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Figure 1. Densities of XLK, the technology select sector SPDR Fund 5-minute intraday returns on selected dates

dilemma is the fact that these standard functional representations do not constitute linear spaces due to inherent

nonlinear constraints (e.g., monotonicity for quantile functions or positivity and mass constraints for densities),

so that outputs from models with linear underlying structures are generally inadequate. For this reason, method-

ological developments for the analysis of distributional data have taken a geometric approach over the last decade.

Rather than choosing a functional form under which to analyze the data, one chooses a metric on the space of

distributions to develop coherent models. Examples of suitable metrics that have been used successfully in the

modeling of distributional data include the Fisher–Rao metric (Srivastava et al., 2007), an infinite-dimensional

version of the Aitchison metric (Egozcue et al., 2006; Hron et al., 2016), and the Wasserstein optimal transport

metric (Panaretos and Zemel, 2016; Bigot et al., 2017; Petersen and Müller, 2019).

In many cases, the distributions in a sample are indexed by time, for example annual income, fertility and mor-

tality data, or financial returns or insurance claims at various time resolutions. In this article, we will assume that

all such distributions possess a density with respect to the Lebesgue measure, and will refer to this type of data

as a density time series. A motivating example is shown in Figure 1, depicting the distribution of 5-minute intra-

day returns of the XLK fund, which tracks the technology and telecommunication sectors within the S&P 500

index. The data we plot in Figure 1a covers 305 trading days, each with 78 records of 5-minute intraday return.

Figure 1b demonstrates an alternative look at this dataset by plotting returns from three selected trading days.

Kokoszka et al. (2019) considered various methods for forecasting density time series, most of which produced

forecasts by first applying FPCA to the densities (or transformations of these), followed by fitting a multivariate

time series models to the vectors of coefficients. Finally, the density forecasts were obtained by using the fore-

casts of the coefficients in the FPCA basis representation. Of these different methods, a modified version of the

transformation of Petersen et al. (2016) gave superior forecasts in the majority of cases, and was also based on a

sound theoretical justification in terms of explicitly controlling for the density constraints.

The main contribution of this article is to develop a geometric approach to density time series modeling under

the Wasserstein metric. It is well-known that this geometry is intimately connected with quantile functions, and

thus provides a flexible framework for modeling samples of densities that tend to exhibit “horizontal" variability,

which can be thought of as variability of the quantiles. Examples of such variability in densities are given in

Figure 1b. We develop theoretical foundations of autoregressive modeling in the space of densities equipped with

the Wasserstein metric, followed by methodology for estimation and forecasting, including order selection. Since

theWasserstein geometry is not linear, care needs to be taken to ensure the model components and their restrictions

are appropriately specified. Autoregressive models have been the backbone of time series analysis for scalar and

vector-valued data for many decades, see for example, Lütkepohl (2006), among many other excellent textbooks.

Autoregression has been extensively studied in the context of linear functional time series; most articles study or

use order one autoregression, see Bosq (2000) and Horváth and Kokoszka (2012). This article thus merges two

successful approaches: the Wasserstein geometry and time series autoregression.
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In a very recent preprint, Chen et al. (2020) independently proposed a similar geometric approach to regres-

sion when distributions appear as both predictors and responses. As an extension of this formulation, they also

developed an autoregressive model of order one for distribution-valued time series. Our AR(1) model proposed in

Section 3.1 can be viewed as a special case of the model in Chen et al. (2020). However, the generalization, theory

and methodology we subsequently pursue move in a completely different direction, so the two articles have little

overlap. Even though we were not aware of the work of Chen et al. (2020), we did include their model, which is

termed the fully functional Wasserstein autoregressive model in this work, as a one of the competing methods in

our empirical analyses in Section 5. We also note that our focus on densities with respect to the Lebesgue mea-

sure is motivated by practical considerations, as such densities occur in applications. In particular, we formulate

numerical algorithms applicable to this common setting. From the theoretical angle, our results related to existence

and convergence could be extended to general probability measures. Working with densities actually introduces

nontrivial complications. For example, the objects we want to predict must be densities, not general probability

measures.

The remainder of the article is organized as follows. In Section 2 we provide the requisite background on

Wasserstein geometry and introduce relevant definitions related to density time series. Section 3 is devoted to the

development of the Wasserstein AR(p) model, including its estimation and forecasting, both in terms of theory

and algorithms. Finite sample properties of our estimator are explored in Section 4, while Section 5 compares

our forecasting algorithm to those currently available. We conclude the article with a discussion in Section 6. The

Supporting Information contains proofs of the theorems stated in Section 3.

2. PRELIMINARIES

A density time series is a sequence of random densities {ft, t ∈ ℤ}. In the spirit of functional data analysis, no para-

metric form for the densities will be assumed. Furthermore, themodels will be developed under the setting in which

the densities are completely observed, although in practical situations they will need to be estimated from raw data

that they generate. For example, the densities in Figure 1 are kernel density estimates with a Gaussian kernel.

Density time series are a special case of functional time series, so it would be natural to adapt a functional

autoregressive model (see e.g., Chapter 8 of Kokoszka and Reimherr (2017)). However, such a direct approach

is only suitable if one first transforms the densities into a linear space, although this approach too comes with

disadvantages. The transformations of Petersen et al. (2016) and Hron et al. (2016) require that all densities in

the sample share the same support, an assumption that is often broken in real data sets. Although Kokoszka et al.

(2019) modified the method of Petersen et al. (2016) to remove this constraint, the associated transformation is

not connected with any meaningful density metric, and can suffer from noticeable boundary effects if the observed

densities decay to zero near the boundaries. Still, the transformation approach remains viable and will be compared

to the Wasserstein models that we propose.

2.1. Wasserstein Geometry and Tangent Space

We begin with a brief discussion of the necessary components of the Wasserstein geometry. Consider the space of

probability measures2 = {𝜇 ∶ 𝜇 is a probability measure on ℝ and ∫ x2d𝜇(x) < ∞}. Denoted by the subset

of 2 consisting of measures with densities with respect to Lebesgue measure, so that one may think of  as a

collection of densities. For f , g ∈ , consider the collection 𝕂f ,g of maps K ∶ ℝ → ℝ that transport f to g, that

is, if K ∈ 𝕂f ,g and U is a random variable that follows the distribution characterized by f , that is, U ∼ f , then

K(U) ∼ g. Intuitively, f and g are close if there exists a K ∈ 𝕂f ,g such that K ≈ id, where id(u) = u denotes the

identity map. This is the motivation behind the Wasserstein distance

dW(f , g) = inf
K∈𝕂f ,g

{
∫
ℝ

(K(u) − u)2 f (u)du

}1∕2

. (2.1)
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That dW is a proper metric is well-established (Villani, 2003), and (2.1) is indeed only one of a large class of

such metrics that can in fact be defined for measures on quite general spaces. In the particular setting of univariate

distributions, a surprising property is that the infimum in (2.1) is attained by the so-called optimal transport map

K∗ = G−1 ◦F, where F and G are the cdfs of f and g respectively. Note that any optimal transport map must

be strictly increasing, so that, by the change of variable s = F(u), this leads to an alternative definition of the

Wasserstein metric

dW(f , g) =

{
∫
ℝ

(K∗(u) − u)2f (u)du

}1∕2

=

{
∫

1

0

(
G−1(s) − F−1(s)

)2
ds

}1∕2

. (2.2)

For clarity, we will use u as the input for densities and cdfs, and s as the input for quantile functions. Interest-

ingly, even for univariate probability measures in 2 that do not admit a density, the Wasserstein metric remains

well-defined, and both optimal transport maps and corresponding distance can be expressed in terms of their

quantile functions (which always exist), as above.

