fit from the PDF’s six critical points at 0, μ, 2μ, 3μ, 4μ, and 5μ. Note that
99% values of an exponential distribution lies within [0, 4.61μ], so we only consider five intervals
[0, μ], [μ, 2μ], [2μ, 3μ], [3μ, 4μ], and [4μ, 5μ] when computingpд (P ). For eachmatrix entryD[д][tj ],
we now have six split points min, min + μ, min + 2μ, min + 3μ, min + 4μ, min + 5μ, and the
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Fig. 7. Exponential vs. cubic spline.

PDF between any two consecutive split points is determined by a unique third-order polynomial

p (j ) (x ) = a
(j )
0 + a

(j )
1 x + a

(j )
2 x2 + a

(j )
3 x3.

Guidelines on Choosing Control Points for a General Distribution. Now that we have seen
how to choose good control points for Gaussian and exponential distributions, we are ready to
discuss how to choose proper control points for a general distribution. We remark that in our con-
text, the most reasonable distributions are unimodal distributions where most probability density
is clustered around the ground-truth value of a matrix entry, such as the exponential family that
comprises the natural sets of distributions to consider in reality. For such a general distribution, the
probability density drops quickly as the value increases beyond the mean value, so we only need to
focus on fitting the limited value range that accounts for the vast majority of the value possibility
(e.g., 99% or more), since ignoring the rest would not compromise much accuracy. For this value
range considered, we can either divide the range evenly as we do for Gaussian and exponential
distributions or by selecting intervals in sequence where each interval is selected by increasing its
length till the point when a goodness-of-fit metric drops below a user-defined threshold (binary
search applies here for efficiency). The number of intervals or the goodness-of-fit threshold can be
adjusted according to users’ accuracy needs, but there is an efficiency-accuracy tradeoff that users
need to consider. However, as we have shown in Figures 6 and 7, a small number of five to six
intervals is often sufficient to achieve very good fitting quality for a common distribution falling
into the exponential family.

Computingpд (P ).We can still use the same computation framework of Algorithm 1 in Section 3.3

when D[д][tj ] ∼ N (μ,σ 2) (or when D[д][tj ] ∼ Exp (λ,min)). One difference is that Line 2 now
merges the split points in L0 with the seven (or six) split points of D[д][tj ] to obtain the new split
point list L1. For any two consecutive split points ℓ, r in L1, the PDF on the interval [ℓ, r ] is defined
by a unique third-order polynomial for each of ti1 , ti2 , . . ., ti j .
The other difference in Algorithm 1 is the computation of A1[row][col] as specified in Lines 12

and 15, which uses Equations (5) or (6) where the key operation is to compute the probability
PIk (ti1 < ti2 < · · · < ti j ) on subinterval Ik = [ℓ(Ik ), r (Ik )], with ℓ(Ik ) and r (Ik ) being two consecu-

tive points in L1. We next discuss its computation assuming p (j ) (x ) = a
(j )
0 + a

(j )
1 x + a

(j )
2 x2 + a

(j )
3 x3:

Pr {(x1, . . . ,xn ∈ [ℓ, r ]) ∧ (x1 < x2 < · · · < xn )}

=

∫ r

ℓ

[∫ xn

ℓ

(

· · ·

∫ x2

ℓ

p (1) (x1) dx1 · · ·

)

p (n−1) (xn−1) dxn−1

]
p (n) (xn ) dxn . (8)
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Even though we cannot derive a closed form formula as Equation (4) to evaluate Equation (8),
Equation (8) can still be computed analytically to avoid expensive numerical evaluation. Specif-

ically, let us define an order-k polynomial poly (x , a) =
∑k

i=0 aix
i , which we implement as a

class Polynomial that maintains an array of coefficients a = [a0,a1, . . . ,ak ] and that supports
two operations: (1) multiplying another polynomial (which generates a new polynomial with a
new coefficient array) and (2) computing the following integral where y is a variable while ℓ is a
constant:

∫ y

ℓ

poly (x , a) dx =

∫ y

ℓ

��
k
∑

i=0

aix
i��dx =

k
∑

i=0

(

ai

∫ y

ℓ

d x i+1

i + 1

)

=

k
∑

i=0

(

ai

i + 1

∫ y

ℓ

d x i+1
)

=

k
∑

i=0

ai · (y
i+1 − ℓi+1)

i + 1

=

k
∑

i=0

(

bi+1 · y
i+1 − ci

)

= b0 +

k+1
∑

i=1

bi · y
i , (9)

where bi and ci are constants. In other words, the integral over poly (x , a) =
∑k

i=0 aix
i gives a new

order-(k + 1) polynomial poly (y, b) =
∑k+1

i=0 biy
i .

Using Equation (9), we can compute Equation (8) recursively from x1 all theway till xn as follows:

• Base Case:
∫ x2

ℓ
p (1) (x1) dx1 =

∫ x2

ℓ
(
∑3

i=0 a
(1)
i x i1) dx1 gives an order-4 polynomial poly

(x2, b
(2) ) =

∑4
i=0 b

(2)
i x i2 according to Equation (9).

• Inductive Step: assume that we already obtained (j = 2 in the base case):

∫ x j

ℓ

(

· · ·

∫ x2

ℓ

p (1) (x1) dx1 · · ·

)

p (j−1) (x j−1) dx j−1 =

4(j−1)
∑

i=0

b
(j )
i x ij ,

where b
(j )
i are constants. Then, we have
∫ x j+1

ℓ

[∫ x j

ℓ

(

· · ·

∫ x2

ℓ

p (1) (x1) dx1 · · ·

)

p (j−1) (x j−1) dx j−1

]
p (j ) (x j )dx j

=

∫ x j+1

ℓ

���
4(j−1)
∑

i=0

b
(j )
i x ij

���
��

3
∑

i=0

a
(j )
i x ij

��dx j =
∫ x j+1

ℓ

��
4j−1
∑

i=0

c
(j )
i x ij

��dx j (10)

=

4j
∑

i=0

b
(j+1)
i x ij+1, (11)

where c
(j )
i in Equation (10) are constants, and Equation (11) is derived according to

Equation (9). Finally, setting j = n in Equation (11) and using the fact that xn+1 = r in
Equation (8), we can compute

Pr {(x1, . . . ,xn ∈ [ℓ, r ]) ∧ (x1 < x2 < · · · < xn )} =

4n
∑

i=0

b
(n+1)
i x in+1 =

4n
∑

i=0

b
(n+1)
i r i . (12)

Regarding the time complexity, evaluating the polynomial multiplication in Equation (10) takes
O ([4(j − 1) + 1] × [3 + 1]) = O (j ) time, and evaluating the integral in Equation (10) to obtain
Equation (11) also takesO (j ) time. So, evaluating the probability in Equation (12) takesO (n) time,
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so according to Equation (6), computing PIk (tiz < · · · < ti j ) takesO (j−z+1) time. Thus, computing

A[j][k] takes
∑j

z=1O (j − z + 1) = O (j2) time, as we compute each PIk (tiz < · · · < ti j ) individually.
Accordingly, computing pд (P ) requires computing all elements in the ℓ× s arrayA, which takes

∑

ℓ

j=1

∑s
k=1O (j2) = O (ℓ3s ) = O (ℓ3m) time, where the number of split points s ≤ 7m in our Gaussian

approximation scheme in Figure 6, and s ≤ 6m in our exponential approximation scheme in Fig-
ure 7. We can further optimize the computation:If Ik is outside the [−3σ , 3σ ]-interval (of the Gauss-
ian distribution) or [0, 5μ]-interval (of the exponential distribution) of some column value tiz when
we evaluate PIk (tiz < · · · < ti j ), then we can terminate early, since we have PIk (tiz′ < · · · < ti j ) = 0
for any z ′ ≤ z.

4 PATTERN SIGNIFICANCE CHECKING

In Section 3, we have already described how to compute the supporting probability of row д for
pattern P (i.e., pд (P )). This section explains how to evaluate the frequentness of a pattern P given
the supporting probabilities all rows.
As discussed in Section 2, it is straightforward to check whether a pattern P is frequent in terms

of expected support: We just check whether
∑

д∈G pд (P ) ≥ τrow , which takes O (n) time. There-
fore, this section focuses on explaining how we determine whether a pattern P is probabilistically
frequent.
We assume that different rows (e.g., genes, customers/visitors) in the data matrix are inde-

pendent of each other. This is a reasonable assumption similar to tuple independence in un-
certain databases and data point independence in machine learning and simplifies probability
computations.

4.1 Pattern Support PMF Computation

We define the support of a pattern P in data matrix D = (G,T ) as the number of rows in G that
supports P . Since each row д supports P only with probability pд (P ), the support of P is a random
variable, denoted as X .

We now consider how to compute the PMF of X , using the supporting probabilities pд (P ) of all
rows д ∈ G.
Naïve Method. Let fi (c ) be the PMF of the support of P in matrix Di , which consists of the first

i rows in D, where c = 0, 1, . . . , i (fi (c ) = 0 for other values of c). Then, we have the following
recursive formula:

fi+1 (c ) = pдi+1 · fi (c − 1) + (1 − pдi+1 ) · fi (c ). (13)

This is because P ’s support in Di+1 is c , iff (1) P ’s support in Di is (c − 1) and дi+1 supports P ,
or (2) P ’s support in Di is c and дi+1 does not support P . Note that Equation (13) holds only for
c = 1, . . . , i , and the products of probabilities are due to row independence (the same for later
equations and thus omitted).
When c = 0, we have

fi+1 (0) = (1 − pдi+1 ) · fi (0), (14)

since the support of P in Di+1 is 0, if and only if the support of P in Di is 0 and дi+1 does not
support P .
When c = i + 1, we have

fi+1 (i + 1) = pдi+1 · fi (i ), (15)

since the support of P in Di+1 is (i + 1), if and only if the support of P in Di is i and дi+1
supports P .
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Furthermore, we have the base case

f0 (0) = 1, (16)

since there is no row in D0 and the support of P must be 0.
For a data matrix D with n rows, the PMF ofX , denoted by fP (c ), is equal to fn (c ) (c = 0, . . . ,n),

since D = Dn . To compute the PMF fP (c ), we start with f0 (c ) and recursively compute fi+1 (c )

from fi (c ) until fn (c ) is computed. According to Equations (13), (14), and (15), it takesO (i ) time to
compute fi and thus O (n2) time to compute fP (c ).

Divide-and-conquer Algorithm. The naïve method takes time quadratic to the number of
rows, which does not scale well. We now describe another algorithm for computing the support
PMF fP (c ), which achieves better time complexity by the divide-and-conquer strategy.
Given a set S of rows, let us define f S (c ) as the PMF of the support of P in row set S , then our

ultimate goal is to compute f D (c ). To compute f S (c ), we first divide the rows in S into two sets
S1 and S2 of equal size. Let us denote |S | by n, then S1 contains the first ⌊

n
2 ⌋ rows, and S2 contains

the remaining ⌈n2 ⌉ rows.

Assume that f S1 (c ) and f S2 (c ) are already computed, then f S (c ) can be obtained by the follow-
ing formula:

f S (c ) =

c
∑

i=0

f S1 (i ) × f S2 (c − i ), (17)

since the event that “the support of P in S is c” can be decomposed into the disjoint events “the
support of P in S1 is i , and the support of P in S2 is (c − i )” for i = 0, . . . , c .

Note that |S | = n, while |S1 | = ⌊
n
2 ⌋ and |S2 | = ⌈

n
2 ⌉. In Equation (17), we define f S1 (c ) = 0 for

c > ⌊ n2 ⌋, and define f S2 (c ) = 0 for c > ⌈n2 ⌉.

According to Equation (17), f S is the convolution of f S1 and f S2 . Therefore, f S can be computed
from f S1 and f S2 in O (n logn) time using Fast Fourier Transform (FFT) [8].

Our divide-and-conquer algorithm for computing f S is described as follows: S is first divided
into two row sets S1 and S2 of equal size; then, PMFs f S1 and f S2 are computed by recursion;
finally, f S is computed as the convolution of f S1 and f S2 using FFT. Since each recursion step
takes O (n logn) time (due to FFT), the overall time complexity of computing f D (c ) is O (n log2 n).

The base case for recursion is when S = {д}, in which case, we directly return f S where f S (0) =
1 − pд and f S (1) = pд . In reality, we find that recursion down to |S | = 1 does not provide the best
performance. The most efficient configuration is to stop recursion when |S | ≤ 500 and compute
f S directly using the naïve method. We adopted this implementation.

4.2 Early Frequentness Validation

In the previous subsection, we described how to compute the PMF of the support of pattern P in
data matrix D. Once the PMF is computed, we can decide whether pattern P is p-frequent using
Equations (1) and (2) in Section 2.

