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Abstract. We study the homology of free loop spaces via techniques arising

from the theory of topological coHochschild homology (coTHH). Topological
coHochschild homology is a topological analogue of the classical theory of

coHochschild homology for coalgebras. We produce new spectrum-level struc-

ture on coTHH of suspension spectra as well as new algebraic structure in the
coBökstedt spectral sequence for computing coTHH. These new techniques

allow us to compute the homology of free loop spaces in several new cases,

extending known calculations.

1. Introduction

Given a space X, the free loop space LX is the space of all maps from the
circle S1 into X. The (co)homology of free loop spaces has been an active area of
research for many decades. Interest in this area stems from a number of important
applications of free loop spaces to topology and mathematical physics. For example,
a classical theorem of Gromoll and Meyer [18] ties the homology of free loop spaces
to the enumeration of closed geodesics on manifolds. The homology of free loop
spaces is also the main object of study in the field of string topology [11, 13].

One of the primary strategies for understanding the (co)homology of free loop
spaces is to relate it to Hochschild homology [17, 10, 30]. In this paper, we use the
dual construction, coHochschild homology, and the emerging theory of topological
coHochschild homology to develop new tools for calculating the homology of free
loop spaces. We also describe new algebraic structure on the homology of free loop
spaces.

Recall that topological Hochschild homology (THH) is an analogue for ring spec-
tra of the classical theory of Hochschild homology for algebras. Similarly, the classi-
cal theory of coHochschild homology for coalgebras [14, 9] has a topological analogue
for coalgebras in spectra, called topological coHochschild homology (coTHH). The
foundations of coTHH have been developed in work of Hess and Shipley [20] as well
as work of Bohmann, Gerhardt, Høgenhaven, Shipley, and Ziegenhagen [4].

Some important examples of coalgebras in spectra are given by suspension spec-
tra of spaces. Indeed, for a space X, the diagonal map on X induces a comultipli-
cation

4 : Σ∞+ X → Σ∞+ X ∧ Σ∞+ X.
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which makes Σ∞+ X into a coalgebra. ForX a simply connected space, coTHH(Σ∞+ X)
can be identified with the suspension spectrum of the free loop space on X,

coTHH(Σ∞+ X) ' Σ∞+ LX.

Thus tools to study topological coHochschild homology in particular yield informa-
tion about free loop spaces.

For topological Hochschild homology, one of the primary computational tools
is the Bökstedt spectral sequence, which relates the homology of THH with the
algebraic theory of Hochschild homology. For a field k and a ring spectrum R, this
has the form

E2
∗,∗ = HH∗(H∗(R; k))⇒ H∗(THH(R); k).

In prior work, the authors and collaborators constructed an analogous coBökstedt
spectral sequence computing the homology of coTHH [4]. For a field k and a
coalgebra spectrum C, this spectral sequence has E2-term

Es,t2 = coHHs,t(H∗(C; k))

and abuts to Ht−s(coTHH(C); k). Here coHH is the classical coHochschild homol-
ogy for coalgebras of Doi [14]. In the case of suspension spectra of simply connected
spaces, the coBökstedt spectral sequence converges if a Mittag-Leffler condition is
satisfied, and gives computational tools to study the homology of free loop spaces:

H∗(coTHH(Σ∞+ X); k) ∼= H∗(LX; k).

The current paper studies the algebraic structure in the coBökstedt spectral se-
quence, with an eye towards applications to the homology of free loop spaces. Work
of Angeltveit and Rognes [2] shows that under appropriate flatness conditions, the
Bökstedt spectral sequence computing H∗(THH(R); k) is a spectral sequence of
H∗(R; k)-Hopf algebras. One might then expect a dual algebraic structure in the
coBökstedt spectral sequence. This is more subtle than it seems, however, because
such an algebraic structure has a multiplication and comultiplication over the coal-
gebra H∗(C; k), rather than over a ring. In this paper we define the appropriate
Hopf algebra-like structure over a coalgebra D, which we call a �D-Hopf algebra.
A �D-Hopf algebra H is a D-bicomodule with appropriately compatible multipli-
cation and comultiplication maps

µ : H �D H → H and 4 : H → H �D H,

where �D denotes the cotensor product over the coalgebra D.
These new constructions allow us to describe new algebraic structure on the

homology of free loop spaces.

Theorem 1.1. For X a simply connected space and k a field, if H∗(LX; k) is coflat
as a comodule over H∗(X; k), then H∗(LX; k) is a �H∗(X;k)-Hopf algebra.

We obtain this algebraic result as the consequence of spectrum-level structure
arising in the∞-category of coalgebra spectra over the suspension spectrum Σ∞+ X,
which is discussed in Proposition 5.6.

We then prove the following result capturing the algebraic structure in the
coBökstedt spectral sequence:
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Theorem 1.2. Let C be a connected cocommutative coalgebra spectrum. The
coBökstedt spectral sequence is a spectral sequence of �H∗(C;k)-coalgebras. Fur-
ther, if for each r ≥ 2, E∗,∗r (C) is coflat over H∗(C; k), then the coBökstedt spectral
sequence is a spectral sequence of �H∗(C;k)-Hopf algebras.

This algebraic structure in the coBökstedt spectral sequence facilitates new com-
putations of H∗(coTHH(C); k), and in particular of the homology of free loop spaces
H∗(LX; k).

In this work, we illustrate the power of this structure on the spectral sequence
by considering the homology of free loop spaces on simply connected spaces X with
certain cohomology rings. We consider in detail the homology of LX when X is
a simply connected space with exterior cohomology. The (co)homology of LX in
such cases has been considered, for instance, in [25], [23], and [24]. Our approach
yields new results.

Theorem 1.3. Let k be a field of characteristic p and let X be a simply connected
space whose cohomology is exterior on a finite number of generators

H∗(X; k) ∼= Λk(xi1 , xi2 , . . . xin),

where the xij are generators in odd degrees, |xij | = ij, and ij+1 ≥ ij. Then when
in+

∑n
j=1 ij

i1−1 ≤ p, the homology of the free loop space on X is given as a graded
k-module by

H∗(LX; k) ∼= Λk(yi1 , yi2 , . . . yin)⊗ k[wi1 , wi2 , . . . win ],

where |yij | = ij, and |wij | = ij − 1.

The case where H∗(X; k) is exterior on two generators had been previously
considered in work of Kuribayashi and Tamaguchi [25]. Theorem 1.3 extends their
result in the two generator case to a broader range of degrees, while also treating
the case of more than two generators.

1.1. Organization. This paper is organized as follows. In Section 2 we recall some
classical foundations for coalgebras and introduce the new notion of a �D-Hopf
algebra over a coalgebra D. The definition of coHochschild homology for coalgebras
is recalled in Section 3, and we prove in that section that the coHochschild homology
of a coalgebra D has the structure of a �D-bialgebra. In Section 4 we move to
the topological setting, establishing the infinity categorical framework in which
to discuss topological coHochschild homology, and defining coTHH. In Section 5
we use the relationship between coTHH and free loop spaces to show that under
coflatness conditions the homology of a free loop space has the structure of a �-Hopf
algebra. In Section 6 we begin our analysis of the coBökstedt spectral sequence.
We prove that under coflatness conditions the coBökstedt spectral sequence for
computing coTHH(C) is a spectral sequence of �-Hopf algebras over the homology
of C. Finally, in Section 7 we use this new algebraic structure on the coBökstedt
spectral sequence to make explicit computations of the homology of free loop spaces.

1.2. Acknowledgments. The authors express their gratitude to the organizers of
the Women in Topology II Workshop and the Banff International Research Sta-
tion, where this collaboration began. We thank Vigleik Angeltveit, Ben Antieau,
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Emily Riehl, and Stephanie Ziegenhagen for helpful conversations related to this
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2. (Co)algebraic structures

Hopf algebra structures arise naturally in the study of (topological) Hochschild
homology. For a commutative ring spectrum R, THH(R) is a Hopf algebra in the
homotopy category. Further, Angeltveit and Rognes prove that under appropri-
ate flatness conditions, the Bökstedt spectral sequence computing H∗(THH(R); k)
is a spectral sequence of H∗(R; k)-Hopf algebras [2]. It is then natural to ask
whether the coBökstedt spectral sequence computing H∗(coTHH(C); k) for a coal-
gebra spectrum C is similarly a spectral sequence of Hopf algebras. However, the
usual definition of a Hopf algebra over a ring is not the correct framework for this
question. The coBökstedt spectral sequence should have a multiplication and co-
multiplication structure over H∗(C; k), but H∗(C; k) is a coalgebra, not a ring. To
study the algebraic structure in the coBökstedt spectral sequence, one needs a no-
tion of a Hopf algebra-like structure over a coalgebra D. In this section we define
such a structure, which we call a �D-Hopf algebra.

We begin by reviewing some standard definitions for coalgebras before arriving
at our new constructions of �D-algebras, coalgebras, bialgebras, and Hopf algebras.

Definition 2.1. A coalgebra D over a field k is a k-vector space along with k-linear
maps

4 : D → D ⊗D and ε : D → k,

called the comultiplication and counit, such that the following coassociativity and
counitality diagrams commute:

D
4 //

4
��

D ⊗D

id⊗4
��

D ⊗D
4⊗id // (D ⊗D)⊗D D ⊗ (D ⊗D)

∼=oo

D

id

��

4

{{

4

##
D ⊗D ε⊗id // D D ⊗Did⊗εoo

The coalgebra D is called coaugmented if there is furthermore a coaugmentation
k-linear map η : k → D, satisfying the identities

4η = η ⊗ η and εη = id.
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We recall some classical examples of coalgebras over a field which will play an
important role in this work.

Example 2.2. Let D = k[w1, w2, . . . ], where each wi is in even degree, denote the k-

coalgebra with vector space basis {wj11 w
j2
2 · · · }ji≥0, and with comultiplication given

by

4(wji ) =
∑
k

(
j
k

)
wki ⊗ w

j−k
i .

on basis elements of the form wji . This defines the comultiplication 4|i on the
underlying vector space of k[wi] for each i. To extend to all basis elements, regard

wj1i1 · · ·w
jn
in

as the simple tensor wj1i1 ⊗ · · · ⊗ wjnin ∈ k[wi1 ] ⊗ · · · ⊗ k[win ]. The
comultiplication is defined by the composite

k[wi1 ]⊗ · · · ⊗ k[win ]
4|i1⊗···⊗4|in−−−−−−−−−−→ k[wi1 ]⊗ k[wi1 ]⊗ · · · ⊗ k[win ]⊗ k[win ]

σ−−→ k[wi1 ]⊗ · · · ⊗ k[win ]⊗ k[wi1 ]⊗ · · · ⊗ k[win ]

where σ is the evident permutation of the tensor factors. The counit is given by:

ε(wj11 w
j2
2 · · · ) =

{
1 if all ji = 0

0 if some ji > 0

We refer to this as the polynomial coalgebra. Some readers will find this example
familiar as the underlying coalgebra of the polynomial Hopf algebra; the fact that
this coalgebra extends to a Hopf algebra structure determines the comultiplication
on all basis elements from its definition on the elements wi.

Example 2.3. Let D = Λk(x1, x2, . . . ), where the degree of each xi is odd, denote
the k-coalgebra with vector space basis {xi1 · · ·xin}n≥0,i1<···<in , and with comul-
tiplication on xi given by

4(xi) = 1⊗ xi + xi ⊗ 1.

The comultiplication can be extended from Λ(xi) to all basis elements as above in
Example 2.2. The counit is given by:

ε(xi1 · · ·xin) = 0, ε(1) = 1.

This is the cofree graded cocommutative coaugmented coalgebra on the cogenera-
tors {x1, x2, . . . }More details about the cofree coalgebra construction may be found
in [34, Chapter 12]. We refer to this as the exterior coalgebra. Again, this example
may be familiar as the underlying coalgebra structure of the exterior Hopf algebra.

Definition 2.4. A graded k-coalgebra D∗ is connected if D∗ = 0 when ∗ < 0, and
the counit map ε : D∗ → k is an isomorphism in degree zero.

Definition 2.5. Let D be a coalgebra over a field k. A right D-comodule is a
k-vector space M along with a linear coaction map

ρM : M →M ⊗D
such that the following coassociativity and counitality diagrams commute:

M
ρM //

ρM

��

M ⊗D

id⊗4
��

M ⊗D
ρM⊗id// M ⊗D ⊗D

M
ρM //

id ##

M ⊗D

id⊗ε
��
M
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A left D-comodule is a k-vector space N along with a linear coaction map

ρN : N → D ⊗N,
such that coassociativity and counitality diagrams analogous to those above com-
mute.

Definition 2.6. Let D be a coalgebra over a field k. A (D,D)-bicomodule is a
k-vector space M that is both a left and right D-comodule, such that the following
diagram commutes:

M
ρM //

ρ′M
��

M ⊗D

ρ′M⊗id

��
D ⊗M

id⊗ρM // D ⊗M ⊗D
Here ρM denotes the right D-coaction map and ρ′M denotes the left D-coaction
map.

Given a right D-comodule M and a left D-comodule N , one can define their
cotensor product M �D N as follows.

Definition 2.7. Let D be a coalgebra over a field k. Let M be a right D-comodule
and N be a left D-comodule with coaction maps ρM : M →M ⊗D and ρN : N →
D ⊗ N . The cotensor product of M and N over D, M �D N , is defined as the
equalizer in k-vector spaces:

M �D N −→M ⊗N
ρM⊗id
−−−−−−−−−−⇒

id⊗ρN
M ⊗D ⊗N.

By construction, the cotensor M �D N is naturally a k-vector space. If M and
N are bicomodules, the resulting cotensor M �D N will again be a bicomodule.
Note that this relies on the fact that we are working with coalgebras over a field.
For coalgebras over a general commutative ring R, the cotensor M �D N may not
be a D-comodule (cf. [9, 11.3]). In fact, because we are working over a field, the
category BiCoModD of bicomodules is an abelian category in which finite products
and coproducts are given by direct sum (which agrees with Cartesian product) of
k-vector spaces [9, 3.26]. The cotensor �D is a monoidal product on this category
with unit D.

If B and D are cocommutative k-coalgebras, a map of cocommutative coalgebras
B → D gives B the structure of a D-comodule. There is an alternate description of
�D for such comodules. This is dual to observing that the pushout of commutative
algebras produces the tensor product.