Another surprising characteristic of the Wasserstein metric is that, although (2, dW) is not a linear space, its

structure is strikingly similar to that of a Riemannian manifold (Ambrosio et al., 2008). As mentioned previously,

a key challenge in analyzing samples of probability density functions is that these reside in a convex space where

linear methods fall short. However, due to the manifold-like structure, to each 𝜇 ∈ 2 corresponds a tangent space𝜇 that is a complete linear subspace of L2(ℝ, d𝜇) (see Chapter 8 of Ambrosio et al. (2008)), opening the door for

development of linear models for distributional data. According to (8.5.1) in Ambrosio et al. (2008), we define

the tangent space for 𝜇 ∈ 2 by

𝜇 =
{
𝜆(T − id) ∶ T is the optimal transport from 𝜇 to some 𝜈 ∈ 2, 𝜆 > 0

}
, (2.3)

where the closure is with respect to L2(ℝ, d𝜇). With a slight abuse of notation, when 𝜇 possesses a density f , we

will denote this tangent space by f . The definition in (2.3) of the tangent space can be motivated by the following

fact. For 𝜇, 𝜈 ∈ 2 and T the optimal transport from 𝜇 to 𝜈, define the curve (known as McCann’s interpolant)

𝜆 ∈ [0, 1] → [id + 𝜆(T − id)]#𝜇, where g#𝜇(A) = 𝜇(g−1(A)) for A ∈ (ℝ) denotes the pushforward measure

induced by a measurable function g. For different measures 𝜈, these are geodesic curves connecting 𝜇 to 𝜈 in 2

(Panaretos and Zemel, 2020). Thus, the extension to values 𝜆 > 0 defines a tangent cone. That 𝜇 is indeed a linear
space is not obvious from the definition, but this property can indeed be established; see, for example, Chapter 2.3

of Panaretos and Zemel (2020).

We next describe two maps that bridge the tangent space and the space of densities. Let f , g ∈  have cdfs F

and G respectively. The map Logf :  → f defined by
Logf (g) = G−1◦F − id (2.4)

is called the logarithmic map at f , and effectively lifts the space  to the tangent space f . Intuitively, Logf (g)
represents the discrepancy between the optimal transport map G−1 ◦F and the identity. In fact, (2.2) shows that

d2
W
(f , g) = ∫

ℝ
[Logf (g)(u)]

2f (u)du, so that the logarithmic map takes the place of the ordinary functional difference

g − f that is commonly used in linear spaces. The second is the exponential map Expf ∶ f → 2. Let V ∈ f ,
and define Expf by

Expf (V) = (V + id)#𝜇f , (2.5)

where 𝜇f is the measure with density f and

(V + id)#𝜇f (A) = 𝜇f
(
(V + id)−1(A)

)
, A ∈ (ℝ),
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where (ℝ) denotes the Borel sets. Observe that, for any f , g ∈ , Expf (Logf (g)) = g, but Logf (Expf (V)) = V

holds if and only if V + id is increasing.

Looking forward to building a Wasserstein autoregressive model, the logarithmic map will be used to lift the

random densities into a linear tangent space, where the autoregressive model is imposed. An important point to

keep in mind is that the image of under Logf is a convex cone, and thus a nonlinear subset of 𝜇 ⊂ L2(ℝ, f (u)du).

We will deal with this technicality in the development of Wasserstein autoregressive models in Section 3. In

particular, the forecasts produced by the model in the tangent space will not be constrained to lie in the image

of the logarithmic map. This poses no practical problem since the forecasted densities are obtained through the

exponential map, which is defined on the entirety of the tangent space.

2.2. Wasserstein Mean, Variance, and Covariance

Consider a random density f , which is a measurable map that assumes values in  almost surely. Assume

𝔼
[
d2
W
(f , g)

]
< ∞ for some, and thus all, g ∈ . Petersen et al. (2020) demonstrated sufficient conditions for the

Wassersetin mean density of f , written as

𝔼⊕

[
f
]
= f⊕ = argmin

g∈
𝔼
[
d2
W
(f , g)

]
, (2.6)

to exist, which represents the Fréchet mean in the metric space equipped with the Wasserstein distance. We will

thus assume that f⊕ exists and is unique, and write F⊕ and Q⊕ for the cdf and quantile functions, respectively,

that correspond to f⊕. Letting T = F−1 ◦F⊕ be the random optimal transport map from f⊕ to f , the Wasserstein

variance of f is

Var⊕(f ) = 𝔼
[
d2
W
(f , f⊕)

]
= 𝔼

[
∫
ℝ

(T(u) − u)2f⊕(u)du

]
. (2.7)

Since 𝔼
[
d2
W
(f , g)

]
< ∞ for all g ∈  by assumption, existence of the Wasserstein mean f⊕ implies that the

Wasserstein variance Var⊕(f ) is finite.

Now, suppose f1 and f2 are two random densities, with Wasserstein means f⊕,1 and f⊕,2, respectively. Since we

will consider an autoregressive model, it is necessary to develop a suitable notion of covariance within and between

these random densities. The usual approach in functional data analysis would quantify this by the crosscovariance

kernel of the centered processes ft− f⊕,t, t = 1, 2.However, as mentioned previously, this differencing operation is

not suitable for nonlinear spaces, and we thus replace it with the logarithmicmap in (2.4). Let Tt = F−1
t

◦F⊕,t be the

optimal transport map from the Wasserstein mean f⊕,t to the random density ft. To make clear the parallel between

the ordinary functional covariance and the Wasserstein version we will define, recall that the logarithmic map

replaces the usual notion of difference between two densities, so we introduce the alternative suggestive notation

ft ⊖ f⊕,t = Logf⊕,t
(ft) = Tt − id (2.8)

for the logarithmic map. Then the Wasserstein covariance kernel is defined by

t,t′ (u, v) = Cov
[
(ft ⊖ f⊕,t)(u), (ft′ ⊖ f⊕,t′)(v)

]
(2.9)

= Cov
[
Tt(u) − u,Tt′ (v) − v

]
, t, t′ = 1, 2.

Since ∫
ℝ
𝔼
(
ft ⊖ f⊕,t(u)

)2
f⊕,t(u)du < ∞, 𝔼

(
ft ⊖ f⊕,t(u)

)2
< ∞ for almost all u in the support of f⊕,t. This means

that the Wasserstein covariance kernels t,t′ (u, v) are defined for almost all (u, v) ∈ supp(f⊕,t) × supp(f⊕,t′). To

further solidify the intuition behind this definition, observe that the Wasserstein variance in (2.7) can be rewritten
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as

Var⊕(ft) = ∫
ℝ

t,t(u, u)f⊕,t(u)du,

echoing the notion of total variance typically used for functional data. This was the motivation used in Petersen

and Müller (2019) to define a scalar measure of Wasserstein covariance between two random densities.

2.3. Stationarity of Density Time Series

Stationarity plays a fundamental role in time series analysis. It is a condition generally imposed on the random

part of the process that remains after removing trends, periodicity, differencing or after other transformations.

It is needed to develop estimation and prediction techniques. Here we develop notions of stationarity and strict

stationarity for a time series of densities {ft, t ∈ ℤ}.

Definition 2.1. A density time series {ft, t ∈ ℤ} is said to be (second-order) stationary if the following two

conditions hold.

1. 𝔼⊕

[
ft
]
= f⊕ for all t ∈ ℤ, so the ft share a common Wasserstein mean. Denote supp(f⊕) by D⊕.

2. Var⊕(ft) < ∞.

3. For any t, h ∈ ℤ, and almost all u, v ∈ D⊕, t,t+h(u, v) does not depend on t.
As we take the approach that focuses on the geometry of the space of densities, the above notion of stationarity

is defined by the Wasserstein mean and covariance kernel, which is not equivalent to those traditional stationarity

definitions of functional time series. In particular, a conventional stationarity notion for a stochastic process is

understood in the following sense, see for example, Bosq (2000).

Definition 2.2. A sequence {Vt} of elements of a separable Hilbert space is said to be stationary if the following

conditions hold: (i) 𝔼
[‖Vt‖2

]
< ∞, (ii) 𝔼

[
Vt
]
does not depend on t, and (iii) the autocovariance operators defined

by t,t+h(x) = 𝔼
[⟨(Vt − 𝜇), x⟩(Vt+h − 𝜇)

]
do not depend on t (𝜇 = 𝔼V0).

