QUOT SCHEMES OF CURVES AND SURFACES:
VIRTUAL CLASSES, INTEGRALS, EULER CHARACTERISTICS

D. OPREA AND R. PANDHARIPANDE

ABSTRACT. We compute tautological integrals over Quot schemes on curves and sur-
faces. After obtaining several explicit formulas over Quot schemes of dimension 0 quo-
tients on curves (and finding a new symmetry), we apply the results to tautological
integrals against the virtual fundamental classes of Quot schemes of dimension 0 and
1 quotients on surfaces (using also universality, torus localization, and cosection local-
ization). The virtual Euler characteristics of Quot schemes of surfaces, a new theory
parallel to the Vafa-Witten Euler characteristics of the moduli of bundles, is defined and
studied. Complete formulas for the virtual Euler characteristics are found in the case
of dimension 0 quotients on surfaces. Dimension 1 quotients are studied on K3 surfaces
and surfaces of general type with connections to the Kawai-Yoshioka formula and the
Seiberg-Witten invariants respectively. The dimension 1 theory is completely solved
for minimal surfaces of general type admitting a nonsingular canonical curve. Along
the way, we find a new connection between weighted tree counting and multivariate
Fuss-Catalan numbers which is of independent interest.
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1.1. Overview. The main goal of the paper is to study the virtual fundamental classes

of Quot schemes of surfaces. The parallel study for 3-folds was undertaken in [40, 41]
and led to the MacMahon function for Hilbert schemes of points and the GW /DT corre-

spondence for Hilbert schemes of curves. For the surface case, we use several techniques:

the universality results of [9], C*-equivariant localization of the virtual class [18], and
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2 D. OPREA AND R. PANDHARIPANDE

cosection localization [22]. However, the most important input to the surface theory con-
cerns the parallel study of Quot schemes of curves of quotients with dimension 0 support,
which we develop first. By applying the curve results to the surface theory, we prove
several basic results about the virtual fundamental classes of Quot schemes of quotients

with supports of dimension 0 and 1 on surfaces. The subject is full of open questions.

1.2. Curves. Let C be a nonsingular projective curve. Let Quot o(CY,n) parameterize

short exact sequences
05S—-C"®0c—-Q—0,

where @ is a rank 0 sheaf on C' with

X(Q) =n.

The scheme Quot (CY,n) was viewed in [36] as the stable quotient compactification of
degree n maps to the point, where the point is the degenerate Grassmannian G(N, N).
By analyzing the Zariski tangent space, Quot ¢(CY,n) is easily seen to be a nonsingular
projective variety of dimension Nn, see [36, Section 4.7].

For a vector bundle V' — C of rank r, the assignment
Q— H'(C,V®Q)
for [CN ® Oc — Q] € Quot ¢(CV, n) defines a tautological vector bundle
VI = Quoto(CV,n)

of rank rn. The construction descends to K-theory via locally free resolutions. We define

generating series of Segre! classes on Quot schemes of curves as follows.

Definition 1. Let a1, ...,ay be K-theory classes on C. Let

ZC,N(q)xlw . 'aW’Oélw . 'aaf) = an/Q le(a[ln]) o -le(aén]) .
n=0

uot ¢ (CN n)

Since the integrals in Definition 1 depend upon C' only through the genus g of the

curve, we will often write
Zg7N(q,:c1,.. . ,a;g\al,.. . ,Ozg) = ZqN(q,ml,.. . ,:c(g\al,. . .,Oég) .
By the arguments of [9], there exists a factorization
(1) Zon(g 1, .. x|, ... 0q) = A;l(al) . -Agl(aé) B9,
IFor a vector bundle V on a scheme X, we write

s:(V)=1+ts1(V) +t7s2(V) + ...

for the total Segre class.
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for universal series
(2) Ala"'aAZaBe@[[@laxlv"‘vxe]]

which do not depend on the genus g or the degrees c;(«;). However, the series (2) do

depend on the ranks
r=(r1,...,7¢), 71;=rank o
and N. The complete notation for the series (2) is
(3) Al,r,N ey AE,r,N , Br,N S Q[[q,xl, ey :Eg]] ,

but we will often use the abbreviated notation (2) with the ranks r; and N suppressed.
Question 2. Find closed-form expressions for the series A;, n and B, n.

Integrals over Quot schemes of curves were also studied in [35] via equivariant localiza-

tion. In particular, formulas of Vafa-Intriligator [3, 19, 52] were recovered and extended.

1.3. Symmetric products (N = 1). For curves, the symmetric product C™ is the

Quot scheme in the N =1 case,
" = Quot o(CY, n).

We give a complete answer to Question 2 for N = 1. The result will later play an

important role in our study of Quot schemes of surfaces.

Theorem 3. Let a,...,ap have ranks ri,...,rp, and let N = 1. Then
Zo1 (g ar,-yme|an,. ) = A(g) ) Ag(q) ) B(g) Y,

where, for the change of variables

(4) q=1t(1—a1t)™ - (1 —zpt)™,

we set

Al =1-at. Bl = (1)

To compute the series? A;(q) and B(g), the change of variables (4) must be inverted

to write ¢ as a function of ¢ with x1,...,z, viewed as parameters. By Theorem 3, the
series Z41(q,21,...,@¢|a1,...,0¢) is a function in ¢ which is algebraic over the field
Q(x1,y...,xp).

2For Theorem 3, the complete notation is A; = A; (1 and B = B, ;.
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Remark 4. Specializing to the case £ =1, x1 = 1, and 1 = r, and letting V' — C be a

rank 7 vector bundle, we recover the result of [39]:
®) Sat [ sV = e (V) A + (- 9)-Blo)
n=0 "

for the series
(6) A(t(
B(t(

These expressions confirmed and expanded predictions of [60]. The r = 1 case is related

L=t)") = log(1-1),
1-t)") = (r+1)log(l—1t)—log(l—1t(r+1)).

to the counts of secants to projectively embedded curves [7, 26].

Remark 5. To go beyond numerical invariants, we consider a flat family
m:C— 8
of nonsingular projective curves with line bundles Ly,..., L, — C. We write
rnl ol g

for the relative symmetric product. A more difficult question concerns the calculation of

the push-forwards
Sl (s, (L) 50, (L)) € A%(S)
n=0

in terms of the classes

Klai,...,ap,b] = 7, (cl(Ll)“l ceeep (L) - cl(wﬂ)b> e A*(9).

When 7 is the universal family over the moduli space of curves, such constructions play
a role in the study of tautological classes [44, 45].

1.4. Higher N (for ¢ =1). Our second result concerns the case of arbitrary N, but we

assume ¢ = 1. The corresponding series is
o
Zwlal V) =Y 0" [ sV,
n—=0 Quot ¢ (CN |n)

where V' — (' is a rank r vector bundle.

Theorem 6. The universal Segre series s
Zyn(g|V) =A@ -B(g)' 9,

where

log A(g) = i(—l)w“)n+1 <(T jvg)ﬂ 1) ' % '

n=1
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Remark 7. In case N = 1, Theorem 6 is a special case of Theorem 3. The agreement of

the formulas follows from the identity

—log(l—1t) = Z ((r —tzl—)nl_ 1) . % for g=t(1-1)"
n=1

which will be proven in Lemma 33 below.

Theorem 6 identifies the £ = 1 series A = Ay, n, but does not specify the series
B = B, n. However, for rank r = 1, closed-form expressions for the A and B-series are

determined by the following result.

Theorem 8. For rank V =1, after the change of variables
g= (DNt +0)N
we have

A = (1 N B = (7 .
1,1,n(q) = (1+8)" and Byin(q) T+ t(N 1 D)

We also write an explicit power series expansion for the B-series parallel to Theorem 6.

Corollary 9. For rank V =1, we have

Bin(g) = Z(—l)"(NH) . <(” — DV + 1)) q".

n
n=0

By comparing the expressions of Theorem 8 with those of equation (6), we obtain the

following new symmetry exchanging N and the rank.

Corollary 10. For any line bundle L — C, we have

/ (L) = (1) [ (L)
Quot ¢ (CN n) Clnl

In particular, for C =P, we have

Quot 1 (CN n) n

1.5. Catalan numbers. By specializing Theorem 3 to the case of an elliptic curve C'

and using Wick expansion techniques, we are led to a combinatorial identity for Catalan
3

1 2m
Cp=—-—
m+1\m
3There are many realizations of the Catalan numbers! But we have asked several experts and ours
does not appear to be in the literature. If you know a reference, please tell us.

numbers which appears to be new.

The m!"* Catalan number
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is well-known to count unlabelled ordered trees with m+ 1 vertices [53]. The multivariate

Fuss-Catalan numbers were introduced and studied in [2]. A special case of the definition

is used here. For non-negative integers pi, ..., pg, the multivariate Fuss-Catalan number
of interest to us is
_ 1 2p1 +p2+ ...+ P p1+p2+ ...+ 2pg
C(plv"'apk)_ .
pt...+pp+1 P1 Dk

The case k = 1 corresponds to the usual Catalan number C(m) = C,,. The multivariate

Fuss-Catalan numbers were shown to count certain k-Dyck paths or, alternatively, k-nary

trees, and also arise in connection with algebras of B-quasisymmetric polynomials [2].
We interpret the Catalan and multivariate Fuss-Catalan numbers as a weighted count

of trees. Let non-negative integers p1,...,pr be given. Let
n=p1+...+pp+1.

A labelled k-colored tree of type (p1,...,pk) is a tree T with
e n vertices labelled {1,2,...,n},

e n — 1 edges each painted with one of the k different colors such that exactly p;

edges are painted with the j* color.
For each vertex v, we write
... d"
for the out-degrees* of v corresponding to each of the k colors. More precisely, &, counts
edges e incident to v, of color j, such that e connects v to a vertex w satisfying

v>w.

We define the weight of T' as the product
wt(T) = ;1' I db-dbr.
v vertex
Theorem 11. The Fuss-Catalan number is the weighted count of ordered k-colored trees
of type (p1,...,pk):
Clp1,...,px) = ZWt(T) .
T

Example 12. Let us now specialize to the single color (k = 1) case with m = p; and
n =m + 1. The weights then take the form:

1 m -1
- | —
wt(T) = 5 ] it (dl,...,dn> ’

" vvertex

4The term out-degree comes from regarding 7" as an oriented graph with each edge oriented in the
direction of decreasing vertex label.
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where for each v, d, denotes the out-degree of v. We then obtain the standard m!"