Observation 2.8. Given cocommutative coalgebras B1, B2, and C over a field k,
along with maps of k-coalgebras f1 : B1 → C and f2 : B2 → C, we can view B1 and
B2 as C-bicomodules. The right coaction map ρB1 , for instance, is given by

ρB1
: B1

4−−→ B1 ⊗B1
id⊗f1−−−−−→ B1 ⊗ C.

In this case, the pullback in the category of cocommutative k-coalgebras of the
diagram

B2

f2

��
B1

f1 // C
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also agrees with the cotensor product B1 �C B2 of B1 and B2 as C-bicomodules.
One can readily verify that, since we’re working over a field, the cotensor product
B1 �C B2 is again a cocommutative coalgebra and satisfies the universal property
of the displayed pullback.

In our work it will be important to consider the exactness of the cotensor product.

Definition 2.9. Let D be a coalgebra over a field k. A right comodule M over
a coalgebra D is coflat if M �D − is exact as a functor from left D-comodules to
k-vector spaces.

For a coalgebra D over a field k, any direct summand of a cofree D-comodule
is coflat. In fact, in this case coflat D-comodules are precisely the D-injective
comodules [9, 10.12], which are precisely the direct summands of cofree comodules
[14].

Observe that the standard definitions of coalgebraic structures above all involve
working over a base ring, which in our case we take to be the field k. As mentioned,
the natural structures arising in coTHH also include new coalgebraic structures
defined with respect to a base coalgebra. In particular, for a coalgebra D, we
need notions of algebras, coalgebras, bialgebras, and Hopf algebras over D. These
definitions require working with D-bicomodules. When D is cocommutative, any
D-comodule naturally has an induced D-bicomodule structure, and the examples
we consider in the remainder of the paper are of this form.

Definition 2.10. Let D be a cocommutative coalgebra over a field k. A �D-coal-
gebra E is a D-bicomodule together with maps

4 : E → E �D E and ε : E → D

of D-bicomodules satisfying appropriate coassociativity and counitality conditions.
Explicitly, for coassociativity, we require that the following diagram commutes.

E
4 //

4
��

E �D E

id�4
��

E �D E
4�id

((

E �D (E �D E)
∼=

uu
(E �D E) �D E

Counitality is the requirement that the following diagram commutes.

E
4

{{

4

##
id

��
E �D E

ε�id // E E �D E
id�εoo

A �D-coalgebra E is called coaugmented if there is furthermore a coaugmentation
morphism η : D → E, satisfying the identities

4η = η � η and εη = id.

Definition 2.11. Let D be a cocommutative coalgebra over a field k. A �D-algebra
A is a D-bicomodule together with maps of D-bicomodules µ : A �D A → A and
η : D → A, satisfying the usual associativity and unitality conditions. A �D-algebra
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A is called augmented if furthermore there is an augmentation morphism ε : A→ D
satisfying the identities

εµ = ε� ε and εη = id.

Definition 2.12. Let D be a cocommutative coalgebra over a field k. A �D-bialge-
bra H is a �D-coalgebra that is also equipped with a multiplication µ : H�DH → H
and a unit η : D → H that are maps of D-bicomodules. These must satisfy the
usual associativity and unit conditions and additionally the following diagrams must
commute:

(1) Compatibility of comultiplication and multiplication

H �D H
µ //

4�4
��

H
4 // H �D H

H �D H �D H �D H
id�τ�id // H �D H �D H �D H

µ�µ

OO

where τ is the twist.
(2) Compatibility of multiplication and counit

H �D H

ε�ε

$$

µ // H
ε

~~
D

(3) Compatibility of comultiplication and unit

D
η�η

zz

η

  
H �D H H

4
oo

(4) Compatibility of unit and counit

D
η

&&
id

��
H

εxx
D

Definition 2.13. Let D be a cocommutative coalgebra over a field k. A �D-Hopf
algebra H is a �D-bialgebra together with a D-bicomodule map χ : H → H called
the antipode making the following diagram commute:

H �D H
χ�id // H �D H

µ

$$
H

4
::

ε //

4 $$

D
η // H

H �D H
id�χ // H �D H

µ

::
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Remark 2.14. A �D-Hopf algebra can equivalently be defined as a Hopf monoid in
the category of D-bicomodules. A Hopf monoid in a monoidal category is an object
that has compatible monoid and comonoid structures, together with an antipode.
See [1, §1.2.5] for more details.

We now define what it means for elements in a �D-Hopf algebra to be indecom-
posable or primitive.

Definition 2.15. Let A be an augmented �D-algebra with augmentation ε : A→
D. Let IA = ker(ε) denote the the augmentation ideal of A. We define the
indecomposable elements of A, denoted QA, by the exact sequence

IA�D IA
µ−−→ IA −→ QA −→ 0

In other words, an element is indecomposable if it is in the kernel of the augmen-
tation, but not in the image of the product on the augmentation ideal.

Definition 2.16. Let E be a coaugmented �D-coalgebra, with coaugmentation
η : D → E. Let JE denote the cokernel of η, and let IE denote the kernel of the
counit ε : E → D. Let PE be defined by the exact sequence

0 −→ PE −→ JE
4−−→ JE �D JE.

An element d ∈ IE is primitive if its image in JE is in PE.

Lemma 2.17. Let E be a coaugmented �D-coalgebra. If e ∈ IE then

4(e) = e�D 1 + 1 �D e+
∑
ie
′
(i) �D e′′(i)

where
∑
i e
′
(i) �D e′′(i) ∈ IE �D IE.

Proof. The coaugmented �D-coalgebra E splits as E ∼= D ⊕ IE, and

E �D E = (D �D D)⊕ (IE �D D)⊕ (D �D IE)⊕ (IE �D IE).

Then the statement holds because by counitality

id = (ε�D id) ◦ 4 = (id �D ε) ◦ 4. �

Note that the natural map IE → JE is an isomorphism. It follows that if e ∈ IE
is primitive, then 4(e) = e�D 1 + 1 �D e.

The following proposition allows us to understand �C-primitive elements in a
�C-coalgebra of the form C ⊗D. This will be computationally useful in Section 7.

Proposition 2.18. Let C and D be cocommutative coaugmented k-coalgebras.
Then C ⊗ D is a �C-coalgebra, and an element of the form c ⊗ d ∈ C ⊗ D is
primitive as an element of the �C-coalgebra C ⊗D if and only if d is primitive in
the k-coalgebra D.

Proof. Recall that for C and D k-coalgebras, the tensor product C ⊗D (over k) is
also a k-coalgebra, with comultiplication given as follows.

C ⊗D 4C⊗4D−−−−−−−→ (C ⊗ C)⊗ (D ⊗D)
id⊗τ⊗id−−−−−−−→ (C ⊗D)⊗ (C ⊗D).

where τ is the twist. Note that C ⊗D is a left C-comodule, with coaction map

ψ : C ⊗D 4C⊗id−−−−−−→ C ⊗ C ⊗D.
Similarly, C ⊗D is a right C-comodule with coaction map

ρ : C ⊗D 4C⊗id−−−−−−→ C ⊗ C ⊗D τ ′−−→ C ⊗D ⊗ C,
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where τ ′ rotates the first factor to the end. The cotensor (C ⊗D) �C (C ⊗D) is
defined as the equalizer

(C ⊗D) �C (C ⊗D) −→ (C ⊗D)⊗ (C ⊗D)
ρ⊗id
−−−−−−⇒
id⊗ψ

(C ⊗D)⊗ C ⊗ (C ⊗D).

Observe that the comultiplication on C ⊗D as a k-coalgebra induces a comultipli-
cation map C⊗D → (C⊗D)�C (C⊗D) by the universal property of the equalizer.
In particular, the coassociativity of the comultiplication on C guarantees that the
diagram below commutes:

C ⊗D

4
��tt

(C ⊗D) �C (C ⊗D) // (C ⊗D)⊗ (C ⊗D)
ρ⊗id //
id⊗ψ

// (C ⊗D)⊗ C ⊗ (C ⊗D).

By Definition 2.16, to understand the primitive elements of C ⊗ D as a �C-
coalgebra, we need to first consider the cokernel of the map η : C → C ⊗D defined
by

C −→ C ⊗ k id⊗ηD−−−−−→ C ⊗D,
where ηD is the coaugmentation on D. The cokernel of η, which we will denote J ,
is given by J = C ⊗ coker (ηD) because we are working over the field k. To identify
the primitive elements we must calculate the kernel of 4 : J → J �C J . This map
factors as the composite

J
4−−→ (C ⊗D) �C (C ⊗D) −→ J �C J.

We claim that these primitive elements are C ⊗ PD, where PD denotes the
primitive elements of D as a k-coalgebra. To see this, consider the exact sequence
defining the primitive elements of D as a k-coalgebra:

0 −→ PD −→ coker (ηD)
4D−−−→ coker (ηD)⊗ coker (ηD).

Tensoring this with C over the field k we have

0 −→ C ⊗ PD −→ C ⊗ coker (ηD)
id⊗4D−−−−−−→ C ⊗ (coker (ηD)⊗ coker (ηD)).

Noting that

C ⊗ (coker (ηD)⊗ coker (ηD)) ∼= (C ⊗ coker (ηD)) �C (C ⊗ coker (ηD)),

the conclusion follows. �

3. coHochschild homology

In this section, we recall the definition of coHochschild homology, and prove that
under coflatness conditions, the coHochschild homology of D has the structure of
a �D-bialgebra.

Definition 3.1 (Doi [14]). Let D be a cocommutative coalgebra over a field k.
Then the coHochschild homology coHH(D) of D is the homology of the cochain
complex C∗(D) defined by

Cn(D) = D⊗n+1
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with differential d given by

d(d0 ⊗ · · · ⊗ dn) =

n∑
i=0

(−1)id0 ⊗ · · · ⊗ 4(di)⊗ · · · ⊗ dn

+ (−1)n+1τ1,n+1

(
4(d0)⊗ d1 ⊗ · · · ⊗ dn

)
where τ1,n+1 is the twist map that moves the first tensor factor in D⊗n+2 to the
last spot.

This definition can be extended to define coHochschild homology for graded
coalgebras and differential graded coalgebras, as in [19].

The cochain complex in Definition 3.1 is the (unnormalized) cochain complex of
a cosimplicial k-module coHH•(D) defined as follows.

Definition 3.2. Let D be a cocommutative coalgebra over a field k. The cosim-
plicial k-module coHH•(D) is given by

coHHn(D) = D⊗n+1

with cofaces

δi : D
⊗n+1 → D⊗n+2, δi =

{
D⊗i ⊗4⊗Dn−i, 0 ≤ i ≤ n,
τ(4⊗D⊗n), i = n+ 1,

where τ twists the first factor to the last, and codegeneracies

σi : D
⊗n+2 → D⊗n+1, σi = D⊗i+1 ⊗ ε⊗D⊗n−i for 0 ≤ i ≤ n.

Under the generalized Dold–Kan correspondence in the cosimplicial setting, the
cosimplicial k-module coHH•(D) is sent to the normalization of the cochain complex
in Definition 3.1; see [35, Corollary/Definition 8.4.3].

In order to prove that the coHochschild homology of D has the structure of a
�D-bialgebra, we first verify that some standard results from homological algebra
carry over to the setting of �D-products. In particular, we will use versions of the
Eilenberg–Zilber Theorem and the Künneth Theorem for �D-products.

Proposition 3.3. Let D be a coalgebra over a field k, and let A• and B• be cosim-
plicial D-bicomodules. Then the Eilenberg–Zilber (shuffle) map induces a quasi-
isomorphsim of cochain complexes

sh: C∗(A• �D B•)→ C∗(A•) �D C∗(B•).

The Alexander–Whitney map induces a quasi-inverse map

AW : N∗(A•) �D N∗(B•)→ N∗(A• �D B•).

Here the monoidal product �D of D-bicomodules extends to a monoidal product
on cochain complexes in the usual way: for cochain complexes A∗ and B∗, the box
product A∗ �D B∗ is defined at level n by

(A∗ �D B∗)n =
⊕
p+q=n

Ap �D Bq.

In contrast, the monoidal product of cosimplicial D-bicomodules is defined level-
wise.
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Proof. After applying simplicial/cosimplicial duality, this result follows from the
generalized Eilenberg–Zilber theorem for an arbitrary abelian category, which is
proved in [35, Section 8.5]. In more detail, the category BiCoMod∆

D of cosimplicial
D-bicomodules is equal to the opposite category of simplicial objects in BiCoModop

D ,
and the category of nonnegatively graded cochain complexes in BiCoModD is equal
to the opposite category of nonnegatively graded chain complexes in BiCoModop

D .
The generalized Eilenberg–Zilber theorem applies to the abelian category BiCoModop

D

to produce natural shuffle and Alexander–Whitney maps in chain complexes in
BiCoModop

D , which then dualize to the maps above. �

Proposition 3.4 (Künneth Theorem over �D). Let D be a coalgebra over a field
k and let A∗ and B∗ be bounded below cochain complexes of D-bicomodules. Then
there is a Künneth map

H(A∗ �D B∗)→ H(A∗) �D H(B∗).

If A∗ is a complex of coflat D-comodules and all Hi(A
∗) (or Hi(B

∗)) are coflat
D-comodules, then the Künneth map is an isomorphism.

Proof. The naturality of the Künneth theorem for cochain complexes of k-modules
implies that we get commutative squares choosing either the left or right vertical
arrows in the lower square below:

H(A∗ �D B∗)

��

// H(A∗) �D H(B∗)

��
H(A∗ ⊗k B∗)

�� ��

∼= // H(A∗)⊗k H(B∗)

�� ��
H(A∗ ⊗k D ⊗k B∗)

∼= // H(A∗)⊗k D ⊗k H(B∗)

Here, to obtain the parallel maps in the left column, we view D as a cochain complex
concentrated in degree 0 and note that the right coaction maps An → An ⊗ D
assemble into a map of k-cochain complexes A∗ → A∗ ⊗ D; similarly for the left
coaction maps on B∗. The �D product A∗ �D B∗ is the equalizer in cochain
complexes of these coaction maps.

Since the the top left arrow equalizes the lower left parallel arrows in the category
of cochain complexes and since homology is functorial, the top left arrow equalizes
the right parallel arrows after passing through the horizontal isomorphisms. Hence
there is an induced map to the equalizer of the right lower parallel arrows, which
is H(A∗) �D H(B∗) as shown. This is the desired map

H(A∗ �D B∗)→ H(A∗) �D H(B∗).

If A∗ is a complex of coflat D-comodules, the dual Künneth spectral sequence [15]
has the form

Ep,q2 =
⊕
s+t=q

CotorpD(Hs(A
∗), Ht(B

∗))⇒ Hp+q(A
∗ �D B∗).