Observe that Definition 2.2 clearly does not apply to the density time series {ft, t ∈ ℤ} as densities do not

form a vector space. The fact alone that differences ft − 𝔼
[
f⊕
]
are not well-defined in a nonlinear space renders

Definition 2.2 unsuitable for density time series. However, up taking Vt = Logf⊕ (ft), Definition 2.1 implies Defini-

tion 2.2, with the separable Hilbert space in the latter being the tangent space f⊕ . As has been observed elsewhere
(e.g., Panaretos and Zemel, 2016; Petersen et al., 2016), the Wasserstein mean f⊕ (when it exists) is characterized

by being the unique solution to 𝔼

[
Logf⊕ (ft)(u)

]
= 0 for almost all u in the support of f⊕. Hence, condition (ii) is

satisfied since 𝜇 = 𝔼
[
V0

]
= 0, from which condition (i) follows as 𝔼

[‖Vt‖2
]
= Var⊕(ft) < ∞. Lastly, condition

(iii) holds since, for any element x ∈ f⊕ ,

t,t+h(x) = 𝔼

[(
∫
D⊕

Vt(u)x(u)f⊕(u)du

)
Vt+h

]
= ∫

D⊕

t,t+h(⋅, u)x(u)f⊕(u)du,

which is independent of t. Equivalently, if Qt is the quantile function corresponding to ft, Definition 2.1 implies

that the optimal transport maps Tt = Qt ◦F⊕ = Xt+id form a stationary sequence in f⊕ according to Definition 2.2

with 𝜇 = id.

Definition 2.3. A density time series {ft, t ∈ ℤ} is said to be strictly stationary if the joint distributions on k of

(ft1 , ft2 ,… , ftk ) and (ft1+h, ft2+h,… , ftk+h) are the same for any k ∈ ℕ and choices t1, t2,… , tk, h ∈ ℤ.
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Note that, if the densities ft share a common Wasserstein mean f⊕ and the joint distributions of (Tt1 ,Tt2 ,… ,Ttk )

and (Tt1+h,Tt2+h,… ,Ttk+h) are the same for any k ∈ ℕ and choices t1, t2,… , tk, h ∈ ℤ, then {ft, t ∈ ℤ} is strictly

stationary according to Definition 2.3. Since the existence and uniqueness of the Wasserstein mean implies that

the Wasserstein variance is finite, it also follows that {ft, t ∈ ℤ} is stationary according to Definition 2.1, provided

the Wasserstein mean exists and is unique.

3. WASSERSTEIN AUTOREGRESSION

The above notions of stationarity and strict stationarity in the tangent space facilitate the development of autore-

gressive models in f⊕ by lifting the random densities via the logarithmic map. As observed previously, the image

of  under this map is a convex cone in f⊕ , so it is not immediately possible to impose onto the tangent space

standard structures used for functional time series, which rely on linearity of the function space (see e.g., Chapter

8 of Kokoszka and Reimherr (2017) and references therein). To illustrate the challenges that must be overcome,

we begin with a simple model involving a single scalar autoregressive parameter, and then consider extensions.

For a stationary density time series {ft, t ∈ ℤ}, with Wasserstein mean cdf and quantile functions F⊕ and Q⊕,

respectively, define

𝛾h(u, v) ∶= Cov
(
ft ⊖ f⊕(u), ft+h ⊖ f⊕(v)

)
. (3.1)

3.1. Wasserstein AR Model of Order 1

From Definition 2.1, a useful path to pursue in developing an autoregressive model for density time series is to

first establish a suitable primary model for a sequence {Vt} on a tangent space f⊕ , for some f⊕ ∈ . Recall that

f⊕ is a separable Hilbert space. The second step is to impose conditions on {Vt} such that

(a) the measures 𝜇t = Expf⊕ (Vt) possess densities ft that form a stationary density time series with Wasserstein

mean f⊕, and

(b) the parameters in the primary model can still be estimated given observations of the ft.

To this end, fix f⊕ ∈ , where we assume that the support D⊕ of f⊕ is an interval, possibly unbounded. Let

𝛽 ∈ ℝ be the autoregressive parameter, and {𝜖t} a sequence of independent and identically distributed stochastic

processes (innovations) that reside in f⊕ almost surely. We assume that the 𝜖t satisfy 𝔼
[
𝜖t(u)

]
= 0 for all u ∈ D⊕

and define the innovation covariance kernel

C𝜖(u, v) = Cov
[
𝜖t(u), 𝜖t(v)

]
, u, v ∈ ℝ. (3.2)

We say that a sequence {Vt} follows an autoregressive model of order 1 if the random elements Vt ∈ f⊕ satisfy

the equation

Vt = 𝛽Vt−1 + 𝜖t, t ∈ ℤ. (3.3)

As will be detailed in Theorem 3.1, (3.3) has a unique, suitably convergent, solution Vt =
∑∞

i=0
𝛽 i𝜖t−i under the

following conditions:

(A1) |𝛽| < 1,

(A2) The innovations are i.i.d. elements of f⊕ , have mean zero, and ∫
ℝ
C𝜖(u, u)f⊕(u)du < ∞.

To ensure that requirements (a) and (b) above are met, we impose the following condition.

(A3) Almost surely, Vt is differentiable, and V
′
t
(u) > −1 for all u ∈ D⊕.
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Denote the usual Hilbert norm on L2(ℝ, f⊕(u)du) by ‖⋅‖. We now state our first result associated with model

(3.3), and its consequences for the density time series induced by the exponential map. Its proof, along with those

of all other theoretical results, can be found in the Supporting Information.

Theorem 3.1. If (A1) and (A2) hold, then

Vt =

∞∑
i=0

𝛽 i𝜖t−i (3.4)

defines a unique, strictly stationary solution in f⊕ to model (3.3). This solution converges strongly,

lim
n→∞

‖‖‖‖‖
Vt −

n∑
i=0

𝛽 i𝜖t−i

‖‖‖‖‖
= 0 almost surely, (3.5)

and in mean square,

lim
n→∞

𝔼

‖‖‖‖‖
Vt −

n∑
i=0

𝛽 i𝜖t−i

‖‖‖‖‖

2

= 0. (3.6)

If, in addition, (A3) holds, then the measures 𝜇t = Expf⊕ (Vt) possess densities that form a strictly stationary

sequence {ft, t ∈ ℤ} with common Wasserstein mean f⊕, and Vt = Tt − id almost surely.

In light of Theorem 3.1, we define the Wasserstein autoregressive model of order 1, or WAR(1) model, for a

density time series {ft, t ∈ ℤ} by

Tt − id = 𝛽(Tt−1 − id) + 𝜖t. (3.7)

Under (A1)–(A3), we now know that a unique solution ft ⊖ f⊕ = Tt − id =
∑∞

i=0
𝛽 i𝜖t−i exists such that {ft, t ∈ ℤ}

is strictly stationary according to Definition 2.3. Since they also share a common Wasserstein mean, the sequence

is also stationary according to Definition 2.1.

In order for the results of Theorem 3.1 to not be vacuous, we will establish a set of innovation examples that

satisfy (A2) and (A3). Given the structure of the tangent space in (2.3), consider innovations of the form 𝜖t(u) =

𝜆t(St(u) − u), where 𝜆t > 0 and St is an increasing map defined on D⊕ (and is thus an optimal transport map from

f⊕ to some 𝜈 ∈ 2). Both 𝜆t and St can be random. We now list specific examples for which (A2) and (A3) hold,

where |𝛽| < 1 throughout.

Example 3.1. Let 𝜂t be i.i.d. random variables with mean zero and finite variance. The WAR(1) model admits

constant innovations 𝜖t(u) ≡ 𝜂t, which can be identified as elements in f⊕ by setting St(u) = 𝜂t𝜆
−1
t

+ u for any

𝜆t > 0.