Catalan number as a weighted count of labelled trees with m + 1 vertices:
(7) C(m) =>_ wi(T).
T

The result (7) should perhaps be compared with the realization of C(m) as the unweighted
count of unlabelled ordered trees with m+ 1 vertices (see [53] for instance). The following
diagram shows the two counts for C(2):

— weighted count
1—2—3 3—1—2 1—3—2

— unweighted count

| RN

In the first count, the weights are %, % and 1 respectively and
1 1
C2)==+=+1.
(2) 5Ty

1.6. Surfaces: dimension 0 quotients. We can apply the above results for curves to
the calculation of tautological integrals over Quot schemes of dimension 0 quotients of
nonsingular projective surfaces X.
The Quot scheme Quot x (CV,n) of short exact sequences
0-S—-C"20x—>Q—0, x(Q) =n,c(Q) =0, rank(Q) =0
is known [10, 31] to be irreducible of dimension n(N + 1), but may be singular.® Since
the higher obstructions for the standard deformation theory lie in

(8) Ext?(S,Q) = Ext®(Q,S ® Kx)" =0,

the Quot scheme carries a 2-term perfect obstruction theory and a virtual fundamental
cycle of dimension

Ext’(S, Q) — Ext!(S,Q) = x(S,Q) = Nn.

Question 13. FEwaluate the integrals

ZX,N(CLJ;lv e, Xy | af,... 7a€) == an/[ Sl’l(a[ln]) o 'Sﬁé(agn])
n=0

Quot x ((CN,n)]Vir

5An example is given in Section 4 below.



8 D. OPREA AND R. PANDHARIPANDE
where aq, ...,ap are K-theory classes on X.

By our next result, the surface series of Question 13 are obtained from the parallel
curves series of Question 2. The relationship is not unlike the localization result for the
Gromov-Witten theory of surfaces of general type with respect to a canonical divisor
[22, 27, 42).

Theorem 14. Let the ranks of the classes oy, ..., oy be given by r = (ry,...,rg). Let the
series AN, .- ., Aer.N, Brn be defined by the curve integrals (1). Then, we have
Zx N(q,x1,. .. x0]0a, ... ap) =
Al,r,N(—q)cl(ai)'KX .. 'Ae,r,N(—q)Cl(W)'KX . Br,N(_Q)iK‘% .
In case X is a surface of general type with a nonsingular canonical divisor
CcX,
then ¢ («;) - Kx is the degree of the restriction of a; to C' and
—K% =1 — genus(C)
by adjunction. We may therefore write Theorem 14 as
Zx N(q, 71, @ |n, . ) = Zyoy N (—q, Ti,.. x| a1loy ... Oég’c) .

However, Theorem 14 holds for all X (even if X is not of general type).
For N =1, Theorems 3 and 14 together yield a complete answer for the virtual Segre

integrals over the Hilbert scheme of points,
X = Quot x(C!, n).

Corollary 15. Let X be a nonsingular projective surface. Then

2.7 /[X[ R e A U
n=0 "

where, for the change of variable
qg=—t(1—a1t)™ (1 —axpt)",

we set
dt

Al =1-a-t, Blo=-(4)" 1.

t
Similarly, for higher N, Theorems 8 and 14 yield the following evaluation.

Corollary 16. Let L — X be a line bundle on a nonsingular projective surface. Then

an/ S(L[n]) _ A(q)m(L)-KX ) B(q)*Kgc
n=0 [

Quot x (CN 7n)]Vir
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where, for the change of variables
g= (DNt 4",

we set
(1+ )N+

A(g) = (1+ )N, B(q):71+(N+1)t'

Remark 17. Question 13 is well-posed for integrals against the actual fundamental
class of dimension n(N + 1) of Quot x(CV,n) instead of the virtual fundamental class
of dimension n/N. The calculation for the actual fundamental class is more complicated.
The N =1 case is by far the most studied. Then, the series

o0
Zx(q,x1,. .., x¢|a1,...,0q) = Zq”/ sxl(a[ln]) - sxr(agn])
n=0 Xl
are generalizations of the Segre integrals considered by Lehn [28]. In fact, Lehn’s case
corresponds to £ = 1 and rank o7 = 1, and was studied in [38, 39, 59]. The case
r=...=xp=1

was studied in [37], and a complete solution was given for K-trivial surfaces. The case

¢ = 2 was analyzed in [61], and the answer was found for all surfaces if
rank o1 = rank ag = —1

via connections to K-theory.

1.7. Virtual Euler characteristics: dimension 0 quotients. The topological Euler
characteristics of the schemes Quot o(CY,n) and Quot x(C™,n) can be easily computed

via equivariant localization:

Z ¢"e(Quot (CY,n)) = (1 — q)N(2g*2) :

n=0
> q"e(Quot x (CV,n)) = J] (1 — ¢") =M.
n=0 n=1

More subtle is the virtual Euler characteristic of Quot x (C™,n) defined via the 2-term
obstruction theory. A basic result for dimension 0 quotients, proven using a reduction to

the Quot schemes of curves, is the following rationality statement.

Theorem 18. The generating series of virtual Euler characteristics of Quot x (CN,n) is

a rational function in q which depends only upon Kg( and N,

> . 2
3 " T (Quot x (CV,n)) = U™, Uy € Q(q).
n=0
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We can calculate U directly using the evaluations given in Theorem 3:
(1-q)?
1-2q
For higher N, a more involved computation in Section 4.3 yields an exact expression in

Ui =

a different form:

(1-¢)?
(9) UN(q)_ 1_2N N Hl_ - )7
1<j
where r1(q),...,rn(q) are the N distinct roots of the polynomial equation

N—gqz-1)" =0

in the variable z. The shape of the answer is reminiscent of the Vafa-Intriligator formulas
for Quot schemes of curves [3, 19, 35, 52] which yield expressions depending on the roots
of unity.

Using (9), we can easily calculate Uy as a rational function of q. The next few cases

are:

U, = 1-9°0-6a+¢)

(1—4g)?
Us — (1—¢q)%(1 —22¢ + 150¢* — 22¢° + ¢*)
(1—38q)? ’
Us — (1 —q)%(1 — 62¢ + 1407¢> — 15492¢> + 1407¢* — 62¢° + ¢%) ‘
(1—16g)*
Formula (9) implies
2

(10) Ux () = 1 s P (@)

where Py (q) € Z[q] is a palindromic polynomial of degree 2N — 2. A simple functional

equation holds for the transformation ¢ <> ¢~

1.8. Surfaces: dimension 1 quotients. Let X be a nonsingular, simply connected®,
projective surface, and let D € A'(X) be a divisor class. As observed in [38], the Quot
scheme Quot x (CV,n, D) of short exact sequences

0+S—-C"20x —>Q—0, x(Q) =n, c(Q) =D, rank(Q) =0
carries a 2-term perfect obstruction theory and a virtual fundamental class of dimension
x(S,Q) = Nn + D%
Indeed, the higher obstructions vanish

Ext?(S,Q) = Ext®(Q,S ® Kx)" =0,

6The referee pointed out that our results hold under the weaker assumption b (X) = 0.
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since @ is a torsion sheaf. Using the above obstruction theory, we define generating series

of virtual Euler characteristics.

Definition 19. Let X be a nonsingular, simply connected 7, projective surface. For a
divisor class D € AY(X) and an integer N > 1, let

Z5% n.p(q an “(Quot x (CV, n, D)).
neZ

For fixed N and D, the Quot schemes Quot x (CV,n, D) are empty for all n sufficiently

negative, so

Z(;(,N,D(Q) € Z((q)) -

The virtual Euler characteristic results described in Section 1.7 concern the generating
series Z§( ~No(q) with vanishing divisor class D. In case D # 0, exact calculations are

more difficult to obtain.
(i) Rational surfaces

A very rich theory arises for rational surfaces. In Section 5.2, we write general tauto-
logical integrals over Hilbert schemes of points which compute the virtual Euler charac-

teristics. The following result provides an example of an exact solution.

Proposition 20. Let X be the blowup of a rational surface with exceptional divisor E.
We have
(1- q>2>’<?<“

Zsst =0 (=0

The formula of Proposition 20 concerns only the case N = 1. The proof makes use
again of Theorem 3 for curves. Further exact calculations for rational surfaces will require
new techniques. However, we can calculate much more for K3 surfaces and surfaces of

general type.
(ii) K3 surfaces

For K3 surfaces, the standard obstruction theory contains a trivial factor which forces
the virtual invariants to vanish. The natural generating series therefore concerns the

virtual Euler characteristics of the reduced obstruction theory:

Z%¢ npla an "*d(Quot x (CV,n, D)).
nez

"There is no difficulty to define the generating series in the non-simply connected case, but then D
should be taken in H?(X,Z) instead of A'(X).



12 D. OPREA AND R. PANDHARIPANDE

In the N = 1 case, the reduced obstruction theory leads to expressions matching the
curve counts on K3 surfaces. Specifically, let Ny , be defined by the Kawai-Yoshioka [21]
formula:

[ee} 00 __— _L -2 o0 1
) 2 > Noay'd' = <\[ \/@> 1 (1—¢")2(1 —yg")2 (1 —y~1g")? "

g:(] n:l—g n=1

The Kawai-Yoshioka formula has played a central role in the Gromov-Witten and the
stable pairs theory of K3 surfaces [43, 48, 49]. For primitive classes, we have complete

results.

Theorem 21. Let X be a K3 surface, and let D be a primitive divisor class of genus
2g — 2 = D? which is big and nef. We have

e™d(Quot x (Ct,n, D)) = Ngn .
The argument matches the reduced virtual Euler characteristic integral of the Quot

scheme to the topological Euler characteristic integral of the moduli space of stable pairs

(the integrands however are not the same).

(iii) Surfaces of general type

Let X be a simply connected surface of general type with p, > 0. In the class of
the canonical divisor Ky, we show the vanishing of the virtual Euler characteristics for
N = 1 in almost all cases. The single exception is significant: the Poincaré-Seiberg-

Witten invariants of [6, 8] are recovered,
e (Quot x (C',n = —K%, Kx)) = (—-1)X(9x).
For arbitrary N, a vanishing holds for minimal surfaces.®

Proposition 22. Let X be a simply connected minimal surface of general type with

pg > 0. If D is a curve class with
[QuotX((CN,n, D)}Vir #0,

then D =f{Kx for 0 < ¢ < N.

If we further assume the canonical class of X is represented by a nonsingular curve,
we can calculate Z% N, ¢y (@) completely in all cases. By Proposition 22, we need only

consider ¢ in the range

0</{<N.

8We thank M. Kool for very helpful discussions about Seiberg-Witten classes.
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Theorem 23. Let X be a simply connected minimal surface of general type with a non-
singular canonical curve of genus g = K)Q( + 1. Then,
& 0-x(O 0(1— 1—
Z5% Ny (@) = (—1)FXOx) gf1=0). > ATiys e sTiy_y) 7,
1<i1<..<in_¢<N

where the sum s taken over all (Nj\iz) choices of N —{ distinct roots r;(q) of the polynomial
equation

N gz-1)V =0
in the variable z. The function A is defined by

N-6y Nt
Az TN_g) = (=) I (1+2)V (1 —a) 1 (25 — ;)2
seey IN— NN-L / xN—l J 1_(.’171—:6])2
i=1 I i<j
Since the answer of Theorem 23 is a symmetric function of the roots r1(q),...,rn(q),
we have

Zg(,N,ZKX (q) € Q(q) .