If all Hi(A
∗) (or all Hi(B

∗)) are coflat D-comodules, CotorpD(Hs(A
∗), Ht(B

∗)) is
trivial for p > 0, and this spectral sequence collapses, yielding the desired isomor-
phism. �
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Having established these homological algebra results, we now verify that for a
cocommutative coalgebra D over a field, its coHochschild homology, coHH(D), is
a �D-bialgebra. Note that the cosimplicial k-module coHH•(D) is a cosimplicial
D-bicomodule. At level n, the left coaction of D is given by the comultiplication
on the first copy of D:

D ⊗ (D⊗n)
4⊗id−−−→ D ⊗D ⊗ (D⊗n).

The right coaction is given by comultiplication followed by a twist:

D ⊗ (D⊗n)
4⊗id−−−→ D ⊗D ⊗ (D⊗n)

τ1,n+1−−−−→ D ⊗ (D⊗n)⊗D.

Proposition 3.5. Let D be a cocommutative coalgebra over a field k. Then the
coHochschild homology, coHH∗(D), is a �D-coalgebra.

Proof. We must define a map ofD-comodules coHH∗(D)→ coHH∗(D)�DcoHH∗(D).
We use the generalized Eilenberg–Zilber theorem to first build this map at the
cosimplicial level.

At cosimplicial level n, the cocommutative comultiplication 4 : D → D ⊗ D
induces a map

4 : coHHn(D)→ coHHn(D)⊗ coHHn(D)

by applying 4 to each tensor factor and then reordering to interleave the copies of
D. Because D is coassociative and cocommutative, this map equalizes the left and
right D-comodule action at each level and thus produces a map of D-comodules

coHHn(D)→ coHHn(D) �D coHHn(D).

Hence the map of cosimplicial k-modules

4• : coHH•(D)→ coHH•(D)⊗ coHH•(D)

in fact induces a map to the equalizer

4• : coHH•(D)→ coHH•(D) �D coHH•(D),

recalling that limits (and colimits) in cosimplicial objects are computed levelwise.
Applying the Dold–Kan equivalence, we obtain a map of cochain complexes

N∗(coHH•(D))→ N∗(coHH•(D) �D coHH•).

The generalized cosimplicial Eilenberg–Zilber theorem of Proposition 3.3 implies
that the shuffle map induces a quasi-isomorphism of cochain complexes of D-
bicomodules

N∗(coHH•(D) �D coHH•(D))→ N∗(coHH•(D)) �D N∗(coHH•(D)).

Composing with the map induced from 4• above induces a map on homology

coHH∗(D)→ H∗(N
∗(coHH•(D)) �D N∗(coHH•(D))).

By Proposition 3.4 above, we then have a map

coHH∗(D)→ coHH∗(D) �D coHH∗(D).

The counit ε : coHH∗(D)→ D is the map that sends coHH∗(D) to the 0-cochains.
One can check coassociativity and counitality by hand, or we will see later in
Proposition 3.8 that these conditions follow from an alternate simplicial description
of this structure. �
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Proposition 3.6. If coHH∗(D) is coflat over D, then coHH∗(D) is additionally a
�D-algebra.

Proof. There is a cochain level product

µ : C∗(D) �D C∗(D)→ C∗(D),

where C∗(D) denotes the cochain complex computing coHH∗(D). Let∑
(d0 ⊗ d1 ⊗ . . . di)⊗ (d′0 ⊗ d′1 ⊗ . . . d′j) ∈ C∗(D) �D C∗(D)

The product µ is given on each summand

(d0 ⊗ d1 ⊗ . . . di)⊗ (d′0 ⊗ d′1 ⊗ . . . d′j)
by the composite

D⊗(i+1) ⊗D⊗(j+1) idi+1⊗ε⊗idj

−−−−−−−−−→ D⊗(i+1) ⊗ k ⊗D⊗(j) ∼=−−→ D⊗(i+j+1),

where ε is the counit in D. When coHH∗(D) is coflat as a D-comodule, by Propo-
sition 3.4 this induces a product on coHochschild homology:

µ : coHH∗(D) �D coHH∗(D)→ coHH∗(D).

There is also a unit map η : D → coHH∗(D) given by the inclusion of the 0-cochains.
It is clear from the definition on cochains that the product µ is associative and
unital. �

We show below that the �D-coalgebra structure of Proposition 3.5 and the �D-
algebra structure of Proposition 3.6 will make coHH∗(D) a �D-bialgebra when
coHH∗(D) is coflat over D. Before proving this, we consider an alternate description
of the �D-algebra and coalgebra structures from a cosimplicial perspective.

The identification of the coHochschild cochain complex as arising from the cosim-
plicial coalgebra of Definition 3.2 allows us to identify much of the structure on co-
Hochschild homology as arising at this cosimplicial level. In particular, coHH•(D)
can be viewed as a cosimplicial cotensor of S1

• with the coalgebra D. Similar struc-
ture exists for Cartesian monoidal ∞-categories, as we discuss in the next section.
More precisely, for a cocommutative graded k-coalgebra over a field k, the cosimpli-
cial k-module of Definition 3.2 has the structure of a cosimplicial k-coalgebra. By
inspection, this structure is in fact given by viewing coTHH•(D) as the cosimplicial

cotensor object DS1
• .

With this identification, the �D-coalgebra structure on coHH∗(D), as defined
in Proposition 3.5, is induced by the simplicial fold map ∇ : S1

• ∨ S1
• → S1

• . The
�D-product structure on coHH(D), as in Proposition 3.6, is induced by a simplicial
pinch map. In order to arrive at a pinch map that is indeed simplicial, however,
one must use a different simplicial model of the circle. In this work we will use two
different “double circle” models, denoted dS1

• and d′S1
• respectively (following [2]).

The double circle dS1
• is given by

dS1
• = (∆1 q∆1)q(∂∆1q∂∆1) ∂∆1.

The double circle d′S1
• is given by the quotient of the double 1-simplex d∆1 =

∆1 q∆0 ∆1 by its two end-points, ∂d∆1. It is this double circle model d′S1
• that is

relevant in the current section. We revisit the model dS1
• in Sections 5 and 6.

There is a simplicial pinch map

ψ : d′S1
• → S1

• ∨ S1
• .
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Let d′coHH•(D) denote the cosimplicial k-coalgebra Dd′S1
• . To parallel Defini-

tion 3.1, we let d′coHH∗(D) denote the homology of the cochain complex of k-
modules C∗(d′coHH•(D)) associated to d′coHH•(D) under the Dold–Kan corre-
spondence. Then the simplicial pinch map ψ induces a map

coHH∗(D) �D coHH∗(D)→ d′coHH∗(D).

We observe that the map π : d′S1
• → S1

• , given by collapsing the second ∆1 to a
point, induces an isomorphism

coHH∗(D)→ d′coHH∗(D).

This can be proven by dualizing the proof in [2, Lemma 2.2]. Thus, the simplicial
pinch map ψ induces a �D-product

coHH∗(D) �D coHH∗(D)→ coHH∗(D).

We would like to see that this product agrees with the cochain level product from
Proposition 3.6.

Proposition 3.7. If coHH∗(D) is coflat over D, the �D-product

coHH∗(D) �D coHH∗(D)→ coHH∗(D)

induced by the simplicial pinch map ψ : d′S1
• → S1

•∨S1
• agrees with the cochain level

�D-product defined in Proposition 3.6.

Proof. In work of Angeltveit and Rognes [2] they prove a dual result. In the dual
case, one views Hochschild homology HH•(A) as the simplicial tensor with S1

• ,
HH•(A) = A⊗S1

• . Angeltveit and Rognes then show that the simplicial pinch map
induces a comultiplication on Hochschild homology

HH∗(A)→ HH∗(A)⊗A HH∗(A),

and verify that when HH∗(A) is flat over A, this comultiplication agrees with the
one induced by the chain level comultiplication, ψ : C∗(A)→ C∗(A)⊗AC∗(A) given
by

ψ(a0 ⊗ a1 ⊗ · · · ⊗ aq) =

q∑
i=0

(a0 ⊗ a1 ⊗ · · · ⊗ ai)⊗A (1⊗ ai+1 ⊗ · · · ⊗ aq).

Their identification uses the shuffle equivalence

sh: C∗(A)⊗A C∗(A)→ Ch(A⊗ (S1
• ∨ S1

•)).

The dual shuffle equivalence that we need,

sh: CoCh(DS1
•∨S

1
•)→ C∗(D) �D C∗(D)

is defined in our generalized Eilenberg-Zilber theorem, Proposition 3.3. Here C∗(D)
denotes the cochain complex for coHH∗(D), as in Definition 3.1. The statement in
the proposition then follows by dualizing the proof of [2, Proposition 2.3]. �

Proposition 3.8. If coHH∗(D) is coflat over D, then coHH∗(D) is a �D-bialgebra.

Proof. The multiplication, comultiplication, unit, and counit maps are induced by
simplicial maps of the circle. In particular, there are simplicial maps:

η : S1
• → ∗ ε : ∗ → S1

•

∇ : S1
• ∨ S1

• → S1
• ψ : d′S1

• → S1
• ∨ S1

• ,
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given by retraction to the basepoint, inclusion of the basepoint, fold, and pinch.
Using the identification of coHH•(D) as the cosimplicial cotensor of D with S1

• ,
these simplicial maps induce the following maps on coHH∗(D) :

η : D → coHH∗(D)

ε : coHH∗(D)→ D

4 : coHH∗(D)→ coHH∗(D) �D coHH∗(D)

µ : coHH∗(D) �D coHH∗(D)→ coHH∗(D),

By Proposition 3.7 and the preceding discussion, these maps agree with the maps
described concretely in Propositions 3.5 and 3.6. It remains to check that the
appropriate diagrams commute. The coassociativity and counitality of the �D-
comultiplication 4 follow from the commutativity of the diagrams of simplicial
sets below:

S1
• S1

• ∨ S1
•

∇oo

S1
• ∨ S1

•

∇

OO

(S1
• ∨ S1

•) ∨ S1
•

∇∨idoo ∼= // S1
• ∨ (S1

• ∨ S1
•)

id∨∇

OO

and
S1
•

S1
• ∨ S1

•

∇
;;

S1
•

ε∨idoo

id

OO

id∨ε // S1
• ∨ S1

•

∇
cc

It is straightforward to verify that the product µ is associative and unital using the
cochain level formulas in Proposition 3.6. One can also show this using diagrams of
simplicial sets, although it requires a triple model for the circle S1. We omit these
details here.

Finally, to conclude that coHH∗(D) is a bialgebra, we need some compatibility
between the �D-algebra structure and the �D-coalgebra structure, as described
in Definition 2.12. The compatibility of the multiplication and comultiplication
follows from the following commutative diagram of simplicial sets:

S1
• ∨ S1

• d′S1
•

ψoo d′S1
• ∨ d′S1

•
∇oo

ψ∨ψ
��

S1
• ∨ S1

• ∨ S1
• ∨ S1

•

∇∨∇

OO

S1
• ∨ S1

• ∨ S1
• ∨ S1

•
id∨τ∨idoo

where τ is a twist map that swaps two factors. Compatibility of the multiplication
and counit, compatibility of the comultiplication and unit, and compatibility of the
unit and counit also follow directly from commutative diagrams of simplicial sets.
Checking these compatibility conditions is left to the reader. �

As an example, we compute the �Λk(x)-bialgebra structure on coHH∗(Λk(x)).
This example will play a key role in later computations.

Proposition 3.9. Consider the exterior coalgebra Λk(x), where |x| = 2n+1. There
is a �Λk(x)-coalgebra isomorphism

coHH∗(Λk(x)) ∼= Λk(x)⊗ k[σx],
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where (σx)q is the cohomology class of the cocycle 1 ⊗ x ⊗ x · · · ⊗ x ∈ Cq(Λk(x)).
The �Λk(x)-multiplication on classes (σx)q is given by µ((σx)q⊗ (σx)s) = (σx)q+s.

Proof. Let D denote the exterior coalgebra Λk(x). Let D denote the kernel of
the counit ε : D → k. Recall that the normalized coHochschild cochain complex
(NC∗(D), d) is given in degree q by:

NCq(D) =

q−1⋂
i=0

ker(σi) ∼= D ⊗D⊗q.

Hence,

NCq(D) ∼= D{1⊗ x⊗q}.
We now compute the coboundary map d on the normalized cochain complex. Note
that the coface maps δi for 0 < i < q + 1 are zero because

4(x) = 1⊗ x+ x⊗ 1 = 0 ∈ D ⊗D.

Similarly,

δ0(1⊗ x⊗q) = δq+1(1⊗ x⊗q) = 0 ∈ D ⊗D⊗q.
We now consider δq+1(x⊗ x⊗q). By definition,

δq+1 = τ ◦ (4⊗ id⊗q),

where τ is the rotating isomorphism that brings the front factor to the end. Note
that in this graded setting, τ incorporates a sign:

τ(Di0 ⊗Di1 ⊗ · · · ⊗Diq+1
) = (−1)i0(i1+i2+···+iq+1)(Di1 ⊗Di2 ⊗ · · · ⊗Diq+1

⊗Di0).

Thus, δq+1(x⊗ x⊗q) = (−1)q(1⊗ xq+1) in D ⊗D⊗(q+1)
, and hence the sum

δ0(x⊗ x⊗q) + (−1)q+1δq+1(x⊗ x⊗q)

is zero. From these calculations of coface maps we conclude that d = 0 on NCq(D),
so

coHHq(Λk(x)) ∼= Λk(x){1⊗ x⊗q}.
We write σx for the class 1 ⊗ x and (σx)q for the class 1 ⊗ x⊗q. From the de-
scription of the comultiplication in Proposition 3.5 it then follows that there is an
isomorphism of �Λk(x)-coalgebras

coHH∗(Λk(x)) ∼= Λk(x)⊗ k[σx].

The formula for multiplication on the classes (σx)q follows directly from the for-
mulas for �-multiplication in Proposition 3.6. �

4. Coalgebra spectra and topological coHochschild homology

In this section we establish the infinity categorical framework in which to discuss
cocommutative coalgebra spectra and cocommutative Hk-coalgebras. Recall that
there is a symmetrical monoidal ∞-category of spectra, which we denote Spec.
We denote the symmetric monoidal ∞-category of Hk-modules by ModHk. As
dual objects to algebras, coalgebras are then defined to be algebras in the opposite
category.
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Definition 4.1 (An instance of [26, Definition 3.1.1]). A cocommutative coalgebra
spectrum C is a commutative algebra in the opposite ∞-category Specop. The
∞-category of cocommutative coalgebra spectra is defined to be (CAlg(Specop))op,
that is, the opposite category of the category of commutative algebras in Specop.
We denote this ∞-category by CoCAlg(Spec).

