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Data consisting of time-indexed distributions of cross-sectional or intraday returns have been extensively studied in finance,
and provide one example in which the data atoms consist of serially dependent probability distributions. Motivated by such
data, we propose an autoregressive model for density time series by exploiting the tangent space structure on the space of
distributions that is induced by the Wasserstein metric. The densities themselves are not assumed to have any specific parametric
form, leading to flexible forecasting of future unobserved densities. The main estimation targets in the order-p Wasserstein
autoregressive model are Wasserstein autocorrelations and the vector-valued autoregressive parameter. We propose suitable
estimators and establish their asymptotic normality, which is verified in a simulation study. The new order-p Wasserstein
autoregressive model leads to a prediction algorithm, which includes a data driven order selection procedure. Its performance
is compared to existing prediction procedures via application to four financial return data sets, where a variety of metrics
are used to quantify forecasting accuracy. For most metrics, the proposed model outperforms existing methods in two of the
data sets, while the best empirical performance in the other two data sets is attained by existing methods based on functional
transformations of the densities.
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1. INTRODUCTION

Samples of probability density functions or, more generally, probability distributions arise in a variety of settings.
Examples include fertility and mortality data (Mazzuco and Scarpa, 2015; Shang and Haberman, 2020), functional
connectivity in the brain (Petersen and Miiller, 2019), distributions of image features from head CT scans (Salazar
et al., 2019), and distributions of stock returns (Harvey et al., 2016; Bekierman and Gribisch, 2019), with the
above recent references provided for illustration only. This article is concerned with modeling, estimation and
forecasting of probability density functions which form a time series.

An early approach to the analysis of distributional data by Kneip and Utikal (2001) used cross-sectional aver-
aging and functional principal component analysis (FPCA) applied directly to yearly income densities. In a more
recent work, Yang et al. (2020) represented the sample of distributions by their quantile functions, and applied a
linear function-on-scalar regression model with quantile functions as response variables. These two approaches
are principled alternatives to naively apply methods of functional data analysis (FDA) to density-valued data.
Since there are a variety of functional representations that provide unique characterizations of the distributions,
including densities, quantile functions, and cumulative distribution functions, one faces the need to choose a rep-
resentation prior to applying the (typically linear) methods of functional data analysis. Further complicating this
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Figure 1. Densities of XLK, the technology select sector SPDR Fund 5-minute intraday returns on selected dates

dilemma is the fact that these standard functional representations do not constitute linear spaces due to inherent
nonlinear constraints (e.g., monotonicity for quantile functions or positivity and mass constraints for densities),
so that outputs from models with linear underlying structures are generally inadequate. For this reason, method-
ological developments for the analysis of distributional data have taken a geometric approach over the last decade.
Rather than choosing a functional form under which to analyze the data, one chooses a metric on the space of
distributions to develop coherent models. Examples of suitable metrics that have been used successfully in the
modeling of distributional data include the Fisher—Rao metric (Srivastava et al., 2007), an infinite-dimensional
version of the Aitchison metric (Egozcue et al., 2006; Hron et al., 2016), and the Wasserstein optimal transport
metric (Panaretos and Zemel, 2016; Bigot et al., 2017; Petersen and Miiller, 2019).

In many cases, the distributions in a sample are indexed by time, for example annual income, fertility and mor-
tality data, or financial returns or insurance claims at various time resolutions. In this article, we will assume that
all such distributions possess a density with respect to the Lebesgue measure, and will refer to this type of data
as a density time series. A motivating example is shown in Figure 1, depicting the distribution of 5-minute intra-
day returns of the XLK fund, which tracks the technology and telecommunication sectors within the S&P 500
index. The data we plot in Figure 1a covers 305 trading days, each with 78 records of 5-minute intraday return.
Figure 1b demonstrates an alternative look at this dataset by plotting returns from three selected trading days.
Kokoszka et al. (2019) considered various methods for forecasting density time series, most of which produced
forecasts by first applying FPCA to the densities (or transformations of these), followed by fitting a multivariate
time series models to the vectors of coefficients. Finally, the density forecasts were obtained by using the fore-
casts of the coefficients in the FPCA basis representation. Of these different methods, a modified version of the
transformation of Petersen et al. (2016) gave superior forecasts in the majority of cases, and was also based on a
sound theoretical justification in terms of explicitly controlling for the density constraints.

The main contribution of this article is to develop a geometric approach to density time series modeling under
the Wasserstein metric. It is well-known that this geometry is intimately connected with quantile functions, and
thus provides a flexible framework for modeling samples of densities that tend to exhibit “horizontal” variability,
which can be thought of as variability of the quantiles. Examples of such variability in densities are given in
Figure 1b. We develop theoretical foundations of autoregressive modeling in the space of densities equipped with
the Wasserstein metric, followed by methodology for estimation and forecasting, including order selection. Since
the Wasserstein geometry is not linear, care needs to be taken to ensure the model components and their restrictions
are appropriately specified. Autoregressive models have been the backbone of time series analysis for scalar and
vector-valued data for many decades, see for example, Liitkepohl (2006), among many other excellent textbooks.
Autoregression has been extensively studied in the context of linear functional time series; most articles study or
use order one autoregression, see Bosq (2000) and Horvath and Kokoszka (2012). This article thus merges two
successful approaches: the Wasserstein geometry and time series autoregression.
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In a very recent preprint, Chen et al. (2020) independently proposed a similar geometric approach to regres-
sion when distributions appear as both predictors and responses. As an extension of this formulation, they also
developed an autoregressive model of order one for distribution-valued time series. Our AR(1) model proposed in
Section 3.1 can be viewed as a special case of the model in Chen et al. (2020). However, the generalization, theory
and methodology we subsequently pursue move in a completely different direction, so the two articles have little
overlap. Even though we were not aware of the work of Chen et al. (2020), we did include their model, which is
termed the fully functional Wasserstein autoregressive model in this work, as a one of the competing methods in
our empirical analyses in Section 5. We also note that our focus on densities with respect to the Lebesgue mea-
sure is motivated by practical considerations, as such densities occur in applications. In particular, we formulate
numerical algorithms applicable to this common setting. From the theoretical angle, our results related to existence
and convergence could be extended to general probability measures. Working with densities actually introduces
nontrivial complications. For example, the objects we want to predict must be densities, not general probability
measures.

The remainder of the article is organized as follows. In Section 2 we provide the requisite background on
Wasserstein geometry and introduce relevant definitions related to density time series. Section 3 is devoted to the
development of the Wasserstein AR(p) model, including its estimation and forecasting, both in terms of theory
and algorithms. Finite sample properties of our estimator are explored in Section 4, while Section 5 compares
our forecasting algorithm to those currently available. We conclude the article with a discussion in Section 6. The
Supporting Information contains proofs of the theorems stated in Section 3.

2. PRELIMINARIES

A density time series is a sequence of random densities {f;,# € Z}. In the spirit of functional data analysis, no para-
metric form for the densities will be assumed. Furthermore, the models will be developed under the setting in which
the densities are completely observed, although in practical situations they will need to be estimated from raw data
that they generate. For example, the densities in Figure 1 are kernel density estimates with a Gaussian kernel.