However, this two-step approach is time-consuming, since it requires to compute the whole
PMF vector fP (c ), c = 0, . . . ,n. In fact, to determine whether pattern P is frequent, it is not always
necessary to compute fP to the end. The theorem below states that pattern P is frequent in D, as
long as it is found to be frequent in a subset of D. As a result, in our divide-and-conquer algo-
rithm, in each recursion step (that computes f S ), we will check the frequentness of P over S using
Equations (1) and (2), and if it is found to be frequent, we terminate the frequentness checking
immediately and conclude that P is frequent.

Theorem 4.1. Suppose that pattern P is p-frequent in S ′ ⊆ S , then P is also p-frequent in S .

Proof. See Appendix A.2. �
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4.3 Pattern Pruning

The frequentness checking operations described above is still very expensive (i.e., O (n log2 n)
time). We now present three pruning rules for pruning infrequent patterns. These rules can be
checked efficiently in O (n) time, and if any rule determines that a pattern P is infrequent, we do
not need to do the expensive frequentness checking for P . The proofs of these rules can be found in
Appendix A.3.

(1) Count-prune. Let cnt (P ) = |{д ∈ G | pд (P ) > 0}|, then pattern P is not p-frequent if cnt (P ) <
τrow .

(2) Markov-prune. Pattern P is not p-frequent if

∑

д∈G

pд (P ) = E (X ) < τrow × τprob .

(3) Exponential-prune. Let μ = E (X ) and δ =
τrow−μ−1

μ
. When δ > 0, pattern P is not p-

frequent if

(1) δ ≥ 2e − 1, and 2−δ μ < τprob , or

(2) 0 < δ < 2e − 1, and e−
δ 2µ
4 < τprob .

4.4 PMF Approximation

To further improve the efficiency of examining pattern frequentness using probabilistic frequent-
ness, instead of computing the exact PMF vector, we can use the Poisson or Gaussian distribution
to approximate the PMF, which reduces the time complexity from O (n log2 n) to O (n). We next
describe the two PMF approximation techniques using Poisson and Gaussian distributions,
respectively.

4.4.1 Approximation by Poisson Distribution. Given an uncertain data matrix with n rows, each
OPSM pattern P is associated with n supporting probabilities pд (P ), one for each row д ∈ G. Here,
each probability pд (P ) conforms to an independent Bernoulli distribution representing if the row
д supports pattern P . Since the rows are independent to each other, the n events {row д supports
pattern P } for all rows д ∈ G represent n Poisson trials. Let us denote the support of P by random
variable X , then X follows a Poisson-binomial distribution.

Our probabilistic frequentness of an OPSM is given by

Pr {X ≥ τrow } = 1 − Pr {X ≤ τrow − 1}, (18)

where Pr {X ≤ τrow − 1} is a Poisson-binomial cumulative distribution of random variable X . The
Poisson-binomial distribution can be approximated by the Poisson distribution, and Reference [18]
provided upper bound formulas on the difference between the two distributions in its Theorem 2;
the detailed form is a bit complicated and thus omitted here. In Section 7, we will also empirically
show that the performance of this approximation is close to the exact method.

Let us denote the Poisson distribution by f (k, λ) = λk e−λ
k

, and its cumulative distribution by
F (k, λ), F (k, λ) can be written as

F (k, λ) =
Γ(k + 1, λ)

k!
=

∫ ∞

λ
t (k+1)−1e−tdt

k!
,
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and F (k, λ) is monotonically decreasing w.r.t. λ, since we have

∂F (k, λ)

∂λ
=

∂

∂λ
��
∫ ∞

λ
t (k+1)−1e−tdt

k!
�� =

1

k!
·
∂

∂λ

(∫ ∞

λ

tke−tdt

)

=

1

k!
·
(

−λke−λ
)

= −f (k, λ) ≤ 0.

We propose an approximation algorithm that uses the Poisson cumulative distribution F (τrow −

1, μ ), where the expected support μ is given by μ =
∑

д∈G pд (P ). Specifically, the Poisson approxi-
mation of the probabilistic frequentness of P is given by

Pr {X ≥ τrow } ≈ 1 − F (τrow − 1, μ ). (19)

This approximation function of Pr {X ≥ τrow } increases monotonically with μ, since F (τrow −
1, μ ) decreasesmonotonicallywith μ. Based on the above discussion, we can calculate theminimum
expected support threshold μm by solving

1 − F (τrow − 1, μ ) = τprob . (20)

We use exponential search to solve for μm , and an OPSM is frequent if μ =
∑

д∈G pд (P ) ≥ μm .
We denote this probabilistic frequentness approximation that uses the Poisson distribution by
PF-P .

Computing the threshold μm using exponential search takes logarithmic time, while comput-
ing μ =

∑

д∈G pд (P ) takes O (n) time, so PF-P takes only O (n) time to judge OPSM frequentness
according to μ ≥ μm .

4.4.2 Approximation by Gaussian Distribution. We can also use the normal approximation
method with continuous correction as proposed by Reference [27] to approximate the CDF of
a Poisson binomial distribution, which is based on the Central Limiting Theorem. Specifically, we
can approximate the CDF of Poisson binomial (denoted by CDF (k )) as [27]:

CDF (k ) ≈ G

(

k − 1
2 − μ

δ

)

,

whereG (t ) =
∫ t

−∞ e
− x

2

2 dx is the Gaussian CDF.
We now consider how to approximate the PMF of support X , using the supporting probabilities

pд (P ) of all rows д ∈ G. Specifically, the expected support μ is given by μ =
∑

д∈G pд (P ), and the
standard deviation δ can be computed as

δ =

√
√

∑

д∈G

{

pд (P ) · (1 − pд (P ))

}

, (21)

and therefore the Gaussian approximation of the probabilistic frequentness of pattern P is given
by

Pr {X ≥ τrow } ≈ 1 −G ��
τrow −

1
2 − μ

δ
��. (22)

This method has a good approximation ratio whose error upper bound is given by Refer-
ence [27]:

sup
τrow

{�����Pr (X � τrow − 1) −G

(

τrow −
1
2 − μ

δ

) �����
}

� cδ −2,
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where c is a constant and the proof can be found in Reference [27]. The approximation ratio is
tighter for larger uncertain databases.
The approximation function for Pr {X ≥ τrow } is monotonically decreasing as t increases, since

we have
∂

∂t
(1 −G (t )) = −

∂

∂t
G (t ) = −

∂

∂t

∫ t

−∞

e−
x2

2 dx = −e−
t2

2 � 0,

where t =
τrow−

1
2−μ

δ
. Based on the above discussion, we can calculate the maximum t (i.e., tm ) as

the verification threshold, and the formula is given by

1 −G (tm ) = τprob ⇒ tm = G
−1 (1 − τprob ).

An OPSM is considered frequent if t =
τrow−

1
2−μ

δ
� tm . We denote this probabilistic frequentness

approximation that uses the Gaussian distribution by PF-G.
This method is expected to be more robust than the PF-P method, since it verifies the probabilis-

tic frequentness of an OPSM using both the expected support and the standard deviation (i.e., μ
and δ ), while FP-P only uses the expected support.
Computing the threshold tm using exponential search takes logarithmic time, while comput-

ing μ and δ (recall Equation (21)) takes O (n) time, so PF-G takes only O (n) time to judge OPSM

frequentness according to t =
τrow−

1
2−μ

δ
� tm .

5 MINING ALGORITHMS

In this section, we first propose a method for filtering out the rows д such that pд (P ) = 0. Then,
we describe our two OPSM mining algorithms that integrate the techniques we presented.

5.1 Row Filtering

Consider the matrix in Figure 3; it is obvious that д2 can never support pattern t3 < t4, i.e.,
pд2 (t3 < t4) = 0. We now describe how to determine whether pд (P ) = 0 efficiently without ac-
tually evaluating the supporting probability.
Given a pattern P = (ti1 < ti2 < · · · < ti j ), we define its valid interval as the interval [ℓP , rP ]

such that pд (P ) > 0 if and only if ti j ∈ [ℓP , rP ]. We now consider how to compute the valid interval
of a pattern P .
In the base case when P = ti1 , its valid interval is exactly the interval D[д][ti1] = [ℓi1 , ri1].
For pattern P = (ti1 < · · · < ti j ) (j > 1), we compute its valid interval using that of pattern

P ′ = (ti1 < · · · < ti j−1 ). Since row д supports P ′ if and only if ti j−1 ∈ [ℓP ′, rP ′], row д would support
P if and only if ∃ti j−1 ∈ [ℓP ′, rP ′] such that ti j−1 < ti j , or equivalently, ti j ∈ [max{ℓi j , ℓP ′ }, ri j ] �
[ℓP , rP ] (where [ℓi j , ri j ] is the interval D[д][ti j ]). Note that [ℓP , rP ] = ∅ if ℓP > rP , and in this case
pд (P ) = 0 and д can be filtered.

In our mining algorithm when checking pattern P ′, for each row д, we maintain the following
information: (1) its valid interval [ℓP ′, rP ′], (2) the ordered list of split points, and (3) the DP-array.
Since our mining algorithm checks patterns by pattern-growth, P will be checked after P ′. To
process д for pattern P , we will first compute [ℓP , rP ] = [max{ℓi j , ℓP ′ }, ri j ]. If ℓP > rP , then we
drop д from further consideration, since it does not contribute to the support of P . Otherwise, we
will compute the DP-array with that of д for P ′, using the algorithm of Section 3.3, to obtain pд (P ).

5.2 Algorithms

Pattern Anti-monotonicity. Suppose pattern P ′ is a sub-pattern of pattern P , then we have
the following conclusions: (1) For any row д, дp (P ) < дp (P

′). This is because in any possible
world instantiation of д, P ′ must be supported if P is supported. (2) When pattern frequentness
is defined using expected support, if P ′ is infrequent, then P must be infrequent. This is because
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ALGORITHM 2: Expected-support-based Frequentness Checking

1: Filter the rows in GP ′ with their valid intervals, to obtain GP along with the updated valid
intervals.

2: If |GP | < τrow , mark P as infrequent and return.
3: sum ← 0, sum0 ←

∑

д∈GP ′
pд (P

′)

4: for each д ∈ GP do

5: Compute the DP-array to obtain pд (P )
6: sum ← sum + pд (P ), sum0 ← sum0 − pд (P

′)

7: If sum + sum0 < τrow , mark P as infrequent and return.
8: if sum ≥ τrow then

9: Mark P as frequent and return.
10: else

11: Mark P as infrequent and return.

ALGORITHM 3: Probabilistic Frequentness Checking

1: Filter the rows in GP ′ with their valid intervals, to obtain GP along with the updated valid
intervals.

2: If |GP | < τrow , mark P as infrequent and return.
3: sum ← 0, sum0 ←

∑

д∈GP ′
pд (P

′)

4: for each д ∈ GP do

5: Compute the DP-array to obtain pд (P )
6: sum ← sum + pд (P ), sum0 ← sum0 − pд (P

′)

7: if sum + sum0 < τrow × τprob then

8: Mark P as infrequent and return.
9: Apply Exponential-Prune and return when P is pruned.
10: if P is validated as frequent by divide-and-conquer then
11: Mark P as frequent and return.
12: else

13: Mark P as infrequent and return.

∑

д∈G дp (P ) <
∑

д∈G дp (P
′). (3) If P ′ is probabilistically infrequent, then P must be probabilistically

infrequent. This is because in any possible world of D, the support of P ′ is at least the support
of P .
Frequentness Checking. Since our mining algorithms check patterns by pattern-growth, when
checking pattern P = (ti1 < · · · < ti j ), we make use of the information of the rows for computation
when checking P ′ = (ti1 < · · · < ti j−1 ).

Given a pattern P , letGP be the set of rows g ∈ Gwith pg (P) > 0, where each row is associated
with its valid interval, split point list and DP-array.

The expected-support-based frequentness checking of pattern P is described by Algorithm 2.
In Line 2, we prune P using the fact that pд (P ) ≤ 1 and thus

∑

д∈GP
pд (P ) ≤ |GP |. Furthermore,

we maintain two variables sum and sum0. Let C be the set of rows already processed, then sum =
∑

д∈C pд (P ) and sum0 =
∑

д∈(GP−C ) pд (P
′). Line 7 prunes P using the fact that

∑

д∈GP
pд (P ) = sum+

∑

д∈(GP−C ) pд (P ) ≤ sum + sum0.
Algorithm 3 checks the p-frequentness of pattern P , where the pruning rules described in

Section 4.3 are used: Line 2 applies Count-prune, Lines 7–8 applyMarkov-prune, and Line 9 applies
Exponential-prune.
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Mining by Prefix-projection.Our first mining algorithm is based on the idea of prefix-projection
used by sequential pattern mining [37], where the current pattern P = (ti1 < · · · < ti j ) is processed
using the projected row set GP ′ of P

′
= (ti1 < · · · < ti j−1 ).