Similarly, there is an ∞-category of cocommutative Hk-coalgebras.

Definition 4.2 ([26, Definition 3.1.1]). A cocommutative Hk-coalgebra is a commu-
tative algebra in the opposite∞-category Modop

Hk. The∞-category of cocommuta-
tive Hk-coalgebras is defined to be (CAlg(Modop

Hk))op. We denote this ∞-category
by CoCAlg(ModHk).

Remark 4.3. Note that in a classical category C, the opposite category of commu-
tative algebras in Cop is the category of cocommutative coalgebras in C.

In [26, Proposition 3.1.4], Lurie shows that under presentability conditions on
C and accessibility conditions on the monoidal product, the ∞-category of cocom-
mutative coalgebra objects in C is presentable. This applies to the ∞-categories
of cocommutative Hk-coalgebra spectra and of cocommutative coalgebra spectra.
In particular, these categories have all small limits and colimits, and colimits of
cocommutative (Hk)-coalgebras are preserved by the forgetful functor from co-
commutative (Hk)-coalgebra spectra to spectra.

However, limits of cocommutative coalgebra spectra in general do not agree
with limits in underlying spectra. This is essentially because the smash product of
spectra doesn’t play nice with limits, in contrast to colimits.

Further results of Lurie’s Higher Algebra show that the∞-categories of coalgebra
spectra of Definitions 4.1 and 4.2 are symmetric monoidal.

Proposition 4.4. The ∞-categories CoCAlg(Spec) and CoCAlg(ModHk) have
Cartesian symmetric monoidal structures under which the (finite) Cartesian prod-
uct is given on objects by the smash product of spectra.

Proof. As observed in [27, Remark 2.4.2.7], if C is a symmetric monoidal ∞-
category, there is an induced symmetric monoidal structure on Cop. Just as in
the classical case, as discussed in [27, §2.4.3], this duality takes Cartesian symmet-
ric monoidal structures to coCartesian symmetric monoidal structures. Hence, it
suffices to prove that CAlg(Specop) and CAlg(Modop

Hk) have the structure of co-
Cartesian symmetric monoidal ∞-categories. This result, in turn, is [27, Proposi-
tion 3.2.4.7], which shows that for commutative algebras, the underlying symmetric
monoidal product is the coproduct. �

Given a cocommutative coalgebra C ∈ CoCAlg(Spec), one might ask for a nice
∞-category of comodules over C, in which to define the analogs of �C-coalgebras
and the related algebraic structures of Section 2. While the dual construction of∞-
categories of modules over algebras has been extensively developed by Lurie [27],
these constructions do not readily dualize because the smash product in spectra
does not commute with totalization. Hence we do not generally have a suitable
symmetric monoidal∞-category of C-comodules. In later sections, we largely avoid
this point by working in the special case of Hk-coalgebras, where the Dold–Kan
correspondence allows us to transfer questions to the realm of (co)chain complexes.
This setting is also the subject of Péroux’s rigidification results [31].
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For a general cocommutative coalgebra C, we can also recover an analog of the
structure of a �C-coalgebra via the viewpoint of Observation 2.8, which remarks
that the box-product B1 �C B2 of coalgebras over C can be defined via pullback
over C.

Proposition 4.5. Let C ∈ CoCAlg(Spec). Then the over category CoCAlg(Spec)/C
is a Cartesian monoidal∞-category where the monoidal product B1�CB2 of objects
B1 → C and B2 → C is the pullback in CoCAlg(Spec):

B1 �C B2
//

��

B2

��
B1

// C.

Hence every object of CoCAlg(Spec)/C is a cocommutative �C-coalgebra spectrum.

Proof. For concreteness, we use Joyal’s definition of the∞-category CoCAlg(Spec)/C
of cocommutative coalgebra spectra over C [21]. That is, we view C as a diagram
C : 1→ CoCAlg(Spec), where 1 is the category with one object and only the iden-
tity morphism. Then CoCAlg(Spec)/C is the ∞-category defined by the property
that for a simplicial set Y ,

Map(Y,CoCAlg(Spec)/C) ' Map1(Y ? 1,CoCAlg(Spec)).

The subscript on the right-hand side indicates that we consider only those maps
f : Y ? 1 → CoCAlg(Spec) such that f |1 is C. The ∞-category Y ? 1 is the join
of the simplicial sets Y and 1, as defined in [21]. Since 1 is a single point, this
operation produces the “cocone” on an ∞-category Y .

Since the category CoCAlg(Spec) is defined as the opposite of CAlg(Specop),
by passing to opposite categories, it suffices to show that the under category
CAlg(Specop)Cop/ admits the structure of a coCartesian monoidal ∞-category.
More precisely, for an arbitrary simplicial set Y , the join/slice adjunction [32, Pro-
prosition 4.2.5] and op-duality provide a string of equivalences

Map(Y,CoCAlg(Spec)/C) ' Map1(Y ? 1,CoCAlg(Spec))

' Map1(1 ? (Y op),CAlg(Specop))

' Map(Y op,CAlg(Specop)Cop/)

' Map(Y, (CAlg(Specop)Cop/)
op)

which shows that CAlg(Specop)Cop/ is the opposite of CoCAlg(Spec)/C .

In [27, Section 2.4.3], Lurie defines an ∞-operad Cq on an arbitrary ∞-category
C and shows this is a symmetric monoidal ∞-category structure on C if and only
if C admits finite coproducts. In the case of the under category CAlg(Specop)Cop/,
coproducts are given by pushouts in CAlg(Specop), which in turn are pullbacks
in CoCAlg(Spec) by [32, Proposition 12.1.7]. Since CoCAlg(Spec) is complete,
the necessary pullbacks exist. Thus CoCAlg(Spec)/C is a Cartesian monoidal ∞-
category.

Finally, to justify the statement that every object in CoCAlg(Spec)/C is a co-
commutative coalgebra over C, observe that the ∞-category

CoCAlg
(
CoCAlg(Spec)C

)
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of cocommutative coalgebras in CoCAlg(Spec)/C is the opposite category of

CAlg
(
(CoCAlg(Spec)C)op

)
of commutative algebras in the opposite category, as in [26, Definition 3.1.1] and
Definitions 4.1 and 4.2. Since (CoCAlg(Spec)/C)op is coCartesian monoidal, by [27,
Corollary 2.4.3.10], every object is a commutative algebra object, and hence every
object of CoCAlg(Spec)/C is a cocommutative coalgebra object. �

We next describe the topological coHochschild homology of a coalgebra spec-
trum in this framework. We begin with some basic recollections about Cartesian
monoidal ∞-categories.

Let C be a Cartesian monoidal ∞-category; in particular this implies C admits
finite products. For a finite set X and an object C ∈ C, the X-fold product∏
X C provides a model for the categorical cotensor CX : we have an equivalence

of mapping spaces

MapC
(
D,
∏
X

C
)
' (MapC(D,C))X .

Indeed, if C admits X-fold products for an arbitrary set X, we may similarly model
a cotensor CX as a product.

This construction is contravariantly functorial in X, in the following sense. Sup-
pose C admits products indexed by any set X ∈ Set. We may then obtain a map

of ∞-categories Setop C−−−→ C. As shown in [32, Proposition 1.1.11], there is an
adjunction

sSet(Setop, C) ∼= Cat(Setop, hC)
where hC is the homotopy category of C and we are, as usual, omitting notation
for the nerve of the category Setop on the left. By [32, Lemma 2.3.3] for a set X,
X-fold products in C are also products in hC, and so hC admits X-fold products.
The usual argument from the universal properties of products then shows that the
assignment X 7→ CX is a contravariant functor Setop → hC; by adjunction we thus
have the desired functor of ∞-categories.

Given a simplicial set X• and an object C in an∞-category admitting products,
we obtain a ∆-shaped diagram in C via the composite

∆
Xop
•−−−→ Setop C−−−→ C.

This is a cosimplicial object in C which we denote by CX• and which we view as the
“cosimplicial cotensor” of X• and C. When C is complete, we may take the limit
lim∆ CX• to obtain an object of C. We sometimes use the notation CX = lim∆ CX• ,
where we remove the • to emphasize that it is a single object of C, rather than a
cosimplicial object. This limit can alternately be described as the totalization of
the cosimplicial object CX• .

In the case where X• is the simplicial set ∆1
•, this process gives a “resolution”

of the object C.

Lemma 4.6. Let C be a Cartesian monoidal ∞-category. For an object C ∈ C, let
∆→ C be the cosimplicial object of C given by

∆
(∆1
•)

op

−−−−→ Setop C−−−→ C.

Then C ' lim∆ C∆1
• .
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Proof. The simplicial set ∆1
• is the representable functor ∆(−, [1]). This extends to

a split augmented simplicial object ∆op
⊥ → Set with “extra degeneracies.” Here ∆⊥

is the category obtained from ∆ by adding an “extra degeneracy” σ−1 : [n+1]→ [n]
for each n, including a coaugmentation [0]→ [−1]. The inclusion functor ∆→ ∆⊥
has a right adjoint [32, Example B.5.2] and the fact that ∆1

• extends to a presheaf
on ∆⊥ follows from the fact that the representing object [1] is in the image of the
right adjoint.

We thus obtain a split coaugmented cosimplicial object

∆⊥ → Setop C−−−→ C

that restricts to C∆1
• . By [32, Proposition 2.3.15], any cosimplicial object that ad-

mits a splitting and coaugmentation has a limit given by the coaugmentation—that
is, by evaluation at [−1] ∈ ∆⊥. In this case, by construction the coaugmentation
is simply the 1-fold product of C, meaning the limit is C itself. �

Since the∞-category CoCAlg(Spec) is complete and cocomplete, the totalization
of any of the cosimplicial objects CX• exists. In discussing coalgebras, however,
we frequently work at the cosimplicial level rather than passing all the way to the
totalization.

Definition 4.7. Let S1
• be the standard model of the simplicial circle as ∆1

•/∂∆1
•.

Let C be in CoCAlg(Spec). Then there is a cosimplicial cocommutative coalgebra
spectrum coTHH•(C) defined by

∆
(S1
•)

op

−−−−→ Setop C−−−→ CoCAlg(Spec).

The forgetful functor CoCAlg(Spec)→ Spec allows us to view coTHH•(C) sim-
ply as a cosimplicial spectrum as well. Viewing coTHH•(C) as a cosimplicial coten-
sor will allow us to induce structure on coTHH•(C) via maps of the simplicial circle
S1
• , as we did for coHH•(D) in Section 3.

Definition 4.8. Given a cocommutative coalgebra spectrum C, define the spec-
trum coTHH(C) to be the (homotopy) limit in spectra of the cosimplicial spectrum
constructed in Definition 4.7:

coTHH(C) = lim
∆

coTHH•(C)

That is, coTHH(C) is the totalization in spectra of coTHH•(C).

Remark 4.9. In the case where C is a coalgebra spectrum in one of the standard
model categories of spectra, Definition 4.7 reproduces the cosimplicial spectrum
coTHH•(C) whose totalization defined coTHH(C) in [4, Definition 2.2] and in [20].
Hence Definition 4.8 agrees with the construction of coTHH(C) in [4] and [20].

The essential point is that in coalgebra spectra, the comultiplication C → C ∧C
is the universal diagonal map from an object to its two-fold Cartesian product—
this is why the symmetric monoidal smash product on coalgebras is the Cartesian
product. Similarly, the empty product is the unit object S for ∧ and the map to this
terminal object is the counit on C. One then checks that the face and degeneracy
maps of S1

• induce the coface and codegeneracy maps of [4, Definition 2.2]. See the
discussion in [4, §4] for more details on this identification.
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Remark 4.10. An alternate way of viewing coTHH(C) and the cyclic cobar complex
coTHH• in an∞-categorical framework is supplied by Bayındır–Péroux [3] who use
it to analyze duality relating THH and coTHH.

Remark 4.11. In Definition 4.8, taking the limit in spectra—as opposed to in co-
commutative coalgebra spectra—may seem unnatural, especially to those familiar
with the dual case, where McClure, Schwänzl, and Vogt [29] prove that for a com-
mutative ring spectrum A there is an equivalence of commutative ring spectra
THH(A) ' A ⊗ S1. In a simplicial model category of coalgebra spectra, the to-
talization of coTHH•(C) would produce the cotensor of C with S1

• . However, in
contrast to the situation for geometric realization of (commutative) algebra spec-
tra, totalization in cocommutative coalgebra spectra does not generally agree with
totalization in spectra. The key difference, of course, is that smash product of
spectra commutes with geometric realization but not with totalization. Hence
TotCoCAlg(Spec)(coTHH•(C)) 6' coTHH(C).

Totalizing in spectra in Definition 4.8 means that our discussion of coTHH in
this paper agrees with that of [4] and extends the work of [19, 20]. In particular,
the coBökstedt spectral sequence defined in [4], and further discussed in Sections 6
and 7 of this paper, arises from the Bousfield–Kan spectral sequence for totalization
in spectra; the results of [4] would not apply to a totalization in cocommutative
coalgebra spectra.

Furthermore, while the present work focuses on the case of cocommutative coal-
gebra spectra, the construction of coTHH generalizes that of coHH, which can be
applied to not-necessarily-cocommutative coalgebras, as is laid out in [4]. Given
that totalization in cocommutative coalgebras, coassociative coalgebras, and un-
derlying spectra need not agree, the uniform way to produce coTHH for all flavors
of coalgebra is by totalizing in underlying spectra.

5. Coalgebra structure and free loop spaces

The definition of coTHH as a totalization in spectra, rather than in coalgebra
spectra, means that many of the good formal properties enjoyed by THH do not
necessarily carry over to this dual setting. At heart, this issue arises from the
inevitable failure of totalization to commute with smash product. This means
that even for a cocommutative coalgebra spectrum C, we cannot easily show that
coTHH(C) is itself a coalgebra spectrum, for example. However, for the important
example of suspension spectra, coTHH is much better behaved. In the case of
a simply connected space X, coTHH(Σ∞+ X) is coalgebra spectrum, namely, as
shown by Malkiewich [28] and Hess–Shipley [20], coTHH(Σ∞+ X) ' Σ∞+ LX. This
identification, on which we elaborate in the following lemma, means that we can
obtain significantly more algebraic structure on coTHH in the suspension spectrum
case than in general.