Density time series are a special case of functional time series, so it would be natural to adapt a functional
autoregressive model (see e.g., Chapter 8 of Kokoszka and Reimherr (2017)). However, such a direct approach
is only suitable if one first transforms the densities into a linear space, although this approach too comes with
disadvantages. The transformations of Petersen et al. (2016) and Hron ef al. (2016) require that all densities in
the sample share the same support, an assumption that is often broken in real data sets. Although Kokoszka et al.
(2019) modified the method of Petersen et al. (2016) to remove this constraint, the associated transformation is
not connected with any meaningful density metric, and can suffer from noticeable boundary effects if the observed
densities decay to zero near the boundaries. Still, the transformation approach remains viable and will be compared
to the Wasserstein models that we propose.

2.1. Wasserstein Geometry and Tangent Space

We begin with a brief discussion of the necessary components of the Wasserstein geometry. Consider the space of
probability measures W, = {u : u is a probability measure on R and [ x*du(x) < co}. Denoted by D the subset
of W, consisting of measures with densities with respect to Lebesgue measure, so that one may think of D as a
collection of densities. For f, g € D, consider the collection K, , of maps K : R — R that transport f to g, that
is, if K € [K;, and U is a random variable that follows the distribution characterized by f, that is, U ~ f, then
K(U) ~ g. Intuitively, f and g are close if there exists a K € K, such that K » id, where id(«) = u denotes the
identity map. This is the motivation behind the Wasserstein distance

1/2
dy(f,8) = Kler[ll;f {/ (K(u) — u)zf(u)du} . 2.1
f.g R
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That dy, is a proper metric is well-established (Villani, 2003), and (2.1) is indeed only one of a large class of
such metrics that can in fact be defined for measures on quite general spaces. In the particular setting of univariate
distributions, a surprising property is that the infimum in (2.1) is attained by the so-called optimal transport map
K* = G™'oF, where F and G are the cdfs of f and g respectively. Note that any optimal transport map must
be strictly increasing, so that, by the change of variable s = F(u), this leads to an alternative definition of the
Wasserstein metric

1/2 1 5 1/2
dy(f,8) = { / (K*(u) —u)zf(u)du} = { /0 (G™(s) = F7\(9)) ds} . (2.2)
R

For clarity, we will use u as the input for densities and cdfs, and s as the input for quantile functions. Interest-
ingly, even for univariate probability measures in W, that do not admit a density, the Wasserstein metric remains
well-defined, and both optimal transport maps and corresponding distance can be expressed in terms of their
quantile functions (which always exist), as above.

Another surprising characteristic of the Wasserstein metric is that, although (W,,d,;) is not a linear space, its
structure is strikingly similar to that of a Riemannian manifold (Ambrosio et al., 2008). As mentioned previously,
a key challenge in analyzing samples of probability density functions is that these reside in a convex space where
linear methods fall short. However, due to the manifold-like structure, to each 4 € W, corresponds a tangent space
T, that is a complete linear subspace of L*(R,dy) (see Chapter 8 of Ambrosio et al. (2008)), opening the door for
development of linear models for distributional data. According to (8.5.1) in Ambrosio et al. (2008), we define
the tangent space for 4 € W, by

T, = {/l(T —id) : T is the optimal transport from y to some v € W,, 1 > O}, 2.3)

where the closure is with respect to L?(R, du). With a slight abuse of notation, when y possesses a density f, we
will denote this tangent space by 7. The definition in (2.3) of the tangent space can be motivated by the following
fact. For u,v € W, and T the optimal transport from y to v, define the curve (known as McCann’s interpolant)
A € [0,1] » [id + AT — id)],u, where g,u(A) = u(g~'(A)) for A € B(R) denotes the pushforward measure
induced by a measurable function g. For different measures v, these are geodesic curves connecting y to v in W,
(Panaretos and Zemel, 2020). Thus, the extension to values 4 > 0 defines a tangent cone. That T” is indeed a linear
space is not obvious from the definition, but this property can indeed be established; see, for example, Chapter 2.3
of Panaretos and Zemel (2020).

We next describe two maps that bridge the tangent space and the space of densities. Let f, g € D have cdfs F
and G respectively. The map Log;: D — 7, defined by

Log,(g) = G™'oF —id (2.4)
is called the logarithmic map at f, and effectively lifts the space D to the tangent space 7. Intuitively, Log,(g)
represents the discrepancy between the optimal transport map G~! o F and the identity. In fact, (2.2) shows that
d%v(f ,8) = fR [Logf(g)(u)]zf (u)du, so that the logarithmic map takes the place of the ordinary functional difference

g — f that is commonly used in linear spaces. The second is the exponential map Exp, : 7, — W,. Let V € T,
and define Exp; by

Exp,(V) = (V +id)py, (2.5)
where y, is the measure with density f and

(V +id)pup(A) = pp (V+id)7(A)), A € BR),
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where B(R) denotes the Borel sets. Observe that, for any f, g € D, Exp,(Log,(g)) = g, but Log,(Exp,(V)) = V
holds if and only if V + id is increasing.

Looking forward to building a Wasserstein autoregressive model, the logarithmic map will be used to lift the
random densities into a linear tangent space, where the autoregressive model is imposed. An important point to
keep in mind is that the image of D under Log; is a convex cone, and thus a nonlinear subset of T, C LX(R, f(u)du).
We will deal with this technicality in the development of Wasserstein autoregressive models in Section 3. In
particular, the forecasts produced by the model in the tangent space will not be constrained to lie in the image
of the logarithmic map. This poses no practical problem since the forecasted densities are obtained through the
exponential map, which is defined on the entirety of the tangent space.

2.2. Wasserstein Mean, Variance, and Covariance

Consider a random density f, which is a measurable map that assumes values in D almost surely. Assume
E [d%v(f R g)] < oo for some, and thus all, g € D. Petersen et al. (2020) demonstrated sufficient conditions for the
Wassersetin mean density of f, written as

Fo [f] =fo = argminE [d},(f.9)] 2.6)
g€

to exist, which represents the Fréchet mean in the metric space D equipped with the Wasserstein distance. We will
thus assume that fg, exists and is unique, and write Fig, and Qg for the cdf and quantile functions, respectively,
that correspond to fg. Letting 7 = F~' o Fg be the random optimal transport map from f, to f, the Wasserstein
variance of f is

Varg (f) = E [d},(f.fg)] = E [ /R (T(u) — u)*fo(u)du| . 2.7

Since E [da,(f, g)] < oo for all g € D by assumption, existence of the Wasserstein mean f,, implies that the
Wasserstein variance Varg(f) is finite.