Example 3.2. Let 𝜂t be as in Example 3.1, and 𝛿t be i.i.d. random variables withmean zero such that |𝛿t| < 1−|𝛽|.
Linear innovations 𝜖t(u) = 𝜂t + 𝛿tu are admissible under the WAR(1) model. The tangent space representation of

𝜖t(u) can be recovered by setting St(u) = (1 + 𝛿t𝜆
−1
t
)u + 𝜂t𝜆

−1
t

for any 𝜆t >
||𝛿t||.

Example 3.3. Let 𝜂t and 𝛿t be as in Example 3.2, with the additional constraint that the 𝛿t be symmetric about 0.

The WAR(1) model admits periodic innovations 𝜖t(u) = 𝜂t + sin(𝛿tu), which can be viewed as tangent space

elements by writing St(u) = u + 𝜂t𝜆
−1
t

+ 𝜆−1
t

sin(𝛿tu) for any 𝜆t >
||𝛿t||.
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In Examples 3.1–3.3, (A2) is clearly satisfied. Moreover, we have 𝜖′
t
(u) = 0, 𝜖′

t
(u) = 𝛿t and 𝜖′

t
(u) = 𝛿t cos(𝛿tu),

respectively in each example. Thus, supu∈D⊕
|𝜖′
t
(u)| ≤ 1 − |𝛽|, so that differentiation and summation can be

interchanged, yielding

T ′
t
(u) − 1 =

∞∑
i=0

𝛽 i𝜖′
t−i
(u) ≥ −

∞∑
i=0

|𝛽|i sup
u∈ℝ

|𝜖′
t−i
(u)| > (|𝛽| − 1)

∞∑
i=0

|𝛽|i = −1.

These examples establish one way to validate the WAR(1) model, namely by imposing a deterministic bound on

the supremum of the derivative 𝜖′
t
that is related to 𝛽. In general, (A3) may be considered a compatibility restriction

between the innovation sequence and the autoregressive parameter.

Next, we express the autoregressive coefficient 𝛽 in terms of the autocovariance functions 𝛾h defined in (3.1).

Following the derivation of the Yule–Walker equations, it can be shown that

𝛽 =
∫
ℝ
𝛾1(u, u)f⊕(u)du

∫
ℝ
𝛾0(u, u)f⊕(u)du

. (3.8)

The denominator is recognizable as the usual Wasserstein variance of each ft, while the numerator corresponds to

the lag-1 scalar measure of Wasserstein covariance defined in Petersen and Müller (2019). Thus, 𝛽 can be inter-

preted as a lag-1Wasserstein autocorrelationmeasure. This characterization of 𝛽 thus resembles the autocorrelation

function of an AR(1) scalar time series.

3.1.1. Estimation and Forecasting

For any integer h ≥ 0, define the lag-hWasserstein autocorrelation function by

𝜌h =
∫
ℝ
𝛾h(u, u)f⊕(u)du

∫
ℝ
𝛾0(u, u)f⊕(u)du

=
∫
ℝ
𝜂h(u)f⊕(u)du

∫
ℝ
𝜂0(u)f⊕(u)du

, 𝜂h(u) = 𝛾h(u, u). (3.9)

For each fixed u, 𝜂h(u) is the autocovariance function of the scalar time series {Tt(u), t ∈ ℤ}. First, we estimate

the Wasserstein mean by

f̂⊕(u) = F̂′
⊕
(u), F̂⊕ =

(
1

n

n∑
t=1

Qt

)−1

. (3.10)

Defining T̂t = Qt ◦ F̂⊕, the estimators for 𝜌h and 𝜂h, h ∈ {0, 1,… , n − 1}, are

𝜌̂h =
∫
ℝ
𝜂̂h(u)f̂⊕(u)du

∫
ℝ
𝜂̂0(u)f̂⊕(u)du

, 𝜂̂h(u) =
1

n

n−h∑
t=1

{
T̂t(u) − u

}{
T̂t+h(u) − u

}
. (3.11)

Then the natural estimator for 𝛽 in (3.7) is

𝛽 = 𝜌̂1. (3.12)

In order to establish asymptotic normality of the above estimators, we require

(A4) The innovations 𝜖t satisfy ∫
ℝ
𝔼
[
𝜖4
t
(u)

]
f⊕(u)du < ∞.

The following result is a special case of Theorem 3.4 in Section 3.2; the proof of the more general result can be

found in the Supporting Information.
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Theorem 3.2. Suppose (A1)–(A4) hold. Then

n1∕2
(
𝛽 − 𝛽

) D
→ N

(
0, 𝜎2

𝜖
(1 − 𝛽2)

)
,

where

𝜎2
𝜖
=

∫
ℝ2 C

2
𝜖
(u, v)f⊕(u)f⊕(v)dudv[∫

ℝ
C𝜖(u, u)f⊕(u)du

]2 (3.13)

is finite due to (A4).

With a consistent estimator of 𝛽 in hand, we proceed to define a one-step ahead forecast. Given observations

f1,… , fn, we first obtain 𝛽 and compute the measure forecast

𝜇̂n+1 = Expf̂⊕ (V̂n+1), V̂n+1 = 𝛽(T̂n − id),

where T̂n = Qn◦F̂⊕. It remains to convert this measure-valued forecast into a density function. Observe that one

can always compute the cdf forecast

F̂n+1(u) = ∫
ℝ

1
(
V̂n+1(v) + v ≤ u

)
f̂⊕(v)dv

= ∫
1

0

1
(
𝛽Qn(s) + (1 − 𝛽)Q̂⊕(s) ≤ u

)
ds, (3.14)

where the second line follows from the change of variable s = F̂⊕(u). The cdf forecast can then be converted

into a density numerically. The same procedure can be followed to produce further forecasts f̂n+l, l ≥ 2, by using

the previous forecast f̂n+l−1. In practice, densities are rarely, if ever, fully observed. Instead, one observes samples

generated by the random mechanisms characterized by fi, from which densities can be estimated, for example, by

kernel density estimation. Under certain conditions, see Petersen et al. (2016) and (Panaretos and Zemel, 2016),

one can systematically account for the deviation from the true densities caused by the estimation process. In our

theoretical developments below, we assume that the n densities f1, f2,… , fn are fully observed as our focus is

developing the Wasserstein autoregressive model. The numerical implementation of our forecasting procedure,

summarized below in Algorithm 1, assumes that the available ft are bona fide densities, in that they are nonnegative

and integrate to one. Additionally, the algorithm uses the equivalent representation of 𝛽 obtained through the

change of variable s = F̂⊕(u) as

𝛽 =
∫ 1

0
𝜆̂1(s)ds

∫ 1

0
𝜆̂0(s)ds

, 𝜆̂h(s) = 𝜂̂h(Q̂⊕(s)) =
1

n

n−h∑
t=1

(Qt(s) − Q̂⊕(s))(Qt+h(s) − Q̂⊕(s)). (3.15)

Since 𝜆̂h(s) is computed for s ∈ [0, 1], (3.15) emphasizes that the input densities ft need not share the same

support or be estimated over an identical grid, since all the critical calculations are carried out in terms of quantile

functions. Only the quantile functions of the density time series need to be estimated over the same grid points,

which extends the flexibility of the model.