Lemma 5.1. Let X be a simply connected space. Then coTHH(Σ∞+ X) has the
structure of a coalgebra spectrum with comultiplication induced by the fold map on
S1
• q S1

• .

Proof. Let X be a simply connected space. Consider the cosimplicial space XS1
•qS

1
• .

By inspection, we have an isomorphism of cosimplicial spaces

XS1
•qS

1
• ∼= XS1

• ×XS1
• .
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Since totalization commutes with products, we find

TotTop(XS1
•qS

1
•) ∼= TotTop(XS1

•)× TotTop(XS1
•).

The fold map ∇ : S1
• q S1

• → S1
• induces a morphism of simplicial spaces XS1

• →
XS1

•qS
1
• , which, after totalization, induces the diagonal map

TotTop(XS1
•)→ TotTop(XS1

•)× TotTop(XS1
•).

Since totalization TotTop(XS1
•) can be identified with the free loop space LX by

[12], this map is the diagonal map LX → LX × LX.
Malkiewich [28] shows that there is a natural map

Σ∞+ (TotTop(XS1
•))→ TotSpec(Σ∞+ (XS1

•))

where on the right-hand side we have taken the suspension spectrum at each cosim-

plicial level of the cosimplicial space XS1
• . Note that at cosimplicial level n, we may

identify the suspension spectrum Σ∞+ (X×n) with (Σ∞+ X)∧n and thus this right-hand
cosimplicial spectrum is coTHH•(Σ∞+ X). Malkiewich further shows that this map
is an equivalence (after Reedy-fibrantly replacing on the right). In fact, this map
fits into a diagram

Σ∞+ TotTop(XS1
•) //

∇
��

TotSpec(Σ∞+ (XS1
•))

∇
��

Σ∞+ TotTop(XS1
•qS

1
•) // TotSpec(Σ∞+ (XS1

•qS
1
•)).

The lower horizontal map is also an equivalence, as we can see via the identification

of XS1
•qS

1
• with (X ×X)S

1
• , to which Malkiewich’s result applies. Using the above

identifications, we further obtain the equivalence

TotSpec(Σ∞+ (XS1
•qS

1
•)) ' Σ∞+ TotTop(XS1

•qS
1
•)

' Σ∞+ (TotTop(XS1
•)× TotTop(XS1

•))

' Σ∞+ TotTop(XS1
•) ∧ Σ∞+ TotTop(XS1

•)

' TotSpec(Σ∞+ (XS1
•)) ∧ TotSpec(Σ∞+ (XS1

•)).

Thus the right vertical map in the diagram is a comultiplication of spectra

4 : coTHH(Σ∞+ X)→ coTHH(Σ∞+ X) ∧ coTHH(Σ∞+ X)

and in fact agrees with the canonical comultiplication we obtain on coTHH(Σ∞+ X)
from the diagonal map after using the identification coTHH(Σ∞+ X) ' Σ∞+ LX.

We additionally have a counit map coTHH(Σ∞+ X) → coTHH(Σ∞+ ∗) that arises
from the collapse map π : X+ → ∗+ = S0; note that coTHH(Σ∞+ ∗) = coTHH(S) '
S either from Malkiewich’s result about free loop spaces or from the observation
that coTHH•(S) is the constant cosimplicial spectrum at S. The axioms for a
coalgebra spectrum thus can be verified at the cosimplicial level.

For example, we show counitality explicitly. At the cosimplicial level, the com-
posite

XS1
•
∇−→ XS1

•qS
1
• ' XS1

• ×XS1
•
π×id−−−→ ∗S

1
• ×XS1

• ' XS1
•

is the identity map. After passing to suspension spectra and totalizing, we obtain
the left counitality condition. �
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We now make two important observations following from the identifications
above.

Remark 5.2. In the case of the cosimplicial spectrum (Σ∞+ X)S
1
• , totalization com-

mutes with the smash product

Tot((Σ∞+ X)S
1
• ∧ (Σ∞+ X)S

1
•) ' Tot((Σ∞+ X)S

1
•) ∧ Tot((Σ∞+ X)S

1
•).

By the above, both sides are weakly equivalent to Σ∞+ LX ∧ Σ∞+ LX.

Remark 5.3. The totalization of (Σ∞+ X)S
1
• as a coalgebra spectrum (in the infin-

ity categorical framework) agrees with the totalization as a spectrum. For this,
we observe that by the above lemma, the totalization in spectra is already a coal-
gebra spectrum, and its coalgebra structure maps come from the structure maps

on the cosimplicial coalgebra spectrum Σ∞+ X
S1
• . Hence the totalization in spectra

Tot(Σ∞+ X
S1
•) already satisfies the universal property of the totalization in coalgebra

spectra and the natural map

TotCoCAlg((Σ∞+ X)S
1
•)→ TotSpec((Σ∞+ X)S

1
•)

must be an equivalence.

The result of Lemma 5.1 is analogous to the result for topological Hochschild
homology that when R is commutative, THH(R) is an algebra spectrum. Further,
for commutative R, THH(R) is known to be a Hopf algebra over R in the homotopy
category [16, 29]. Below, we consider the analogous result for the topological co-
Hochschild homology of suspension spectra. Our proof relies on the identification of
the coalgebra structure on coTHH(Σ∞+ X) from Lemma 5.1 and in particular on the
consequence of this structure noted in Remark 5.3. This allows us to work in the
context of cocommutative coalgebra spectra and we take advantage of additional
formal properties available there.

Proposition 5.4. For a simply connected space X, coTHH(Σ∞+ X) is a �Σ∞+ X-

coalgebra; that is, coTHH(Σ∞+ X) defines an object in the ∞-category

CoCAlg
(
CoCAlg(Spec)/Σ∞+ X

)
.

Proof. Observe that the inclusion of the basepoint ∗ → S1
• induces a map of cosim-

plicial coalgebra spectra

coTHH•(Σ∞+ X)→ Σ∞+ X

where the target is the constant cosimplicial coalgebra spectrum. Totalizing in
CoCAlg(Spec) we obtain a map coTHH(Σ∞+ X) → Σ∞+ X and by Lemma 5.1, this
is a map of cocommutative coalgebra spectra. Hence coTHH(Σ∞+ X) is an object of
CoCAlg(Spec)/Σ∞+ X . Proposition 4.5 shows that coTHH(Σ∞+ X) is then a cocom-

mutative �Σ∞+ X -coalgebra. �

It is useful to be more explicit in identifying the comultiplication structure on
coTHH(Σ∞+ X). Unwinding the proof of Proposition 4.5, the comultiplication over
Σ∞+ X on coTHH(Σ∞+ X) of Proposition 5.4 is a map of cocommutative coalgebra
spectra

coTHH(Σ∞+ X)→ coTHH(Σ∞+ X) �Σ∞+ X coTHH(Σ∞+ X)
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where the target is the monoidal product in CoCAlg(Spec)/Σ∞+ X , defined by pull-

back over Σ∞+ X. Since S1
• ∨ S1

• is the pushout

∗ //

��

S1
•

��
S1
•

// S1
• ∨ S1

• ,

(Σ∞+ X)S
1
•∨S

1
• is the pullback in cosimplicial coalgebra spectra

(Σ∞+ X)S
1
•∨S

1
• //

��

(Σ∞+ X)S
1
•

��
(Σ∞+ X)S

1
• // (Σ∞+ X).

Totalization preserves pullbacks in ∞-categories, so we have a pullback diagram in
cocommutative coalgebra spectra

TotCoCAlg((Σ∞+ X)S
1
•∨S

1
•) //

��

TotCoCAlg((Σ∞+ X)S
1
•)

��
TotCoCAlg((Σ∞+ X)S

1
•) // TotCoCAlg(Σ∞+ X).

The totalization in spectra of (Σ∞+ X)S
1
• and (Σ∞+ X)∗ are already cocommutative

coalgebras, so we identify this pullback as

(1)

TotCoCAlg((Σ∞+ X)S
1
•∨S

1
•) //

��

coTHH(Σ∞+ X)

��
coTHH(Σ∞+ X) // Σ∞+ X,

and thus we have made the identification

coTHH(Σ∞+ X) �Σ∞+ X coTHH(Σ∞+ X) = TotCoCAlgSpec(Σ∞+ X)S
1
•∨S

1
• .

The comultiplication map coTHH(Σ∞+ X) → coTHH(Σ∞+ X) �Σ∞+ X coTHH(Σ∞+ X)

is therefore the totalization in CoCAlg(Spec) of the map of cosimplicial coalgebra
spectra

(Σ∞+ X)S
1
• → (Σ∞+ X)S

1
•∨S

1
•

obtained by cotensoring with the fold map S1
• ∨ S1

• → S1
• of simplicial sets.

The cocommutative coalgebra structure on coTHH(Σ∞+ X) is thus fairly for-
mal in the sense that it does not use any special properties of S1

• . Showing that
coTHH(Σ∞+ X) admits multiplication-like structure does require specific properties
of the circle. In particular, as in Section 3, this requires using alternate simplicial
models of the circle. We first show that coTHH(Σ∞+ X) can also be constructed
using a double circle model of S1.

Lemma 5.5. Let C be a Cartesian monoidal ∞-category. Recall the double circle
dS1
• = (∆1 q ∆1) q(∂∆1q∂∆1) ∂∆1 defined in Section 3, and let π : dS1

• → S1
• be
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the map of simplicial sets given by collapsing one of the simplices. For an object
C ∈ C, totalization in C induces an equivalence

lim
∆
CS

1
• → lim

∆
CdS

1
• .

Proof. The collapse map dS1
• → S1

• is the induced map on pushouts of the diagrams

∆1
• ∂∆1

•
//oo ∆1
•

��
∆1
• ∂∆1

•
oo // ∗

Hence the map CS
1
• → CdS

1
• of cosimplicial objects of C is the induced map on the

pullbacks below

C∆1
• // C∂∆1

• C∆1
•oo

C∆1
• // C∂∆1

• C∗

OO

oo

We are interested in the map lim∆ CS
1
• → lim∆ CdS

1
• . Since limits commute, as

follows from [32, Lemma 2.4.1], it is equivalent to calculate the pullback of the
diagram of totalizations in C:

lim∆ C∆1
• // lim∆ C∂∆1

• lim∆ C∆1
•oo

lim∆ C∆1
• // lim∆ C∂∆1

• lim∆ C∗

∼

OO

oo

By Lemma 4.6, the right vertical map is an equivalence, and thus the pullbacks of
these equivalent diagrams are equivalent. �

Proposition 5.6. Let X be a simply connected space. Then coTHH(Σ∞+ X) is
a Hopf monoid in the homotopy category of coalgebra spectra over Σ∞+ X: it is a
bimonoid with an antipode map.

Intuitively, this structure should be thought of as that of a �Σ∞+ X -Hopf algebra

structure on coTHH(Σ∞+ X) up to homotopy.

Proof. We must show that coTHH(Σ∞+ X) has the structure of a comonoid and
a monoid and define the antipode map relating these structures. The comonoid
structure is that of Proposition 5.4, with comultiplication

coTHH(Σ∞+ X)→ coTHH(Σ∞+ X) �Σ∞+ X coTHH(Σ∞+ X)

identified as arising from the fold map S1
• ∨ S1

• → S1
• of the simplicial circle and

counit identified as arising from the inclusion of the basepoint ∗ → S1
• .

We next define the monoid structure on coTHH(Σ∞+ X), over Σ∞+ X. Recall that
there is a based simplicial pinch map

ψ : dS1
• → S1

• ∨ S1
• ,
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where dS1
• is the double circle as above. This induces maps of cosimplicial coalgebra

spectra

(Σ∞+ X)S
1
•∨S

1
•

ψ //

''

(Σ∞+ X)dS
1
•

��
(Σ∞+ X)∗

After totalization in CoCAlg(Spec) this yields a map over Σ∞+ X

ψ : coTHH(Σ∞+ X) �Σ∞+ X coTHH(Σ∞+ X)→ TotCoCAlg((Σ∞+ X)dS
1
•).

The collapse map π : dS1
• → S1

• that takes the second ∆1
• to the basepoint induces

a map

π : TotCoCAlg(Σ∞+ X)S
1
• → TotCoCAlg(Σ∞+ X)dS

1
•

which is an equivalence in CoCAlg(Spec) by Lemma 5.5 and thus in spectra.
Thus, by Remark 5.3, the target of ψ is weakly equivalent to coTHH(Σ∞+ X),
so we may view ψ as the multiplication of a monoid structure. The unit map
Σ∞+ X → coTHH(Σ∞+ X) is obtained similarly from the simplicial map S1

• → ∗. The
monoid axioms arise from suitably commuting diagrams or homotopy-commuting
diagrams of simplicial sets, as in the proof of Proposition 3.8.

The antipode map χ : coTHH(Σ∞+ X)→ coTHH(Σ∞+ X) is defined using the dou-
ble circle dS1

• . The double circle enjoys a simplicial flip map χ′ : dS1
• → dS1

• .
Cotensoring with χ′ and using the equivalence π produces the zigzag

TotCoCAlg((Σ∞+ X)dS
1
•)

χ′ // TotCoCAlg((Σ∞+ X)dS
1
•)

TotCoCAlg((Σ∞+ X)S
1
•)

π

::

TotCoCAlg((Σ∞+ X)S
1
•)

π

cc

and hence an antipode map χ : coTHH(Σ∞+ X) → coTHH(Σ∞+ X) in the homotopy
category.

To check the compatibility diagram involving the antipode, we also need a triple
model for the circle. As in [2], let tS1

• denote ∂∆2, with three non-degenerate 1-
simplices as shown:

v1

v0

v2

Let

ψ1 : tS1
• → S1

• ∨ dS1
•

be the simplicial map that identifies the v0 and v1 in ∂∆2 and takes the face opposite
v0 to the first ∆1 in dS1. Let

ψ2 : tS1
• → dS1

• ∨ S1
•

be the simplicial map that identifies the vertices v1 and v2 in ∂∆2 and takes the face
opposite v2 to the first ∆1 in dS1. Then the commutative diagram in Definition 2.13
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comes from cotensoring with the following homotopy commutative diagram of sim-
plicial sets:

S1
• ∨ dS1

•
∇◦(id∨π)

{{

S1
• ∨ dS1

•
id∨χ′oo

S1
• ∗•

εoo tS1
•

ηoo

ψ1

dd

ψ2zz
dS1
• ∨ S1

•

∇◦(π∨id)

cc

dS1
• ∨ S1

•
χ′∨idoo

This diagram appears in the proof of [2, Theorem 3.9], where the authors discuss
the homotopy commutativity. Note that the names of the maps ε and η are reversed
from their choice of names because these maps play opposite roles in the coalge-
bra and algebra cases. An argument analogous to that of Lemma 5.5 shows that
cotensoring Σ∞+ X with tS1

• produces a coalgebra spectrum that is again equivalent
to coTHH(Σ∞+ X). �

Before looking at the implications of this result for the homology of free loop
spaces, we prove the following lemma. Recall that a map of coalgebras A → C
allows us to view A as a right or left C-comodule, similar to Observation 2.8.