Now, suppose f; and f, are two random densities, with Wasserstein means fg | and fg ,, respectively. Since we
will consider an autoregressive model, it is necessary to develop a suitable notion of covariance within and between
these random densities. The usual approach in functional data analysis would quantify this by the crosscovariance
kernel of the centered processes f, —fg ,» ¢ = 1, 2. However, as mentioned previously, this differencing operation is
not suitable for nonlinear spaces, and we thus replace it with the logarithmic map in (2.4). Let T, = F t‘l o Fg, bethe
optimal transport map from the Wasserstein mean fg, , to the random density f;. To make clear the parallel between
the ordinary functional covariance and the Wasserstein version we will define, recall that the logarithmic map
replaces the usual notion of difference between two densities, so we introduce the alternative suggestive notation

f,©fs,=Log_ (f)=T,-id (2.8)

for the logarithmic map. Then the Wasserstein covariance kernel is defined by

C.o(u,v) = Cov [(f; © f, )W), (f; © fo.,) (V)] (2.9)
=Cov [T,w) —u, T,(v) =v|, £,/ =12

Since /R E (ft efea,,(u))zf@,[(u)du < oo, E (f, ef@,z(“))z < oo for almost all u in the support of fg . This means
that the Wasserstein covariance kernels C, ,(u,v) are defined for almost all (u,v) € supp(fg ) X supp(fg ). To
further solidify the intuition behind this definition, observe that the Wasserstein variance in (2.7) can be rewritten
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as

Vare;(f,)z/Cl’t(u, w)fg (w)du,
R

echoing the notion of total variance typically used for functional data. This was the motivation used in Petersen
and Miiller (2019) to define a scalar measure of Wasserstein covariance between two random densities.

2.3. Stationarity of Density Time Series

Stationarity plays a fundamental role in time series analysis. It is a condition generally imposed on the random
part of the process that remains after removing trends, periodicity, differencing or after other transformations.
It is needed to develop estimation and prediction techniques. Here we develop notions of stationarity and strict
stationarity for a time series of densities {f,,t € Z}.

Definition 2.1. A density time series {f,,# € Z} is said to be (second-order) stationary if the following two
conditions hold.

1. Eg [ft] = fg forall t € Z, so the f; share a common Wasserstein mean. Denote supp(fg,) by Dyg,.
2. Varg(f,) < oo.
3. Forany t,h € Z, and almost all u,v € Dg, C,,,,(«,v) does not depend on .

As we take the approach that focuses on the geometry of the space of densities, the above notion of stationarity
is defined by the Wasserstein mean and covariance kernel, which is not equivalent to those traditional stationarity
definitions of functional time series. In particular, a conventional stationarity notion for a stochastic process is
understood in the following sense, see for example, Bosq (2000).

Definition 2.2. A sequence {V,} of elements of a separable Hilbert space is said to be stationary if the following
conditions hold: (i) E [|| V, ||2] < oo, (i) E [V,] does not depend on #, and (iii) the autocovariance operators defined
by G, ,n@) = E [((V, = u),x)(V,,, — w)] do not depend on 1 (u = EV).

Observe that Definition 2.2 clearly does not apply to the density time series {f,,t € Z} as densities do not
form a vector space. The fact alone that differences f; — E [f®] are not well-defined in a nonlinear space renders
Definition 2.2 unsuitable for density time series. However, up taking V, = Logf$(ﬁ), Definition 2.1 implies Defini-
tion 2.2, with the separable Hilbert space in the latter being the tangent space Tfe;‘ As has been observed elsewhere
(e.g., Panaretos and Zemel, 2016; Petersen et al., 2016), the Wasserstein mean fg, (when it exists) is characterized

by being the unique solution to E [Logf®(ﬁ)(u)] = 0 for almost all u in the support of fg,. Hence, condition (ii) is

satisfied since y = E [VO] = 0, from which condition (i) follows as E [||V,||2] = Varg(f,) < oo. Lastly, condition
(iii) holds since, for any element x € 7}@,

()

g[,t.}.h(x) = [E l(/ Vy(u)x(u)f@(u)du> Vt+h] = / Ct,z+h('s u)x(u)f@(u)dua
Dg, D,

which is independent of ¢. Equivalently, if Q, is the quantile function corresponding to f,, Definition 2.1 implies
that the optimal transport maps T, = Q, o Fg, = X, +id form a stationary sequence in ﬁ@ according to Definition 2.2
with y = id.

Definition 2.3. A density time series {f,,7 € Z} is said to be strictly stationary if the joint distributions on D* of
(o Soys -5 Jy) and (o foins -+ 5y 4n) are the same for any k € N and choices 1,,1,, ..., 1, h € Z.
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Note that, if the densities f, share a common Wasserstein mean fg, and the joint distributions of (T,l s th, e, T,k)
and (7, 4, T, 1y ---» T, ) are the same for any k € N and choices #,,1,, ... .1, h € Z, then {f,,1 € Z} is strictly
stationary according to Definition 2.3. Since the existence and uniqueness of the Wasserstein mean implies that
the Wasserstein variance is finite, it also follows that {f,,# € Z} is stationary according to Definition 2.1, provided

the Wasserstein mean exists and is unique.

3. WASSERSTEIN AUTOREGRESSION

The above notions of stationarity and strict stationarity in the tangent space facilitate the development of autore-
gressive models in Tfea by lifting the random densities via the logarithmic map. As observed previously, the image
of D under this map is a convex cone in T$, so it is not immediately possible to impose onto the tangent space
standard structures used for functional time series, which rely on linearity of the function space (see e.g., Chapter
8 of Kokoszka and Reimherr (2017) and references therein). To illustrate the challenges that must be overcome,
we begin with a simple model involving a single scalar autoregressive parameter, and then consider extensions.
For a stationary density time series {f;,t € Z}, with Wasserstein mean cdf and quantile functions Fg and Qg,
respectively, define

7, v) 1= Cov (f, © fo (). fry © o (V) . (3.1

3.1. Wasserstein AR Model of Order 1

From Definition 2.1, a useful path to pursue in developing an autoregressive model for density time series is to
first establish a suitable primary model for a sequence {V,} on a tangent space 7;‘@’ for some fg € D. Recall that
7}@ is a separable Hilbert space. The second step is to impose conditions on {V,} such that

(a) the measures y, = Expf$(V,) possess densities f; that form a stationary density time series with Wasserstein
mean fg, and
(b) the parameters in the primary model can still be estimated given observations of the f,.

To this end, fix fi, € D, where we assume that the support Dg, of fg is an interval, possibly unbounded. Let
f € R be the autoregressive parameter, and {¢,} a sequence of independent and identically distributed stochastic
processes (innovations) that reside in TfeB almost surely. We assume that the ¢, satisfy E [e,(u)] = 0forallu € Dg
and define the innovation covariance kernel

C.(u,v) = Cov [e,(w), ()], u,veR. (3.2)

We say that a sequence {V,} follows an autoregressive model of order 1 if the random elements V, € 7;%9 satisfy
the equation

V,=pV,_ +e, t€Z (3.3)
As will be detailed in Theorem 3.1, (3.3) has a unique, suitably convergent, solution V, = 37 f’e,_; under the

following conditions:

(Al) |Bl < 1,
(A2) The innovations are i.i.d. elements of 7}@, have mean zero, and /R C (u, )fg(u)du < oo.

To ensure that requirements (a) and (b) above are met, we impose the following condition.

(A3) Almost surely, V, is differentiable, and Vt’ (u) > —1forall u € Dy,

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 30-52 (2022)
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Denote the usual Hilbert norm on L*(R, Je(u)du) by ||-]|. We now state our first result associated with model
(3.3), and its consequences for the density time series induced by the exponential map. Its proof, along with those
of all other theoretical results, can be found in the Supporting Information.