The recursive algorithm, denoted as DFS (P ,GP ′ ),
1 finds all the frequent patterns with prefix P

fromGP ′ . Specifically, DFS (P ,GP ′ ) first checks whether P is frequent usingGP ′ (Algorithm 2 or 3).
If so, then it recursively calls DFS (ti1 < · · · < ti j < t ,GP ) for all t ∈ T − {ti1 , . . . , ti j }. The mining
algorithm starts by calling DFS (∅,G ).
For each recursion that processes P ,GP is maintained so the subsequent recursions for ti1 < · · ·
< ti j < t may use it. The maintenance of GP incurs a space cost of O (n · j2), since a DP-array of

size j × s = O (j2) is maintained for each row in GP , and the space can only be released after its
corresponding recursion is done.
Since our algorithm works in a depth-first manner, at mostm projected row sets are maintained

at any time, with the total space cost
∑m

j=1O (n · j2) = O (n ·m3).

For a pattern P of length ℓ, computing pд (P ) for all rows д using the pay-as-you-go algorithm of

Section 3.3 takes O (nℓ2) time; then frequency checking takes O (n) (respectively, O (n log2 n)) for
expected support (respectively, p-frequentness with FFT computation). If C patterns are checked,
then the time cost is bounded by C · O (nℓ2 + n) = O (Cnm2) (respectively, C · O (nℓ2 + n log2 n) =
O (Cn(m2

+ log2 n)). Additionally, row preprocessing of Section 3.1 takes O (nm logm) time.
We remark that the above analysis is very loose, andm can be replaced by ℓmax , the length of

the longest pattern checked.
The benefit of this algorithm is that, for any pattern P checked, its DP-arrays (of the rows inGP )

is computed exactly once; however, it can be expensive when the column set T is large, since the
recursions have to be called for all t ∈ T − {ti1 , . . . , ti j } and column candidate pruning is lacking.

Mining by Apriori. The Apriori algorithm works as follows: Starting with the set of all length-1
patterns, we construct length-j frequent patterns from the set of all length-(j−1) frequent patterns,
until there is no frequent pattern left.
We organize the set of length-j frequent patterns using a prefix-treeTj , like the FP-tree proposed

in Reference [15]. When computing length-j frequent patterns P = (ti1 < · · · < ti j ), we need GP ′

for P ′ = (ti1 < · · · < ti j−1 ).
However, the space cost is prohibitive if we maintainGP ′ for each frequent length-(j−1) pattern

P ′ due to the breadth-first search order. Therefore, we choose to recompute GP ′ over the prefix-
treeTj−1 in a depth-first manner (like the prefix-projection method without pattern pruning), and
when recursing to the last tree-node ti j−1 , we check whether P = (ti1 < · · · < ti j−1 < ti j ) is frequent
for all possible column candidates ti j ∈ C (we will discuss how to compute the candidate set C
later), and if P is checked to be frequent, then it is inserted to the new prefix-tree Tj .

Unlike the prefix-projection method, we need to recompute GP when checking all prefix-trees
Tz (z ≥ j). However, the computation in the same tree is still shared. For example, Gt1<t2 is used
for computing both Gt1<t2<t3 and Gt1<t2<t4 .
We now consider how to determine ti j ’s candidate set C .

Theorem 5.1. For any column t that is not a child of tree-node ti j−2 in Tj−1, pattern P = (ti1
< · · · < ti j−1 < t ) is infrequent.

Proof. Since P ′ = (ti1 < · · · < ti j−2 < t ) is infrequent, its super-pattern P should also be
infrequent according to pattern anti-monotonicity. �

1We name the algorithm as DFS due to its depth-first recursion nature.
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Thus, we choose C to include all child nodes of node ti j−2 in Tj−1. Compared with the prefix-
projection method,C is much smaller than (T − {ti1 , . . . , ti j−1 }) and thus the recursion has a much
smaller fan-out.
The pattern anti-monotonicity also allows for the following pattern pruning:

Theorem 5.2. For any length-j pattern P , if not all of the length-(j − 1) sub-pattern of P exist in

Tj−1, then P is infrequent.

Theorem 5.2 is efficient to check and is thus examined before the more expensive frequentness
checking of Algorithms 2 or 3, which requires computing the DP-array for all rows in GP .
In the Apriori algorithm, computing pд (P ) of patterns of length ℓ requires re-computing the

DP-array for frequent patterns of length < ℓ; this brings an additional factor of ℓmax to our prefix-
projection algorithm’s time complexity, since each P is re-processed for at most ℓmax times. In
return, the algorithm enjoys a small recursion fan-out, which, however, is not reflected in time
complexity analysis.

6 PARALLEL MININGWITH PREFIXFPM

As we have shown in Section 5.2, our serial mining algorithms can be very costly. A natural idea to
speed up the mining is by utilizing parallelization, but our algorithms are based on pattern growth
and are not embarrassingly parallel. Fortunately, a recent parallel programming framework called
PrefixFPM [29, 30] was proposed to parallelize any frequent pattern mining algorithm that adopts
the idea of prefix projection. PrefixFPM adopts a think-like-a-task computation model that is able
to fully utilize the available CPU cores. To adapt our algorithm to run with PrefixFPM, we need to
properly map our methods to PrefixFPM’s task-based programming interface, by identifying the
basic unit of a task, and how to create children tasks during pattern growth to create sufficient
parallelism.
Interestingly, our problem can be regarded as a frequent pattern mining problem as targeted by

PrefixFPM: Each pattern is given by P = (ti1 < · · · < ti j ), and its frequency is evaluated either
by expected support or probabilisitic frequentness. We remark that while PrefixFPM already has
seven applications on top [30] for mining patterns such as sequences, trees, and subgraphs, none
of them mines submatrix patterns or considers a probabilistic setting, and our new addition to
PrefixFPM application pool fills this void.
We next describe the implementation of our prefix-projection algorithm on PrefixFPM.We asso-

ciate each pattern P ′ in a pattern-growth search tree with a task tP ′ , which checks the frequentness
of P ′ using its projected databaseGP ′ and which grows the pattern by one more element ti j to gen-
erate the children patterns {P } and their projected databases GP (computed incrementally from
GP ′ rather than from the entire D). These children patterns give rise to new tasks {tP } that are
added to a shared task queue to be fetched by computing threads for further processing.
PrefixFPM runs a number of computing threads that fetch pattern-tasks from a shared task

queue Qtask for concurrent processing. In PrefixFPM, (i) a depth-first task scheduling strategy
is used to minimize the memory footprint of patterns in processing, (ii) tasks in a small pattern-
growth search subtree are processed by a single thread to avoid frequent queue contention, and
(iii) a timeout mechanism is used for task decomposition to avoid stragglers [30].

To write a PrefixFPM program, we need to specify the template arguments of some predefined
base classes and implement their provided user-defined functions (UDFs) with the application
logic.
One base class is ProjTrans, which specifies a row in the projected database GP . In our imple-

mentation, a ProjTrans object keeps (1) the row ID of д ∈ G that can be used to fetch information
of д from D and (2) the DP-array A for computing pд (P ).
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Another base class is Pattern, for which we keep a sequence [i1, i2, . . . , i j ] for a pattern P =

(ti1 < · · · < ti j ), the projected database GP and its expected support
∑

д∈G pд .
The third class is Task, which contains two key UDFs: (1) pre_check(fout), which is called

initially by task tP to check if P is frequent, and if so, to output P to an output stream fout. In
our implementation, we only output P if its length is at least τcol ; tP does not need to check
the condition for τrow here, since, as we shall see below, we only create tP if P satisfies the
frequentness condition regarding τrow ; (2) setChildren(), which generates child-patterns {P ′′}
along with their projected databasesGP ′′ by scanningGP . Here, we check the expected support or
p-frequentness of each child-pattern P ′′, where we apply the various pruning rules we previously
introduced. Only those frequent child-patterns are retained to create new tasks for mining, which
effectively reduces the number of tasks created and is critical to the program efficiency according
to our experimental tests.
The last base class Worker contains a UDF setRoot(Qtask ) to indicate how to bootstrap mining

by creating initial tasks into the task queue Qtask . In our case, we create the singleton patterns
P = ti for all i = 1, 2, . . . ,m as the initial tasks.

7 EXPERIMENTS

This section evaluates the performance of our proposed algorithms on real datasets and compares
it with existing approaches POPSM [12], where each matrix entry is modeled as a uniformly
distributed interval, and OPSMRM [33], where each matrix entry is represented directly by the
replicates.
When the number of replicates for each matrix entry is limited, we assume a uniform value dis-

tribution by default, since it introduces a small inductive bias compared with a more sophisticated
distribution. We denote our prefix-projection (respectively, Apriori)-based mining algorithm by
“DFS” (respectively, “Apri”), for pattern frequentness, we denote expected support (respectively, p-
frequentness) by “ES” (respectively, “PF”). Thus, we have four algorithm variants: DFS-ES, Apri-ES,
DFS-PF, and Apri-PF. In addition, since the FFT algorithm for checking p-frequentness of a pattern
is expensive, we further proposed two probability approximation algorithms using the Poisson and
Gaussian distributions, respectively, to check the p-frequentness, which improves the cost from
O (n log2 n) to O (n); we denote the Gaussian-based approximation algorithms by DFS-PF-G and
Apri-PF-G, and the Poisson-based approximation algorithms by DFS-PF-P and Apri-PF-P.

Whether the mining algorithm is “DFS” or “Apri” does not impact the output. Therefore, when
we evaluate result quality, we use ES for bothDPS-ES andApri-ES; PF for bothDPS-PF andApri-PF ;
PF-P for both DFS-PF-P and Apri-PF-P ; and PF-G for both DFS-PF-G and Apri-PF-G.

To test the effectiveness of our cubic spline approach to approximate an arbitrary uncertain
value distributions as described in Section 3.4, we also consider Gaussian value distributions. As
we shall see in later experiments, using Gaussian value distribution can generate results of a
higher quality, but it is two orders of magnitude slower than using uniform value distributions.
The reasons are twofold: (1) we cannot use an elegant closed-form formula as in Corollary 3.2
to compute PIk (ti1 < ti2 < · · · < ti j ), but rather have to use the much more expensive recursive
integral computation as specified in Equation (11) of Section 3.4; (2) we can no longer use the incre-
mental computation scheme as specified by Equation (7) in Section 3.2, but rather have to compute
each PIk (ti1 < ti2 < · · · < ti j ) from scratch. As a result, we run experiments with Gaussian value
distributions only on our gene expression microarray datasets that have a relatively small number
of columns, and for the other real datasets with many more columns, we only run experiments
with uniform value distributions for the purpose of scalability. Note that the number of patterns
grows exponentially with the number of columns, and so does the running time. Exponential
distribution is a less-convincing assumption of the value distribution than Gaussian, but we also
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Table 2. Datasets Used to Evaluate Our OPSM Model

ID Rows Columns Replicates

GDS2712 7,826 7 3

GDS2002 5,474 10 3

GAL 205 20 4

MovieLens 943 100 N/A

RFID 105 80 N/A

report its performance on a representative dataset to show the generality of our cubic spline
approach.
To indicate whether an algorithm assumes uniform value distributions or Gaussian value distri-

butions, we append each algorithm name with “(U)” (respectively, “(G)”) to indicate that uniform
(respectively, Gaussian) distribution is adopted. For example, for DFS-PF, we have DFS-PF(U) and
DFS-PF(G). Similarly, we use “(E)” to indicate that exponential distribution is adopted.
All serial experiments were conducted on a PC with Intel i7-6700K quad core CPU at 4 GHz,

16 GB DDR4 memory and 120 GB SSD. Our parallel programs were run on a server with 64 CPU
cores (IBM POWER8 CPU at 3,491 MHz) and 1 TB RAM. Our complete code is released at the
following GitHub link: https://github.com/wenwenQu/OPSM.