Theorem 23 is the most advanced calculation of paper. The proof uses essentially all of

the ideas and methods that we have developed.

Example 24. Theorem 23 for N = 2 and £ = 1 specializes to the following formula:

(12) Z&oxy (@)=

(~1pE (%)1*9 <<(1 i 7“1):1(1 - r1)>1_g + ((1 + 7“2):2(1 - 7’2))1—9) |

where r1(q) and 72(q) are the two roots of the quadratic equation

2 —q(z—1)2=0

in the variable z. For a minimal surface of general type X with a canonical curve of genus

2, formula (12) yields:
ZX,z,KX (q) = (—1)X( x) W
For X with a canonical curve of genus 3, the answer is

128¢* — 64¢> + 8¢® — 16q + 8)
7€ — (_1)Xx(0x) ( ]
X,Q,KX (Q) ( ) q(]. _ 4q)4

1.9. Rationality. By Theorem 18, the series Z§(, N’O(q) is the expansion of a rational

function in g. Rationality also holds for all the examples discussed in Section 1.8 for

Quot schemes of quotients with dimension 1 support on surfaces.

Conjecture 25. For a nonsingular, simply connected, projective surface X,

Zg{,N,D(Q) € Q(q).
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A natural further direction is to study the associated series in algebraic cobordism:

ZL%H = [Quot x(CV,n, D)]"¢" € Q.(point)((q)).
ne”Z

The algebraic cobordism? class
[Quot x (CV, n, D)]''" € Q. (point)

is well-defined by [51]. Are there formulas for Z%’E’\gg (q)?

The parallel question for the virtual classes in algebraic cobordism of the moduli spaces
of stable pairs on 3-folds is conjectured to have an affirmative answer, see [51, Conjecture
0.3]. In the case of toric geometries, Shen is able to prove the rationality of the cobordism

series via the rationality results for the descendent theory of stable pairs [46, 47].

1.10. Vafa-Witten theory. There has been a series of recent papers studying the virtual
Euler characteristics of the moduli spaces of stable bundles (and stable Higgs pairs) on
surfaces [13, 14, 15, 16, 25, 54, 55]. The outcome has been a clear mathematical proposal
for the theory studied earlier by Vafa and Witten [58].

Definition 19 here is motivated by the Vafa-Witten developments. The Quot scheme
geometry, with the associated obstruction theory, provides a straightforward approach to
sheaf counting on surfaces. The idea is that given a stable bundle B of rank N on an
algebraic surface X, we can pick N sections (assuming B is sufficiently positive) which

will generically generate B:

(13) 0-C"®@0x +-B—=F—=0,

where F' is supported in dimension 1. By dualizing (13), we obtain a quotient sequence
[0+ BY - C"®0x = Q — 0] € Quot x(CV,x(Q),c1(B)).

Of course, x(Q) can be computed from the Chern classes of B and X.

The calculations that we have presented, which may be viewed as the beginning of
the study of the virtual Euler characteristics of Quot schemes of surfaces, already show
some features of Vafa-Witten theory: the appearance of the Kawai-Yoshioka formula (in
the K3 case) and the appearance of the Seiberg-Witten invariants (in the general type
case). A difference is the rationality in the variable g for the Quot scheme theory versus

modularity in the variable
q = exp(2miT)
for Vafa-Witten theory. A basic open question is the following.

9See [29] for a foundational treatment of algebraic cobordism and [30] for applications to enumerative
geometry.
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Question 26. Formulate the precise relationship of the Quot scheme theory of surfaces
for all N to Vafa-Witten theory and Seiberg- Witten theory.

Moduli spaces of bundles on curves with sections have been considered by many au-
thors, see [4, 56]. Moreover, the relationship between the intersection theory of Quot
schemes and the moduli space of stable bundles on curves has been successfully studied
in [33, 34].

1.11. Higher rank quotients. Let X be a nonsingular projective surface, and consider

the Quot scheme Quot x (CV,n, D, r) of quotients with dimension 2 support,
0-5S—>CVe0x =Q—0, Xx(Q) =n,c(Q) =D, rank(Q)=r>0.

The existence of a virtual fundamental class of Quot x (C,n, D, r) for del Pezzo surfaces
was first noted in [50], but the study can be pursued more generally.

As in the cases of support of dimension 0 and 1, the higher obstructions of the standard
deformation theory of Quot x(CV,n, D,r) lie in Ext?(S, Q). We have

Ext?(S,Q) = Ext’(Q,S ® Kx)¥ and Ext’(Q,S® Kx) — Ext®(Q,CN ® Kx).

Hence, if Ext?(S, Q) # 0, then Ext®(Q,CN ® Kx) # 0. Since Q is generated by global
sections, we conclude that HY(X, Kx) # 0.
By the above logic, we obtain the following condition: if X satisfies

(14) H(X,Kx)=0,

then the standard deformation theory of Quot x (CN,n, D, r) is 2-term and yields a virtual
fundamental class of dimension x(S, Q).

There are many surfaces which satisfy H°(X, Kx) = 0 including rational surfaces,
ruled surfaces, Enriques surfaces, and even some surfaces of general type. The Quot
scheme virtual Euler characteristic theory for such surfaces is well defined for all r, D,

and n. We leave the investigation for higher r to a future paper.

1.12. Plan of the paper. We start by computing Segre integrals over the symmetric
product
"l = Quot (T, n)

in Section 2. In particular, Theorem 3 is proven in Section 2.3. Theorem 11 about the
Fuss-Catalan numbers is obtained via Wick expansion in Section 2.5. Segre integrals over
Quot schemes of curves for higher N are studied in Section 3 where the proofs of Theorem
6 and the first part of Theorem 8 are presented.

We then consider Quot schemes of surfaces. Section 4 concerns the case of quotients
with dimension 0 support. The second part of Theorem 8 as well as Theorems 14 and 18

are proven there by reducing surface integrals to curve integrals. Section 5 concerns the
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case of dimension 1 support. The proofs of Theorems 21 and 23 are presented in Sections

5.3.2 and 5.4 respectively.

1.13. Subsequent developments. Further rationality results concerning the generating
series of virtual y_,-genera of Quot schemes of surfaces were obtained in [31]. Also in
[31], some of the assumptions made in this paper (the underlying surface being simply
connected, smoothness of the canonical divisor, minimality) were removed by taking
advantage of the connections with Seiberg-Witten theory. In parallel, in [20], series of
descendant invariants were proven to be rational for several geometries, including the
case of rational surfaces when N = 1. Finally, the virtual K-theory of Quot schemes of

surfaces is studied in [1].
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2. SYMMETRIC PRODUCTS OF CURVES

2.1. Overview. We first present the proof of Theorem 3. Theorem 11 will be obtained
in Section 2.5 by specializing Theorem 3 to genus 1. In fact, all other main results of the
paper (Theorems 6, 8, 14, 18 and 23) proven in later sections, rely either directly upon

Theorem 3 or upon the analysis of the integrals over C™ developed here.
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2.2. Projective line. To begin the proof of Theorem 3, we observe that the factorization

(15) an/ Szy (a[ln]) e ng(agn]) — Ail(al) . Agl(ag) . Bl_g ’
n=0 ol

allows us to specialize the calculation to genus 0 where
C~P' and CM~pr.
We write h for the hyperplane class on P".

Lemma 27. For a K-theory class o on P! of rank r and degree d = ¢1(a) we have
sz(a™) = (1 = zh)d—+7
Proof. Both expressions are multiplicative in short exact sequences of vector bundles
0=-Vi—=>V-=>1,—=0.

The claim is clear for the right hand side. For the left hand side, the claim is a consequence

of the induced sequence
0=V vl Sy 50 = s, (Vi) = s, (V) - s, (V).

Since the K-theory of P! is generated by line bundles, we can restrict to a = Op1(d). By
the proof of Theorem 2 in [39], we have

ch (O (d)™) = (d+1) = (d —n+ 1) exp(=h),
which then gives
s2((Op1 (d)1") = (1 = ah)'"*1,
completing the argument. O

2.3. Proof of Theorem 3 (using P!). Let ay,...,a, be K-theory classes of ranks 7;

and degree d;. Using Lemma 27, we obtain

oo
Zpr1(q, 1, .. wg |0, ... 0q) = an/ 311(04[1”])“'890,2(04%”})
n=>0 P
o
= an/ (1 _ $1h)d1—nr1+r1 .. (1 _ l‘éh)dz—n’l‘g-i-’rz
n=>0 pr

= ST [ sy gt
n=0 P

= > q" (0" g(t)).
n=0
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In the third equality,

f#) = Q—at)™" - (L —mpt)™",
g(t) = (1- xlt)d1+7'1 (1= xgt)dg+rg '

The brackets denote the coefficient of the suitable power of ¢.
We can evaluate such expressions using the Lagrange-Blirmann formula [62]. Assuming
f(0) # 0, for the change of variables ¢ = %, the following general identity holds

o

(16) 0" gt) ¢t =Zs

n=0
We will use the above identity repeatedly.

In our case, the change of variables takes the form
g=t(1—x1t)"™ -+ (1 — zgt)™,

and the Segre series becomes

¢ ¢
. o dt
Zpr1(q, @1, .2y 0p) = H(l — zit)d H(l — xit)*ri a0
i=1 i=1
Combined with the factorization (15),
Zpr1(q, w1, ., xglo, ... 0p) = A(Ii1 . -A?z -B,
the above calculation yields
¢
o dt g\2 dt
Aig) =1—ait, B(q) = [[(1—ay 22 = (4)" 2=
This completes the proof of Theorem 3. O

For future use, we also record a formula for the logarithms of the functions A;. Of

course, we may take ¢ = 1 without loss of generality.