Lemma 5.7. Let k be a field and let A, B and C be Hk-coalgebras. Let X be the
homotopy pullback in Hk-module spectra of the diagram

B

��
A // C

If π∗(A) or π∗(B) is coflat as a comodule over π∗(C), then

π∗(X) ∼= π∗(A) �π∗(C) π∗(B)

Proof. Consider the cosimplicial cobar spectrum Ω•Hk(A,C,B) with nth cosimpli-
cial level

A ∧Hk C∧Hk(n) ∧Hk B,
as discussed, for example, in [20, §3.3]. Applying homotopy to this cobar spectrum
produces a graded cobar complex; that is,

π∗(Ω
•
Hk(A,C,B)) ∼= Ω•k(π∗(A), π∗(C), π∗(B))

with nth cosimplicial level

π∗(A)⊗k π∗(C)⊗kn ⊗k π∗(B).

Consider the Bousfield–Kan spectral sequence associated to the cosimplicial spec-
trum Ω•Hk(A,C,B). To calculate the E2-page, note that if we replace A by C, then
Ω•k(π∗(C), π∗(C), π∗(B)) produces an injective resolution of π∗(B) and applying the
functor

π∗(A) �π∗(C) −
recovers Ω•k(π∗(A), π∗(C), π∗(B)). Hence the E2 page is given by

Cotorπ∗(C)(π∗(A), π∗(B)).
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If π∗(A) or π∗(B) is coflat over π∗(C), then the spectral sequence collapses with

π∗(A) �π∗(C) π∗(B)

in the first column and zero everywhere else. This is the right-hand side above, so
the proposition follows by showing that the spectral sequence converges to the left
hand side. Since the spectral sequence collapses under the coflatness conditions, it
converges completely to π∗ Tot Ω•Hk(A,C,B) ∼= π∗(X) by [6, IX.5.4]. �

Proposition 5.6 then yields the following algebraic structure on the homology of
free loop spaces.

Corollary 5.8. For X a simply connected space and k a field, if H∗(LX; k) is
coflat as a comodule over H∗(X; k), then H∗(LX; k) is a �H∗(X;k)-Hopf algebra.

Proof. Recall that for a simply connected space X, coTHH(Σ∞+ X) ' Σ∞+ LX. The
corollary follows from Proposition 5.6 by applying homology once we identify

H∗
(
coTHH(Σ∞+ X) �Σ∞+ X coTHH(Σ∞+ X); k

)
with

H∗(coTHH(Σ∞∗ X); k) �H∗(X;k) H∗(coTHH(Σ∞+ X); k).

This identification follows from the stability of the ∞-category of coalgebra spec-
tra. Stability implies that the homotopy pullback square in Diagram (1) is also
a homotopy pushout square. After smashing with Hk, we still have a homotopy
pushout and, by stability, also a homotopy pullback. Passing to homotopy groups
and applying Lemma 5.7 above then gives the identification.

We thus obtain a comultiplication map

H∗(coTHH(Σ∞+ X); k)→ H∗(coTHH(Σ∞+ ); k) �H∗(X;k) H∗(coTHH(Σ∞+ X); k)

by applying homology to the comultiplication map produced in Proposition 5.6,
and likewise for the remaining structure maps of a �H∗(X;k)-Hopf algebra. �

Remark 5.9. One can show that the Hopf structure of Proposition 5.6 arises from
suspending space level structure, in the following sense. As mentioned at the be-
ginning of this section, Hess and Shipley [20, Appendix A] prove that for X simply
connected, coTHH(Σ∞+ X) ' Σ∞+ (LX). The main tool is a convergence result due
to Bousfield and the argument of [20, Appendix A] applies directly to show that
for X simply connected,

TotSpec(Σ∞+ (Map(S1
• ∨ S1

• , X))) ' Σ∞+ (TotTop Map(S1
• ∨ S1

• , X)).

There is a standard identification of the right hand side as Σ∞+ (LX ×X LX), and
the fiberwise diagonal and concatenation product of string topology give a Hopf-
monoid structure for LX as a space over X. Since this structure arises from the
same types of fold and diagonal maps on S1 ∨ S1 as appear in the structure from
Proposition 5.6, we may identify the two structures provided that

TotSpec(Σ∞+ (Map(S1
• ∨ S1

• , X))) ' Σ∞+ LX �Σ∞+ X Σ∞+ LX.

Because Σ∞+ is a product-preserving functor from unbased spaces to cocommuta-
tive coalgebra spectra, we observe that Σ∞+ (Map(S1

• ∨ S1
• , X)) is the underlying

cosimplicial spectrum of the cosimplical coalgebra spectrum (Σ∞+ X)S
1
•∨S

1
• . The
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Hess–Shipley argument shows that the totalization in spectra is a suspension spec-
trum, and hence already a coalgebra spectrum, and therefore

TotSpec(Σ∞+ (Map(S1
• ∨ S1

• , X))) ' TotCoCAlg((Σ∞+ X)S
1
•∨S

1
•).

Then the identification of Diagram (1) shows that the right hand side above is
precisely Σ∞+ LX �Σ∞+ X Σ∞+ LX. This gives a more “geometric” description of this

Hopf structure, but we require suitable cosimplicial descriptions in order to use this
structure in the spectral sequence results of the next section.

6. Hopf Structure in the coBökstedt Spectral Sequence

An essential tool for computing topological Hochschild homology is the Bökstedt
spectral sequence of [5]. In [4], we showed that there is an analogous coBökstedt
spectral sequence for computing topological coHochschild homology. In this section,
we show that this spectral sequence has additional algebraic structure, which we
exploit in Section 7 to make free loop space computations. We first recall the
structure and convergence results about the coBökstedt spectral sequence from [4].

Theorem 6.1 ([4]). Let k be a field. Let C be a coalgebra spectrum. The Bousfield–
Kan spectral sequence for the cosimplicial spectrum coTHH•(C) gives a coBökstedt
spectral sequence for calculating Ht−s(coTHH(C); k) with E2-page

Es,t2 = coHHk
s,t(H∗(C; k)).

given by the classical coHochschild homology of H∗(C; k).

We also have the following convergence results.

Proposition 6.2 ([4]). If for each s there is an r such that Es,s+ir = Es,s+i∞ , then
the coBökstedt spectral sequence for coTHH(C) converges completely to

π∗ Tot(coTHH•(C) ∧Hk).

Remark 6.3. In [4], the authors use the simplicial model category structure on
spectra to define the homotopy limits/totalizations and homotopy types used in
defining coTHH(C). In this paper, we choose instead to use the ∞-categorical
framework for these constructions, as is reflected in the omission of the (co)fibrancy
conditions that appeared in the statements of these results in [4].

Note that the general construction of a map of the form Hom(X,Y ) ∧ Z →
Hom(X,Y ∧ Z) yields a natural map

P : Tot(coTHH•(C)) ∧Hk → Tot(coTHH•(C) ∧Hk).

From [4], if this map P is an isomorphism in homotopy, and the conditions on
Es,s+ir in Proposition 6.2 hold, then the coBökstedt spectral sequence for coTHH(C)
converges completely to H∗(coTHH(C); k).

Further, in [4] it is shown that the coBökstedt spectral sequence of Theorem 6.1
is a spectral sequence of coalgebras. Hence if C is a connected cocommutative
coalgebra, for each r > 1 there is a comultiplication

ψ : E∗∗r → E∗∗r ⊗k E∗∗r ,

and the differentials dr respect the comultiplication.
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Based on algebraic structures in the classical Bökstedt spectral sequence, one
might expect to have additional algebraic structure in the coBökstedt spectral se-
quence. In particular, in [2] Angeltveit and Rognes show that, under a flatness
assumption, the Bökstedt spectral sequence

E2
∗,∗ = HH∗(H∗(R;Fp))⇒ H∗(THH(R);Fp).

is a spectral sequence of Hopf algebras over H∗(R;Fp). In this section we consider
what the analogous algebraic structure is on the coBökstedt spectral sequence.
Under coflatness conditions, we prove that the coBökstedt spectral sequence is a
spectral sequence of �H∗(C;k)-Hopf algebras, in the sense of the following defini-
tions.

Definition 6.4. Let D be a cocommutative coalgebra over a field k. A differ-
ential bigraded �D-algebra (E∗,∗, d) is a bigraded D-bicomodule E∗,∗, a map of
D-bicomodules

d :
⊕
q−p=n

Ep,q →
⊕

s−r=n−1

Er,s,

and a �D-multiplication structure

µ : Es,t �D Eu,v → Es+u,t+v

with a unit η : D → E∗,∗, such that the usual associativity and unitality diagrams
commute. The differential is compatible with the product, in the sense that d must
satisfy the Leibniz rule:

d ◦ µ = µ ◦ (d�D id + (−1)s+tid �D d).

Definition 6.5. Let D be a cocommutative coalgebra over a field k. We say that a
spectral sequence {Er, dr} is a spectral sequence of �D-algebras if every D-comodule
Es,tr is coflat, and for every r ≥ 1, (E∗,∗r , dr) is a differential bigraded �D-algebra,
with multiplication µr, and if the multiplication µr+1 is the composite

µr+1 : Er+1 �D Er+1
∼= H∗(Er; k) �D H∗(Er; k)

∼= H∗(Er �D Er; k)
H∗(µr)−−−−−→ H∗(Er; k) ∼= Er+1.

Here the isomorphism H∗(Er; k) �D H∗(Er; k) ∼= H∗(Er �D Er; k) is the Künneth
isomorphism for �D, as in Proposition 3.4. This uses the hypothesis that Es,tr is
coflat.

We now also define the notion of a spectral sequence of �D-coalgebras.

Definition 6.6. Let D be a cocommutative coalgebra over a field k. A differential
bigraded �D-coalgebra (E∗,∗, d) is a bigraded D-bicomodule E∗,∗, a map of D-
bicomodules

d :
⊕
q−p=n

Ep,q →
⊕

s−r=n−1

Er,s,

and a �D-comultiplication structure

4 : Es,t →
⊕

u+w=s
v+x=t

Eu,v �D Ew,x
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with a counit ε : E∗,∗ → D, such that the usual coassociativity and counitality
diagrams commute. The differential is compatible with the comultiplication, in the
sense that d must satisfy the coLeibniz rule:

4 ◦ d =
(
d� id + (−1)u+vid � d

)
◦ 4.

Definition 6.7. Let D be a cocommutative coalgebra over a field k. We say that a
spectral sequence {Er, dr} is a spectral sequence of �D-coalgebras if for every r ≥ 1,
(E∗,∗r , dr) is a differential bigraded �D-coalgebra, with comultiplication 4r, and if
the comultiplication 4r+1 is the composite

4r+1 : Er+1
∼= H∗(Er; k)

H∗(4r)−−−−−→ H∗(Er �D Er; k)

φ−−→ H∗(Er; k) �D H∗(Er; k) ∼= Er+1 �D Er+1.

Here the map φ is the map from the homology of the cotensor to the cotensor of
the homologies, as in Proposition 3.4.

We now characterize a �-Hopf algebra structure on a spectral sequence.

Definition 6.8. Let D be a cocommutative coalgebra over a field k. A differential
bigraded �D-Hopf algebra is a pair (E∗,∗, d) with the structure of both a differential
bigraded �D-algebra and a differential bigraded �D-coalgebra. The multiplication,
unit, comultiplication and counit must be compatible, as in Definition 2.12. Further,
a differential bigraded �D-Hopf algebra must have differential D-bicomodule maps

χ : Es,t → Es,t

satisfying the commutative diagram of Definition 2.13.

Definition 6.9. Let D be a cocommutative coalgebra over a field k. We say that a
spectral sequence {Er, dr} is a spectral sequence of �D-Hopf algebras if for every r ≥
1, (E∗,∗r , dr) is a differential bigraded �D-Hopf algebra with multiplication µr and
comultiplication4r, such that {Er, dr} is a spectral sequence of �D-coalgebras and
a spectral sequence of �D-algebras using this comultiplication and multiplication.
Further, the map

χr+1 : Es,tr+1 → Es,tr+1

must be the induced map

χr+1 = H∗(χr) : H∗(E
s,t
r ; k)→ H∗(E

s,t
r ; k).

Having established these definitions, we now consider the algebraic structure on
the coBökstedt spectral sequence. We first prove that it is a spectral sequence of
�-coalgebras.

Theorem 6.10. Let C be a connected cocommutative coalgebra spectrum, and let k
be a field. Then the coBökstedt spectral sequence is a spectral sequence of �H∗(C;k)-
coalgebras.

Proof. By definition, the coBökstedt spectral sequence for C is the Bousfield–Kan
spectral sequence for the cosimplicial object coTHH•(C)∧Hk, which we will denote
X•.
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We consider the following commutative diagram of simplicial sets

S1
• S1

• ∨ S1
•

∇oo

S1
• q S1

•

OO

∇′

cc

where ∇ and ∇′ are both simplicial fold maps. Note that we may identify S1
• ∨ S1

•
with the coequalizer of the two maps S1

• q ∗q S1
• ⇒ S1

• q S1
• that send the point ∗

to the basepoint in either copy of S1
• .

On cosimplicial cotensors, and after smashing with Hk, the diagram above yields
a diagram of cosimplicial spectra

CS
1
• ∧Hk //

''

CS
1
•∨S

1
• ∧Hk

��
CS

1
•qS

1
• ∧Hk.

Furthermore the right vertical map here equalizes the two induced maps

CS
1
•qS

1
• ∧Hk ⇒ CS

1
•q∗qS

1
• ∧Hk.