Theorem 3.1. If (A1) and (A2) hold, then
V=) e, (3.4)

defines a unique, strictly stationary solution in Tfe to model (3.3). This solution converges strongly,

n
Vt - ﬁlet—i

i=0

lim = 0 almost surely, 3.5)

and in mean square,

n 2

Vt - Z ﬂier—i

i=0

lim E

n—oo

=0. (3.6)

If, in addition, (A3) holds, then the measures y, = Expf® (V,) possess densities that form a strictly stationary
sequence {f;,t € Z} with common Wasserstein mean fg, and V, = T, — id almost surely.

In light of Theorem 3.1, we define the Wasserstein autoregressive model of order 1, or WAR(1) model, for a
density time series {f,,t € Z} by

T —id=p(T,_ —id) +e,. (3.7)

Under (A1)-(A3), we now know that a unique solution f; © fo, = T, —id = 220 Pe,_; exists such that {f,,1 € Z}
is strictly stationary according to Definition 2.3. Since they also share a common Wasserstein mean, the sequence
is also stationary according to Definition 2.1.

In order for the results of Theorem 3.1 to not be vacuous, we will establish a set of innovation examples that
satisfy (A2) and (A3). Given the structure of the tangent space in (2.3), consider innovations of the form ¢,(u) =
A,(S,(u) — u), where A, > 0 and S, is an increasing map defined on Dg, (and is thus an optimal transport map from
Jg to some v € W),). Both 4, and S, can be random. We now list specific examples for which (A2) and (A3) hold,
where |f| < 1 throughout.

Example 3.1. Let #, be i.i.d. random variables with mean zero and finite variance. The WAR(1) model admits
constant innovations €,(u) = 7,, which can be identified as elements in Tfe; by setting S,(v) = nlﬂ[“ + u for any
A, > 0.

Example 3.2. Let#, be asin Example 3.1, and 6, be i.i.d. random variables with mean zero such that |¢,| < 1—|f|.
Linear innovations €,(#) = #, + 6,u are admissible under the WAR(1) model. The tangent space representation of
¢,(u) can be recovered by setting S,(u) = (1 + 6,47 )u+n,A7" forany A, > |5,|.

Example 3.3. Let#, and 6, be as in Example 3.2, with the additional constraint that the §, be symmetric about 0.
The WAR(1) model admits periodic innovations €,(x) = #, + sin(6,u), which can be viewed as tangent space
elements by writing S,(u) = u+n,A7" + A" sin(6,u) for any 4, > |6,|.
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38 C. ZHANG, P. KOKOSZKA, AND A. PETERSEN

In Examples 3.1-3.3, (A2) is clearly satisfied. Moreover, we have €/(u) = 0, €/(u) = 6, and €] (1) = J, cos(5,u),
respectively in each example. Thus, SUP,epy, le/w)| < 1 —|p]|, so that differentiation and summation can be
interchanged, yielding

Tj@ = 1= 3 pley (0= = 1A' suple] @] > (41 = 1) D14l = ~1.

i=0 i=0 i=0

These examples establish one way to validate the WAR(1) model, namely by imposing a deterministic bound on
the supremum of the derivative €/ that is related to f. In general, (A3) may be considered a compatibility restriction
between the innovation sequence and the autoregressive parameter.

Next, we express the autoregressive coefficient f in terms of the autocovariance functions y, defined in (3.1).
Following the derivation of the Yule—Walker equations, it can be shown that

_ /R 71 (u, M)fe; (u)du

= oy Yot w)fp (u)du”

(3.8)

The denominator is recognizable as the usual Wasserstein variance of each f;, while the numerator corresponds to
the lag-1 scalar measure of Wasserstein covariance defined in Petersen and Miiller (2019). Thus, § can be inter-
preted as alag-1 Wasserstein autocorrelation measure. This characterization of § thus resembles the autocorrelation
function of an AR(1) scalar time series.

3.1.1. Estimation and Forecasting
For any integer & > 0, define the lag-h Wasserstein autocorrelation function by

_ S 70 w)f g (u)du _ S My (w)du
Jo Yo g @du [, no(u)fy(wydu’

Ph n,(w) = v, (u, u). 3.9

For each fixed u, #,(«) is the autocovariance function of the scalar time series {7,(u),t € Z}. First, we estimate
the Wasserstein mean by

n -1
o) = Fyw), Fg= (% > Q,) : (3.10)
t=1

Defining ﬁ =0, Of?ﬂ;, the estimators for p, and ,, h € {0,1,...,n— 1}, are

/[R{ ﬁh(”)fg;(u)du 1 nho R
ﬁ = ﬁ(u):— TZ(M)—M TI+ (u)_u . (311)
' i flo)fg () ! n ; { } { h }

Then the natural estimator for § in (3.7) is

A

f=p. (3.12)
In order to establish asymptotic normality of the above estimators, we require

(A4) The innovations ¢, satisfy /R E [ef(u)] Jedu < .

The following result is a special case of Theorem 3.4 in Section 3.2; the proof of the more general result can be
found in the Supporting Information.
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Theorem 3.2. Suppose (A1)—(A4) hold. Then

nl/? (ﬁ_ ﬂ) 2, N (0, 63(1 _ ﬁz)) ,
where
o2 = /Rl C2(u, v)f g ()f g (v)dudv
) [/R C(u, M)f®(u)du]2

(3.13)

is finite due to (A4).

With a consistent estimator of § in hand, we proceed to define a one-step ahead forecast. Given observations
fi»--..f,, we first obtain f and compute the measure forecast

foer =Expy (Vo) YV, = (T, —id),

where /7\",1 = Qno]"\7 - It remains to convert this measure-valued forecast into a density function. Observe that one
can always compute the cdf forecast

I?nﬂ(u) = / 1 (?,Hl(v) +v< u)fe;(v)dv
R

1
= / 1 (/?Qn(s) + (1= )0g(s) < u) ds, (3.14)
0

where the second line follows from the change of variable s = F o). The cdf forecast can then be converted
into a density numerically. The same procedure can be followed to produce further forecasts fn +» 1 > 2, by using
the previous forecastfn +i—1- In practice, densities are rarely, if ever, fully observed. Instead, one observes samples
generated by the random mechanisms characterized by f;, from which densities can be estimated, for example, by
kernel density estimation. Under certain conditions, see Petersen ef al. (2016) and (Panaretos and Zemel, 2016),
one can systematically account for the deviation from the true densities caused by the estimation process. In our
theoretical developments below, we assume that the n densities f,f,, ... ,f, are fully observed as our focus is
developing the Wasserstein autoregressive model. The numerical implementation of our forecasting procedure,
summarized below in Algorithm 1, assumes that the available f, are bona fide densities, in that they are nonnegative
and integrate to one. Additionally, the algorithm uses the equivalent representation of § obtained through the
change of variable s = F o) as

L Aeds . = . "

=A—, hS =1’]h @S = - [S— €BS z+hS_ @S' .

f== A(8) = 71D () (Q,(5) = O (N)(Q,14(5) = Dy (5)) (3.15)
/()Ao(s)ds i3

Since ih(s) is computed for s € [0, 1], (3.15) emphasizes that the input densities f, need not share the same
support or be estimated over an identical grid, since all the critical calculations are carried out in terms of quantile
functions. Only the quantile functions of the density time series need to be estimated over the same grid points,
which extends the flexibility of the model.