7.1 Experimental Setup

Datasets. As Table 2 shows, five publicly available real datasets were used in our experiments,
including three microarray gene expression datasets, a movie rating dataset, and an RFID user
trace dataset.
Among the three biology datasets, GDS2712 and GDS20022 are microarray datasets of the

baker’s yeast Saccharomyces cerevisiae from the Gene Expression Omnibus (GEO) database [3],
where each matrix entry has three replicates. We also tested some other datasets such as GDS2713,
GDS2715, and GDS2003, and we found that the results are similar and hence omitted to avoid
redundancy in presentation. For GDS2712, the 7,826 rows shown in Table 2 are obtained from
preprocessing, where we removed those unidentified genes and control probes, since they cannot
be used to calculate the biological significance p-value against the database of ground-truth gene
functional categories.
The other biology dataset, GAL,3 is regarding yeast galactose utilization [32], which was also

used by References [12, 33]. As Table 2 shows, GAL contains 205 gene probes (rows) and 20 exper-
imental conditions (columns) with four replicates for each entry in the matrix.
For the gene expression microarray datasets, we construct a uniform value interval for every

matrix entry as [min,max], where min (respectively, max ) is the minimum (respectively, maxi-
mum) replicated value of the entry from repeated experiments. As for Gaussian value distribution,
given a matrix entry with replicates, we compute their sample mean μ and sample variance σ and
assume that the matrix entry has a value followingN (μ,σ 2). We fit its PDF with a cubic spline as
we described in Section 3.4, and we only consider the six intervals [μ − 3σ , μ − 2σ ], [μ − 2σ , μ −σ ],
[μ − σ , 0], [0, μ + σ ], [μ + σ , μ + 2σ ], [μ + 2σ , μ + 3σ ] when computing pд (P ). We similarly fit the
PDF of exponential value distributions following our discussion in Section 3.4.
Besides the gene expression datasets, we also used a movie rating dataset MovieLens4 with

100,000 ratings from 943 users on 1,682 movies [16] to evaluate the algorithms. The movie rating

2https://www.ncbi.nlm.nih.gov/sites/GDSbrowser.
3http://genomebiology.com/content/supplementary/gb-2003-4-5-r34-s8.txt.
4https://grouplens.org/datasets/movielens/100k/.
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dataset is an incomplete matrix, and we used TensorFlow to conduct factorization-based matrix
completion, which provides a complete 943 × 1,682 user rating matrix M , where Mi j estimates
User i’s rating towards Movie j. The loss function of factorization is given by

reduce_sum
(

PΩ ( |M
0 −UV |)

)

,

where M0 is the observed rating matrix with missing values, M = UV is the estimated rating
matrix,U ∈ R943×10,V ∈ R10×100, |X | takes the element-wise absolute value, reduce_sum(X ) sums
all elements of X , and PΩ (X ) projects to a matrix where the (i, j )-th element equals Xi j if matrix
entry (i, j ) in M0 is observed, and 0 otherwise. Put simply, the goal is to minimize the difference
between M0 and M for those elements that are observed in M0. Implementation in TensorFlow is
simple, with operators like tf.abs for taking the absolute value, tf.subtract for matrix subtraction,
tf.gather to collect elements at observed matrix locations, and tf.reduce_sum to compute the sum
of elements. We learn U and V by initializing them with truncated normal sampling, running
stochastic gradient descent with a learning rate of 10−3 and a staircase decay of rate 0.96, and
running for 100,000 steps.
To consider only the popular movies, we select the top-100 movies that get the most user rat-

ings, which generates a 943 × 100 submatrix Ms of M . Since each new rating r is now a low-rank
approximation, we introduced uncertainty to each rating r . A rating in the original data takes its
value from {1, 2, 3, 4, 5}; after matrix completion, a rating is a real value like r = 3.4, in which case,
we assign an interval [3, 4] to the matrix entry, and for OPSMRM, we assign replicates {3, 4}. Other
reasonable methods to assign uncertainty to the values can also be used. Note that user ratings
are intrinsically uncertain: (1) the discrete rating values {1, 2, 3, 4, 5} are coarse-grained and pref-
erences among the movies with the same rating are not captured; (2) different users have different
bias on the rating scale, with some giving rating 5 only to movies they like while others giving
rating 4 also to such movies. Such uncertainty should be captured by relaxing the strict values in
{1, 2, 3, 4, 5}.
Finally, we also prepared an RFID dataset,5 which contains the traces of 12 voluntary users

in a building with 195 RFID antennas installed. Only 80 antennas are active, i.e., they detect the
trace of at least one user for at least one time. The trace of a user consists of a series of (period,
antenna) pairs, which indicates the time period during which the user is continuously detected by
the antenna. When a user is detected by the same antenna at different time periods, we split the
raw trace into several new traces in which the user is detected by any antenna for at most one
time. We then generate a matrix having 105 rows (i.e., user traces) and 80 columns (i.e., antennas),
where the (i, j )-th element records the potential interval of time that User i is near Antenna j, and
an OPSM thus records a group of users that visits a group of locations (captured by antennas) in
the same time order. To run OPSMRM for comparison, the set of timestamps within each time
period is enumerated to generate the corresponding set-valued matrix.

Evaluation Metrics. The following metrics are studied to evaluate result quality, time efficiency,
and space efficiency, respectively:

(1) Result Quality: For the microarray gene expression datasets, we use the biological significance
of the mined OPSMs to demonstrate the result quality of our proposed method. We adopt a widely
used metric, p-value [12, 21, 33], which measures the association between OPSMs mined and the
known gene functional categories. Specifically, a smaller p-value indicates a stronger association
between an OPSM and gene categories, i.e., biologically more significant. Following Reference
[12], we also consider four exponential-scale p-value ranges as significance levels, such as [0, 10−40),

5http://lahar.cs.washington.edu/content/Download/RFIDData/rfidData.html.
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[10−40, 10−30), [10−30, 10−20), and [10−20,∞) (the actual ranges depend on the concrete datasets). To
compare the result quality of our algorithms with those of the existing algorithms, we use the
number and proportion of OPSMs mined at each significance level.
For the movie rating dataset, we define a Kendall tau score (KTS) motivated by the concept

of Kendall tau distance: For a mined OPSM with movie order t1 < t2 < · · · < tk , we compute a
KTS for each user дi in the OPSM, which equals the fraction of all possible C2

k
movie pairs (ti , tj )

where the rating order is consistent with that in our 943×100 submatrixMs ; the KTS of the OPSM
is then computed as the average KTS over all its users.
For the RFID dataset, each mined OPSM consists of a set of users sharing a common subroute

passing a subset of antennas. We define a measure called the trace matching score (TMS) as
follows: For each minded OPSM with subroute P = (t1 < t2 < · · · < tk ), we compute a TMS for
each user дi in the OPSM as follows:

TMS (дi , P ) =
longest_common_subsequence(Tдi , P )

|P |
,

where Tдi denotes the manually annotated ground-truth trace of дi , which is also provided by the
RFID dataset. The TMS of the OPSM is then computed as the average TMS over all its users.

(2) Time Efficiency: We evaluate the time efficiency of the algorithms by considering the follow-
ing two metrics:

• TR-Time: total running time for mining the OPSMs;
• SP-Time: the average time for mining a single OPSM.

Here, SP-Time equals TR-Time divided by the number of patterns mined.

(3) Space Efficiency: We report the peak memory consumption of each program run in our
experiments.

All experiments were repeated for 10 times and the reported metrics were averaged over the
10 runs (although the results observed from different runs are actually quite stable/similar).

For the purpose of succinct presentation, we abuse the term “more than” (similarly for “less than”
and “fewer than”): When we say thatA is k times more than B, we meanA = k ·B, notA = (1+k ) ·B.
The terms “more,” “less,” and “fewer” are meant to indicate the directions of comparison.

As an overview of our findings, our ES and PF algorithms are robust and output higher-quality
OPSMs than OPSMRM and POPSM, and generally find more OPSMs. Our algorithms also con-
sistently outperform OPSMRM and POPSM in terms of SP-Time in the context of uniform value
distributions. ES consumes the least amount of memory, and PF consumes more memory than ES

but generally less memory than OPSMRM and POPSM. PF performs the best w.r.t. result quality
and quantity. Among other findings, using Gaussian value distributions as the uncertain model
generally outperforms the uniform distribution model scheme, but the running time is two orders
of magnitude longer; using exponential value distributions exhibits a similar performance. Finally,
our parallel algorithm for prefix-projection-based mining scales well with the number of mining
threads.
The rest of this section is organized as follows: Section 7.2 reports the results on GDS2712 and

GDS2002 in terms of the result quality and quantity, running time, and peak memory cost. There,
we use GDS2712 to demonstrate that our algorithms are efficient even when exponential value
distribution is adopted. Due to space limitation, we report the results on GAL in Appendix B.
Section 7.3 then uses the GDS2712 dataset to study the effect of parameters τcut and τprob , and
Section 7.4 compares row selection strategies to justify the use of τcut . Subsequently, Section 7.5 re-
ports the vertical scalability experiments of our parallel prefix-projection-based mining algorithm,
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Fig. 8. Fractions of OPSMs at the four significance levels for different size thresholds on GDS2712.

with additional scalability results in Appendix C. Section 7.6 reports our results onMovieLens, and
Section 7.7 replicates the MovieLens to generate datasets of different sizes to study the algorithm
scalability. Finally, Section 7.8 reports the results on the RFID user trace dataset.

7.2 Performance Comparison on GDS2712 and GDS2002

Size Thresholds τrow and τcol for Testing. Both datasets are used in Reference [33] for evalua-
tion, and following Reference [33], we fix τcut = 0.6 for them. In fact, we also tested the other GDS
datasets in Reference [33] such as GDS2713, GDS2715, and GDS2003, and the results are very sim-
ilar and thus omitted. Since the results are similar for various τprob values, we only show results
when τprob = 0.5 to save space (see Section 7.3 for more results on the effect of τprob ). While many
(τrow ,τcol ) pairs are possible, we would like to show a limited number of typical combinations
so they can fit in one figure to be readable. For GDS2712, we set τcol = 4 and vary τrow among
{400, 500, 600, 700, 800} to show the effect τrow . For GDS2002, we vary τrow among {200, 300, 400}
but also vary τcol among {2, 3} to show the effect of τcol .

Result Quality. Figure 8 presents the fraction of mined OPSMs that fall in each significance level

for GDS2712. We see that our algorithms find larger fractions of high-quality OPSMs than POPSM
and OPSMRM, as they have taller white bars (representing the highest significance level with p-
value ∈ [0, 10−20)). For example, when (τrow ,τcol ) = (800, 4), our proposed ES(U), PF(U), PF-G(U),
and PF-P(U) all have 90% patterns falling into the highest significance level, while POPSM and
OPSMRM have only 50%. Moreover, our proposed ES(U), PF(U), PF-G(U), and PF-P(U) discovered a
significantly larger number of OPSM patterns compared with POPSM and OPSMRM as shown in
Table 3. We can see that our algorithms using uniform value distributions generate consistently
more OPSMs than POPSM and OPSMRM (and of higher quality as well). Furthermore, if we look
at the numbers of OPSMs falling in the highest significance level, then when (τrow ,τcol ) = (800, 4),
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Fig. 9. Fractions of OPSMs at four significance levels (with exponential distributions) on GDS2712.

Table 3. Number of OPSMs w.r.t. Size Thresholds on GDS2712

(400,4) (500,4) (600,4) (700,4) (800,4) (900,4)

DFS/Apri-ES(U) 277 178 126 92 67 35

DFS/Apri-PF(U) 277 178 126 92 67 35

DFS/Apri-PF-G(U) 264 171 120 86 62 32

DFS/Apri-PF-P(U) 275 177 126 92 67 35

DFS/Apri-ES(G) 482 324 244 171 125 93

DFS/Apri-PF(G) 482 342 245 171 126 93

DFS/Apri-PF-G(G) 464 316 228 162 120 90

DFS/Apri-PF-P(G) 482 342 245 171 126 93

DFS/Apri-ES(E) 335 239 159 117 89 59

DFS/Apri-PF(E) 335 239 159 117 89 59

DFS/Apri-PF-G(E) 325 228 155 113 85 57

DFS/Apri-PF-P(E) 335 239 159 117 89 59

OPSMRM 74 46 21 7 2 2

POPSM 113 78 51 26 10 7

our proposed ES(U), PF(U), PF-G(U), and PF-P(U) have 60, 60, 55, and 60 patterns falling into the
highest significance level, respectively, while POPSM and OPSMRM have only 5 and 1, respectively.

As for our algorithms using Gaussian value distributions, while Figure 8 shows that they do
not always have a taller white bar than the uniform distribution variants (e.g., much taller when
(τrow ,τcol ) = (400, 4) but shorter when (τrow ,τcol ) = (800, 4)), the absolute OPSM counts found
in each significance level dominates those of the uniform distribution variants, as we can see from
Table 3, showing that using the more expensive Gaussian distribution algorithm variants does pay
off in result quality.
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Fig. 10. Fractions of OPSMs at the four significance levels for different size thresholds on GDS2002.

Figure 9 presents the fraction of mined OPSMs that fall in each significance level for GDS2712,
similar to Figure 8 except that we replace those algorithms adopting Gaussian value distributions
with those adopting exponential value distributions. We can see that using exponential value dis-
tributions leads to much shorter white bars than using uniform distributions when (τrow ,τcol ) =

(800, 4), even though the absolute result counts are consistently higher, as shown in Table 3.
Comparing Figure 8 with Figure 9, we can see that using Gaussian value distributions is a better

assumption than using exponential value distributions, since the former has a taller white bar. The
same holds true when comparing absolute result counts as shown in Table 3, where using Gaussian
value distributions consistently leads to more results for every (τrow ,τcol ) setting.

For the future experiments on the other datasets, we only consider uniform and Gaussian value
distributions, since using exponential value distributions leads to a lower result quality than us-
ing Gaussian value distributions, while both are much more expensive than using uniform value
distributions due to the need of applying the expensive cubic spline approach.
As Table 3 shows, among our algorithms, PF performs better than ES, as well as PF-G and PF-P.