Lemma 28. We have
o0 n

log Ay = Z(—l)n% “ap

n=1
where

—nry — 1 —nry —nry
17) ap(x1,...,2¢) = 21 - ( >< >( >-xp1---a:m.
A7) anl ) Z b1 b2 De ! ¢

p1+...+pr=n—1

Proof. The argument consists in another application of the Lagrange-Blirmann formula
(16). Indeed, write @, for the right hand side of (17) and let

o

TOED eI

n=1
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We must prove log A; = L. Clearly,
an(x1,...,x2¢) = (—1)”_11‘1 . ([t”_l} (1-— xlt)_””_l (1= xot) ™2 (1 — :L"gt)_””’)
=) ([ £ h()
where we write as before
fO) =0 —x1t) - (L —agt)™™
h(t) = (1 —at) ™71 (1 —aot) ™72 (1 — agt) "

We further compute

dL s n ol ~
B = e,

I @
1—a1t dq’

where the Lagrange-Biirmann formula (16) was applied in the third equality, for the same

change of variables g = ﬁ which we used previously. Therefore

I
dL = — dt = L =log(l— xt).
1— 2t og(l —1t)
Combined with Theorem 3, we obtain L = log A;. 0

2.4. Wick’s formalism for an elliptic curve. Let C be a nonsingular genus 1 curve.
Let Lq,..., Ly be line bundles on C' of degrees di,...,d,. We lift the integrals over the
symmetric product to the n-fold ordinary product via the morphism

pn  CF"=Cx - xC — O,
We write D;; for the diagonals
Dij ={x; =z;} cC*"
and further set
Ai=Di;+Dyi+ ...+ Di 1.

We also write m; : C*™ — C for the canonical projections, 1 < ¢ < n. From the exact

sequence

0 — mhL(=An) = PRI — (w1 x - x mua)*ph LY 0,
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we inductively obtain

n

1
Pns ( ) I[1+$(W Cl(L) Az)
Consequently,
L n
[n] [n] /
Sy, (L77) - 8.,(L .
Jr ettt =5 [T e =

By Lemma 28, we know

n

18 10g Zn' AXng’nl+x 77'01

=)

n=

,_.
<.
Il

—

where

-n—1 -n -n

p1+...+pe=n—1

@)

and a’(x1,...,x¢) is given by the correspondingly permuted formula.

We will expand the left hand side of (18) using Wick’s formalism. To connect with

pl,...,pg Zwt

for the weighted count of ordered ¢-colored trees of type (p1,...,pe) with

Theorem 11, write

n=p1+...+p+1.

Theorem 11 is equivalent to the following claim:

(19) wn(p1, ... pe) = Hf(;:) (;Z) '

To establish (19), we set
Wo= Y walp,...,pe) -2t aft
pit...+pe=n—1

Define the differential operator

0 0 0
D=2 —+1
1 .1‘18 +$282+ +ZL’£8£+

and define Do, ..., D, by the correspondingly permuted formulas.
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Lemma 29. The following identity holds

o0 L n oo ’
q" 1 - q" - .
log nZ:O n'/ H H L+ azj(nrei(L;) —A) | —n;l P ij deg L; - D;W,

X is1i=1 j=1

Proof. We refer the reader to Section 1.3 of [45] for a gentle introduction to the Wick
formalism in precisely the context which we require here. By Wick, the logarithm on the

left hand side is given by

(20) >
n=1

where S[n| is the connected contribution on n vertices. We will match the connected
contributions S[n] with the right hand side of Lemma 29.

Consider an arbitrary monomial of degree n in the diagonal classes. Such a monomial

n

Sl

Q

3

determines a graph with n vertices, whose edges are given by the diagonal associations.

Since C'is an elliptic curve, the squares of diagonals vanish
D2, =0 € B 7).

Hence, a connected graph on n vertices cannot have any cycles, thus it corresponds exactly
to a tree with n — 1 edges determined by the diagonals. The diagonals come from the

expansions of the terms

1
31;[11131 Lt aj(mren(Ly) — Aq)
and therefore may be considered as carrying colors between 1,...,¢ depending on the j

index.

Let us first analyze the (simpler) connected contribution for the terms

1
(21) iy

1i=1

¢
j:

We see that the coefficient of 3311)1 e x?é in the connected contribution with
n=p1+...+p+1

vertices is exactly a sum over labelled (-colored trees of type (p1,...,pe). The vertices of
the trees T are labelled by the n ordered factors of C*™. To calculate the weight, we

must expand (21) as

(22) (1+ 2 + 2] A7+ 23A% + ).

l
= 1

n

j=11
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If the i'" vertex v of T has &} downward edges colored j, the weight receives a factor of
d}! since the coefficient of the monomial in the corresponding diagonal in
dh A d
T A
is exactly & . Hence, the full weight is
(23) IT &' dit =wt(T) - (n—1)!.
v vertex

The actual connected contribution S[n] of (20), which we must calculate, also includes
the insertions of 7} (ci(L;)). Since the diagonal edges already cut C*™ to just a single

elliptic curve C, exactly one insertion from the set

{W;(Cl(l’j)) }1§i§n, 1<j <¢

must be chosen. We separate the contribution

Sinl =>_ S[n, j]

j=1
by which L; is chosen as an insertion. The connected contribution S[n, j] will be matched
with
—Zj - deng : DjVVn : (’I’L — 1)'
to complete the proof.
To this end, we calculate the effect of the insertion L; on the weight of a labelled

(-colored tree of type (p1,...,p¢) generated by the diagonals. The insertion L; can occur
at any vertex 1 <4 <mn. When 7} (c1(L;)) is selected, the weight receives the factor

—deg L - (& 4 1)!
since the coefficient of the corresponding monomial in

i d+1
x;-l +1( — 7 (e1(Ly)) + Ai)

is exactly (d{, + 1)!. Since the insertion L; can be placed at any vertex 1 < i < n, we
must modify the weight (23) of T" by the prefactor

n

S +1)=pj+n=2p+Y py+1.
i=1 i

This prefactor is achieved precisely by the action of the differential operator D; on W,,.
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Collecting all terms, we obtain

00 qn o £ qn
TS = 33 LS
n=1 n=1j=1
co /£ ¢
_ Zz<_nxj.deng.Djwn>
n=1j=1
which completes the calculation. O

2.5. Proof of Theorem 11 (using an elliptic curve). We prove Theorem 11 here
geometrically by specializing Theorem 3 and Lemma 28 to genus 1 and using the Wick
result of Lemma 29. Alternatively, a direct combinatorial proof of Theorem 11 is provided
in the Appendix.

By setting the right hand side of (18) equal to the right hand side of the formula of

Lemma 29, we obtain

(24) £1D1W,, = (—1)"tall) .

n

Pe

The operator D; acts on the monomial z}" - --x,’ as multiplication by (n + p1). By

matching coefficients of #" - - - 27* on both sides of (24), we solve

o= (1) ()

which completes the argument. O

3. QUOT SCHEMES OF CURVES FOR HIGHER N

3.1. Overview. We prove here Theorem 6, part of Theorem 8, and the associated Corol-
laries 9 and 10.
We begin with Theorem 6. We specialize directly to the case of an elliptic curve C,

seeking to show that

)
S| s(V1) = A(g)*EY |
n—0 Quot ¢ (CN n)

with the specified formula for A(q) = Ay, n(q).

3.2. Equivariant localization. The nonsingular projective variety Quotc(CV,n) car-
ries a natural action of the algebraic torus C* defined as follows. Let C* act diagonally
on CV with weights

wy < wy < ... < WN -
The C*-action on Quotc(CY,n) is then induced via the associated C*-action on the

middle term of the exact sequence

055 —->CNR0c—Q—0.
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We will prove Theorem 6 by applying the Atiyah-Bott C*-equivariant localization for-
mula to compute integrals over Quotc((CN ,n). The fixed loci are indexed by partitions

ni+ ...+ ny = n where

Flni,...,ny] = CMlx . x ¢l
parameterizes tuples (Z1, ..., Zy) of divisors on C' with

length(Z;) = n;.

The inclusion

j:Fni,...,ny] = Quotc(CN,n)
corresponds to the invariant sequences

N

0= S=E0c(-2 <—>@Oc—>Q @OZ =0,

i=1 =1

The normal bundle to the fixed locus is found from the moving part of the tangent bundle:

N[ni,...,ny] = Hom(S,Q)™" @Hom ), Oz,)[wj — w;]
i#]
= P HE(0(Z)|2)lw; — wi]
i
= P H(0(2)) - H*(0(Z; - Z;))) [wj — wi]
i

with the brackets denoting the equivariant weights. We combine the mixed (7,j) and

(j,7) terms by setting
Vij = H*(O(Zi — Zj))[w; — wi] © H*(O(Z; — Zi))[wi — wj].
Since C'is an elliptic curve, Serre duality yields the C*-equivariant isomorphism
Vij ~ V;/j[—l] )
Therefore,
et (Vig) = (—1XOE2) — (—qyetns
For the remaining terms, we use the K-theoretic relation
H*(0(Z;)) = H'*(0(=2))" = —=H*(0)" + H(Ogz,)"
obtained from the exact sequence

0—-0(-Z;)) >0 —=0z —0.
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While the first summand is trivial, the second summand corresponds to the bundle
((’)["i})v . We conclude

ec+(N[n1,...,nn)) = JJ(- "“””He(c*( ol [wj—wi])

1<J i#£j
= J[ec- (0" [w; — wy]).
1#]
Furthermore, the restriction of V™ to Flni,...,ny]| splits equivariantly as

sVl = vl e . e virvljwy].

Atiyah-Bott localization then yields

Zon(g|V) Zq / s(vI)

n—0 Quot ¢ (CN |n)

B 11 (V["J[wi])
B 2 /n1]>< xctnt TT; Tl ecx (O [w; — wy]) -

ni+..+ny=n

For the expression on the right hand side, we also take the non-equivariant limit wy =
.=wny = 0.
An important aspect of the above formula is that, in the genus 1 case, the integral on
the right hand side splits over the individual factors. For any tuple of equivariant weights

(a,b1,...,by—1), we write

N s(V"[a])
Poglalby,...,bn1) = n;q /C[n] ec (OMI[b1]) - - e~ (O [by_1])

We can write the splitting explicitly as

(25) Zen(qlV) =
Po(g|wy |wy —we,...,w1 —wy) - Polq|wy |wy —wi, ..., wny —wy_1).

In fact, equation (25) holds equivariantly. To prove Theorem 6, we must take the non-
equivariant limit: we must extract the free term with respect to the variables wq, ..., wy
on the right hand side.

3.3. Symmetric products. Our next step is to evaluate the expressions

Pc(q’a‘bl,...,b]v_l)

by relating them to the integrals of Theorem 3. For convenience of notation, we write

_~ —ran 1
St(V):t kV‘Sl/t(V):HH_U',

where the v; are the roots of a vector bundle V on a scheme S.
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Write R = HE. (pt) for the equivariant coefficient ring. For «,f1,...,8nv-1 € R, we
introduce the function

Qc(q]oelﬁl,...,ﬂ]v 1 Zq /C[n] V[n})gﬁl(O[n])gﬁN_l((’)[n])
Note that
Qclgqlalpi, ... By-1) € K[[q]]

where K denotes the fraction field of R. The calculations below will take place in the
power series ring K[[g]].
For a scheme S endowed with a trivial torus action, and a vector bundle V' — S with

nontrivial equivariant weight ¢, we have
5(V) =ec+(V[t]) ' € H*(S) ® K.
Applied to our setting, we obtain

(26) Pc(q|a]b1,...,bN_1):Qc(q|1+a|bl,...,bN_1).