The first step of the algorithm is to convert the available densities f, into quantile functions. A simple approach
to obtain these quantiles from densities is to first evaluate smooth cumulative distribution functions by integrating
the estimated densities, followed by some form of numerical inversion. One such approach is readily imple-
mented by the R function dens2quantile from package fdadensity, and this is the approach taken in our numerical
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Algorithm 1: Forecasting f, +l

1 Input: densities f,,# = 1,2, ...,n; grid QSup spanning [0, 1]
/* Quantities in steps 2-6 are evaluated for se& QSup */

2 Evaluate Q,(s), Q,(5), ..., Q,(5);
3 Q0g(s) «n ' Y 09
a4 Ay(s) < n! E,";h(Qt(S) = 0g(N(Q,41(s) — Og(s)), h =0, 1;

A 1 A 1 A
50 « fo }»l(s)ds/f0 Ag(s)ds;
6 V10 ()) —B(Q,(5) — D (5)):
7 Generate grid dSup spanning (ming g, V,11(Qg(5)) + Og(s), max cyg,, V,11(Qg(5)) + Qg (s))

/* Quantities in steps 8-10 are evaluated for u € dSup */
s Compute {[a, b1} {5 €10.11: ¥, D5 + Og(s) <u;
/* {la;, b)) IL:(L;) are disjoint subintervals of [0,1]. * /

9 Fu), < X2 (b — ap);

=1
10 f(u)n+l A F/(u)n+1

experiments to achieve step 2 of the algorithm. Steps 7-9 demonstrate how to implement the exponential map
defined in (2.5). From this definition, it is clear that the support of the forecasted density is given by the formula
in step 7. Steps 8 and 9 then discover and evaluate the probabilities Expfé(/\zl +1)((=00,u]), for u in the support
of the forecasted measure. Finally, step 10 can be executed by numerical integration, for example by computing
differences.

3.2. Wasserstein AR Model of Order p

A natural way to extend the WAR(1) model is to develop a Wasserstein autoregressive model of order p > 1
defined by

P
T,—id= ) p(T,_ —id) +e, (3.16)
Jj=1

where ﬁ] € R,j =1,2,...,p, and the ¢, € Tfe are again i.i.d. with mean O and satisfy (A2). Define the
autoregressive polynomial

p@)=1-pz—p - -7 z€C.
The WAR(p) model in (3.16) can then be written as
#B) (T, —id) =, (3.17)

where B is the backward shift operator, that is, for a discrete stochastic process {X,, € Z}, BX, = X, ;,i € Z.
For the WAR(p) to have a causal solution, we make the following assumption as a generalization of (Al) in

Section 3.1.

(A1) The autoregressive polynomial ¢(z) = 1 — pz — o> — -+ — B, has no root in the unit disk
{z: |z <1}
wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 30-52 (2022)
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Under (A1"), @ = Y o, w7, and the sequence {y;} satisfies )~ |w;| < co. We will show that the solution
to (3.17) can be written as

T,—id=) ye, . (3.18)
i=0

Observe (3.18) is a strictly stationary and causal process. Similarly to the development of the WAR(1) model,
{T, — id} in (3.16) should be understood at this point as a general zero mean autoregressive process of order p
in Tfe' As shown below, (A1”) and (A2) together imply the existence of a unique, suitably convergent, solution
T,—id = )77 we,_;(u) that s stationary in 7}$ according to Definition 2.2. Once again, (A3) applied to V, = T, —id
ensures that the application of the exponential map to 7, — id produces a stationary density time series with mean
f&» as seen in the Theorem 3.3. We also remark that Examples 3.1-3.3 can be modified directly to guarantee the

viability of the WAR(p) model; essentially 1 — | 8| must be replaced with (X~ |1//,-|)_I.

Theorem 3.3. The following claims hold under Assumptions (A1) and (A2).

(i) The series (3.18) is a strictly stationary solution in 7}@ to the WAR(p) (3.16). This solution converges almost
surely and in mean square, that is,

lim (|7, —id — Z vie || =0 as., (3.19)
and
n 2
lim E (17, —id = )" wie,,|| =0. (3.20)
n—-oo l:0

(ii) There is no other stationary solution (according to Definition 2.2) in Tf .
(iii) If, in addition, Assumption (A3) holds for V, = T, — id, then 7, is strictly increasing, almost surely,
and the measures Eprea (T, — id) possess densities f; that form a strictly stationary sequence according to

Definition 2.1 with common Wasserstein mean fq,.

Questions of the existence and uniqueness of solutions to ARMA equations are not obvious beyond the setting
of scalar innovations, even though care must be exercised even in that standard case, as explained in Chapter 3
of Brockwell and Davis (1991). In the multivariate case, conditions on the spectral decomposition of the autore-
gressive matrices are needed, see Brockwell and Lindner (2010) and Brockwell et al. (2013) whose results were
extended to Banach spaces by Spangenberg (2013). Simpler sufficient conditions in Hilbert spaces are given
in Bosq (2000) (AR(p) case) and Klepsch et al. (2017) (ARMA(p, g) case). In our setting, the coefficients are
scalars, but the innovations must conform to a nonlinear functional structure, so our conditions involve an inter-
play between the structure of the functional noise and the coefficients. The fully functional WAR(1) considered
in Chen et al. (2020) is also constructed in the tangent space, so it is also subject to similar constraints as our
WAR(p) model, namely that the solution must be restricted to image of the logarithmic map with probability one.
We have addressed it through our assumption (A3) and suitable examples or error sequences. Assumption (B2) in
Chen et al. (2020) is general, and it is, at this point, unclear whether concrete examples of innovations can be
established that satisfy it for fully functional WAR models.

3.2.1. Estimation and Forecasting
Recall fg,, #;, and 7, as defined in (3.10), (3.9) and (3.11) respectively. Set {Hp(u) }jk = ”U—kl(”)’ jk=1,....p, =
Bys - ﬁp)T, and np(u) = (n, (), ..., np(u))T. Following the derivation of the Yule—Walker equations, we obtain
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H,,(u)p = n,(u) as a characterization of the autoregressive parameters of the WAR(p) model, whence

-1
B= ( / H,,(M)f@(u)du> / N, (u)f g (u)du, (3.21)
R R

where the integrals are taken element-wise. Plugging in our estimators 7, (u) to obtain ﬁp(u) leads to

-1
p= ( / ﬁ,,(u>f@<u>du> / i1, (u)f (u)dut. (3.22)
R R

Set {¥,},; = > VWi +lizjp» bsJ = 1, ..., p. The following theorem establishes the asymptotic normality of the
estimator (3.22).

Theorem 3.4. Suppose (Al’), (A2), (A3), and (A4) hold. Then
(B - p) > NO.2), (3.23)

where X; = ag {‘I’;1 }“, i,j=1,...,p,and 63 is the same as (3.13) in Theorem 3.2.
ij

Indeed the above asymptotic covariance matrix is a generalization of the asymptotic variance in Theorem 3.2.
The forecasting procedure is exactly the same as described in (3.14) with steps (4) and (5) of Algorithm 1 replaced
by the above steps for estimating B and step (6) becoming

Voo = D BT,y —id). (3.24)

i=1

In addition to the autoregressive parameters, the autocorrelation functions are an important object in the study
of time series. In our case, recall the lag-h Wasserstein autocorrelation functions are defined in (3.9). Denote

0y = (p1. P2 ... py) and @, = (py. by ... By) ", where p, = [, () du/ [, fgu)fp@du,i=1,... h.