The first step of the algorithm is to convert the available densities ft into quantile functions. A simple approach

to obtain these quantiles from densities is to first evaluate smooth cumulative distribution functions by integrating

the estimated densities, followed by some form of numerical inversion. One such approach is readily imple-

mented by the R function dens2quantile from package fdadensity, and this is the approach taken in our numerical
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Algorithm 1: Forecasting f̂n+1

1 Input: densities ft, t = 1, 2,… , n; grid QSup spanning [0, 1]

/* Quantities in steps 2–6 are evaluated for s ∈ QSup */

2 Evaluate Q1(s),Q2(s),… ,Qn(s);

3 Q̂⊕(s) ← n−1
∑n

t=1
Qt(s);

4 𝜆̂h(s) ← n−1
∑n−h

t=1
(Qt(s) − Q̂⊕(s))(Qt+h(s) − Q̂⊕(s)), h = 0, 1;

5 𝛽 ← ∫ 1

0
𝜆̂1(s)ds∕ ∫ 1

0
𝜆̂0(s)ds;

6 V̂n+1(Q̂⊕(s)) ←𝛽(Qn(s) − Q̂⊕(s));

7 Generate grid dSup spanning (mins∈QSup V̂n+1(Q̂⊕(s)) + Q̂⊕(s),maxs∈QSup V̂n+1(Q̂⊕(s)) + Q̂⊕(s))

/* Quantities in steps 8–10 are evaluated for u ∈ dSup */

8 Compute {[al, bl]}
L(u)

l=1
←

{
s ∈ [0, 1] ∶ V̂n+1(Q̂⊕(s)) + Q̂⊕(s) ≤ u

}
;

/* {[al, bl]}
L(u)

l=1
are disjoint subintervals of [0, 1]. */

9 F̂(u)n+1 ←
∑L(u)

l=1
(bl − al);

10 f̂ (u)n+1 ← F̂′(u)n+1

experiments to achieve step 2 of the algorithm. Steps 7–9 demonstrate how to implement the exponential map

defined in (2.5). From this definition, it is clear that the support of the forecasted density is given by the formula

in step 7. Steps 8 and 9 then discover and evaluate the probabilities Expf̂⊕ (V̂n+1)((−∞, u]), for u in the support

of the forecasted measure. Finally, step 10 can be executed by numerical integration, for example by computing

differences.

3.2. Wasserstein AR Model of Order p

A natural way to extend the WAR(1) model is to develop a Wasserstein autoregressive model of order p ≥ 1

defined by

Tt − id =

p∑
j=1

𝛽j(Tt−j − id) + 𝜖t, (3.16)

where 𝛽j ∈ ℝ, j = 1, 2,… , p, and the 𝜖t ∈ f⊕ are again i.i.d. with mean 0 and satisfy (A2). Define the

autoregressive polynomial

𝜙(z) = 1 − 𝛽1z − 𝛽2z
2 − · · · − 𝛽pz

p, z ∈ ℂ.

The WAR(p) model in (3.16) can then be written as

𝜙(B)
(
Tt − id

)
= 𝜖t, (3.17)

where B is the backward shift operator, that is, for a discrete stochastic process {Xt, t ∈ ℤ}, BiXt = Xt−i, i ∈ ℤ.

For the WAR(p) to have a causal solution, we make the following assumption as a generalization of (A1) in

Section 3.1.

(A1′) The autoregressive polynomial 𝜙(z) = 1 − 𝛽1z − 𝛽2z
2 − · · · − 𝛽pz

p has no root in the unit disk

{z ∶ |z| ≤ 1}.
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Under (A1′),
1

𝜙(z)
=
∑∞

i=0
𝜓iz

i, and the sequence {𝜓i}
∞
i=0

satisfies
∑∞

i=0
||𝜓i

|| < ∞. We will show that the solution

to (3.17) can be written as

Tt − id =

∞∑
i=0

𝜓i𝜖t−i. (3.18)

Observe (3.18) is a strictly stationary and causal process. Similarly to the development of the WAR(1) model,

{Tt − id} in (3.16) should be understood at this point as a general zero mean autoregressive process of order p

in f⊕ . As shown below, (A1′) and (A2) together imply the existence of a unique, suitably convergent, solution

Tt−id =
∑∞

i=0
𝜓i𝜖t−i(u) that is stationary in f⊕ according to Definition 2.2. Once again, (A3) applied to Vt = Tt−id

ensures that the application of the exponential map to Tt − id produces a stationary density time series with mean

f⊕, as seen in the Theorem 3.3. We also remark that Examples 3.1–3.3 can be modified directly to guarantee the

viability of the WAR(p) model; essentially 1 − |𝛽| must be replaced with
(∑∞

i=0
||𝜓i

||
)−1

.

Theorem 3.3. The following claims hold under Assumptions (A1′) and (A2).

(i) The series (3.18) is a strictly stationary solution in f⊕ to the WAR(p) (3.16). This solution converges almost

surely and in mean square, that is,

lim
n→∞

‖‖‖‖‖
Tt − id −

n∑
i=0

𝜓i𝜖t−i

‖‖‖‖‖
= 0 a.s., (3.19)

and

lim
n→∞

𝔼

‖‖‖‖‖
Tt − id −

n∑
i=0

𝜓i𝜖t−i

‖‖‖‖‖

2

= 0. (3.20)

(ii) There is no other stationary solution (according to Definition 2.2) in f⊕ .
(iii) If, in addition, Assumption (A3) holds for Vt = Tt − id, then Tt is strictly increasing, almost surely,

and the measures Expf⊕ (Tt − id) possess densities ft that form a strictly stationary sequence according to

Definition 2.1 with common Wasserstein mean f⊕.

Questions of the existence and uniqueness of solutions to ARMA equations are not obvious beyond the setting

of scalar innovations, even though care must be exercised even in that standard case, as explained in Chapter 3

of Brockwell and Davis (1991). In the multivariate case, conditions on the spectral decomposition of the autore-

gressive matrices are needed, see Brockwell and Lindner (2010) and Brockwell et al. (2013) whose results were

extended to Banach spaces by Spangenberg (2013). Simpler sufficient conditions in Hilbert spaces are given

in Bosq (2000) (AR(p) case) and Klepsch et al. (2017) (ARMA(p, q) case). In our setting, the coefficients are

scalars, but the innovations must conform to a nonlinear functional structure, so our conditions involve an inter-

play between the structure of the functional noise and the coefficients. The fully functional WAR(1) considered

in Chen et al. (2020) is also constructed in the tangent space, so it is also subject to similar constraints as our

WAR(p) model, namely that the solution must be restricted to image of the logarithmic map with probability one.

We have addressed it through our assumption (A3) and suitable examples or error sequences. Assumption (B2) in

Chen et al. (2020) is general, and it is, at this point, unclear whether concrete examples of innovations can be

established that satisfy it for fully functional WAR models.

3.2.1. Estimation and Forecasting

Recall f̂⊕, 𝜂h and 𝜂̂h as defined in (3.10), (3.9) and (3.11) respectively. Set {Hp(u)}jk = 𝜂|j−k|(u), j, k = 1,… , p, 𝜷 =

(𝛽1,… , 𝛽p)
⊤, and 𝜼p(u) = (𝜂1(u),… , 𝜂p(u))

⊤. Following the derivation of the Yule–Walker equations, we obtain
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Hp(u)𝜷 = 𝜼p(u) as a characterization of the autoregressive parameters of the WAR(p) model, whence

𝜷 =

(
∫
ℝ

Hp(u)f⊕(u)du

)−1

∫
ℝ

𝜼p(u)f⊕(u)du, (3.21)

where the integrals are taken element-wise. Plugging in our estimators 𝜂̂h(u) to obtain Ĥp(u) leads to

𝜷 =

(
∫
ℝ

Ĥp(u)f̂⊕(u)du

)−1

∫
ℝ

𝜼̂p(u)f̂⊕(u)du. (3.22)

Set {𝚿p}ij =
∑

k 𝜓k𝜓k+|i−j|, i, j = 1,… , p. The following theorem establishes the asymptotic normality of the

estimator (3.22).

Theorem 3.4. Suppose (A1′), (A2), (A3), and (A4) hold. Then

n1∕2(𝜷 − 𝜷)
D
→ N (0,𝚺) , (3.23)

where Σij = 𝜎2
𝜖

{
𝚿

−1

p

}
ij
, i, j = 1,… , p, and 𝜎2

𝜖
is the same as (3.13) in Theorem 3.2.

Indeed the above asymptotic covariance matrix is a generalization of the asymptotic variance in Theorem 3.2.