This verifies that considering PMF gives better results than considering only expectation. Also note
that PF-G and PF-P produce results not far behind PF, and in fact, PF-P(G) gives the same results as
PF(G), and PF-P(E) gives the same results as PF(E), showing that our approximations are accurate.
As for GDS2002, Figure 10 presents the fraction of mined OPSMs that fall in each significance

level, while Table 4 shows the absolute counts. We observe similar results as on GDS2712. Specifi-
cally, Figure 10 shows that our algorithms find larger fractions of high-quality OPSMs than POPSM
and OPSMRM, as they have taller white bars. The absolute counts in all the significance levels are
also much higher, as Table 4 shows, with the absolute counts found by the Gaussian distribution
algorithm variants in each significance level dominating those of the uniform distribution variants.
This shows that using the more expensive Gaussian distribution algorithm variants does pay off
in result quality. The comparative performances of the various algorithms also exhibit the same
observations as those on GDS2712.
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Table 4. Number of OPSMs w.r.t. Size Thresholds on GDS2002

(200,2) (200,3) (300,2) (300,3) (400,2) (400,3)

DFS/Apri-ES(U) 3,635 3,545 1,972 1,882 1,278 1,188

DFS/Apri-PF(U) 3,647 3,557 1,976 1,886 1,281 1,191

DFS/Apri-PF-G(U) 3,427 3,337 1,884 1,794 1,231 1,141

DFS/Apri-PF-P(U) 3,624 3,534 1,967 1,877 1,274 1,184

DFS/Apri-ES(G) 5,627 5,537 3,960 3,870 2,431 2,341

DFS/Apri-PF(G) 5,629 5,539 3,964 3,874 2,439 2,439

DFS/Apri-PF-G(G) 5,459 5,369 3,740 3,650 2,272 2,182

DFS/Apri-PF-P(G) 5,629 5,539 3,963 3,873 2,438 2,348

OPSMRM 908 818 659 569 477 387

POPSM 1,272 1,182 888 798 683 593

Fig. 11. Total runtime w.r.t. size thresholds (τrow ,τcol ) on GDS2712 (uniform value distributions).

Fig. 12. Average single-pattern runtime w.r.t. (τrow ,τcol ) on GDS2712 (uniform value distributions).

Time Efficiency.We hereby report the experimental results on time efficiency for GDS2712. The
time results on GDS2002 are very similar and thus omitted.
Figures 11 and 12 show the total running time TR-Time and average single-pattern running time

SP-Time, respectively, of our proposedmethods adopting uniform value distributions, as well as the
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Fig. 13. Total runtime w.r.t. size thresholds (τrow ,τcol ) on GDS2712 (Gaussian value distributions).

Fig. 14. Average single-pattern runtime w.r.t. (τrow ,τcol ) on GDS2712 (Gaussian value distributions).

existing algorithms OPSMRM and POPSM for different size thresholds (τrow ,τcol ). From Figure 11,
we can see that POPSM runs faster than our methods, and OPSMRM has comparable total running
time with our methods, but recall that both POPSM and OPSMRM mined significantly less OPSM
patterns than our algorithms and their results are of poorer qualityw.r.t. all different size thresholds
(τrow ,τcol ). For example, as Table 3 shows, when (τrow ,τcol ) = (800, 4), our ES(U) discovered
33.5 times more OPSMs than OPSMRM and 6.7 times more than POPSM.

According to Figure 12, OPSMRM has the worst SP-Time, and our methods have comparable
average single-pattern running time (SP-time) with POPSM. Among our methods, PF-G and
PF-P algorithms are always faster than PF, and in some cases the DFS algorithms run faster than
our Apri algorithms: For example, DFS-ES runs faster than Apri-ES. This is because the GDS2712
dataset is small with merely 7 columns, so many of our pruning techniques are not effective. As
we shall see later, on the GAL dataset with 20 columns and MovieLens dataset with 100 columns,
Apriori-based algorithms are faster than DFS-based ones.

Figures 13 and 14 show the total running time TR-Time and average single-pattern running time
SP-Time, respectively, of our proposed methods adopting Gaussian value distributions. We can
see that the comparative performances of our algorithms are very similar to those in Figures 11
and 12 in the context of uniform value distributions. However, algorithms using Gaussian value
distributions are two orders of magnitude more expensive.
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Fig. 15. Total runtime w.r.t. size thresholds (τrow ,τcol ) on GDS2712 (exponential distributions).

Fig. 16. Average single-pattern runtime w.r.t. (τrow ,τcol ) on GDS2712 (exponential distributions).

Figures 15 and 16 show the total running time TR-Time and average single-pattern running time
SP-Time, respectively, of our proposed methods adopting exponential value distributions. We can
see that the performances of our algorithms are very similar to those in Figures 13 and 14 in the
context of Gaussian value distributions, actually slightly more expensive but comparable. This
shows that our cubic spline approach is efficient and can handle various value distributions.

Memory Efficiency. We hereby report the experimental results on memory efficiency for
GDS2712. The memory cost results on GDS2002 are very similar and thus omitted.
Figure 17 shows the peak memory usage of various algorithms using uniform value distribu-

tions. We can see that our algorithms have a consistently lower peak memory consumption than
OPSMRM. As an illustration, when (τrow ,τcol ) = (400, 4), our Apri-ES algorithm consumes 6.6
times less memory than OPSMRM. Our less memory usage does not compromise the number of
mined OPSMs, as Table 3 already indicates. our algorithms discovered many times more OPSMs
than OPSMRM and POPSM. For example, when (τrow ,τcol ) = (400, 4), our DFS/Apri-ES algorithms
discovered 2.5 times more OPSMs than OPSMRM and 3.7 times more OPSMs than POPSM.

Our DFS/Apri-PF algorithms consume more memory than DFS/Apri-ES due to the need of pro-
cessing PMF vectors (cf. Section 4.2), but they generate higher-quality OPSMs (in terms of p-value)
than ES (cf. Figure 8). However, even DFS/Apri-PF algorithms have a much lower memory con-
sumption compared with OPSMRM. While POPSM tends to consume slightly less memory than
our algorithms, it outputs much fewer OPSMs.
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Fig. 17. Peak memory w.r.t. size thresholds (τrow ,τcol ) on GDS2712 (uniform value distributions).

Fig. 18. Peak memory w.r.t. size thresholds (τrow ,τcol ) on GDS2712 (Gaussian value distributions).

Figure 18 shows the peak memory usage of our algorithms using Gaussian value distributions,
and compared with Figure 17, we can see that their memory cost is one order of magnitude higher.
This is reasonable, because each matrix entry now introduces seven split points (cf. Figure 6)
rather than two as in the uniform interval case, and the recursive integral computation as spec-
ified in Equation (11) now requires the maintenance of a high-order polynomial for probability
computation.
Figure 19 shows the peakmemory usage of our algorithms using exponential value distributions,

and compared with Figure 18, we can see that the memory cost is very similar.

7.3 Effect of Probability Threshold and Inclusion Threshold

We next report the experiments on the effect of τcut and τprob using the GDS2712 dataset. The
results on the other datasets are similar and thus omitted.

Effect of Inclusion Threshold τcut . We fix τrow = 400 and τcol = 3, since various methods
generate comparable number of OPSMs with these parameters. We also fix τprob = 0.5 for DFS-PF
and Apri-PF, but vary τcut among {0.2, 0.3, 0.4, 0.5, 0.6}. Figure 20 shows the fraction of OPSMs in
each significance level for every algorithmwith different inclusion threshold τcut . Table 5 presents
the number of OPSMs mined with different inclusion threshold τcut , where we can see that our
algorithms consistently findmore OPSMs than POPSM andOPSMRM at various values of τcut in all
significance levels, and those with Gaussian value distributions are better than those with uniform
value distributions. In terms of the distribution of OPSMs among various significance levels, we
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Fig. 19. Peak memory w.r.t. size thresholds (τrow ,τcol ) on GDS2712 (exponential distributions).

Fig. 20. OPSM result distribution w.r.t. τcut on GDS2712.

can see from Figure 20 our algorithms consistently have a tall white bar (with those using Gaussian
distributions being taller), while OPSMRM is only competitive when τcut is very low (however, the
absolution count is much lower, as shown in Table 5).

Effect of Probability Threshold τprob .We study the effect of τprob used in PF by fixing (τrow =

600,τcol = 4) and τcut = 0.2; and varying τprob from 0.2 to 0.95 with a step length of 0.05.
First consider PF(U) algorithms. Table 6 shows the number of OPSMs mined at each value of

τprob , and Figure 21 shows their distribution in different significance levels. We can see that our
approach is very robust, not sensitive to parameter τprob , and has consistent performance in terms
of result quality. Figure 22 shows the TR-Time of PF, PF-G, and PF-P algorithmsw.r.t. diffierent τprob .
We can see that our DFS-based algorithms are faster than Apriori-based ones, which is often the
case when the number of results are small. However, we tested that when the number of results
reach thousands, our Apriori-based algorithms are actually faster, since the additional pruning
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Table 5. Number of OPSMs w.r.t. Inclusion Thresholds

τcut on GDS2712

0.2 0.3 0.4 0.5 0.6

DFS/Apri-ES(U) 478 478 430 339 281

DFS/Apri-PF(U) 478 478 430 339 281

DFS/Apri-PF-G(U) 463 463 427 339 281

DFS/Apri-PF-P(U) 478 478 430 339 281

DFS/Apri-ES(G) 692 676 559 429 347

DFS/Apri-PF(G) 692 676 559 429 347

DFS/Apri-PF-G(G) 674 662 559 429 347

DFS/Apri-PF-P(G) 692 676 559 429 347

POPSM 430 340 281 236 192

OPSMRM 192 171 155 128 97

Table 6. Number of OPSMs w.r.t. τprob on GDS2712

(Uniform Value Distributions)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DFS/Apri-PF 130 128 127 126 124 123 120 120

Fig. 21. OPSM result distribution w.r.t. τprob on GDS2712 (uniform value distributions).

power of the Apriori-based algorithms outweighs the pruning cost. Recall, for example, Figures 36
and 37 for GAL. So, both algorithms have their merits.

We also tested PF(G) algorithms, with Table 7 showing the number of OPSMsmined at each value
of τprob , Figure 23 showing their distribution in different significance levels, and Figure 24 showing
the TR-Time of PF, PF-G, and PF-P algorithms w.r.t. different τprob . We can observe similar results,
except that the TR-Time is two orders of magnitude slower (compare Figure 24 with Figure 22),
and the result quality is higher, as can been seen from the taller white bars in Figure 23 than in
Figure 21, and the larger number of results in Table 7 than in Table 6.

7.4 Comparing Row Selection Strategies

Recall that after (Step 1) mining patterns P = (ti1 , ti2 , . . . , tiℓ ) that are deemed significant, we
(Step 2) select those rows whose supporting probabilities are at least τcut into the OPSM for each
pattern P .

ACM Transactions on Database Systems, Vol. 47, No. 2, Article 7. Publication date: May 2022.



7:36 J. Cheng et al.

Fig. 22. Total running time w.r.t. τprob on GDS2712 (uniform value distributions).

Table 7. Number of OPSMs w.r.t. τprob on GDS2712

(Gaussian Value Distributions)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DFS/Apri-PF 251 249 248 244 236 234 228 223

Fig. 23. OPSM result distribution w.r.t. τprob on GDS2712 (Gaussian value distributions).

We remark that our row selection strategy in Step 2 is reasonable, since τcut directly reflects the
confidence level of supporting probability, which is intuitive to end-users. An alternative approach
is to select k rows whose supporting probabilities are the highest, but it is difficult to ask end-users
to set a proper k . One way is to set k as τrow , but this tends to be an underestimate, since each
of the k rows has pд (P ) < 100% while τrow is defined with respect to each deterministic possible
world.

To compare these two strategies, Figure 25 shows our previous experiments on GDS2712 assum-
ing uniform value distributions, where algorithms endingwith “(U)” are those that select rowswith
pд ≥ τcut = 0.6 into the OPSMs, and algorithms ending with “(k)” are those that select rows with
k = τrow highest values of pд into the OPSMs. We can see that the latter row selection method
consistently delivers fewer highly significant OPSMs, as the white bars are much shorter. Also,
Figure 26 shows our previous experiments on GDS2712 assuming Gaussian value distributions,
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Fig. 24. Total running time w.r.t. τprob on GDS2712 (Gaussian value distributions).

Fig. 25. OPSMs at the four levels for different row selection strategies (uniform value distribution).

and we can obtain the same observation that selecting rows with k = τrow highest values of pд is
inferior to our adopted strategy of selecting rows by τcut in terms of result quality.