Theorem 3.5. Suppose (A1’), (A2), (A3), and (A4) hold. Then

D
n'/%(&, ~ 0,) = N(O,DVDT),

where

—p, 100 ...0
1 -, 010...0

e mfp)dn 5, 000 .. 1

)

and the entries Viks j.k =1,...,n— 1, of V are defined in (A.9) and (A.10) in Lemma A.2 in the Supporting
Information.

4. FINITE SAMPLE PROPERTIES OF AUTOREGRESSIVE PARAMETER ESTIMATORS
Simulations of the WAR(p) model were conducted to show that the autoregressive coefficients f; can be accurately

estimated, and to explore the normality of the estimators in finite samples. The simulation parameters included the

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 30-52 (2022)
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Table 1. Bias, standard deviation and RMSE of ﬁi, i=1,2,3

Bias SD RMSE
Sample size ﬁ 1 ﬁz ﬁ3 ﬁl ﬁz ﬁ3 ﬁl ﬁz ﬁ3
50 —0.0686 0.0028 -0.0297 0.1432 0.1605 0.1313 0.1588 0.1606 0.1347
100 —0.0319 0.0062 -0.0186 0.0996 0.1171 0.0948 0.1045 0.1172 0.0967
500 —0.0073 0.0022 —0.0028 0.0458 0.0566 0.0453 0.0464 0.0567 0.0454
1000 —0.0043 0.0017 —0.0012 0.0317 0.0406 0.0319 0.0320 0.0406 0.0320
2000 —0.0011 0.0003 —0.0004 0.0227 0.0285 0.0225 0.0228 0.0285 0.0225

Wasserstein mean density fg and quantile function Qg, the autoregressive parameters f;, and a generative process
for the innovations ¢,. The relation Q,(s) = 7,004 was used to obtain the quantile functions Q, for use in our
algorithms. Simulations were conducted using different Wasserstein mean densities and innovation processes to
probe the sensitivity of estimators. In this section, results are presented for a setting in which the Wasserstein mean
density corresponds to the uniform distribution on the unit interval, that is, Qg (s) = s, for s € [0, 1]. Results under
more complicated settings can be found in the Section A.5 of the Supporting Information.

The optimal transport maps 7, were generated from a WAR(3) model specified by

T,—id=p, (T,_, —id) + B, (T,, —id) + B5 (T,_5 —id) +€,, 4.1)

with autoregressive coefficients g, = 0.825, f, = —0.1875, f; = 0.0125, and innovations

¢,(u) = 5, + sin (6,u) with , "= N(0, 1), 8, "% Uniform[—0.2,0.2], 7, L 6, u € [0, 1].

To begin, it is necessary to generate the initial maps 7}, 7,, and T;. There exists a unique, stationary and causal
solution to (4.1) in the form of (3.18). Hence, one can generate the initial signals purely based on past innova-
tions. A burn-in period of m = 1000 was used to stabilize the simulated signals. Given a sequence of m burn-in
innovations {€,_,,, €,_,,» --- - €_1, €y} generated as above, based on (3.18), define

T,_,=id+¢€._,,
T, ,=id+e,, +p(T,_, —id),
T, =id+e_, + (T, —id) + p,(T,_,, —id).

Then (4.1) can be applied recursively until 7, —id through 7, —id are obtained. One can then generate a time series
of desired lengths with 7, — id through 75 — id and (4.1). This approach is equivalent to truncating the infinite
sum in (3.18) but avoids the calculation of the coefficients y;. In our numerical implementation, an equally spaced
grid of length 100 on [0, 1] was used for both u# and s arguments, since the support of the Wasserstein mean and
that of the quantile functions are both [0, 1] in this setting. The autoregressive parameter estimates in (3.22) were
computed using numerical integration.

The simulation was repeated 1000 times with sample sizes n = 50, 100, 500, 1000, 2000. The bias, standard
deviation and root mean-square error (RMSE) are summarized in Table I, from which we can observe that they all
trail off as sample size increases. For the purpose of demonstration, we only display histograms and QQ-plots for
n = 50, 100 and 1000. The graphical evidence of the asymptotic marginal normality of the estimators ﬁ: i=1,2,3,
is presented in Figures 2—4.

To investigate the joint normality, denote ﬁj = [ﬁlj, ﬁzj, ﬁ3j]T, where j = 1,2, ..., 1000 denotes the number of
replicates. We randomly generate three pairs of 3 X 1, linearly independent unit vectors (v,, v,), (v, v,) and (vs, vy).
Calculate Xij = vlTjAj, i=1,2,...,6,j =1,2,...,1000. Scatter plots of X,-j V.S. X(M)j, i = 1,3,5, are shown in

Figure 5. The idea is that if a vector [f,, f,, f;]" is normal, then for any coefficients, the vectors ijl vy;B; and
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Figure 4. QQ plots and histograms of ,B}

2]1 | V2;B; have a joint bivariate normal distribution, which can be approximately verified by visual examination of
scatter plots, if replications of [f,, f,, ;] are available. As before, we only display the cases where n = 50, 100
and 1000 for demonstration. The elliptical patterns in Figure 5 suggest bivariate Gaussian distribution, which is
what we expect. Moreover, for each n, we calculate fl, the sample covariance matrix of {ﬁj, j=1,2,...,1000},
which is an estimator of the theoretical covariance matrix X in (3.23). Let ||-||» be the Frobenius norm, we use the
relative Frobenius norm, ||fl —2|| /11Xl - to measure the differences between the sample covariance matrix and the
theoretical asymptotic covariance matrix based on (3.23). Figure 6 shows that the relative difference approaches
zero as sample size increases. All the aforementioned evidence supports the result of Theorem 3.4.

5. COMPARISON WITH OTHER FORECASTING METHODS

We proceed to applying our WAR(1) model to real data sets and comparing its forecasting performance with that of
four other density time series forecasting approaches, studied in Kokoszka et al. (2019), where they are introduced
in great detail.

5.1. Benchmark Methods

We consider the following existing methods.

5.1.1. Compositional Data Analysis

The general methodology of Compositional Data Analysis has been used in various contexts for about four
decades, see Pawlowsky-Glahn et al. (2015) for a comprehensive account. Inspired by the similarity between
density observations and compositional data, Kokoszka et al. (2019) proposed to remove the constrains on f, by
applying a centered log-ratio transformation. The forecast is produced by first applying FPCA to the output of
these transformations, then fitting a time series model to the coefficient vectors.
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5.1.2. Log Quantile Density Transformation

This approach is based on the work of Petersen et al. (2016) and modified by Kokoszka et al. (2019). It transforms
the density f, to a Hilbert space where multiple FDA tools can be applied to forecast the transformed density,
then apply the inverse transformation to get the forecast density back. Specifically, a modified log quantile density
(LQD) transformation was applied to get the density forecasts.