The forecasting procedure is exactly the same as described in (3.14) with steps (4) and (5) of Algorithm 1 replaced

by the above steps for estimating 𝜷 and step (6) becoming

V̂n+1 =

p∑
i=1

𝛽i(Tn−i+1 − id). (3.24)

In addition to the autoregressive parameters, the autocorrelation functions are an important object in the study

of time series. In our case, recall the lag-h Wasserstein autocorrelation functions are defined in (3.9). Denote

𝝔h =
(
𝜌1, 𝜌2,… , 𝜌h

)⊺
and 𝝔̂h =

(
𝜌̂1, 𝜌̂2,… , 𝜌̂h

)⊺
, where 𝜌̂i = ∫

ℝ
𝜂̂i(u)f̂⊕(u)du

/ ∫
ℝ
𝜂̂0(u)f̂⊕(u)du, i = 1,… , h.

Theorem 3.5. Suppose (A1′), (A2), (A3), and (A4) hold. Then

n1∕2(𝝔̂h − 𝝔h)
D
→ N(0,DVD⊺),

where

D =
1

∫
ℝ
𝜂0(u)f⊕(u)du

⎡
⎢⎢⎣

−𝜌1 1 0 0 … 0
−𝜌2 0 1 0 … 0
⋮ ⋮ ⋮

−𝜌h 0 0 0 … 1

⎤
⎥⎥⎦
,

and the entries vjk, j, k = 1,… , n − 1, of V are defined in (A.9) and (A.10) in Lemma A.2 in the Supporting

Information.

4. FINITE SAMPLE PROPERTIES OF AUTOREGRESSIVE PARAMETER ESTIMATORS

Simulations of theWAR(p) model were conducted to show that the autoregressive coefficients 𝛽j can be accurately

estimated, and to explore the normality of the estimators in finite samples. The simulation parameters included the
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Table I. Bias, standard deviation and RMSE of 𝛽i, i = 1, 2, 3

Bias SD RMSE

Sample size 𝛽1 𝛽2 𝛽3 𝛽1 𝛽2 𝛽3 𝛽1 𝛽2 𝛽3

50 −0.0686 0.0028 −0.0297 0.1432 0.1605 0.1313 0.1588 0.1606 0.1347
100 −0.0319 0.0062 −0.0186 0.0996 0.1171 0.0948 0.1045 0.1172 0.0967
500 −0.0073 0.0022 −0.0028 0.0458 0.0566 0.0453 0.0464 0.0567 0.0454
1000 −0.0043 0.0017 −0.0012 0.0317 0.0406 0.0319 0.0320 0.0406 0.0320
2000 −0.0011 0.0003 −0.0004 0.0227 0.0285 0.0225 0.0228 0.0285 0.0225

Wasserstein mean density f⊕ and quantile function Q⊕, the autoregressive parameters 𝛽j, and a generative process

for the innovations 𝜖t. The relation Qt(s) = Tt◦Q⊕ was used to obtain the quantile functions Qt for use in our

algorithms. Simulations were conducted using different Wasserstein mean densities and innovation processes to

probe the sensitivity of estimators. In this section, results are presented for a setting in which theWasserstein mean

density corresponds to the uniform distribution on the unit interval, that is, Q⊕(s) = s, for s ∈ [0, 1]. Results under

more complicated settings can be found in the Section A.5 of the Supporting Information.

The optimal transport maps Tt were generated from a WAR(3) model specified by

Tt − id = 𝛽1
(
Tt−1 − id

)
+ 𝛽2

(
Tt−2 − id

)
+ 𝛽3

(
Tt−3 − id

)
+ 𝜖t, (4.1)

with autoregressive coefficients 𝛽1 = 0.825, 𝛽2 = −0.1875, 𝛽3 = 0.0125, and innovations

𝜖t(u) = 𝜂t + sin (𝛿tu) with 𝜂t
i.i.d.
∼ N(0, 1), 𝛿t

i.i.d.
∼ Uniform[−0.2, 0.2], 𝜂t ⟂ 𝛿t, u ∈ [0, 1].

To begin, it is necessary to generate the initial maps T1,T2, and T3. There exists a unique, stationary and causal

solution to (4.1) in the form of (3.18). Hence, one can generate the initial signals purely based on past innova-

tions. A burn-in period of m = 1000 was used to stabilize the simulated signals. Given a sequence of m burn-in

innovations {𝜖1−m, 𝜖2−m,… , 𝜖−1, 𝜖0} generated as above, based on (3.18), define

⎧
⎪⎨⎪⎩

T1−m = id + 𝜖1−m,

T2−m = id + 𝜖2−m + 𝛽1(T1−m − id),

T3−m = id + 𝜖3−m + 𝛽1(T2−m − id) + 𝛽2(T1−m − id).

Then (4.1) can be applied recursively until T1− id through T3− id are obtained. One can then generate a time series

of desired lengths with T1 − id through T3 − id and (4.1). This approach is equivalent to truncating the infinite

sum in (3.18) but avoids the calculation of the coefficients 𝜓i. In our numerical implementation, an equally spaced

grid of length 100 on [0, 1] was used for both u and s arguments, since the support of the Wasserstein mean and

that of the quantile functions are both [0, 1] in this setting. The autoregressive parameter estimates in (3.22) were

computed using numerical integration.

The simulation was repeated 1000 times with sample sizes n = 50, 100, 500, 1000, 2000. The bias, standard

deviation and root mean-square error (RMSE) are summarized in Table I, from which we can observe that they all

trail off as sample size increases. For the purpose of demonstration, we only display histograms and QQ-plots for

n = 50, 100 and 1000. The graphical evidence of the asymptotic marginal normality of the estimators 𝛽i, i = 1, 2, 3,

is presented in Figures 2–4.

To investigate the joint normality, denote 𝜷 j = [𝛽1j, 𝛽2j, 𝛽3j]
⊺, where j = 1, 2,… , 1000 denotes the number of

replicates. We randomly generate three pairs of 3×1, linearly independent unit vectors (v1, v2), (v3, v4) and (v5, v6).

Calculate Xij = v
⊺

ij
𝜷 j, i = 1, 2,… , 6, j = 1, 2,… , 1000. Scatter plots of Xij v.s. X(i+1)j, i = 1, 3, 5, are shown in

Figure 5. The idea is that if a vector [𝛽1, 𝛽2, 𝛽3]
⊺ is normal, then for any coefficients, the vectors

∑3

j=1
v1j𝛽j and
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(a) (b) (c)

Figure 2. QQ plots and histograms of 𝛽1

(a) (b) (c)

Figure 3. QQ plots and histogram of 𝛽2
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(a) (b) (c)

Figure 4. QQ plots and histograms of 𝛽3

∑3

j=1
v2j𝛽j have a joint bivariate normal distribution, which can be approximately verified by visual examination of

scatter plots, if replications of [𝛽1, 𝛽2, 𝛽3]
⊺ are available. As before, we only display the cases where n = 50, 100

and 1000 for demonstration. The elliptical patterns in Figure 5 suggest bivariate Gaussian distribution, which is

what we expect. Moreover, for each n, we calculate 𝚺̂, the sample covariance matrix of {𝜷 j, j = 1, 2,… , 1000},

which is an estimator of the theoretical covariance matrix 𝚺 in (3.23). Let ‖⋅‖F be the Frobenius norm, we use the

relative Frobenius norm, ‖𝚺̂−𝚺‖F∕‖𝚺‖F to measure the differences between the sample covariance matrix and the

theoretical asymptotic covariance matrix based on (3.23). Figure 6 shows that the relative difference approaches

zero as sample size increases. All the aforementioned evidence supports the result of Theorem 3.4.

5. COMPARISON WITH OTHER FORECASTING METHODS

We proceed to applying ourWAR(1) model to real data sets and comparing its forecasting performance with that of

four other density time series forecasting approaches, studied in Kokoszka et al. (2019), where they are introduced

in great detail.

5.1. Benchmark Methods

We consider the following existing methods.