These maps of cosimplicial spectra induce maps of spectral sequences on the
corresponding Bousfield–Kan spectral sequences: let E∗,∗r denote the Bousfield–
Kan spectral sequence for X• (that is, the coBökstedt spectral sequence), let D∗,∗r
denote the spectral sequence for CS

1
•∨S

1
•∧Hk, let ′D∗,∗r denote the spectral sequence

for CS
1
•qS

1
• ∧Hk and let ′′D∗,∗r denote the spectral sequence for CS

1
•q∗qS

1
• ∧Hk. In

this notation, we have maps of spectral sequences

E∗,∗r //

##

D∗,∗r

��
′D∗,∗r

�� ��
′′D∗,∗r

where the map D∗,∗r → ′D∗,∗r equalizes the two lower vertical maps.
It is proved in [4] that the Alexander–Whitney map identifies the spectral se-

quence ′D∗,∗r with the tensor product spectral sequence E∗,∗r ⊗k E∗,∗r from the E2-
page on, using Bousfield and Kan’s work on pairings in Bousfield–Kan spectral
sequences [8, 7]. In fact, the identifications of Bousfield and Kan produce natural
maps of spectral sequences

′D∗,∗r → E∗,∗r ⊗k E∗,∗r and ′′D∗,∗r → E∗,∗r ⊗H∗(C)⊗ E∗,∗r .

On the 1-pages, the maps in this direction are given by the shuffle map: this is the
quasi-inverse of the map AW: E∗,∗1 ⊗k E∗,∗1 → ′D∗,∗1 used in [4].
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Thus, on the 1-pages, we have an induced map

D∗,∗1

��

// E∗,∗1 �H∗(C;k) E
∗,∗
1

��
′D∗,∗1

�� ��

sh // E∗,∗1 ⊗k E∗,∗1

�� ��
′′D∗,∗1

sh // E∗,∗1 ⊗k H∗(C; k)⊗k E∗,∗1

where sh denotes the shuffle map of the Eilenberg–Zilber theorem. Hence the
composite of the spectral sequence map E∗,∗1 → D∗,∗1 with the dashed arrow above
induces a �H∗(C;k)-comultiplication structure on E∗,∗1 which we denote by 41. The
comultiplication 41 satisfies the coLeibniz rule because the composite

E∗,∗1 →′D∗,∗1
sh−→ E∗,∗1 ⊗k E∗,∗1

satisfies the coLeibniz rule and the differential dr�1±1�dr on E∗,∗r �H∗(C;k)E
∗,∗
r

is the restriction of the differential dr ⊗ 1± 1⊗ dr to the elements of E∗,∗r ⊗k E∗,∗r
that are equalized.

The comultiplication on the E2-page is induced similarly. By the usual calcula-
tion of the 1-page of a Bousfield–Kan spectral sequence, we make the identifications

′Ds,∗
1 = Ns

(
H∗(C; k)⊗k• ⊗k H∗(C; k)⊗k•

)
′′Ds,∗

1 = Ns
(
H∗(C; k)⊗k• ⊗k H∗(C; k)⊗k H∗(C; k)⊗k•

)
.

Using these identifications, and the fact that normalization commutes with equal-
izers, we see that the D1-page is

Ds,∗
1 = Ns

(
H∗(C; k)⊗k• �H∗(C;k) H∗(C; k)⊗k•

)
.

The horizontal shuffle maps sh from the Eilenberg–Zilber map above induce iso-
morphisms on homology, so we have a diagram of maps of bigraded k-modules

D∗,∗2

��

φ2 // E∗,∗2 �H∗(C;k) E
∗,∗
2

��
′D∗,∗2

�� ��

∼= // E∗,∗2 ⊗k E∗,∗2

�� ��
′′D∗,∗2

∼= // E∗,∗2 ⊗k H∗(C; k)⊗k E∗,∗2

The induced dotted map is the map in the �H∗(C;k)-Künneth Theorem, Proposi-
tion 3.4. We may thus define the comultiplication 42 on E2 to be the composite of
the map E∗,∗2 → D∗,∗2 and this induced dotted map; this clearly satisfies the condi-
tion of Definition 6.7. Again, since the middle map is a map of spectral sequences
and the differential on E∗,∗2 �H∗(C;k) E

∗,∗
2 is restricted from that on E∗,∗2 ⊗k E∗,∗2 ,

this comultiplication also satisfies the coLeibniz rule.
Because the middle and lower horizontal maps above are maps of spectral se-

quences, repeated application of the Künneth theorem for k-modules gives a similar
diagram on the r-pages for r ≥ 2; the Künneth theorem for �H∗(C;k)-comodules
then induces the desired comultiplications 4r at each level. �
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Remark 6.11. In the proof of Theorem 6.10, we use Bousfield and Kan’s shuffle
pairing ′D∗,∗1 → E∗,∗1 ⊗k E∗,∗1 , which—as remarked—is not the comparison map
AW between these spectral sequences used in defining the coalgebra structure in [4].
Instead, the map AW is the quasi-inverse to Bousfield and Kan’s pairing, which is
constructed from the Künneth isomorphism and shuffle/Alexander–Whitney maps.
This requires working over a field. Since the comparison map in Theorem 6.10 and
the one of [4] are quasi-inverses at the E1-page, we conclude that the �H∗(C;k)-
coalgebra structure on E∗,∗r of Theorem 6.10 is the restriction of the k-coalgebra
structure produced in [4].

Simplicial maps of the circle also induce the product structure on the coBökstedt
spectral sequence. As in Section 3, we must use a double circle model of S1

• to get
a pinch map that is indeed simplicial. Recall the double circle model dS1

• defined
earlier:

dS1
• = (∆1 q∆1)q(∂∆1q∂∆1) ∂∆1.

There is a simplicial pinch map

ψ : dS1
• → S1

• ∨ S1
•

that collapses ∂∆1 to a point. For D a k-coalgebra, let dcoHH•(D) denote the

cosimplicial k-coalgebra DdS1
• . To parallel Definition 3.1, we let dcoHH∗(D) de-

note the homology of the chain complex (of k-modules) C∗(dcoHH•(D)) associated
to dcoHH•(D) under the Dold–Kan correspondence. We will need the following
lemma, comparing coHochschild homology defined with the standard simplicial
model of the circle to that defined with the double circle model. Recall that
π : dS1

• → S1
• is the collapse map that takes the second ∆1 in dS1

• to the base-
point. This lemma is the purely algebraic version of Lemma 5.5.

Lemma 6.12. Let D be a cocommutative (graded) k-coalgebra. The map π : dS1
• →

S1
• induces an isomorphism of (bi-)graded abelian groups.

π : coHH∗(D)→ dcoHH∗(D)

Proof. Following the proof of Lemma 5.5, we may take cotensors with the defining
pushout diagrams of simplicial sets to model π as the following map on pullbacks
in cocommutative k-coalgebras:

D∆1
• // D∂∆1

• D∆1
•oo

D∆1
• // D∂∆1

• D∗

OO

oo

As in Observation 2.8, pullback in the category of cocommutative k-coalgebras

agrees with the definition of �-product. The coalgebra D∂∆1
• is D⊗D; this allows

us to identify π at the cosimplicial level with the map

D⊗•+2 �D⊗D D → D⊗•+2 �D⊗D D⊗•+2.

The map π : coHH∗(D) → dcoHH∗(D) is the map on homology induced by the
associated map of cochain complexes

C∗(D⊗•+2 �D⊗D D)→ C∗(D⊗•+2 �D⊗D D⊗•+2).
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Observe that for each n, D⊗n+2 is a D⊗D-comodule and by the Eilenberg–Zilber
theorem for D ⊗D-comodules, this map is quasi-isomorphic to the map

C∗(D⊗•+2) �D⊗D C∗(D)→ C∗(D⊗•+2) �D⊗D C∗(D⊗•+2).

Now C∗(D⊗•+2) is an injective resolution of D as a D ⊗ D-bicomodule; the map

D → C∗(D∆1
•) is the augmentation of this resolution. By [15, Proposition 4.1]

(and also see the discussion at the beginning of §5 there), this map induces an
isomorphism on homology as desired. �

Remark 6.13. Observe that the double circle dS1 used in this section is a different
version of the double circle than the model d′S1 used in Section 3. In particular,
the orientation of one of the 1-simplices is reversed. In this section we use the
model dS1 so that the flip map will be simplicial. We choose to use the model d′S1

in Section 3 because it simplifies the chain-level formulas. This follows the choices
made in [2] in the dual case.

Theorem 6.14. Let C be a connected cocommutative coalgebra spectrum. If for
r ≥ 2, each E∗,∗r (C) is coflat over H∗(C; k), then the coBökstedt spectral sequence
is a spectral sequence of �H∗(C;k)-Hopf algebras.

Proof. The comultiplication is given by Theorem 6.10 above. To obtain the multi-
plication, we use the double circle simplicial model of S1 denoted dS1

• . Let dE∗,∗r
denote the Bousfield-Kan spectral sequence for the cosimplicial object CdS

1
• ∧Hk.

There are natural maps

E∗,∗r �H∗(C;k) E
∗,∗
r

φr←−−− D∗,∗r
ψ−−→ dE∗,∗r

π←−− E∗,∗r .

The map φr is the comparison map defined in the proof of Theorem 6.10 above. The
map ψ is induced by the simplicial pinch map ψ : dS1

• → S1
• ∨ S1

• , and the map π
is induced by the weak equivalence dS1

• → S1
• given by collapsing. By Lemma 6.12

the map π is an isomorphism when r ≥ 2.
We use induction to show that the map φr is an isomorphism for r ≥ 2. We first

establish the isomorphism when r = 2. As in Theorem 6.10 above, the D1-page
can be identified as

Ds,∗
1 = Ns

(
H∗(C; k)⊗k• �H∗(C;k) H∗(C; k)⊗k•

) ∼= Es,∗1 �H∗(C;k) E
s,∗
1 ,

because the normalization of a cosimplicial object commutes with equalizers, as
both are given at each level by limit constructions.

On the 1-page the map φ1 above is the shuffle map

Es,∗1 �H∗(C;k) E
s,∗
1 → [E∗,∗1 �H∗(C;k) E

∗,∗
1 ]s,∗.

which by Proposition 3.3 induces an isomorphism on homology:

H∗(D
∗,∗
1 ; k)→ H∗(E

∗,∗
1 �H∗(C;k) E

∗,∗
1 ; k).

The left hand side is D∗,∗2 . To calculate the right hand side, we can replace E∗,∗1 , the
normalized chain complex N∗ (H∗(C; k)⊗k•), by the quasi-isomorphic unnormalized
complex H∗(C; k)⊗∗, which is coflat over H∗(C; k). Since E∗,∗2 = H∗(E

∗,∗
1 ; k) is

coflat over H∗(C; k) by hypothesis, Proposition 3.4 implies the right hand side is

H∗(E
∗,∗
1 ; k) �H∗(C;k) H∗(E

∗,∗
1 ; k),

and hence φ2 = H∗(φ1) is an isomorphism

D∗,∗2 → E∗,∗2 �H∗(C;k) E
∗,∗
2 .
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Now assume that φr is an isomorphism for some fixed r ≥ 2. The isomorphism

D∗,∗r
φr−−−→ E∗,∗r �H∗(C;k) E

∗,∗
r

induces an isomorphism on homology. By hypothesis, E∗,∗r+1 is coflat over H∗(C; k),
so Proposition 3.4 applies and the map φr+1 = H∗(φr) is an isomorphism

D∗,∗r+1

∼=−−→ E∗,∗r+1 �H∗(C;k) E
∗,∗
r+1.

Thus by induction the map φr is an isomorphism for all r ≥ 2.
The multiplication

E∗,∗r �H∗(C;k) E
∗,∗
r

µr−−−→ E∗,∗r

is then given by µr = π−1ψφ−1
r . Since the maps φr constructed in the proof of The-

orem 6.10 satisfy the coLeibniz rule and the remaining maps used in constructing
µr are maps of spectral sequences, µr satisfies the Leibniz rule.

Finally, we define the antipode map χr : E∗,∗r → E∗,∗r to be the map of spectral
sequences

χ : E∗,∗r
π−−→ dE∗,∗r

χ′−−→ dE∗,∗r
π−1

−−−−→ E∗,∗r .

The middle map χ′ is the map of spectral sequences induced by the flip map on
the double circle and the proof that this satisfies the required conditions for an
antipode is analogous to the proof of Proposition 5.6. Again, we use that π is an
isomorphism for r ≥ 2. �

7. Computational results

As discussed in Section 5, when X is a simply connected space, coTHH(Σ∞+ X)
can be identified with the suspension spectrum of the free loop space on X,

Σ∞+ LX
'−→ coTHH(Σ∞+ X).

The coBökstedt spectral sequence thus provides a method for computing the ho-
mology of the free loop space [4, Corollary 4.5].

Proposition 7.1 ([4]). Let X be a simply connected space. If for each s there is
an r such that Es,s+ir = Es,s+i∞ , the coBökstedt spectral sequence arising from the
coalgebra Σ∞+ X converges completely to

H∗(coTHH(Σ∞+ X); k) ∼= H∗(LX; k).

In [4] the authors use the coBökstedt spectral sequence to compute the homology
of free loop spacesH∗(LX; k) for instance whenX is CP∞, BU(n), BSU(n), BSp(n),
or products of these. These calculations use the k-coalgebra structure on the
coBökstedt spectral sequence.

In this section we use the �-Hopf algebra structure on the coBökstedt spectral
sequence that we produced in Section 6 to carry out further computations of the
homology of free loop spaces. In particular, we consider spaces with exterior coho-
mology. The (co)homology of free loop spaces of simply connected spaces with mod
p exterior cohomology has been considered, for instance, in [25], [23], [33], and [24].
Our approach yields new results, as consequences of the following general collapse
result for the coBökstedt spectral sequence, which we prove later in this section.
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Theorem 7.2. Let k be a field of characteristic p and let C be a cocommutative
coalgebra spectrum whose homology coalgebra is

H∗(C; k) = Λk(yi1 , yi2 , . . . , yin).

Here the yij are cogenerators in odd degrees, |yij | = ij , and ij+1 ≥ ij ≥ 3. Then if
in−2+

∑n
j=1 ij

i1−1 < p, the coBökstedt spectral sequence for coTHH(C) collapses at E2,
and

E2
∼= E∞ ∼= Λk(yi1 , yi2 , . . . , yin)⊗ k[wi1 , wi2 , . . . , win ],

with yij in bidegree (0, ij) and wij in bidegree (1, ij).

Letting C = Σ∞+ X, for X a simply connected space with exterior cohomology,
Theorem 7.2 yields results on the homology of free loop spaces. We first consider
spaces X whose cohomology is exterior on two generators. This case has been
considered previously in work of Kuribayashi and Yamaguchi [25], and we compare
our results to that previous work in Remark 7.4. The following result follows
directly from Theorem 7.2.