The next result computes the logarithm of Q¢.

Lemma 30. For an elliptic curve C, we have

Qc(glalBr,....Bn-1) =F(q|a|p,...,Bn-1)%Y,

where we define
o n

logF(g|a|pi,...,Bn-1) = Z(*l)”% o] Br,. .., Bn-1),

n=1

with

(27) fula|Br,. ., Bn-1) = > <—n;— 1> (;?) (q;:)

pt+qit+...+gn-1=n—1
—nr—p—1,p—Nm—q1 —Nn—gN-1
(e p 51 --'ﬂN 1 .

Proof. Using the definitions, we compute

Qo (glalBr. - By Zq/ (V1) 55, (O -5, (O]

[e.e]

— —rp—1, . . =1 \n
DIl A

n=0
= Zo(@a h B BN IV, 0, 0).

Here we set

(V[”]) (@[n]) L (@[n])

S1
B1 /HN—I

Q\’—‘

~ —r p—1 -1
g=qo "By Byl
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and we remind the reader that the Segre series Z¢ was introduced in Definition 1. Since
most of the bundles appearing are trivial, only one universal function appears in the
answer:

Zo(@a " Bt BN IV, 0, 0) = FlegV
The proof is completed by invoking Lemma 28 which gives an expression for log F match-

ing the one claimed here. O

3.4. Proof of Theorem 6. By equation (25), equation (26), and Lemma 30, we obtain
Zon(g|V) = Ag)?®",

where log A(q) equals

log F(q| 14wy |wi—wa,...,wi—wy)+...+log F(q|1+wy |wy—w1, ..., wn—wn_1) =
— (—q)"
ZT[fn(l—l—wl\wl—wg,...,wl—wN)—i—...—l—fn(l—i—wN]wN—wl,...,wN—wN_l)] .
n=1

Our goal is to prove

n

log A(q) = i(—l)wﬂ)nﬂ <(”" + N)n — 1) 4

n .

Nn—1

n=1
Equivalently, we will show that the free term, with respect to the variables wq,...,wyn,
in the expression'®

fn(l—le‘wl —wa,...,W1 —wN)+...+fn(1—|—wN]wN—wl,...,wN—wN_l)

equals

(_1)Nn+1 (T + N)TL -1

Nn—1 '

To establish the last claim, we will use the expression for f,, provided by equation (27).

Each monomial in the formula contributes the following sum to the final answer
(1 + 'u)1>_nr—p—1(w1 — w2)_n_ql e (wl _ wN)—TL—qN_l 4.,

(14 wn) P oy — wy) T (o — wy )TN
By Lemma 31 below, the free term of the sum equals

(_1)(n+q1)+...+(n+q1\;,1) . (TLT + p) + (n + QI) +...t (’I’L + QNfl)
nr+p

— (_1)n(N—1)+q . (N + T)n -1
nr+p ’
where

g=q+...+qgnvn-1 = p+g=n-—1.

10We use here that taking the free term can be done before or after taking the logarithm.
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Therefore, the free term we seek is

3 (—1)P(N=D+a (‘”"” - 1> <—n> ( —n ) ‘ ((N +7)n — 1>
prqit..tan_1=n—1 p q qN-1 nr—+p
By the Vandermonde identity the middle binomials can be summed:

s e () ) )

p+q=n—1
After substituting p = n — 1 — ¢ and rearranging the factorials, we obtain

N1 (nN —1)! (r+ N =1\ = (n—1)  (=1)¢
(=)™ (n—l)!(n(N—l)—l)!< Nn—-1 ) Z( q ) n(N—-1)+q"

q=0

Lemma 32 for x = n(N — 1) evaluates the final sum as

e ((r + N)n — 1> |

Nn—-1
which completes the proof of Theorem 6 . O
Lemma 31. Let x1,...,xzxN be fized positive integers. Set
S(wy,...,wy) = (14+wy) " (w1 —w2) "2 - - (w1—wn) "N+ all symmetric combinations.
Ezpand S(wy, ..., wN) in the region

W] <<wy << ...<<wWN.

The free term of this expansion equals

(_1)w2+---+$1\7 1 +...+tzy —1 '
acl—l

Proof. We have

(1 4 wN)—xl . (UJN _ wl)—rz - (wN _ wN—l)_IN =

w —T2 w —TN
w&x27...71‘N . (1 + wN)—xl . (1 _ 1) R <1 — N_1> .

To extract the free term, we need the coefficient of w{ - --wQ,_, - wizt T~ in

C wy\ wy-1) N
Qtwy)™@- (120 o (1- .
Wy Wy

This coefficient equals

o = (_1)$2+...+1N . r1+...+xN — 1> '
To+...+xN 551_1

An entirely parallel computation shows that the remaining terms

(I4+w) ™ - (wj —wy)™ "2 (wj —wn) "N,

for j # N, do not contribute. O
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Lemma 32. For positive integers x and n, we have

- N
BN (x+n—1)!

Proof. We induct on n. For the inductive step, we compute

I T I oE=v | Wt RO o=~ { Wy

q=0 q=0 =0
zl(n—1)! (x—1)(n—1)!
"~ (z+n) (x+n—1)!
_ (z—=1)n!
(x40

The first line is Pascal’s identity, while the second line uses the induction hypothesis. [

3.5. Binomial identities. We prove here part of Theorem 8 stated in Section 1.4 to-
gether with Corollaries 9 and 10.

Proof of first half of Theorem 8. The first statement in Theorem 8 is purely combinatorial.

In the case rank V = 1, the expression of Theorem 6 simplifies:

_ 00 o (N4Dnt (N+1)n—-1 ﬂ
log A1,1,n(q) Z( 1) ( Nn—1 n

n=1

o

—Nn—1\q"
= N-Y (=DM .
Z( ) ( n—1 ) n
n=1
The result can be rewritten in the form
Ain(g) = (1+ 0N for g=(-1)Nt(1+t)¥

using Lemma 33 (ii) below.

The main point of Theorem 8, however, is the formula

(1 + t)N-i-l

= (NG for q=(=1)Ne(1+1)N

(28) Bin(q)

proven in Section 4.4 below. The calculation uses a specialization to genus 0 and is similar

in spirit to the computations carried out in Section 4. ([l
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Proof of Corollary 9. Similarly,

(1+ )N+
B - Ty
1 (@) 1+t(N+1)
= i(—l)"N (NN
n=0 n
s n—1)(N +1 .
_ Z(_l)n(N—H) . <( )( )> -q
n=0 n
where we have used Lemma 33(i) with d = 0 on the second line. O

Lemma 33. For the change of variables ¢ = t(1 +t)", we have

(i)
i (d —rn+ 1"> ;= (14 t)dtr+t
— n 1+t(r+1)’
(i)
oo
—rn—1\ q¢"
1 = C—.
og(1+1) Z( o > -
n=1
Proof. Part (i) is the content of [39, Lemma 3]. For part (ii), the identity to be established

1S

[o.¢]
1/—rn—1
(29) Z( )-tn(1+t)m = log(1+1).
o\ n-— 1
For the proof, we set d = —2r — 1 in equation (i)
ot n 1+t(r+1)’

which we rewrite as

3 <_:;"__1 1> AT O™ (Lt (r + 1)) = 1; .

n=1

The identity (29) is obtained by integration. O

Proof of Corollary 10. The first statement in Corollary 10 follows by directly comparing
Theorem 8 and equation (6). Indeed, up to signs, the two universal functions A and B
agree for both sides. For the second statement, we observe

/ S(L[n])N = / (1— h)N(degL—n+1) — (~1)" (N(degL —n+ 1)>,
(P1)ln] n

n

where Lemma 27 has been used in the first identity. ([l
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4. VIRTUAL INVARIANTS OF SURFACES: DIMENSION 0 QUOTIENTS

4.1. Overview. We prove here Theorems 8, 14, and 18. In particular, we study the

virtual intersection theory of the Quot scheme Quotx(C",n) of short exact sequences
055-CV®0x —=-Q—0, x(Q) =n, ci(Q)=0, rank(Q) =0

on nonsingular projective surfaces X. As noted in Section 1.6, Quotx(C,n) carries a
virtual fundamental class

[QuotX((CN, n)]Vir
of dimension Nn. Our basic technique is to relate integrals against the virtual class of
Quot schemes of surfaces to integrals over Quot schemes of curves which we have already
studied. Theorem 14 is the first outcome.

The idea of dimensional reduction plays a central role in the proof of Theorem 18. In
the N =1 case, the integrals over the Quot schemes of curves which arise are covered by
Theorem 3. For higher N, a more delicate analysis of the curve integrals is required. A
similar analysis is used to complete the proof of Theorem 8 in Section 4.4 (and appears

also in the proof of Theorem 23 for surfaces of general type in Section 5.4).
4.2. Virtual integrals.

4.2.1. Strategy. We first prove Theorem 14. The argument requires the following two

steps:

(i) We show a universality statement allowing us to reduce to the case of a surface
with nonsingular canonical curve C' C X.

(ii) The claim will then be obtained by direct comparison of the obstruction theories
of the Quot schemes of X and of C.

4.2.2. Universality. We will use equivariant localization to compute the series
o0
Zx N(g,z1,...,zlar, ..., 0p) = Z q"/ ' sxl(a[ln]) . 'sw(agn]) :
— [Quot x (CN )™

The Quot scheme Quotx (C,n) carries torus action via the diagonal C*-action on the

middle term of the sequence
0585—>C"®0x »Q—0.

We write wyq, ..., wy for the equivariant weights. Just as in Section 3.2, the fixed loci are

products of Hilbert schemes
Flng,...,ny) = XMl x5 xn]
indexed by partitions ny + ...+ ny = n. We write

S=a Iz, Q=0 0z, length(Z)=n,
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for the fixed kernel and quotient. Furthermore, the induced obstruction theory of Fnq, ..., ny]
splits:
Ext*(S, Q)™ = o | Ext®(I4,0z.).