5.1.1. Compositional Data Analysis

The general methodology of Compositional Data Analysis has been used in various contexts for about four

decades, see Pawlowsky-Glahn et al. (2015) for a comprehensive account. Inspired by the similarity between

density observations and compositional data, Kokoszka et al. (2019) proposed to remove the constrains on ft by

applying a centered log-ratio transformation. The forecast is produced by first applying FPCA to the output of

these transformations, then fitting a time series model to the coefficient vectors.
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(a) (b) (c)

Figure 5. Scatter plots of Xi v.s. Xi+1, i = 1, 3, 5

Figure 6. Difference between sample and theoretical covariance matrices
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5.1.2. Log Quantile Density Transformation

This approach is based on the work of Petersen et al. (2016) and modified by Kokoszka et al. (2019). It transforms

the density ft to a Hilbert space where multiple FDA tools can be applied to forecast the transformed density,

then apply the inverse transformation to get the forecast density back. Specifically, a modified log quantile density

(LQD) transformation was applied to get the density forecasts.

5.1.3. Dynamic Functional Principal Component Regression

This method was implemented exactly the same way as in Horta and Ziegelmann (2018). Essentially it applies

FPCA with a specific kernel, then forecasts the scores with a vector autoregressive (VAR) model. Predictions

are produced by reconstructing densities with predicted scores. Negative predictions are replaced by zero and the

reconstructed densities are standardized.

5.1.4. Skewed t Distribution

Proposed by Wang (2012), this method fits a skewed t density to data at each time point. Predictions are made by

fitting a VAR model to the MLEs of the coefficients of the t distribution.

5.2. Data sets and Performance Metrics

The data sets we use are monthly Dow Jones cross-sectional returns from April 2004 to December 2017, monthly

S&P 500 cross-sectional returns from April 2004 to December 2017, Bovespa 5-minute intraday returns that cover

305 trading days from September 1, 2009, to November 6, 2010, and XLK, the Technology Select Sector SPDR

Fund returns sampled at the same time intervals as the Bovespa data.

To measure the accuracy of forecast results, we consider the following metrics

1. The discrete version of Kullback–Leibler divergence (KLD; see Kullback and Leibler, 1951)

2. The square root of the Jensen–Shannon divergence (JSD; see Shannon 1948)

3. L1 norm.

Again, we refer to (Kokoszka et al., 2019) for more details on the data sets and these metrics as we carry out

the comparison exactly the same way as in their article to keep the comparison consistent.

5.3. WAR(p) Models

We implement a data-driven procedure to select the order p and the size of training window K. Denote by n the

present time. We use K samples in the time interval [n − K + 1, n] to predict fn+1. For each t ∈ [n − K + 1, n]

we compute the prediction f̂t,p based on the WAR(p) model and samples in the interval [t − K, t − 1]. Let 𝜌 be a

performance metric, Ip and IK be some sets for possible choices of p,K respectively. We evaluate

Rp(n,K) =
∑

t∈[n−K+1,n]

𝜌
(
f̂t,p, ft

)
, p ∈ Ip and K ∈ IK .

Denote by p̂(n) and K̂(n), the value of p and K which minimizes Rp(n,K), we use WAR(p̂(n)) and the training

window [n − K̂(n) + 1, n] to predict fn+1. One way to implement this data-driven procedure is to select K and p

simultaneously, which entails |Ip| × |IK| runs of the forecasting algorithm. In our numerical experiments in this

section, we observed that the choice of K has greater impact on the forecasting accuracy than the choice of p. In

addition, within the data sets we investigated, the choice of K is relatively robust to the choice of p as the number

of window sizes are small, that is, |IK| = 2 for intra-day data sets and |IK| = 3 for cross-sectional data sets

(see Section 5.5). Therefore, to reduce the computational cost, we first use the WAR(1) model to determine K.

After choosing training windows for each day, we then determine the order p.

J. Time Ser. Anal. 43: 30–52 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa

DOI: 10.1111/jtsa.12590



48 C. ZHANG, P. KOKOSZKA, AND A. PETERSEN

5.4. Fully Functional WAR(p) Models

Similar to the idea of the WAR(p) model, one can build a fully functional model in the tangent space to forecast

and use the exponential map to recover the forecast density. As mentioned in the introduction, in a recent preprint,

Chen et al. (2020) investigated this approach in the case p = 1. We specify the general order p model as follows.

The fully functional WAR(p) model is defined by

Tt(u) − u =

p∑
j=1

∫
ℝ

𝜙j(u, v)(Tt−j(v) − v)f⊕(v)dv + 𝜖t(u), (5.1)

where𝜙j are the autoregressive parametric functions to be recovered. Thus, the key difference between theWAR(p)

model proposed in this article and that of Chen et al. (2020) is in how the quantities Tt−j − id from previous

timepoints are mapped to the tangent space prior to adding the innovations. In theWAR(p) model, these are simply

multiplied by the autoregressive coefficients 𝛽j. In contrast, the fully function WAR(p) applies an integral operator

with kernel 𝜙j to these quantities. Note that, technically, the WAR(p) model is not a special case of the fully

functional version, since the operation of multiplying by 𝛽j is not compact, whereas the integral operators in (5.1)

are compact. The estimation procedure follows by fitting the usual functional AR(p) model (see, e.g., Bosq, 2000)

to the observed quantile functions Qt, yielding estimates 𝜑̂j of the kernels 𝜑(s, s′) = 𝜙j(Q⊕(s),Q⊕(s
′)). In the

case p = 1, this matches the estimation of Chen et al. (2020). Similarly to the WAR(p) model, forecasts are then

constructed in the tangent space using the plug-in estimates 𝜙̂j(u, v) = 𝜑̂j(F̂⊕(u), F̂⊕(v)), followed by application of

the exponential map (2.5). Thus, in the presentation of our results, the method labeled “Fully Functional WAR(p)"

can be considered as an extension of the model of Chen et al. (2020) to include orders p ≥ 1.

In particular, we implement the same data-adaptable procedure as described in Section 5.3 with one additional

component. The method used to fit the functional AR(p) model to the quantile functions performs functional

principal component analysis as a first, which requires one to specify the number of components to retain. We

thus introduce an additional tuning parameter R that represents proportion of variance required by the FPCA.

Specifically, in the forecasting procedure, we reconstruct T̂t − id with the smallest number of PCs that explain R

percent of variance; see, for example, Section 3.3 of Horváth and Kokoszka (2012). We incorporate R into the

data-driven procedure to determine its value for forecasting. Specifically, we compute

Rp(n,K,R) =
∑

t∈[n−K+1,n]

𝜌
(
f̂t,p, ft

)
,

where p ∈ Ip,R ∈ IR and K ∈ IK . For each n, we use the optimal p̂(n), K̂(n) and R̂(n) to predict f̂n+1. Within

the fully functional WAR(p) model, some initial results show that the case p = 1 outperforms higher order cases

across all different settings of K and R, hence to simplify the procedure, we fix p = 1 and implement the procedure

to choose R and K.

5.5. Results

The WAR(p) model was tuned with both Kullback–Leibler divergence and Wasserstein distance under the

data-adaptable procedure with Ip = {1, 2,… , 10}, while the fully functional WAR(p) model was only tuned with

the former one for demonstration purpose with IR = {0.4, 0.5,… , 0.8}. For both approaches, we use IK = {20, 62}

for the intra-day data sets and IK = {12, 24, 48} for the monthly cross-sectional data sets. These choices corre-

spond approximately to monthly and quarterly data (20, 62) and to 1, 2, and 4 years (12, 24, 48) for the monthly

data. They are often used for financial and economic data, but there is no profound statistical reason for choosing

them. Our method could be elaborated on by using a data driven maximum value of K, some form of an approach

advocated in Chen et al. (2010), but the simple choices we propose work well and do not lead to an excessive

computational burden.
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Table II. Forecast accuracies of five methods, XLK intraday returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta–Zieglman 0.2831 1.5095 4.2909 11257.47 3.97 × 10−4