7.5 Vertical Scalability of Parallel Mining

Recall that Section 6 presents a parallel version of our prefix-projection-based mining algorithm.
We now explore its vertical scalability by varying the number of mining threads to be 1, 2, 4, 8,
16, 32, and 64. Figure 27 shows the scalability curve for our four algorithms with uniform value
distributions on GDS2712 when (τrow ,τcol ) = (400, 4). Figure 28 shows the scalability curve for
our four algorithms with uniform value distributions on GDS2002 when (τrow ,τcol ) = (200, 2). We
can see that the running time clearly reduces as we increase the number of mining threads. For
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Fig. 26. OPSMs at the four levels for different row selection strategies (Gaussian Value distribution).

Fig. 27. Total running time w.r.t. # of threads on GDS2712 (uniform value distributions).

example, in Figure 28, our parallel PF takes 56.27 seconds when mining with one thread, but the
time reduces to 3.80 seconds when mining with 32 threads, and the time reduces to 2.89 seconds
when mining with 64 threads. Appendix C reports the results for our algorithms with Gaussian
value distributions, where we observe even better speedups. We also report the speedups of our
parallel algorithm over the other datasets in Appendix C, as well as the peak memory usage results.

7.6 Experiments on the Movie Rating Dataset

Recall from Section 7.1 that we use a completed movie rating matrix to find OPSMs where users
share the same preference order over a set of movies, and that a Kendall tau score (KTS) is
defined to judge how well an OPSM pattern is reflected in its users’ movie ratings. We now report
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Fig. 28. Total running time w.r.t. # of threads on GDS2002 (uniform value distributions).

Table 8. Total Running Time (sec.) w.r.t. Size Thresholds on the Movie

Rating Dataset

(200, 4) (200, 5) (300, 4) (300, 5) (400, 4) (400, 5)

Apri-ES 1,604 1,286 262 225 61 59

Apri-PF 2,871 2,261 473 440 123 125

Apri-PF-G 1,420 1,138 221 189 52 50

Apri-PF-P 1,512 1,212 241 207 58 54

DFS-ES 2,358 1,938 412 370 100 96

DFS-PF 6,345 5,640 1,155 1,104 300 297

DFS-PF-G 4,998 4,107 937 841 252 241

DFS-PF-P 3,678 3,022 808 726 211 202

POPSM OOM OOM 14,643 14,209 5,133 5,200

OPSMRM 235 235 216 216 197 197

the results on the movie rating dataset where we added uncertain intervals to the discrete scale
ratings.

Time Efficiency. Table 8 shows the TR-Time of various algorithmswith different (τrow ,τcol ) (with-
out loss of generality, we fix τcut = 0.3 and τprob = 0.6), where OOM means out of memory. Note
that when τrow = 200, POPSM always runs out of memory after 10 hours. OPSMRM has the short-
est TR-Time but it failed to produce any OPSMs that satisfy the τcol threshold. We see that our
methods are tens of times faster than POPSM, and ES methods are faster than PF, as they do not
process PMF vectors. Also, our Apriori-based algorithms are faster than their DFS-based counter-
parts due to the effective pattern pruning. Finally, approximation algorithms PF-P and PF-G provide
reasonable speedup to PF.

Effectiveness. Without loss of generality, we consider τcut = 0.3, τprob = 0.6, τrow = 300, and
vary τcol = 5 and visualize the top-10 OPSMs mined by DFS/Apri-ES, DFS/Apri-PF, and POPSM

with the highest KTS. We remark that in this set of experiments, our DFS-ES consumes 2,582× less
memory than POPSM and 3,294× less memory than OPSMRM.

Table 9(a) lists the top-10 OPSM patterns with the highest KTS produced by ES, Table 9(b) by
PF, Table 9(c) by PF-P, Table 9(d) by PF-G, and Table 9(e) by POPSM. To be space-efficient, we use
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Table 9. Movie Pattern Visualization

(a) Top-10 OPSMs by DFS/Apri-ES

t1 t2 t3 t4 t5 KTS

TI ID AFO IO MPHG 99.52%

TI ID MB IO MPHG 99.41%

TI ID SL IO MPHG 99.39%

TI RK AN DW MPHG 99.37%

TI ID JM IO MPHG 99.35%

TI ID SL CA MPHG 99.35%

ET TK AN TT MPHG 99.27%

TI MI AFO IO MPHG 99.26%

TI ID US IO MPHG 99.24%

TI ID SS IO MPHG 99.20%

(b) Top-10 OPSMs by DFS/Apri-PF

t1 t2 t3 t4 t5 KTS

TI ID AFO IO MPHG 99.52%

TI ID MB IO MPHG 99.41%

TI ID SL IO MPHG 99.39%

TI ID JM IO MPHG 99.35%

TI ID SL CA MPHG 99.35%

TI ID Jaws CA MPHG 99.26%

TI R RK AN MPHG 99.24%

TI R RK AN PB 99.18%

TI R Jaws CA MPHG 99.17%

TI ET SL CA MPHG 99.17%

(c) Top-10 OPSMs by DFS/Apri-PF-P

t1 t2 t3 t4 t5 KTS

TI ID AFO IO MPHG 99.52%

TI ID MB IO MPHG 99.41%

TI ID SL IO MPHG 99.39%

TI RK AN DW MPHG 99.37%

TI ID JM IO MPHG 99.35%

TI ID SL CA MPHG 99.35%

TI MI AFO IO MPHG 99.24%

TI ID US IO MPHG 99.24%

TI ID SS IO MPHG 99.19%

TI ID G IO MPHG 99.18%

(d) Top-10 OPSMs by DFS/Apri-PF-G

t1 t2 t3 t4 t5 KTS

TI ID AFO IO MPHG 99.52%

TI ID MB IO MPHG 99.41%

TI ID SL IO MPHG 99.39%

TI ID JM IO MPHG 99.35%

TI ID SL CA MPHG 99.35%

TI ID Jaws CA MPHG 99.26%

TI R RK AN MPHG 99.24%

TI R RK AN PB 99.18%

TI R Jaws CA MPHG 99.17%

TI ET SL CA MPHG 99.17%

(e) Top-10 OPSMs by POPSM

t1 t2 t3 t4 t5 KTS

TI ID AFO IO MPHG 99.32%

TI RK AN CA MPHG 99.24%

R RK AN PB MPHG 99.19%

R RK AN IO MPHG 99.19%

TI RK MB IO MPHG 99.19%

ET RK AN S MPHG 99.19%

TI ID SL IO MPHG 99.19%

TI ID MB IO MPHG 99.19%

TI RK AN PB MPHG 99.16%

TI ID SL CA MPHG 99.15%

abbreviations for movie names, and their meanings are listed in Table 10. We can see that the
OPSMs mined by our methods generally have a higher KTS.

Memory Efficiency. Table 11 shows the peak memory usage of our algorithms, POPSM

and OPSMRM w.r.t. size thresholds (τrow ,τcol ), where OOM represents Out of Memory. When
(τrow ,τcol ) = (200, 4) or (200, 5), POPSM ran out of memory after running for 10 hours (or more
accurately, 603 minutes). It is clear that our Expected Support (ES)-based mining algorithms,
namely, Apri-ES and DFS-ES, have a consistently much lower peak memory consumption than all
the other algorithms. As an illustration, when (τrow ,τcol ) = (300, 5), DFS-ES consumes 2,582 times
less memory than POPSM and 3,294 times less memory than OPSMRM, and our Apri-ES consumes
720 times less memory than POPSM and 918 times less memory than OPSMRM. Also, our PMF
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Table 10. Movie Names and Their Abbreviations

Titanic (1997) TI Ransom (1996) R

Independence Day (1996) ID Rock, The (1996) RK

Air Force One (1997) AFO Apocalypse Now (1979) AN

In & Out (1997) IO Chasing Amy (1997) CA

Princess Bride, The (1987) PB Schindler’s List (1993) SL

Sting, The (1987) S Men in Black (1997) MB

Dances with Wolves (1990) DW Terminator, The (1984) TT

Mission: Impossible (1996) MI Jerry Maguire (1996) JM

Usual Suspects, The (1995) US Sense and Sensibility (1995) SS

Game, The (1997) G E.T. the Extra-Terrestrial (1982) ET

Monty Python and the Holy Grail (1974) MPHG

Table 11. Peak Memory w.r.t. Size Thresholds on the Movie Rating Dataset

(200, 4) (200, 5) (300, 4) (300, 5) (400, 4) (400, 5)

Apri-ES 66.9MB 65.1MB 18.6MB 16.5MB 8.9MB 8.3MB

Apri-PF 8.6GB 8.6GB 2.2GB 2.2GB 0.63GB 0.63GB

Apri-PF-G 68.3MB 67.2MB 19.3MB 17.1MB 9.2MB 8.9MB

Apri-PF-P 69.1MB 67.4MB 19.2MB 17.4MB 9.4MB 9.0MB

DFS-ES 4.9MB 5.1MB 4.5MB 4.6MB 4.3MB 4.1MB

DFS-PF 8.6GB 8.6GB 2.2GB 2.2GB 0.63GB 0.63GB

DFS-PF-G 10.1MB 10.1MB 8.4MB 8.1MB 7.7MB 7.7MB

DFS-PF-P 5.2MB 5.4MB 5.4MB 5.5MB 5.7MB 5.4MB

POPSM OOM OOM 11.9GB 11.6GB 4.5GB 4.5GB

OPSMRM 14.8GB 14.8GB 14.8GB 14.8GB 14.8GB 14.8GB

approximation-based PF algorithms also use memory comparable to (or more accurately, slightly
larger than) the ES counterparts, and the memory usage is three orders of magnitude less than
their exact PF counterparts. This shows that our PMF approximation allows PF-based mining algo-
rithms to scale to much larger datasets given the same memory budget, even though the speedup
ratio is not as significant.

7.7 Scalability Experiments

To examine how well our algorithms scale to the number of rows and columns of a data matrix D,
we duplicate the rows and columns of our 943× 100 movie rating submatrixMs to generate larger
datasets for running scalability experiments.
To test row scalability, we duplicated the rows of Ms for 100, 200, 300, 400, and 500 times, and

ran the various algorithms on them. Without loss of generality, we set τrow = 0.6 ∗ n (where n is
the row number) and fix τcol = 5 and τprob = 0.6. Unfortunately, OPSMRM runs out of memory
even on the smallest data with Ms ’s rows duplicated for 100 times, so we cannot report its result.
The results for the other algorithms are shown in Figure 29, where we observe that POPSM is
much slower than our algorithms, and that Apri-ES, Apri-PF-P, and Apri-PF-G are much faster than
the other algorithms. Overall, the time of all algorithms scale linearly with row number n, which
matches our derived time complexityO (Cn(m2

+ log2 n)) in Section 5.2 (i.e., almost linear to n and
quadratic tom).
To test column scalability, we duplicated the columns of Ms for 2, 4, 8, and 16 times and ran

the various algorithms on them. Here, we set τrow = 700,τcol = 5, and τprob = 0.6. The results
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Fig. 29. Scalability to the number of rows on the movie rating dataset.

Fig. 30. Scalability to the number of columns on the movie rating dataset.

are shown in Figure 30, where we observe that the running time of various algorithms increase
quickly with column numberm, which aligns with our analysis. Although OPSMRM has a similar
running time to our algorithms, the memory consumption rises quickly with more columns. Also,
OPSMRM runs out of memory when the columns are duplicated for four times and thus, we only
plot two points for it in Figure 30. Finally, POPSM is not only slower than all our algorithms, its
curve slope is also steeper.

7.8 Experiments on RFID User Trace Dataset

Recall from Section 7.1 that we use an RFID user trace dataset to find OPSM patterns that reveal
a group of users who travel to a sequence of locations in the same time order, and that a trace

matching score (TMS) is defined to judge how well an OPSM pattern is reflected in its users’
actual travel trajectories that are manually annotated. We now report the results on the RFID user
trace dataset where uniform time intervals are imposed at each visit location (i.e., antenna). We
also compare our methods with POPSM and OPSMRM. However, OPSMRM always runs out of
memory in this set of experiments and is thus not reported.
In this set of experiments, we use τprob = 0.8 and τcut = 0.6 for PF algorithms. Figure 31 shows

the fraction of OPSMs in each significance level for our algorithms and POPSM with different
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Fig. 31. Fractions of OPSMs at the five significance levels for different size thresholds on RFID.

Table 12. Number of OPSMs w.r.t. Size Thresholds on RFID

(10, 5) (10, 6) (11, 5) (11, 6) (12, 5) (12, 6)

DFS/Apri-ES 8,201 2,787 5,713 2,161 3,381 938

DFS/Apri-PF 8,201 2,787 5,713 2,161 3,381 938

DFS/Apri-PF-G 8,102 2,749 5,588 2,103 3,274 884

DFS/Apri-PF-P 1,422 384 452 54 45 23

POPSM 11 5 8 4 6 2

(τrow ,τcol ), and Table 12 presents the number of OPSMs mined. We can see that POPSM mines
very few patterns compared with our algorithms, and all OPSMs are with TMS in the range of
[0.8, 0.9), while our algorithms are able to find OPSMs with TMS > 0.9 (i.e., black bars). Moreover,
PF-G still achieves performance close to that of PF even when PF-P fails to get close. This verifies
that PF-G is more robust than PF-P, thanks to its use of both the expected support and the standard
deviation (i.e., μ and δ ) while FP-P only uses the expected support, as we have indicated at the end
of Section 4.4.2.