5.1.3. Dynamic Functional Principal Component Regression

This method was implemented exactly the same way as in Horta and Ziegelmann (2018). Essentially it applies
FPCA with a specific kernel, then forecasts the scores with a vector autoregressive (VAR) model. Predictions
are produced by reconstructing densities with predicted scores. Negative predictions are replaced by zero and the
reconstructed densities are standardized.

5.1.4. Skewed t Distribution
Proposed by Wang (2012), this method fits a skewed ¢ density to data at each time point. Predictions are made by
fitting a VAR model to the MLEs of the coefficients of the ¢ distribution.

5.2. Data sets and Performance Metrics

The data sets we use are monthly Dow Jones cross-sectional returns from April 2004 to December 2017, monthly
S&P 500 cross-sectional returns from April 2004 to December 2017, Bovespa 5-minute intraday returns that cover
305 trading days from September 1, 2009, to November 6, 2010, and XLK, the Technology Select Sector SPDR
Fund returns sampled at the same time intervals as the Bovespa data.

To measure the accuracy of forecast results, we consider the following metrics

1. The discrete version of Kullback-Leibler divergence (KLD; see Kullback and Leibler, 1951)
2. The square root of the Jensen—Shannon divergence (JSD; see Shannon 1948)
3. L, norm.

Again, we refer to (Kokoszka et al., 2019) for more details on the data sets and these metrics as we carry out
the comparison exactly the same way as in their article to keep the comparison consistent.

5.3. WAR(p) Models

We implement a data-driven procedure to select the order p and the size of training window K. Denote by 7 the
present time. We use K samples in the time interval [n — K + 1,n] to predict f,,,. Foreach t € [n — K + 1,n]
we compute the prediction f,’p based on the WAR(p) model and samples in the interval [t — K, — 1]. Let p be a
performance metric, /, and /. be some sets for possible choices of p, K respectively. We evaluate

RnKy= Y  p(f,.f;). peladKely.

t€[n—K+1.n]

Denote by p(n) and K (n), the value of p and K which minimizes R,(n, K), we use WAR(p(n)) and the training

window [n — K (n) + 1,n] to predict f, ;. One way to implement this data-driven procedure is to select K and p
simultaneously, which entails |, X || runs of the forecasting algorithm. In our numerical experiments in this
section, we observed that the choice of K has greater impact on the forecasting accuracy than the choice of p. In
addition, within the data sets we investigated, the choice of K is relatively robust to the choice of p as the number
of window sizes are small, that is, |/,| = 2 for intra-day data sets and |/;| = 3 for cross-sectional data sets
(see Section 5.5). Therefore, to reduce the computational cost, we first use the WAR(1) model to determine K.
After choosing training windows for each day, we then determine the order p.
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5.4. Fully Functional WAR(p) Models

Similar to the idea of the WAR(p) model, one can build a fully functional model in the tangent space to forecast
and use the exponential map to recover the forecast density. As mentioned in the introduction, in a recent preprint,
Chen er al. (2020) investigated this approach in the case p = 1. We specify the general order p model as follows.
The fully functional WAR(p) model is defined by

P
T(u)—u= Z / &;(u, v)(T,_;(v) = v)fg(v)dv + €,(u), 5.1
j=1 /R

where ¢; are the autoregressive parametric functions to be recovered. Thus, the key difference between the WAR(p)
model proposed in this article and that of Chen er al. (2020) is in how the quantities 7,_; — id from previous
timepoints are mapped to the tangent space prior to adding the innovations. In the WAR(p) model, these are simply
multiplied by the autoregressive coefficients ;. In contrast, the fully function WAR(p) applies an integral operator
with kernel qu to these quantities. Note that, technically, the WAR(p) model is not a special case of the fully
functional version, since the operation of multiplying by f; is not compact, whereas the integral operators in (5.1)
are compact. The estimation procedure follows by fitting the usual functional AR(p) model (see, e.g., Bosq, 2000)
to the observed quantile functions Q,, yielding estimates ¢; of the kernels ¢(s, s = $1(Qg(s), Qg (s"). In the
case p = 1, this matches the estimation of Chen et al. (2020). Similarly to the WAR(p) model, forecasts are then
constructed in the tangent space using the plug-in estimates (f)j(u, V) = g?)j(l:" o), F (1), followed by application of
the exponential map (2.5). Thus, in the presentation of our results, the method labeled “Fully Functional WAR(p)"
can be considered as an extension of the model of Chen ef al. (2020) to include orders p > 1.

In particular, we implement the same data-adaptable procedure as described in Section 5.3 with one additional
component. The method used to fit the functional AR(p) model to the quantile functions performs functional
principal component analysis as a first, which requires one to specify the number of components to retain. We
thus introduce an additional tuning parameter R that represents proportion of variance required by the FPCA.
Specifically, in the forecasting procedure, we reconstruct ﬁ — id with the smallest number of PCs that explain R
percent of variance; see, for example, Section 3.3 of Horvéith and Kokoszka (2012). We incorporate R into the
data-driven procedure to determine its value for forecasting. Specifically, we compute

RmKR= Y p(ff)

t€[n—K+1,n)

where p € I,R € I and K € Iy. For each n, we use the optimal p(n), IA((n) and IA?(n) to predict fn +1- Within
the fully functional WAR(p) model, some initial results show that the case p = 1 outperforms higher order cases
across all different settings of K and R, hence to simplify the procedure, we fix p = 1 and implement the procedure
to choose R and K.

5.5. Results

The WAR(p) model was tuned with both Kullback-Leibler divergence and Wasserstein distance under the
data-adaptable procedure with 7, = {1,2, ..., 10}, while the fully functional WAR(p) model was only tuned with
the former one for demonstration purpose with I, = {0.4,0.5, ..., 0.8}. For both approaches, we use I, = {20, 62}
for the intra-day data sets and I, = {12,24,48} for the monthly cross-sectional data sets. These choices corre-
spond approximately to monthly and quarterly data (20, 62) and to 1, 2, and 4 years (12, 24, 48) for the monthly
data. They are often used for financial and economic data, but there is no profound statistical reason for choosing
them. Our method could be elaborated on by using a data driven maximum value of K, some form of an approach
advocated in Chen et al. (2010), but the simple choices we propose work well and do not lead to an excessive
computational burden.
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Table II. Forecast accuracies of five methods, XLK intraday returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein
Horta—Zieglman 0.2831 1.5095 4.2909 11257.47 3.97 x 10~
LQDT 0.3831 1.3411 5.2559 10891.16 3.97 x 107
CoDa (standardization) 0.3231 2.6076 49518 14689.67 4.04x 1074
CoDa (no standardization) 0.3579 2.8919 5.2173 15053.57 411 %107
Skewed-7 0.2666 1.7418 3.8736 13701.89 4.16x 10~*
WAR(p) (KL) 0.1761 1.4408 2.7569 11214.40 332x10™
WAR(p) (WD) 0.1827 1.4713 2.8730 11418.83 3.38x 107
Fully functional WAR(p) (KL) 0.1837 1.4753 2.8821 11576.42 3.36 x 107