Theorem 7.3. Let k be a field of characteristic p and let X be a simply connected
space whose cohomology is exterior on two generators in odd degrees,

H∗(X; k) ∼= Λk(xi1 , xi2),

|xij | = ij, and i1 ≤ i2 ≤ p−1
2 i1 − p−1

2 . Then the homology of the free loop space on
X is given as a graded k-module by

H∗(LX; k) ∼= Λk(yi1 , yi2)⊗ k[wi1 , wi2 ],

where |yij | = ij, and |wij | = ij − 1.

Remark 7.4. Kuribayashi and Yamaguchi [25] compute using different methods the
cohomology of free loop spaces H∗(LX;Z/p) for X simply connected with mod p
cohomology isomorphic to Λ(xi1 , xi2), where i1 ≤ i2 ≤ 2i1−2, and p > 3. Dualizing
their result yields H∗(LX;Z/p) ∼= Λ(yi1 , yi2) ⊗ k[wi1 , wi2 ] with the generators yi
and wi in the degrees indicated in the theorem above. When p = 5 our statement
applies in the same range of degrees as the Kuribayashi and Yamaguchi result. For
p > 5, though, our statement applies in a much broader range than the statement in
[25], and provides an extension of their result. Note, however, that in the current
work we compute H∗(LX; k) as a k-module. In [25] they compute the algebra
structure on H∗(LX;Z/p), in addition to the module structure. We expect that
the isomorphism in Theorem 7.3 holds as an isomorphism of coalgebras, but this
will be addressed in subsequent work.

As noted above, our work greatly expands the range in which we can understand
the homology of the free loops on a space whose mod p cohomology is exterior on
two generators. We next consider spaces whose cohomology is exterior on more
than two generators. When p = 2, this was studied in work of Smith [33]. For
p > 2, while the homology of free loop spaces for spaces with exterior cohomology
with one or two generators had been studied in past work, previous techniques did
not easily extend beyond the case of two generators. One advantage of the new
approach presented here is that it yields results in much greater generality. Indeed,
using our new approach we are able to prove the following general result for spaces
with exterior cohomology with n generators.
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Theorem 7.5. Let k be a field of characteristic p and let X be a simply connected
space whose cohomology is exterior on a finite number of generators

H∗(X; k) ∼= Λk(xi1 , xi2 , . . . , xin),

where the xij are generators in odd degrees, |xij | = ij, and ij+1 ≥ ij. Then when
in+

∑n
j=1 ij

i1−1 ≤ p, the homology of the free loop space on X is given as a graded
k-module by

H∗(LX; k) ∼= Λk(yi1 , yi2 , . . . , yin)⊗ k[wi1 , wi2 , . . . , win ],

where |yij | = ij, and |wij | = ij − 1.

Example 7.6. For appropriate choices of p, Theorem 7.5 recovers calculations of the
homology of free loop spaces of SU(n), Sp(n), G2, F4, E6, E7, and E8.

In the case where the cohomology of X is exterior on one generator in odd degree,
our techniques yield a stronger result. We consider this case in Theorem 7.9 later
in this section.

The approach to proving the above results is to use the coBökstedt spectral
sequence for coTHH(Σ∞+ X) and exploit the additional algebraic structure developed
in Section 6 for the coBökstedt spectral sequence. The following proposition will
be very useful.

Proposition 7.7. Let C be a cocommutative coalgebra spectrum such that H∗(C; k)
is connected and coHH(H∗(C; k)) is coflat over H∗(C; k). Then the E2-term of the
coBökstedt spectral sequence for coTHH(C),

E∗,∗2 (C) = coHH∗(H∗(C; k)),

is a �H∗(C;k)-bialgebra, and the shortest non-zero differential ds,tr in lowest total
degree s+ t, maps from a �H∗(C;k)-algebra indecomposable to a �H∗(C;k)-coalgebra
primitive.

Proof. As seen in Proposition 3.6, coHH∗(H∗(C; k)) is a �H∗(C;k)-bialgebra. Sup-
pose d1 = d2 = · · · = dr−1 = 0. We then consider what happens on E∗,∗r (C). Note
that E∗,∗r (C) = E∗,∗2 (C) is still a �H∗(C)-bialgebra, and the differential dr satisfies
both the Leibniz rule:

dr ◦ µ = µ ◦ (dr � id± id� dr),

and the coLeibniz rule:

4 ◦ dr = (dr � id± id� dr) ◦ 4.
Here � denotes �H∗(C;k). Suppose xy is decomposable and dr(xy) 6= 0. Then by
the Leibniz formula one of dr(x) or dr(y) is nonzero, so there is a class in lower
total degree with a nonzero differential. Now consider any w ∈ E∗,∗r (C). We can
write the comultiplication on w as

4(w) = w � 1 + 1 � w +
∑
iw

(1)
i � w

(2)
i .

Suppose dr(w) is not primitive. Then the comultiplication on dr(w) can be written

4(dr(w)) = drw � 1 + 1 � drw +
∑
i(drw)

(1)
i � (drw)

(2)
i ,

where at least one of the terms (drw)
(1)
i �(drw)

(2)
i is nonzero. By the coLeibniz rule

it then follows that at least one of the terms dr(w
(1)
i ) or dr(w

(2)
i ) must be nonzero.

Therefore there is a class in lower total degree with a nonzero differential. �
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We now have the pieces in place to prove Theorem 7.2.

Proof of Theorem 7.2. We consider the coBökstedt spectral sequence computing
H∗(coTHH(C); k). This spectral sequence has E2-term

E2
∼= coHH∗(H∗(C; k)) ∼= coHH∗(Λk(yi1 , yi2 , . . . , yin)).

This coHochschild homology was computed in [4], Proposition 5.1, so we have

E2
∼= coHH∗(H∗(C; k)) ∼= Λk(yi1 , yi2 , . . . , yin)⊗ k[wi1 , wi2 , . . . , win ],

where wj is in degree (1, j). This coalgebra is coflat over the exterior algebra
Λk(yi1 , yi2 , . . . , yin) ∼= H∗(C; k), so Proposition 7.7 applies, and the shortest non-
zero differential, from lowest total degree, maps from a �H∗(C;k)-indecomposable
to a �H∗(C;k)-primitive. The �H∗(C;k)-coalgebra structure that Proposition 3.6
gives on the E2-page H∗(C; k) ⊗ k[wi1 , wi2 , . . . , win ] agrees with the one given in
Proposition 2.18, and hence Proposition 2.18 describes the �H∗(C;k)-primitive el-
ements in coHH∗(H∗(C; k)). However, from [4], we know that the coBökstedt
spectral sequence is also a spectral sequence of k-coalgebras. It follows that the
shortest non-zero differential, in lowest total degree, maps to a k-coalgebra primi-
tive. We can see from Proposition 2.18 that there are fewer primitive elements of
coHH∗(H∗(C; k)) viewed as a k-coalgebra than viewed as a �H∗(C;k)-coalgebra. Let
p denote the characteristic of k. Then the primitive elements of coHH∗(H∗(C; k))

as a k-coalgebra are the elements of the form yj ⊗ 1 and 1 ⊗ wp
m

j . The elements

yj ⊗1 are in bidegree (0, j) and hence cannot be hit by a differential. Similarly, the
elements 1 ⊗ wj are in bidegree (1, j) and cannot be hit by a differential. So the

first non-zero differential, if one exists, has to hit some 1⊗ wp
m

j , for m ≥ 1.
We argue that for large enough values of p, these classes cannot be hit by a

differential from a �H∗(C;k)-indecomposable. In other words, if the characteristic
of k is large enough, this spectral sequence will collapse. In Proposition 7.8 below
we establish that the �H∗(C;k)-indecomposable elements of coHH∗(H∗(C; k)) are
the elements of the form x ⊗ wi, where x ∈ Λk(yi1 , yi2 , . . . , yin). Consider an

indecomposable element yij1· · · yijm⊗wij and suppose dr(yij1· · · yijm⊗wij ) is 1⊗wp
b

ia
.

Note that the bidegree of dr(yij1· · · yijm ⊗wij ) is (1 + r, ij1 + · · ·+ ijm + ij + r− 1).
By comparing bidegrees,

1 + r = pb and ij1 + · · ·+ ijm + ij + r − 1 = iap
b.

So in particular,

ij1 + · · ·+ ijm + ij − 2 = (ia − 1)pb.

Since ia 6= 1 it follows that

pb =
ij1 + · · ·+ ijm + ij − 2

(ia − 1)
.

Therefore

p ≤ pb =
ij1 + · · ·+ ijm + ij − 2

(ia − 1)
≤
in − 2 +

∑n
j=1 ij

i1 − 1
.

�

To complete the proof of Theorem 7.2 we prove the following lemma, which
identifies the �H∗(C;k)- indecomposable elements.
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Proposition 7.8. For a field k, the indecomposable elements of the �Λk(y1,y2,...yn)-
algebra

coHH∗(Λk(y1, y2, . . . yn)) ∼= Λk(y1, y2, . . . , yn)⊗ k[w1, w2, . . . , wn]

are of the form x⊗ wi for any x ∈ Λk(y1, y2, . . . , yn).

Proof. Let C denote the coalgebra Λk(y1, y2, . . . yn). Let D denote the coalge-
bra k[w1, w2, . . . wn]. Recall from Proposition 3.6 the �C-algebra structure on
coHH∗(C) ∼= C ⊗ D. In order to identify the indecomposable elements in this
�C-algebra, we first need to identify the augmentation ideal. The augmentation

ε : C ⊗D → C

is given by the composite

C ⊗D id⊗εD−−−−→ C ⊗ k
∼=−−→ C,

where εD is the counit for D. This is the map εD : k[w1, w2, . . . , wn]→ k that sends
all of the wi to zero. Let D denote the kernel of εD. Since we are working over a
field k, the augmentation ideal I(C ⊗D) is then given by I(C ⊗D) = C ⊗D. The
indecomposable elements Q(C ⊗D) are determined by the exact sequence

I(C ⊗D) �C I(C ⊗D)
µ−−→ I(C ⊗D) −→ Q(C ⊗D) −→ 0.

Here we view the map µ as a composite

I(C ⊗D) �C I(C ⊗D) ↪−→ (C ⊗D) �C (C ⊗D)
µC⊗D−−−−→ I(C ⊗D),

where µC⊗D is the product as in Proposition 3.6. We rewrite the exact sequence
as

(C ⊗D) �C (C ⊗D)
µ−−→ C ⊗D −→ Q(C ⊗D) −→ 0.

Note that

(C ⊗D) �C (C ⊗D) ∼= C ⊗D ⊗D.
This isomorphism is induced by the comultiplication followed by a twist:

C ⊗D ⊗D 4⊗1⊗1−−−−−→ C ⊗ C ⊗D ⊗D id⊗τ⊗id−−−−−→ C ⊗D ⊗ C ⊗D.

The box product (C ⊗ D) �C (C ⊗ D) is identified with the image of this com-
posite inside the 4-fold tensor product. It follows from the definition of the �C-
multiplication in Proposition 3.6 that under this isomorphism the multiplication µ
is given by

µ : C ⊗D ⊗D id⊗µD−−−−→ C ⊗D,
where µD denotes the multiplication on the classes wji described in Proposition 3.9.
The cokernel of this map is then given by

Q(C ⊗D) = C ⊗ coker (µD),

that is, all elements of the form x⊗ wi. �

In the case where the cohomology is exterior on only one generator, we have
the stronger result that the spectral sequence always collapses, regardless of the
characteristic of k. This result was also proven in [25] using a different approach.
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Theorem 7.9. Let X be a simply connected space whose cohomology is exterior on
one generator in odd degree

H∗(X; k) ∼= Λk(x).

Then the homology of the free loop space on X is given as a graded k-module by

H∗(LX; k) ∼= Λk(y)⊗ k[w],

where |y| = |x|, and |w| = |x| − 1.

Proof. This follows directly from the proof of Theorem 7.2. In the case of one
exterior generator in degree i, the formulas in the proof of Theorem 7.2 show that
in order for a nonzero differential dr, r ≥ 2, to exist in the spectral sequence, the
following formulas need to be satisfied:

pb ≤ 2i− 2

i− 1
= 2 and 1 + r = pb.

These formulas imply that r < 2, so there is no such differential and the spectral
sequence collapses. �

Remark 7.10. Theorem 7.9 computes in particular the homology of free loop spaces
of spheres, H∗(LSn; k), for n > 1, odd. The homology of free loop spaces of spheres
was computed classically by Ziller [36], using Morse theory, and we recover some of
those results here.

Remark 7.11. A result using similar proof techniques to Theorem 7.9 is proven by
Klanderman in [22]. Klanderman uses the relative coBökstedt spectral sequence

to compute π∗(coTHHHk(C)) for C a cocommutative Hk-coalgebra spectrum with
π∗(C) ∼= Λk(y), for |y| > 1, odd.
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[3] Haldun Özgür Bayındır and Maximilien Péroux. Spanier–Whitehead duality for topological

coHochschild homology. arXiv:math.AT/2012.03966, 2020.
[4] Anna Marie Bohmann, Teena Gerhardt, Amalie Høgenhaven, Brooke Shipley, and Stephanie

Ziegenhagen. Computational tools for topological coHochschild homology. Topology Appl.,
235:185–213, 2018.

[5] Marcel Bökstedt. The topological Hochschild homology of Z and Z/p. Unpublished.
[6] A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations. Lecture

Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin-New York, 1972.
[7] A. K. Bousfield and D. M. Kan. Pairings and products in the homotopy spectral sequence.

Trans. Amer. Math. Soc., 177:319–343, 1973.
[8] A. K. Bousfield and D. M. Kan. A second quadrant homotopy spectral sequence. Trans.

Amer. Math. Soc., 177:305–318, 1973.
[9] Tomasz Brzezinski and Robert Wisbauer. Corings and comodules, volume 309 of London

Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
[10] D. Burghelea and Z. Fiedorowicz. Cyclic homology and algebraic K-theory of spaces. II.

Topology, 25(3):303–317, 1986.
[11] Moira Chas and Dennis Sullivan. String topology. arXiv:math.GT/9911159, 1999.
[12] Ralph L. Cohen and John D. S. Jones. A homotopy theoretic realization of string topology.

Math. Ann., 324(4):773–798, 2002.



COTHH AND THE HOMOLOGY OF FREE LOOP SPACES 43

[13] Ralph L. Cohen, John D. S. Jones, and Jun Yan. The loop homology algebra of spheres and

projective spaces. In Categorical decomposition techniques in algebraic topology (Isle of Skye,

2001), volume 215 of Progr. Math., pages 77–92. Birkhäuser, Basel, 2004.
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