In fact, the C*-fixed obstruction sheaf is locally free with obstruction bundle
v
(30) (k0@ o KEY)

This is a consequence of equation (31) below. The equivariant virtual normal bundle is
the moving part of the tangent-obstruction theory
N[m, . ,NN ]VH Ext*(S, Q)" = @EXt'(IZ“ Ozj)[’wj — wi] .
i#]

Using the virtual localization theorem of [18], the integral

/[Q t ((CN )]vir le(a[ln]) Sxe(agn’])
uot yx n

can be rewritten as

N
Z /)(["1])( x X[nN] He< [nZ] ) st’ [‘nl w7’ He Ext® IZ,OZ )[ wz]) 1.

ni+..+ny= i=1 i#£j
As in [17, Theorem 5.1], we regard the above expression as a tautological integral over
the Hilbert scheme of the disconnected surface Y = X U X U...U X, so that
ylnl — |_| x Ml .« xw]
ni+..+ny=n
The answer depends solely on the Chern numbers of the data involved: monomials in the
Chern classes of a; and Chern classes of the surface X. In the absence of better notation,

we write my for these monomials enumerated in some order. Thus
Zx n(g,z1,...,z|laq,. .., qp) = universal function of my.
Splitting the surface X = X’ U X" and the classes a; = o} L o/ one sees that
QuotX((CN,n) = |_| QuotX/((CN,n’) X QuotXu((CN,n"),

n'+n''=n

[n]

and the tangent-obstruction theory and the tautological elements o~ split as well. We

then conclude the multiplicative form of the generating series
Zx N(g,z1,...,x0lar, ..., 0p) = HAZ”“
As usual, Aj are universal functions in the variables ¢, x1, ..., x; that may depend on the
ranks of the o’s and N.
To complete the proof of Theorem 14, we may assume X admits a nonsingular canonical

curve

CcX,
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since such surfaces X separate all the monomials my.

4.2.3. Quot schemes of curves and surfaces. For all nonsingular curves C C X, there is

a natural embedding
L Quote(CN,n) < Quotx (CV,n), [CN®0Oc— Q]+~ [CN®@0x — Q] .

In the case of canonical curves, the following result relates the obstruction theories of the

Quot schemes above and plays a crucial role in the proof of Theorem 14.

Lemma 34. If C is a nonsingular canonical curve, we have
by [QUOtC(CN>n)] = (_1)71 [QUOtX(CN7n)]

in the localized C*-equivariant Chow theory of Quotx (CN,n).

vir

Proof. We first consider the case N = 1. While the Hilbert scheme of points X[ is

smooth, the virtual fundamental class studied here does not equal the usual fundamental
v

class. Indeed, X[ carries the locally free obstruction sheaf <K£?]> . The obstruction

sheaf is obtained from the following sequence of canonical isomorphisms:
(31) Extl(Iz,Oz) = EXtZ(Oz,Oz)
= EXtO(Oz, Oz R Kx)v
= EXtO(O, Oz ® Kx)v
AN
= ()

The defining equation s of the canonical curve C' C X yields a section sl of Kg?] via the

7
assignment
Z s slz € H(Kx ®0p).
The section s/ vanishes precisely along
(32) Lo s xIl
Using that X[ is smooth, we find
(33) (X = e () n &) = (—1man ]
which completes the proof of Lemma 34 for the case N = 1.

Now let N be arbitrary. We apply C*-equivariant localization to both Quot schemes

over X and C' using the same weights for the two torus actions. The fixed loci are
Fc[nl,. . .,nN} = C[nﬂ X oo X C[nN} s FX[nl,...,nN] = X[nﬂ X oo X X[nN]
respectively. Parallel to (32), there is a natural embedding

L Fo[nl,...,nN] — FX[m,. . .,TZN].
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We noted in (30) that the obstruction bundle of Fx[n,...,ny] splits as
((KX)["I] 6.0 (KX)["M)v

Using (33), we find that

(34) w[Felny,....ny]] = (1) (((KX)[”l] .0 (KX)[”N]>V> A [Fx[n, ..., nx]]

= (=1)" [Fx[ni,...,nn]]"".
We furthermore claim
(35) *e(Nx[ni,...,ny]"") = e(Ng[ng, ..., ny])

where N‘)’}r and N¢ are two normal bundles of the fixed loci.

The proof of (35) requires several steps. First, the difference

UNy[n,...,nn]"" = Ng[ni, ..., ny]
equals
@ EXt;{(IZi/X7 Ozj)[wj - wi] - @EXtE'(IZZ‘/Ca Ozj)[wj - wi] .
(] i#j
The latter expression can be further simplified using
EXtB((IZi/X, OZj) — EXt.C(IZZ-/C7 OZj) = —EXtB(—(OZ“ Ozj) + EXta(OZi, OZ].)

= —Ext®(0z,0z 0)[-1],

where © = O¢(C) is the theta characteristic of C. For the first equality, we have expressed
the ideal sheaves in terms of structure sheaves in K-theory. The second equality follows

from the exact sequence
o= EXtiC(OZi, Ozj) — EXt&(OZi, OZ].) — EthI(OZi, OZ]. X @) — ...

proven, for instance, in [57, Lemma 3.42]. Next, in the difference of the normal bundles,

we group the terms corresponding to the pairs (i, j) and (j,7). We define
Vij = EXt.C(OZi, Ozj ® @)[wj — wi] D EX'EE;(OZ]., OZZ- & @)[wZ — ’LUj] ,

and write
UNx[n,...,nn]"" = Ng[ni,...,ny] = @sz )
1<J
By Serre duality, making use of the fact that © is a theta characteristic, we obtain
VY = Vi),
Therefore,

ect (Vi) = (—~1)XO7:92,59) =1

which proves (35).
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Finally, by the virtual localization formula [18], we have

[Quotx (€Y, m)]™ = 37 () (e<Nx[n1, T

ni+...+ny=n

[Quotc((CNjn)} = Z (Jo )« (e(No[

ni+...+ny=n

Using equations (34) and (35) we obtain

N]vir) N [FX [nl, RN nN]]Vlr>

1

ni,...,nN|)

N [Fc[nl,...,nNH> .

vir

b [Quote (€, )] = (~1)" [Quotx (€, m)] ™,

which proves the Lemma. U

Remark 35. The result of Lemma 34 should be expected. In fact, the canonical curve
C gives a cosection
Ob — OQuot

of the obstruction sheaf of Quotx (CY,n) via the composition
Ext'(S,Q) — Ext}(Q, Q) "™° H*(Ox) = H*(Kx)" — C.

A careful analysis shows that the cosection vanishes along the quotients supported on
C. By [22], the virtual fundamental cycle is localized along such quotients. However,
the precise determination of the cycle still requires a calculation. The known techniques
require stronger smoothness assumptions than what we can prove in our case, so we have
given a different argument for the proof of Lemma 34.

For example, Quoty (CV, n) is singular for every N > 2 and n > 2 even at quotients of
the form

Q=0z®0z, length(Z)= g
Indeed, the Zariski tangent space
Hom(S,Q) = Hom(Iz ® Iz ® C"7% @ Ox,0z & Oz)

has dimension (N + 2)n which is higher than the actual dimension (N + 1)n.
4.2.4. Proof of Theorem 14. We argued in Section 4.2.2 that it suffices to consider the

case when X admits a nonsingular canonical curve C. Let «; be classes on X and set

Bi = aj|lc. By Lemma 34, we have

/ e () s, (@) = (<1 / sy (B -+ s, (8.
[Quot x (CN n)|"™" Quot ¢ (CN n)

Theorem 14 follows immediately

ZX’N(q,ﬂfl,...,IE[|O(1,~-,OZ€) — Zg,N(iqﬂzla"'7xf)515"'5ﬁ€)
= A(—q) @) Ex A (—g)r (@) Kx L B(—g) 179
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4.3. Virtual Euler characteristics. Theorem 18 will be proven next. Before presenting

the argument, we review general statements regarding virtual Euler characteristics.

4.3.1. Generalities. Let Z be a scheme admitting a 2-term perfect obstruction theory
E® = [E_1 — Ey] — 7701,
and a virtual fundamental class [Z]"" of dimension
d =rank Fy —rank F_.
The virtual tangent bundle TV Z is defined in the K-theory of Z as the difference
(Eo)" — (E-1)".
We define the virtual Euler characteristic
(36) ei"(Z) = / RCACAR
(21"
see also [11]. Virtual Euler characteristics are deformation invariants.
In particular, if Z is nonsingular with a locally free obstruction bundle B, then
2] = e(B)N[Z]
and the virtual tangent bundle is the difference T'Z — B. By definition, we obtain

(37) eVir(7) = /Z e(B)- CC((ZZ)) .

4.3.2. Proof of Theorem 18 for N = 1. We must prove
. i ] (1—q)? 5
n . VIr X 'I’L) — .
(39) Soae( (1 4 )

We observed in Lemma 34 that the Hilbert schemes X[ have locally free obstruction
v
sheaves (K@) . By (37), the virtual Euler characteristics are

. ay  o(TX
i = () R

The above rewriting of the virtual Euler characteristic shows, via [9, Theorem 4.5], that

expression (38) takes the universal form
U(g) "% - V(g)2@).

To prove
Ulg)=(1-¢* (1-2¢9)7", V(g =1,

we may specialize to surfaces X which admit a nonsingular canonical curve

CcX.
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By (32), we have the embedding
2ol < xI
and furthermore, by (33), we have
[xP]™ = e (KHY) X = (i, ]

We conclude
c(TX)

eVir(xlly = (—1)» /C[n] L*C<(Kg?])v).

Going further, let © = Oc(C) be the theta characteristic of C. If Z C C, consider the

exact sequence
0= Ox(=C) = Iz/x = tilz)c — 0.
Taking Hom(, Oz) we find
0—1ClH 5 prxinl s el 0 — re(rx) =M. (e,

Moreover, we have

L*Kg?] = o,

We conclude
evir n]N — /_1\n c(@[n])c(Tc[n})
(39) () = -y [ e

There are now several ways to evaluate the integral (39), but the most direct path is

to use Theorem 3. We observe
v
rct — (k)

Then, we have

| e (K
ev1r(X[n]) — /C[n n]) ) )

= " [0 s (<)) - s (0,

Invoking Theorem 3, we find

oo
an . eVir <X[n}) = chl(—q,xl = 1,.%'2 = —1,333 =—1 ‘ o] = —97042 = —Kc',oz3 = @)
n=0

— Aaiegoq _Agegaa .Agegas .Bl—9

The change of variables specified by Theorem 3 takes the simple form
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and the universal functions are
Al=1—-t=(1-¢) ", Ap=A3=1+t=(1-2¢)(1—¢q) ', B=1.
We conclude
o ) K2
an . Vi (X[n}) _ ((1 _ q)2 . (1 _ 2(])71) x
n=0
which completes the proof of the N = 1 case of Theorem 18. O

Remark 36. Using the same techniques, we can also compute the virtual x_, genera:

S g i 1] _ (A =q)-(1—-yq) K%
ngoq X—y(X ) < l—q—qy ) .

Theorem 18 is then recovered in the limit y — 1.

Remark 37. For future reference, we record the following slight generalization of the

above calculations. For any nonsingular projective surface X and M — X a line bundle,

= AV (XM
ZX’M:nZ::Oq /X[n]e<<M[ ]) >6(<M[n])v).