LQDT 0.3831 1.3411 5.2559 10891.16 3.97 × 10−4

CoDa (standardization) 0.3231 2.6076 4.9518 14689.67 4.04 × 10−4

CoDa (no standardization) 0.3579 2.8919 5.2173 15053.57 4.11 × 10−4

Skewed-t 0.2666 1.7418 3.8736 13701.89 4.16 × 10−4

WAR(p) (KL) 0.1761 1.4408 2.7569 11214.40 3.32 × 10−4

WAR(p) (WD) 0.1827 1.4713 2.8730 11418.83 3.38 × 10−4

Fully functional WAR(p) (KL) 0.1837 1.4753 2.8821 11576.42 3.36 × 10−4

Table III. Forecast accuracies of five methods, Bovespa intraday returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta–Ziegelman 0.4009 1.9098 6.1713 16993.19 4.47 × 10−4

LQDT 0.4258 1.6634 6.0687 16313.87 3.09 × 10−4

CoDa (standardization) 0.2271 1.7360 3.7000 16351.17 3.08 × 10−4

CoDa (no standardization) 0.2278 1.7448 3.7038 16391.76 3.10 × 10−4

Skewed-t 0.2750 1.9909 3.9774 19261.90 4.13 × 10−4

WAR(p) (KL) 0.2534 1.8769 4.1364 17153.26 3.92 × 10−4

WAR(p) (WD) 0.2383 1.8065 3.8622 16878.16 3.86 × 10−4

Fully functional WAR(p) (KL) 0.2550 1.8963 4.1478 17226.79 3.79 × 10−4

From Tables II–V, we can see both WAR(p) and fully functional WAR(p) models produce excellent predictions

in the XLK and DJI data sets. (In 19 out of 20 cases theWAR(p) performs better than the fully functionalWAR(p).)

Indeed, the WAR(p) model is the top performer in these two data sets. In the XLK data set, the WAR(p) model

tuned by KL divergence topped under three performance metrics, and ranked second under the rest two metrics

with small margins to the top performer LQDT. In the DJI data set, the WAR(p) model topped under two metrics,

and again, with narrow margins to the top performers under the rest of the metrics. Specifically, we can see in DJI

data set, the average rank of forecasting performance of WAR(p) model (tuned by KL divergence) is 1.6, while

the two contenders LQDT and CoDa (no standardization) scored 2.8 and 1.6, respectively, which put the WAR(p)

model in tie with the CoDa method as the top performers.

The performance of WAR(p) model in the Bovespa and S&P500 data sets is not as competitive. Since our

models rely on stationarity, we informally investigate the stationarity condition for each data set. In Figure 7,

we plot the Wasserstein distance from all densities used in forecasting to their sample Wasserstein mean. These

distances are larger in the Bovespa and S&P500 data sets, compared to those in XLK and DJI data sets. Indeed,

the average Wassertein distance from these plots in Figure 7 are XLK: 4.045, Bovespa: 4.255, DJI: 421.25 and

S&P500: 571.63. Hence stationarity could be a potential cause for a weaker performance of the WAR(p) model

in the Bovespa and S&P500 data sets. Generally, no prediction method can be expected to be uniformly superior

across all data sets and all time periods and according to all metrics. In our empirical study, The WAR(p) methods

performs best for some data sets, and the LQDT and CoDa methods perform better for others.

6. DISCUSSION

The WAR(p) model provides an interpretable approach to model density time series by representing each density

through its optimal transport map from the Wasserstein mean. Under this representation, stationarity of a density

time series, whose elements reside in a nonlinear space, is defined according to the usual stationarity of the random

transport maps in the tangent space, which is a separable Hilbert space. This article demonstrates how autoregres-

sive models, built on the tangent space corresponding to the Wasserstein mean, possess stationary solutions that,

in turn, define a stationary density time series. This link is not automatic, however, due to the fact that the loga-

rithmic map lifting the densities to the tangent space is not surjective, and constraints are necessary to ensure the
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Table IV. Forecast accuracies of five methods, Dow–Jones cross-sectional returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta–Ziegelman 1.3070 3.5986 9.4038 1039.36 3.99 × 10−2

LQDT 1.0421 3.0129 6.9443 948.77 2.61 × 10−2

CoDa (standardization) 0.6658 3.2359 5.1780 953.42 2.63 × 10−2

CoDa (no standardization) 0.6510 3.1785 5.0572 943.62 2.59 × 10−2

Skewed-t 1.3590 5.2532 10.4784 1324.97 3.82 × 10−2

WAR(p) (KL) 0.6448 3.0407 5.0965 947.0983 2.59 × 10−2

WAR(p) (WD) 0.6616 3.1838 5.1538 975.3546 2.63 × 10−2

Fully functional WAR(p) (KL) 0.6480 3.0821 5.0993 952.4613 2.61 × 10−2

Table V. Forecast accuracies of five methods, S&P 500 cross-sectional returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein

Horta–Ziegelman 0.5315 1.9986 3.1032 222.62 6.94 × 10−2

LQDT 0.4252 1.8165 2.5232 213.10 4.78 × 10−2

CoDa (standardization) 0.3156 1.7994 2.3023 208.71 6.45 × 10−2

CoDa (no standardization) 0.3233 1.8465 2.3550 211.29 6.50 × 10−2

Skewed-t 0.5560 3.0961 3.6383 286.04 6.67 × 10−2

WAR(p) (KL) 0.4454 1.9578 2.7626 213.2848 7.37 × 10−2

WAR(p) (WD) 0.4349 1.9166 2.7163 216.4794 7.23 × 10−2

Fully functional WAR(p) (KL) 0.4762 2.1384 2.8143 223.7424 7.91 × 10−2

(a) (b)

Figure 7. Wasserstein distance between sample points to their Wasserstein mean

viability of the model. In our empirical analysis, the proposed WAR(p) model emerged as a competitive forecast-

ing method for financial return densities when compared to various existing methods and using several different

metrics for forecasting accuracy. The option of selecting the order p to suit a specific purpose is a useful feature

of the model. We proposed a data-driven procedure that targets optimal prediction in terms of a specific metric,

but other objectives, including a model fit in terms of information criteria could be used as well.

There are several research directions that emerge from our work. It can be expected that the theory for more

general ARMA(p, q) processes can be developed by extending the arguments we used. However, as we discussed,

even scalar ARMA processes are theoretically more complex than pure AR(p) models and ARMA processes in

function spaces must be approached with particular care. The extension thus appears to be not trivial, but may

turn out to be useful for some purposes. In the case of scalar, but not necessarily vector, observations, ARMA

processes provide more parsimonious models, but their predictive performance is not necessarily better that that

of AR(p) models. ARMA predictors are constructed through the Durbin–Levinson or innovations algorithms,
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but truncated predictors, effectively equivalent to order selected AR(p) models, generally perform better, see for

example, Section 3.5 of Shumway and Stoffer (2018).

We explored empirically the fully functional WAR(p) model, but we did not pursue its theoretical underpin-

nings because its predictive performance was not competitive; simpler models often provide better predictions.

The theory of fully functional WAR(1) model was developed, independently and in parallel with our research, in

Chen et al. (2020). It is also a model constructed in the tangent space and so it is subject to similar constraints as

our WAR(p) models, namely that the solution must be restricted to image of the logarithmic map with probability

one (see assumption (A3) in this article, and assumption (B2) in Chen et al. (2020)). It is unclear whether con-

crete examples of innovations can be established that satisfy this constraint for fully functional WAR(p) models,

whereas we have established several concrete examples for WAR(p) models in this article. Still, fully functional

WARMA(p, q) models might be useful in some settings, and their theory might then be developed.

We have seen that, as for any time series models, assumptions of stationarity are key to establishing theoretical

properties, such as the asymptotic normality of theWAR parameters andWasserstein autocorrelations, and to good

forecasting performance. Research on testing stationarity and detecting possible change points may be facilitated

by our work. Research of this type has been done for linear functional time series, see, for example, Berkes et al.

(2009), Horváth et al. (2014), Zhang and Shao (2015), but not for density times series. In general, it is hoped that

this article not only provides a set of theoretical and practical tools, but also lays out a framework within which

questions of inference for density time series can be addressed.
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