Figures 32 and 33 show the total running time TR-Time and average single-pattern running time
SP-Time, respectively, of our algorithms and POPSM for different size thresholds (τrow ,τcol ). From
Figure 32, we can see that POPSM runs faster than our methods, but recall that POPSM mined
significantly less OPSM patterns than our algorithms and their results are of poorer quality. Also,
PF-P algorithms are also fast but recall that the number of OPSMs found is much smaller than
our other algorithms. According to Figure 33, POPSM has the worst SP-Time, followed by PF-P

algorithms, due to their small number of OPSMs found.
Figure 34 shows the peak memory usage of our algorithms and POPSM. We can see that the

memory cost of PF algorithms is much higher than the other algorithms. In this set of experiments
ES and PF-G have similar result quantity and quality, showing that ES is effective in certain datasets,
and PF-G is a good approximationmethod that reduces the cost significantlywhile retaining similar
results as with PF.
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Fig. 32. Total runtime w.r.t. size thresholds (τrow ,τcol ) on RFID.

Fig. 33. Average single-pattern runtime w.r.t. (τrow ,τcol ) on RFID.

Fig. 34. Peak memory w.r.t. size thresholds (τrow ,τcol ) on RFID.

8 RELATEDWORK

In this section, we review the most related studies, i.e., OPSM mining (especially over noisy ma-
trices). Appendix D discusses additional related works on ranking uncertain data and frequent
pattern mining over uncertain data.
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The existing works that are closely related to ours are References [4, 12, 33]. The OPSM mining
problem is a kind of biclustering problem [2] and is first introduced in Reference [4] to analyze
gene expression data. Ben-Dor et al. [4] prove that the problem is NP-hard and propose a heuristic
mining algorithm to mine significant OPSMs. Later, Cheung et al. [6] develop a more efficient
mining algorithm based on a new data structure, the head-tail trees. Gao et al. [13] define the
concept of twig clusters, which are OPSMswith large numbers of columns (and thus low supports),
and propose the KiWi framework to efficiently mine the twig clusters.
Although the above studies are able to discover interesting biological associations between

genes and tests, they are too restrictive in practice, since real gene expression data are noisy.
OP-clustering [21] generalizes the OPSM model by grouping attributes into equivalent classes
and uses a data structure, OPC-tree, to mine the generalized OPSMs. More recently, other more
noise-tolerant submatrix models are proposed by relaxing the order requirement, such asApprox-
imate Order-Preserving Cluster (AOPC) [34] and Relaxed Order-Preserving Submatrix

(ROPSM) [11].

The OPSMRM Model. Yip et al. [33] combat noise in microarray analysis by letting each test
be repeated to obtain several measurements, forming possible worlds with discrete probability
distribution. Only expected support is used to evaluate pattern significance, and for each significant
pattern, all rows whose supporting probability is at least the inclusion threshold τcut are selected
to compose a submatrix. However, as Section 7 has shown, PF generates higher-quality OPSMs
than ES due to considering the whole PMF, and the interval model delivers better results.

The POPSM Model. Fang et al. [12] attempt to model the underlying distributions that generate
the observedmeasurements, and thus, the value in eachmatrix entry is given by an interval with its
associated continuous probability distribution. However, instead of defining pattern frequentness
according to the possible world semantics, POPSM adopts a simple requirement that every row in
an output OPSM has its supporting probability no less than a user-defined threshold τcut , which is
unclear how to set properly due to the lack of semantics from the perspective of probability theory.

9 CONCLUSION

We studied the problem of probabilistically-frequent OPSMmining over a data matrix with contin-
uous value uncertainty, following thewell-established possibleworld semantics. To our knowledge,
this is the first OPSMminingwork that combines both possible world semantics and interval-based
data model. We proposed many techniques to efficiently determine pattern significance (including
approximation methods) and to prune unpromising patterns. Experiments show that our algo-
rithms find OPSMs with much higher quality than existing approaches, and the time efficiency
and scalability (e.g., memory usage) is also competitive.

APPENDIX

A PROOFS

A.1 Proof of Theorem 3.1

Proof.

Pr {(x1, . . . ,xn ∈ [ℓ, r ]) ∧ (x1 < x2 < · · · < xn )}

=

∫ r

ℓ

[∫ xn

ℓ

(

· · ·

∫ x2

ℓ

p1dx1 · · ·

)

pn−1dxn−1

]
pndxn

=
��

n
∏

i=1

pi�� ·
∫ r

ℓ

dxn

∫ xn

ℓ

dxn−1 · · ·

∫ x2

ℓ

dx1
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Let us define xn+1 = r . Then, if we can prove that the following equation holds for any positive
integer i

∫ xi+1

ℓ

dxi

∫ xi

ℓ

dxi−1 · · ·

∫ x2

ℓ

dx1 =
(xi+1 − ℓ)

i

i!
, (23)

then Theorem 3.1 is proved by setting i = n.
We prove Equation (23) by induction:

• Base Case: when i = 1, we have
∫ x2

ℓ

dx1 = x2 − ℓ =
(x2 − ℓ)

1

1!
;

• Inductive Step: Suppose that
∫ xi

ℓ

dxi−1 · · ·

∫ x2

ℓ

dx1 =
(xi − ℓ)

i−1

(i − 1)!
,

then
∫ xi+1

ℓ

dxi

∫ xi

ℓ

dxi−1 · · ·

∫ x2

ℓ

dx1

=

∫ xi+1

ℓ

(xi − ℓ)
i−1

(i − 1)!
dxi

=

1

(i − 1)!

∫ xi+1

ℓ

(xi − ℓ)
i−1d (xi − ℓ)

=

1

(i − 1)!

∫ xi+1

ℓ

d
(xi − ℓ)

i

i
=

(xi+1 − ℓ)
i

i!
. �

A.2 Proof of Theorem 4.1

Proof. Suppose that the rows in set S is divided into two sets S1 and S2. It is sufficient to prove
that, when P is p-frequent in S1, it is also p-frequent in S .
Let us denote the support of P in a set S by X S , and denote the PMF (and CDF) of X S by f S (c )

(and F S (c )). When P is p-frequent in S1, according to Equation (2), we have

1 − F S1 (τrow − 1) = Pr {X S1 ≥ τrow } ≥ τprob . (24)

According to Equation (24), F S1 (τrow−1) ≤ 1−τprob . If we can prove F
S (τrow−1) ≤ F S1 (τrow−1),

then we are done, since this implies F S (τrow − 1) ≤ F S1 (τrow − 1) ≤ 1 − τprob , or equivalently,

Pr {X S ≥ τrow } = 1 − F S (τrow − 1) ≥ τprob .

We now prove F S (τrow − 1) ≤ F S1 (τrow − 1). Let us denote τ
′
row = τrow − 1. Then, we obtain

F S (τ ′row ) =

τ ′row
∑

i+j=0

f S1 (i ) × f S2 (j )

=

τ ′row
∑

i=0

τ ′row−i
∑

j=0

f S1 (i ) × f S2 (j )

=

τ ′row
∑

i=0

f S1 (i ) ×

τ ′row−i
∑

j=0

f S2 (j )
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=

τ ′row
∑

i=0

f S1 (i ) × F S2 (τ ′row − i )

≤

τ ′row
∑

i=0

f S1 (i ) = F S1 (τ ′row ) �

A.3 Proof of Pattern Pruning Rules in Section 4.3

(1) Count-Prune. Let cnt (P ) = |{д ∈ G | pд (P ) > 0}|, then pattern P is not p-frequent if cnt (P ) <
τrow .

Proof. When cnt (P ) < τrow , Pr {X ≥ τrow } ≤ Pr {X > cnt (P )} = 0. �

(2) Markov-Prune. Pattern P is not p-frequent if
∑

д∈G

pд (P ) = E (X ) < τrow × τprob .

Proof. According to Markov’s inequality, E (X ) < τrow × τprob implies that Pr {X ≥ τrow } ≤

E (X )/τrow < τprob . �

(3) Exponential-Prune. Let μ = E (X ) and δ =
τrow−μ−1

μ
. When δ > 0, pattern P is not p-

frequent if

(1) δ ≥ 2e − 1, and 2−δ μ < τprob , or

(2) 0 < δ < 2e − 1, and e−
δ 2µ
4 < τprob .

Proof. According to Chernoff Bound, we have

Pr {X > (1 + δ )μ} <
⎧⎪⎨⎪⎩
2−δ μ , δ ≥ 2e − 1

e−
δ 2µ
4 , 0 < δ < 2e − 1

,

and if we set δ =
τrow−μ−1

μ
, i.e., (1+δ )μ = τrow − 1, we have Pr {X > (1+δ )μ} = Pr {X ≥ τrow }. �

B PERFORMANCE COMPARISON ON GAL

Effect of Size Thresholds τrow and τcol .We follow [12]’s parameter settings of τrow and τcol for
evaluating of GAL by fixing τcut = 0.5 and τprob = 0.95. This is because with τprob = 0.95 the
number of OPSMs mined by different algorithms are similar to each other, which makes it fair to
compare the percentage of patterns in each significance level. Also, since the results are similar for
various τcut values, we only show results when τcut = 0.5 to save space (see Section 7.3 for more
results on the effect of τcut ).

Result Quality. We vary τrow among {40, 50, 60} and vary τcol among {4, 5}. Figure 35 presents
the fraction of mined OPSMs that fall in each significance level. For example, the first bar “(40, 4),
DFS-ES/Apri-ES(U)” represents the distribution of the patterns mined by DFS-ES(U) or Apri-ES(U)
with τrow = 40,τcol = 4. We see that our algorithms that assume Gaussian value distributions find
apparently larger fractions of high-quality OPSMs, than uniform ones, followed by POPSM and
then by OPSMRM. This can be seen from how tall white bars are (representing the highest signifi-
cance level with p-value ∈ [0, 10−40)). For example, when (τrow ,τcol ) = (60, 4), our proposed ES(G)
and PF(G) have 60.2% and 68.2% patterns falling into the highest significance level, respectively;
our proposed ES(U) and PF(U) have 51.4% and 61.7% patterns falling into this level, respectively;
while POPSM and OPSMRM have only 36.9% and 39.7% falling into this level, respectively. Among
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Fig. 35. OPSM Result Distribution w.r.t. Size Thresholds on GAL.

Table 13. Number of OPSMs w.r.t. Size Thresholds on GAL

(40, 4) (40, 5) (50, 4) (50, 5) (60, 4) (60, 5)

DFS/Apri-ES(U) 6,296 3,246 2,537 834 1,033 144

DFS/Apri-PF(U) 4,867 2,253 1,967 562 804 94

DFS/Apri-PF-G(U) 4,179 1,842 1,751 452 658 50

DFS/Apri-PF-P(U) 4,394 2,265 1,771 582 720 100

DFS/Apri-ES(G) 4,626 693 1,916 92 749 7

DFS/Apri-PF(G) 2,533 274 1,030 36 333 4

DFS/Apri-PF-G(G) 2,136 168 874 23 286 4

DFS/Apri-PF-P(G) 1,772 80 566 17 103 4

POPSM 5,687 3,177 3,003 1,290 1,475 355

OPSMRM 2,989 887 1,141 169 406 10

our algorithms, PF performs the best in terms of result distribution in significant levels, followed
by PF-G and PF-P and then by ES.
Table 13 presents the number of OPSMs mined, and we can see that ES(U) has more OPSMs

than PF(U) and POPSM, followed by PF-P(U) and PF-G(U), and then by OPSMRM. We can see that
ES and POPSM may work better than PF for small datasets (GAL has only 205 rows compared
with GDS2712 with 7,826 rows and GDS2002 with 5,474 rows), but OPSMRM is always the worst
showing the need of a continuous uncertain model. When the number of rows is large, PF is better
because the p-frequentness computation more accurately captured due to the larger number of
samples for the underlying Poission-binomial distribution.
The above comparisons are for algorithms that assume a uniform PDF or PMF. When Gaussian

value distributions are adopted, the number of patterns is reduced compared with a uniform dis-
tribution assumption, as can be seen from Table 13, which is different from the observations on
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Fig. 36. Total Runtime w.r.t. Size Thresholds (τrow ,τcol ) on GAL (Uniform Value Distributions).

Fig. 37. Average Single-Pattern Runtime w.r.t. (τrow ,τcol ) on GAL (Uniform Value Distributions).

GDS datasets. This is likely because most probability mass in Gaussian is concentrated around the
mean, making the support probability much lower for those patterns P that deviate slightly from
the order of the mean entry values. Apparently, Gaussian distributions are too strict and tend to
miss such patterns (i.e., the recall is not high) on GAL, but recall from Figure 35 that the fraction of
significant OPSMs found is high (i.e., the precision is high). We expect that if more replicates are
observed for each entry, we can better capture the value distribution, and the recall of using Gauss-
ian distributions will improve and has the potential to beat the algorithm variants using uniform
distributions.