Without the duals placed on tautological bundles, such integrals also appear in the work

set

[23] on stable pair invariants of local surfaces. The above calculations yield the following

result.

Corollary 38. We have
(40) Zyar = V() M7 v () (M
where

Ulg)=1-¢q, V(g=(1-2¢9)7 " - (1—-gq).

4.3.3. Proof of Theorem 18 for higher N. Theorem 18 concerns the generating series
oo

(41) Z% no =Y _ ¢ e (Quoty (CV,n)).
n=0

For notational convenience, we will denote the series (41) by Ex(gq). We will follow a

strategy similar to that of the proof of Theorem 14:
(i) We will first show the factorization
2
Ex(q) = A(g)"X - B(q)¥(O¥)
holds for universal power series A, B € Q[[q]].

(ii) To identify the series A, B, we will use Theorem 14 to localize the calculation to

a nonsingular canonical curve

CcX.
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(iii) The evaluation B = 1 will follow for formal reasons.
(iv) To determine A, we will use equivariant localization on Quotc(CY,n) for C' =
P'. We will find closed form expressions for the localization sums which will

furthermore prove the rationality of Theorem 18.

Remark 39. We warn the reader that both the statement and the proof of the torus
equivariant localization formula for virtual Euler characteristics stated in [11, Corollary
6.6 (3)] are wrong. In particular, application of [11, Corollary 6.6 (3)] to the diagonal

C*-action on CV to calculate Z}g{ N o in terms of Z‘)S( 1.0 Will give incorrect results.!!

Step (i). We first apply the virtual localization formula to prove that the series Ex(q)
depends only upon K% and x(Ox). By definition,

& (Quot (€Y, ) = [ T Quot (CV,m)
[Quot x (CV,n)[™
where
TV Quot y (CV, n) = Ext’(S, Q) — Ext!(S, Q)
is the virtual tangent bundle. By the virtual localization formula of [18], we obtain
~ TV Quot y (CV, n))

e"T(Quot (CN, n)) = / vl X ~

(Q X( )) Z (1] . XX[nN]]vur eC*(N[n17-~-7nN]Vlr)

ni+...+ny=n

Using
KTV Quot  (CV, n) @ Ext®(Iz;,O0z,)[wj — wi]

and

N[ni,...,ny] Vlr @EX’E IZ”OZ )[ — w;],
i#]
we rewrite the right hand side of the virtual localization as

c(BExt*(Iz,,0z,)w; — wi))

ni+..+ny=n

[n‘] cc(Ext® (I, ) - )
Z /X[M]X x X[nN] 1;[e< ) (E ¢ (IZNOZZ)) 11;{ e(Ext ( OZ )[ —wz])

As in [17, Theorem 5.1], each Hilbert scheme integral depends solely on the Chern num-

bers of the surface X, so Ex(q) is a function of
K% and x(Ox).
By splitting the surface X = X’ LU X", we see
Quot (CV,n) = |_| Quot ./ (CY,n/) x Quot v (CN, n")

n/4+n''=n

1B, Fantechi and L. Géttsche agree with Remark 39 about the error in part (3), but confirm that
parts (1) and (2) of [11, Corollary 6.6] are correct.
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with a splitting also of the obstruction theory. We therefore conclude
Ex(q) = Ex(q) - Ex»(q),
which implies the factorization

Ex(q) = A(q)*% - B(q)X(©x).

Step (11). When C C X is a nonsingular canonical curve, we can apply the result of
Lemma 34 to write
tx [Quote (TN, n)] = (—1)" [Quotx (CV, )] ™.
Here
v : Quote(CN, n) = Quotx (CV, n)
is the natural inclusion
[C¥®0c = Q] — [CN ® Ox = Q] .

As a consequence, we obtain

e (Quotx (CV,n)) = (T Quot x (CN, n))

/[QuotX«CN,n)]“"

- v f (T Quoty (CV, 1))
Quot(CN,n)

= (—1)"/ e(TQuots (TN, n)) - ¢(T5).
Quot (CN ,n)
Here, T, — Quot(CV, n) is the virtual bundle given pointwise by

7;1 = EXtE’(Q? Q ® @) )

where ©® = N/ x is the associated theta characteristic. The last line follows from the

K-theoretic decomposition
(42) FTVEQuot  (CN, n) = TQuot o (CY,n) + T, .
To prove (42), let Sc denote the kernel of the surjection
VN0 —Q—0
on the curve C; and let S denote the kernel of the similar surjection
CVo0x>Q =0
on the surface X. The splitting (42) is a consequence of the following computation:

Ext% (5, Q) — Extg:(50,Q) = —Extx(Q, Q)+ Exte(Q, Q)
= —Ext&(Q,Q®0)[-1].
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For the first equality, we have expressed S and S¢ in terms of () in the K-theory of X

and C. The second equality follows from the exact sequence

o= Exti(Q, Q) — Exty(Q,Q) — Ext H(Q,Q ®0) — ...
provided by [57, Lemma 3.42].

Step (ii1). By (ii), we are now left to evaluating the generating series

Eolo) =Y a"(-1)"- | o(TQuot (€Y, m) - e(To).

Quot (CN n)

By the argument in Step (i), the answer takes the form
Ec(q) = Alg)'™*
with ¢ the genus of C'. The second series B(q) = 1 since there is no x(Ox)-dependence

in the curve integral above.

Step (iv). To determine the series A, we specialize first to the N = 2 case. We prove

B (1 —4q)?
M) =T T 6ar )

The problem at hand is now purely a curve calculation. We can therefore discard the

surface X and concentrate on the curve C'. To find A, we take

C=P.
Our goal is then to prove the second equality in the equation
[o.¢]
(43) A = S | (T Quoty: (C%,m) - e(T,)
n—0 Quotp (C2,n)
(1 - 4q)?

(1-¢)?-(1-6g+q¢*) "

We will apply C*-equivariant localization on Quotp: (C?,n). We write
C? = Clw1] ® Clwo]
for the weights of the diagonal C*-action on C2. The fixed loci are
Flni,ng] = CIMl x ¢zl = p1 s P2 < Quotp: (C2,n) .
The fixed points correspond to the exact sequences
01z, @Iz —C2R0pm = Oz &0z, —0.

Thus, by Atiyah-Bott localization, we find

(44) / e(TQuotp: (C?,n)) - ¢(Ty,) = Z / Contr(ny, na).
Quot]pl ((CQ,TL) Pr1 x P2

ni1+nz2=n
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Here, we set
c(*TQuotp: (C2,n)) - ¢(t*Ty)
ec* (N [nl, nz])
for the contribution of the (nq, ng)-fixed locus, where N[ny, ns] denotes the normal bundle.

Contr(ny, ng) =

We will evaluate (44) explicitly.
For the analysis of Contr(ni,n2), the notation w = wy — wy will be convenient. We

compute
T Quot(C% n) = TP™ + TP™ + Ext®*(I7,, Oz,)[w] + Ext®*(Iz,, 0z, )[—w] .
The last two terms come from the normal bundle
N[ni,no] = Ext®(Iz,, Oz, )[w] + Ext*(Iz,, Oz )[—w].
Similarly, ¢*7,, can be written as
Ext®(Oz,,0z,(-1)) + Ext*(Oz,, 0z,(-1))
+Ext*(Oz,, Oz, (—1))[w] + Ext*(Og,, Oz (—1))[—w].

We now explicitly compute the various tautological structures appearing above. The

arguments follow the proof of [39, Theorem 2]. We observe that the universal subschemes
ZICP x P, Z,C Pl x P
take the form
O(=21) = Op1(—n1) B Opri (—1), O(—22) = Op1(—n2) X Opna(—1).

We require the following three calculations:
Bxt®(0z,,0z,(~1)) = Ext*(0 — O(~21), Ops (—1) — O(~21) @ Ops (1))

= Ext*(O — Opi1(—n1) X Opri (—1), Op1(—1) — Opi1(—ng — 1) K Opni (—1))

=C™" ® Opni (—1) — C™ ® Opny (1),

Ext®*(Iz,,0z,) = C" M @ Opni (1) — C" "2 @ Opny (1) @ Opna (—1),

Ext*(0z,,0z,(-1)) = =C" ® Opni (1) + C"? @ Opnz (1) + C" "2 @ Opny (1) @ Opna (—1) .
As a consequence, we find
FTQuot(C%,n) + * Ty,
can be calculated as
TP™ +TP" + (C™ ® Opni (—1) = C™" @ Opni (1)) + (C" ® Opnz (—1) — C™ @ Opna (1))
+(Opr1 (1) + C™ @ Opra (—1) = Opra (1) @ Oprz (1)) [w]
+ (Opr2(1) + C™ @ Opri (—1) = Opr1 (—1) ® Opnz (1)) [—w].
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We also have

N[n1,no] = (C" ® Opri (1) — C" "2 @ Opny (1) ® Opna (1)) [w]

(45) + (€™t @ Opra (1) — C"™27M T @ Opny (—1) ® Opra (1)) [—w].

We write h; and ho for the hyperplane classes on P and P™2 respectively. After
substituting the last equation into (44), we find

/ c(TQuotp: (C?,n) Z / Contr(ny, na),
Quotp1 (C2,n) nytng=n Y P xP"2

where Contr(ny,ng) is given by

(I =h1)"™ (14 h1)(1 = ho)"*(1+ ho)(1 4+ h1 +w)(1 = ha +w)"?(1 + ho —w)(1 — hy —w)™

(1+hy —ho+w)(1—hy+ hy—w)
(w + h1 — hg)nl_n2+1(—w —hy + h2)n2—n1+1
(h1 4+ w)m+1(hg — w)netl '
While the expression may seem unwieldy, nonetheless, we will be able to sum the

localization contributions explicitly via the Lagrange-Biirmann formula. We write
(46) ®1(h)) =0 —=hy)-(1—hy —w)-(hy +w)™*
®o(hy) = (1 — he) - (1 — he +w) - (he —w) ™"
W(h1,ho) = (1+h1)-(1+he) (1+h +w) - (1+hy—w) - (14+h1 —ho+w) - (1—hy+ho—w) !
(hi +w)™t - (ho —w) ™' (w4 hy — ho)?
We obtain
Contr(ni,ng) = (=1)" L. @y (h))™ - ®y(hy)™ - U(hy, hy).

The sign in the last equality is a consequence of rewriting the numerator of the normal
bundle:

(w+ hy — h2)n1_n2+1(—w —h1 + hg)nz_nﬁ_l = (—1)n+1 (w+ hy — h2)2 .