Table III. Forecast accuracies of five methods, Bovespa intraday returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein
Horta—Ziegelman 0.4009 1.9098 6.1713 16993.19 4.47x 1074
LQDT 0.4258 1.6634 6.0687 16313.87 3.09 x 10~*
CoDa (standardization) 0.2271 1.7360 3.7000 16351.17 3.08x10°*
CoDa (no standardization) 0.2278 1.7448 3.7038 16391.76 3.10x 10~
Skewed-7 0.2750 1.9909 3.9774 19261.90 413 x 1074
WAR(p) (KL) 0.2534 1.8769 4.1364 17153.26 3.92x 107
WAR(p) (WD) 0.2383 1.8065 3.8622 16878.16 3.86 x 10~
Fully functional WAR(p) (KL) 0.2550 1.8963 4.1478 17226.79 3.79x 10~

From Tables II-V, we can see both WAR(p) and fully functional WAR(p) models produce excellent predictions
in the XLK and DJI data sets. (In 19 out of 20 cases the WAR(p) performs better than the fully functional WAR(p).)
Indeed, the WAR(p) model is the top performer in these two data sets. In the XLK data set, the WAR(p) model
tuned by KL divergence topped under three performance metrics, and ranked second under the rest two metrics
with small margins to the top performer LQDT. In the DJI data set, the WAR(p) model topped under two metrics,
and again, with narrow margins to the top performers under the rest of the metrics. Specifically, we can see in DJI
data set, the average rank of forecasting performance of WAR(p) model (tuned by KL divergence) is 1.6, while
the two contenders LQDT and CoDa (no standardization) scored 2.8 and 1.6, respectively, which put the WAR(p)
model in tie with the CoDa method as the top performers.

The performance of WAR(p) model in the Bovespa and S&P500 data sets is not as competitive. Since our
models rely on stationarity, we informally investigate the stationarity condition for each data set. In Figure 7,
we plot the Wasserstein distance from all densities used in forecasting to their sample Wasserstein mean. These
distances are larger in the Bovespa and S&P500 data sets, compared to those in XLK and DJI data sets. Indeed,
the average Wassertein distance from these plots in Figure 7 are XLK: 4.045, Bovespa: 4.255, DJI: 421.25 and
S&P500: 571.63. Hence stationarity could be a potential cause for a weaker performance of the WAR(p) model
in the Bovespa and S&P500 data sets. Generally, no prediction method can be expected to be uniformly superior
across all data sets and all time periods and according to all metrics. In our empirical study, The WAR(p) methods
performs best for some data sets, and the LQDT and CoDa methods perform better for others.

6. DISCUSSION

The WAR(p) model provides an interpretable approach to model density time series by representing each density
through its optimal transport map from the Wasserstein mean. Under this representation, stationarity of a density
time series, whose elements reside in a nonlinear space, is defined according to the usual stationarity of the random
transport maps in the tangent space, which is a separable Hilbert space. This article demonstrates how autoregres-
sive models, built on the tangent space corresponding to the Wasserstein mean, possess stationary solutions that,
in turn, define a stationary density time series. This link is not automatic, however, due to the fact that the loga-
rithmic map lifting the densities to the tangent space is not surjective, and constraints are necessary to ensure the
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Table I'V. Forecast accuracies of five methods, Dow—Jones cross-sectional returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein
Horta—Ziegelman 1.3070 3.5986 9.4038 1039.36 3.99 x 1072
LQDT 1.0421 3.0129 6.9443 948.77 2.61 x 1072
CoDa (standardization) 0.6658 3.2359 5.1780 953.42 2.63x 1072
CoDa (no standardization) 0.6510 3.1785 5.0572 943.62 2.59 x 1072
Skewed-7 1.3590 5.2532 10.4784 1324.97 3.82x 1072
WAR(p) (KL) 0.6448 3.0407 5.0965 947.0983 2.59 x 102
WAR(p) (WD) 0.6616 3.1838 5.1538 975.3546 2.63x 1072
Fully functional WAR(p) (KL) 0.6480 3.0821 5.0993 952.4613 2.61 x 1072

Table V. Forecast accuracies of five methods, S&P 500 cross-sectional returns

Method KLdiv JSdiv JSdiv.geo L1 Wasserstein
Horta—Ziegelman 0.5315 1.9986 3.1032 222.62 6.94 x 1072
LQDT 0.4252 1.8165 2.5232 213.10 478 x 102
CoDa (standardization) 0.3156 1.7994 2.3023 208.71 6.45 % 1072
CoDa (no standardization) 0.3233 1.8465 2.3550 211.29 6.50 % 1072
Skewed-t 0.5560 3.0961 3.6383 286.04 6.67 x 1072
WAR(p) (KL) 0.4454 1.9578 2.7626 213.2848 7.37 x 1072
WAR(p) (WD) 0.4349 1.9166 2.7163 216.4794 7.23 x 1072
Fully functional WAR(p) (KL) 0.4762 2.1384 2.8143 223.7424 7.91 %1072
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Figure 7. Wasserstein distance between sample points to their Wasserstein mean

viability of the model. In our empirical analysis, the proposed WAR(p) model emerged as a competitive forecast-
ing method for financial return densities when compared to various existing methods and using several different
metrics for forecasting accuracy. The option of selecting the order p to suit a specific purpose is a useful feature
of the model. We proposed a data-driven procedure that targets optimal prediction in terms of a specific metric,
but other objectives, including a model fit in terms of information criteria could be used as well.

There are several research directions that emerge from our work. It can be expected that the theory for more
general ARMA(p, g) processes can be developed by extending the arguments we used. However, as we discussed,
even scalar ARMA processes are theoretically more complex than pure AR(p) models and ARMA processes in
function spaces must be approached with particular care. The extension thus appears to be not trivial, but may
turn out to be useful for some purposes. In the case of scalar, but not necessarily vector, observations, ARMA
processes provide more parsimonious models, but their predictive performance is not necessarily better that that
of AR(p) models. ARMA predictors are constructed through the Durbin—Levinson or innovations algorithms,
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but truncated predictors, effectively equivalent to order selected AR(p) models, generally perform better, see for
example, Section 3.5 of Shumway and Stoffer (2018).

We explored empirically the fully functional WAR(p) model, but we did not pursue its theoretical underpin-
nings because its predictive performance was not competitive; simpler models often provide better predictions.
The theory of fully functional WAR(1) model was developed, independently and in parallel with our research, in
Chen et al. (2020). It is also a model constructed in the tangent space and so it is subject to similar constraints as
our WAR(p) models, namely that the solution must be restricted to image of the logarithmic map with probability
one (see assumption (A3) in this article, and assumption (B2) in Chen et al. (2020)). It is unclear whether con-
crete examples of innovations can be established that satisfy this constraint for fully functional WAR(p) models,
whereas we have established several concrete examples for WAR(p) models in this article. Still, fully functional
WARMA (p, q) models might be useful in some settings, and their theory might then be developed.

We have seen that, as for any time series models, assumptions of stationarity are key to establishing theoretical
properties, such as the asymptotic normality of the WAR parameters and Wasserstein autocorrelations, and to good
forecasting performance. Research on testing stationarity and detecting possible change points may be facilitated
by our work. Research of this type has been done for linear functional time series, see, for example, Berkes et al.
(2009), Horvith et al. (2014), Zhang and Shao (2015), but not for density times series. In general, it is hoped that
this article not only provides a set of theoretical and practical tools, but also lays out a framework within which
questions of inference for density time series can be addressed.
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