Time Efficiency. Figures 36 and 37 show the total running time TR-Time and average single-
pattern running time SP-Time, respectively, of our proposed methods adopting uniform value dis-
tributions, as well as the existing algorithms OPSMRM and POPSM for different (τrow ,τcol ). From
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Fig. 38. Total Runtime w.r.t. Size Thresholds (τrow ,τcol ) on GAL (Gaussian Value Distributions).

Fig. 39. Average Single-Pattern Runtime w.r.t. (τrow ,τcol ) on GAL (Gaussian Value Distributions).

Figure 36, we can see that our fast Apriori-based mining algorithms Apri-ES and Apri-PF have
a shorter total running time compared with POPSM, except when (τrow ,τcol ) = (40, 4) where
Apri-ES is 0.3 second slower than POPSM (but discovers 611 more OPSMs). OPSMRM has the
shortest running time among all the methods, but it discovers the fewest number of OPSMs. In
fact, according to Figure 37, OPSMRM has the worst SP-Time. Apri-ES and Apri-PF perform better
than POPSM in terms of SP-Time, as they discovered more OPSMs. PF-P and PF-G algorithms are
always faster than PF, and while Apri-PF-P is faster than Apri-ES, DFS-PF-G is slightly slower than
DFS-ES.
Figures 38 and 39 show the total running time TR-Time and average single-pattern running time

SP-Time, respectively, of our proposed methods adopting Gaussian value distributions. We can
see that the comparative performances of our algorithms are very similar to those in Figures 36
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Fig. 40. Peak Memory w.r.t. Size Thresholds (τrow ,τcol ) on GAL (Uniform Value Distributions).

and 37 in the context of uniform value distributions. However, algorithms using Gaussian value
distributions are two orders of magnitude more expensive.
Memory Efficiency. Figure 40 shows the peak memory usage of various algorithms using
uniform value distributions. We can see that Apri-ES, DFS-ES, Apri-FP-G, DFS-FP-G, Apri-FP-P,
and DFS-FP-P have a much lower memory consumption compared with the other algorithms. For
example, when (τrow ,τcol ) = (40, 4), DFS-ES consumes 12.6 times less memory than OPSMRM, and
16.9 times less memory than POPSM. As Table 13 shows, our less memory usage does not compro-
mise the number of mined OPSMs: for example, when (τrow ,τcol ) = (40, 4), ES discovers 2.1 times
more OPSMs than OPSMRM and 1.1 times more OPSMs than POPSM. Our PF algorithms use more
memory than ES due to the need of processing PMF vectors (cf. Section 4.2), but they generate
higher-quality OPSMs (in terms of p-value) than ES (cf. Figure 35). Compared with OPSMRM

and POPSM, PF algorithms have a much lower memory consumption than OPSMRM and POPSM

especially when (τrow ,τcol ) = (40, 4) and (40, 5) where the number of OPSMs mined are large. In
fact, as Figure 40 shows, POPSM consistently uses the most memory under different parameter
settings.
Figure 41 shows the peak memory usage of our algorithms using Gaussian value distributions,

and compared with Figure 40, we can see that their memory cost is one order of magnitude higher.
This is reasonable because each matrix entry now introduces 7 split points (cf. Figure 6) rather
than 2 as in the uniform interval case, and the recursive integral computation as specified in Equa-
tion (11) now requires the maintenance of a high-order polynomial for probability computation.

C ADDITIONAL EXPERIMENTS ON SCALABILITY OF PARALLEL MINING

Figure 42 shows the scalability curve for our four algorithms with Gaussian value distributions on
GDS2712 when (τrow ,τcol ) = (400, 4). Figure 43 shows the scalability curve for our four algorithms
with Gaussian value distributions on GDS2002 when (τrow ,τcol ) = (200, 2). We can see that the
running time clearly reduces as we increase the number of mining threads.
Table 14 reports the running times of our serial prefix-projection-based mining algorithms, their

parallel counterparts with 1 thread and 32 threads, respectively, and the speedup achieved with
32 threads over 1 thread, when using uniform value distributions. Note that our parallel algorithm
runningwith 1 thread takes around twice the time of our serial algorithm. This is because the serial
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Fig. 41. Peak Memory w.r.t. Size Thresholds (τrow ,τcol ) on GAL (Gaussian Value Distributions).

Fig. 42. Total Running Time w.r.t. # of Threads on GDS2712 (Gaussian Value Distributions).

mining algorithmwas run on a PCwith 4GHz CPU, but our parallel mining algorithmwas run on a
server with 3,491 MHz CPUs. Compared with the serial program, our parallel implementation also
introduces some additional overheads when running with 1 mining thread, such as task creation
and scheduling cost, but overall the performance is comparable. In contrast, increasing the number
of threads in our parallel program can often lead to over one order of magnitude of speedup, which
shows the effectiveness of our parallelization in improving the mining efficiency.
Table 15 reports the running times of our serial and parallel prefix-projection-based mining

algorithms, when using Gaussian value distributions.We can observe an even better speedup often
exceeding 20×when running with 32 threads, which is because using Gaussian value distributions
leads to a much heavier mining workload, allowing the tasks to be more evenly distributed among
the mining threads.
Tables 16 and 17 report the peak memory consumption of our parallel mining programs, where

we can see that while the memory usage increases with the number of threads, it does not increase
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Fig. 43. Total Running Time w.r.t. # of Threads on GDS2002 (Gaussian Value Distributions).

much thanks to the depth-first task scheduling strategy that prioritizes deeper-expanded patterns
for processing to keep the number of active patterns/tasks effectively under control.

D ADDITIONAL RELATED WORK

This section discusses additional related works on ranking uncertain data, and frequent pattern
mining over uncertain data.

D.1 Ranking Uncertain Data

The problem of top-k queries (or ranking queries) has been extensively studied over uncertain
databases, in which each tuple is associated with an uncertain score, and the objective is to find
top-k tuples with the largest ranking scores in the probabilistic sense.
Many semantics for top-k queries on uncertain data are proposed in the literature, and they can

be categorized into 3 classes, based on the uncertain data models they use:

• Tuple-Level Uncertain Data Model. Figure 44(a) illustrates an uncertain database con-
forming to the tuple-level uncertain data model, where the tuples record the velocity mea-
surements of cars detected by different radars at a location on a highway. Due to device
limitations, the detection is not 100% accurate and each tuple is thus associated with an oc-
currence probability. Furthermore, different tuples may refer to the same car (e.g., tuples 2
and 6), but only one of them may occur (e.g., the velocity of Car 2 is 120 with 70% proba-
bility and is 80 with 30% probability). Many ranking semantics are proposed in this context,
including References [9, 14, 17, 20, 24, 28, 36].
• Discrete Attribute-Level Uncertain Data Model. Figure 44(b1) illustrates an uncertain
database conforming to the attribute-level uncertainty model, for the same velocity moni-
toring application mentioned above. In this database, each tuple corresponds to a unique car,
and its speed (i.e., ranking score) is described by a probability mass function (PMF). Cormode
et al. [9] study top-k queries in this context.
• Continuous Attribute-Level Uncertain Data Model. Figure 44(b2) illustrates an uncer-
tain database conforming to the attribute-level uncertainty model, where the attribute value
is represented by an interval. The distribution of the attribute value over the interval is usu-
ally specified by a probability density function (PDF), such as that of a uniform or Gaussian
distribution. Li et al. [19] and [23] study top-k queries in this context.
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Table 14. Total Runtime (Seconds) on Different Datasets

(Uniform Value Distributions)

Dataset Algorithm Serial 1 Thread 32 Threads Speedup

GDS2002

DFS-ES 13.43 31.81 2.83 11.24
DFS-PF 20.89 56.26 3.79 14.82
DFS-PF-G 18.11 49.53 3.30 14.98
DFS-PF-P 23.77 51.27 3.92 13.06

GDS2712

DFS-ES 1.83 3.97 0.57 6.89
DFS-PF 2.68 5.96 0.68 8.71
DFS-PF-G 2.2 5.13 0.60 8.47
DFS-PF-P 1.9 5.18 0.58 8.94

GAL

DFS-ES 4.74 6.15 0.51 12.1
DFS-PF 5.91 5.81 0.44 13.35
DFS-PF-G 5.09 5.12 0.41 12.26
DFS-PF-P 4.84 4.71 0.35 13.16

Movie

DFS-ES 2,358 3,961.88 458.56 8.64
DFS-PF 6,345 15,792.4 715.01 22.09
DFS-PF-G 4,998 14,574.7 653.73 22.29
DFS-PF-P 3,678 15,606 710.85 21.95

RFID

DFS-ES 1.65 2.72 0.35 7.76
DFS-PF 1.69 2.84 0.33 8.58
DFS-PF-G 1.65 2.73 0.31 8.75
DFS-PF-P 0.85 1.43 0.19 7.39

Table 15. Total Runtime (Seconds) on Different Datasets

(Gaussian Value Distributions)

Dataset Algorithm Serial 1 Thread 32 Threads Speedup

GDS2002

DFS-ES 2,971.16 5,386.68 237.28 22.7
DFS-PF 4,808.64 9,500.81 396.22 23.98
DFS-PF-G 4,764.08 9,170.09 388.91 23.58
DFS-PF-P 4,828.17 9,397.34 393.65 23.87

GDS2712

DFS-ES 205.88 355.86 19.24 18.49
DFS-PF 272.39 559.29 27.18 20.57
DFS-PF-G 286.66 550.15 28.08 19.59
DFS-PF-P 289.93 556.25 28.62 19.43

GAL

DFS-ES 323.68 582.2 27.04 21.52
DFS-PF 329.37 598.78 28.88 20.73
DFS-PF-G 311.99 566.93 24.87 22.79
DFS-PF-P 295.60 540.38 25.11 21.52

The problem of ranking uncertain tuples is relevant to our OPSM mining problem, since both
problems consider the order relationships of uncertain numerical values. In fact, the uncertain
database considered in the ranking problem is equivalent to a row of the data matrix in our OPSM
mining problem. OPSMRM [33] adopts the discrete attribute-level uncertain data model, while we
study OPSM mining under the continuous attribute-level uncertain data model.
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Table 16. Peak Memory (MB) w.r.t. # of Threads on Different Datasets

(Uniform Value Distributions)

Thread #: 1 2 4 8 16 32 64

GAL 211 213 199 194 207 216 225

GDS2002 742 736 707 757 843 873 1,252

GDS2712 111 102 128 177 205 321 330

Movie 110,114 110,164 109,710 116,534 110,207 110,238 110,439

RFID 15 16 39 27 28 23 37

Table 17. Peak Memory (MB) w.r.t. # of Threads on Different Datasets

(Gaussian Value Distributions)

Thread #: 1 2 4 8 16 32 64

GAL 2,027 2,122 2,032 2,050 2,019 1,991 2,047

GDS2002 6,390 6,528 6,693 7,175 8,060 9,962 13,908

GDS2712 1,199 1,273 1,414 1,769 2,478 3,755 5,389

Fig. 44. Uncertain Data Model.

D.2 Mining Uncertain Data

We focus on the problem of mining frequent patterns (such as itemsets and sequences) over uncer-
tain data in this subsection.
Frequent Itemset Mining. The problem of frequent itemset mining has been extensively studied
in the context of uncertain data. Earlier works use expected support to measure pattern frequent-
ness [1, 7]. However, [5, 35] find that the use of expected support may render important patterns
missing, and thus, recent research focuses more on using p-frequentness [5, 25]. See the excellent
survey of [26] for a more complete overview of the many important studies in this area.
In fact, the transaction database for frequent itemset mining can also be represented as a data

matrix D, where each row corresponds to a transaction and each column corresponds to an item.
If transaction д contains item t , then D[д][t] = 1; otherwise, D[д][t] = 0.

Sequential Pattern Mining. The problem of sequential pattern mining has also been studied
over uncertain data: Liu et al. [22] evaluate pattern frequentness based on expected support, while
Zhao et al. [37] evaluate pattern frequentness based on p-frequentness. Yang et al. [31] study the
problem of mining long sequential patterns in a noisy environment.
The problem ofOPSMmining can be reduced into a sequential patternmining problem: each row

in the data matrix can be treated as a sequence (called row sequence hereafter) as Figure 1 illustrates,
where the elements are the columns t1, . . . , tm . However, unlike general sequential pattern mining
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problems, in OPSMmining, each element can appear at most once in a row sequence, and it appears
exactly once if there is no missing data.
Another difference between OPSM mining and sequential pattern mining is that, the identities

of the supporting row sequences are important in OPSM mining but are immaterial in sequential
pattern mining. Recall that an OPSM may refer to a set of coexpressed genes, or a group of users
with similar preferences.
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