Therefore, we have

oo

Al = S g1 /Q o, (T QUOAE (€Y, m) - o(T,)
n—0 uotp1 (CV,n
_ _Zq 3 /P ) () (o)

ni+n2=n

= —Z > g [B - hR(Rr(ha)™ - Po(he)"™? - W(h, ho)) .

n=0n1+n2=n
As before, the brackets indicate taking the suitable coefficient of the expression following
it. Omitted from the notation is the fact that we also need to take the w-free term at the

end.
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The multivariable Lagrange-Biirmann formula of [12, Theorem 2 (4.4)] is

(47) D s (A B2 (@1(ha)"™ - Ba(ho)" - U (ha, ho)) = %(hhfu)

n1,n2>0

for the change of variables

. h1 b ho
P (hy) T @y(hy)
and for
t1 , to ,
K(ti,to9) =(1— - O (t 11— - D5 (t .
(t,12) = (1= s -0t ) - (1= 512 a4 )
In our case, by (46), we have
hl(hl + U)) hg(hz — w)

(48) 1= ty =

(17h1)(17h17w)’ (17h2)(17h2+w)‘

Using (46) again, by direct calculation, we find (hl, he) equals

(1=h}) (1= (w+hm)*) 1 =h3)- (1= (w="hg)?) - (w+h = hy)?
(2h3 + 2hy(w — 1) + w(w — 1)) - (2h3 — 2ha(w + 1) + w(w + 1)) - (1 — (w + hy — h2)2)

We set t; = to = ¢ and use the above equations (48) to solve

w2

hi=— —i-f

1 —-q (1—q)? N 1 - q
A direct computation then shows that

v (1 —w?) —4q(2 — w?) +4¢*(4 — w?)

— (h1(q), ha(q)) = — — N2(1 2 ) 201 _ .2
K (1= q)*(1 —w? = 2¢(3 — w?) + ¢*(1 — w?))

so that )

v (1—4q)

— (h1(q), h = _ .

K ( 1(Q) Q(Q)) ’w:O (1 _ q)2(1 _ 6(] + qg)
Therefore,

(1—4g)°
[hYt RGP (RT - P2 - W) = )
r;)nﬁgg: n SR (1—¢q)*(1 —6g+q?)

We have completed the proof of the NV = 2 case of Theorem 18. O

4.3.4. The case N > 2. . The calculation of Z§( N—20 Presented above can be exactly
followed for all higher N. The universal series Uy of Theorem 18 is determined by the

equation

(49) U]_\,1 = nZ:%q”(—l)" . /Quc)tp1 o )c(TQuot]Pu ((CN,n)) ~e(Tn) ,

where 7,, is the bundle
Tn = Extp (Q,Q ® O(-1)).
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Localization with respect to the diagonal C*-action on CV yields
/ c(TQuotp: (CV,n)) - ¢(Ty) = Z / Contr(n,...,nN).
Quotp (CV,n) ni4tny=n JPP1XXPTN
By an explicit analysis of Contr(ni,...,ny), we can write

N
2

(50)  Contr(ny,...,nx) = (=1)"NDHE) &y (h)™ - Dy ()™ - U(h, ... hn)

for rational functions

N
q)i(hi) = H(l —h; +w; — wj) . H(hl + w; — wz’)_l s
j=1 J#i

W= [+ ha) [ (hi = byt wj = wi)?

i i<j
'H(l—i-hi—l-’wj —w;) - (1—|—hi—hj+wj—wi)_1-(hi—I—wj—wi)_l,
J#i
which depend upon N. After applying the Lagrange-Blirmann formula with
t; = hi =h;- ﬂ(l — hi +w; —w’)fl'H(h‘—Fw‘ — w;)
(2 @l(hl) (2 J 7 7 J 11 7 J 1)
Jj=1 J#
we find
v
> t’fl---t?(,N-([h’fl---h?VN]tbl(hl)"l--~<I>N(hN)”N-\I/(hl,...,hn)):E(hl,...,hN).
n1,NN
After setting
t1=...=ty =q(-1)V
the series (49) becomes
v
(51) Ut = (-1)G) ()
where h; solves the equation
N
hi +w; — w;
—1)N = .
q( ) Hl—hi+wi—wj
7=1
We must select the analytic solution h;(q) with
hi’q:() =0.
We prefer however to work with a single equation. Let Hy, ..., Hy be all solutions to
the i = 1 equation
N

h+w; —w;
_1N: J
q( ) j]:[11—h+wj—w1
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with initial values H;(q = 0) = wi — wj. Then, by direct computation, we see that
h; = H; +w; —w;

solves the i'" equation. By (51), we obtain

(52) U]_Vl = (—1)(];) . % (Hl,HQ 4+ wy —wi,...,Hy + wy — wl) .
Using the explicit expressions of U and K, we see that the right hand side of (52) is
symmetric in Hy, ..., Hy. Since symmetric functions in Hy, ..., Hy are rational functions
in w and ¢ (with possible poles at ¢ = 1), the same is true of U;VI.

In fact, there are no poles of U]_V1 at w = 0. Indeed, after setting the equivariant
weights to 0, the series (52) is expressed as a symmetric rational function in the N roots

h; = r; of the polynomial equation
(53) g(—1)N =1 —n)V.

A direct computation shows that the expression (52) becomes

N . r . (s — s
[T (=) - (7)) - Tli (ri = 73)? JJa = =)

Uyt = (1)) . NG

i<j
We write
W (h-1)Ng
R e N (e
q =1
for the normalized equation (53). Then,
N
[Ho+r = (oVen="7210
i=1
N 2 N N
. Miglrizr)m o ey () ) ) L
};[1(1 ri) NN(ry-eory)N-1 (=1) };[1 Nyt =1 zl;[ll—q'

Therefore, we find

_\2N
oy Ux = =g [I0 = 6=y,

We can easily calculate Uy for each N from formula (54) by elementary algebra. For

instance
U, = (- q)%(1 — 22¢ + 150¢* — 22¢° + ¢*)
’ (1—8¢q)? ’
U (1 —q)%(1 — 62q + 1407¢> — 15492¢> + 1407¢* — 62¢° + ¢%)
4 = .

(1 —16q)*
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Moreover, since (54) is clearly a symmetric rational function of the roots ri,...,ry, the
series Uy is a rational function in the elementary symmetric functions of the roots and

hence a rational function of q. O

4.4. Proof of Theorem 8. The methods of Section 4.3 can also be used to give a proof
of the second part of Theorem 8:
(1 4 t)N+1
T I+ (N1
The first part of Theorem 8 was proven in Section 3.5.
Recall the A and B-series defined by

o0
S / S(LI) = B By (g) Y,
n=0 Quot ¢ (Can)

for a line bundle L — C. After specializing to C = P! and L = Op1, we obtain

Sy SOl
B1,n(q) nz:;)q/Q (o)

uotp1 (CN n)

B1n(q) for g = (-1)Nt(1+1)".

As usual, we set B(¢q) = By n(gq) for notational convenience.
Consider the standard C*-action on Quotp: (CV,n) with weights wy,...,wy. In order
to keep the notation manageable, we specialize to N = 2 (the argument for arbitrary N

is exactly parallel). By localizing, we obtain

N
B(q) = Zq” Z Contr(ni,ng),
n=0

ni1+no=n
where each fixed locus P™ x P™2 contributes

_ s(Own]) - s(O"=lwy))
Contr(ni,n2) = /]PmlXIPm2 ec (N[n1,n2)) .

Using Lemma 27, we find
s(OMlfw]) = (1= wi) ™"+ (1= hy 4 wy) "
For the normal bundle, we use equation (45):
ec(N[n1,na]) = (—=1)" - (hy +wa —wy)™ - (hy + 1wy —w2)™2 - (hy — ha +wy —w1) 2.

We define
®y(hy) =1 —hy+w) " (b +wy —w) L,

Dy(hg) = (1 — hg +w2) "+ (hg + 1wy —wa) L,

\Il:(l—wl)_l-(1—w2)_1-(1—h1+w1)-(1—h2+w2)
(h1 +wg —wy) "' - (hg +wy — we) ™t - (hy — hg + way — w1)? .
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Therefore,

Contr(nl,ng) = (—1)n+1 / (I)l(hl)nl . (I)Q(hg)n2 . \I/(hl,hg)

Pn1 xPn2

which gives

Bla)=—Y_ > (=" ([ - h5?] @1(h1)™ - ®a(ha)™ - W(ha, ho)).

n=0n1+n2=n

Using Lagrange-Biirmann inversion, we find

B() =~ (hn, o)

for the change of variables

h
q_W}/I/l):hl'(1—h1+w1)'(h1+w2—U11),
L=y (1= hy +wa) - (hy + wy — wa)
q @2(@) 2 2 2 2 1 2)-

The first of the two equations
—q=h-(1—h+wy) (h+wy—w)
has two solutions Hi(q) and Hs(q) with
Hi(0) =0, H3(0)=w; —wsy.

The root of the second equation
ho
q =
Dy (he)

with initial value 0 at ¢ = 0 is then

:hg-(l—hg—i-wg)-(hg—i-wl—wg)

(55) Hy(q) = Hy(q) +ws — wy .

Equation (55) is easily seen by direct substitution. We conclude
v v

B(o) = — 7 (H1(a), Hala) ) =~ (H1(@), Ha(q) +wz — wy).

Further direct calculation shows

)\
B(q) = K (Hy, Hy + wy —wn)

equals
(1—Hy+w)? (1 - Hy +wy)? - (Hy — Hp)?
[T (1 —w) - (BHZ = 2H; - (1 4 2w1 — wz) + (1 +w1) - (w1 — wg))
We finally take the limit wi,ws — 0. Write hy, hy for the two roots of the equation

—q="h*(1—=h), hi(0)=hy(0) =0.
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These are power series in ¢*/2. In the limit w; — 0, we obtain

(1 —h1)%- (1 —hy)?- (hy — hg)?
(3h; —2) - (3hy — 2) - (h1hy)

For general N, a similar analysis yields

B(g) = —

ety [iej(hi —hy)% - (ha---hy) V=D T (1 = hy)?
B(q) = (-1)("27) . 2= [L((N + 1)h; — N)
where hy, ..., hy solve the equation
(56) (-D)Mtg=nN(1—h), hi(0)=0.

Equation (56) has an additional solution h(g) with h(0) = 1, which we can express in

simple form. Indeed, if
= (1Nt 1)V,

then by direct verification

h(g)=1+t¢t.
To complete the proof of Theorem 8, we must show
hN+1 (1 + t)N-‘rl

B = NFohoN TN

Equivalently, we prove the identity
) (. IT;<;(hi —h)?- (- hy) VD TT(1— hy)? hV+!

[LUN 4+ 1)h; — N) (N+1)h-N"
The identity (57) is straightforward to check. Let

(57

N
Fh)y=h"(h=1) = q(=) = (h = h) [ J(h — hy).

=
—_

After setting h = 1, we obtain

We compute
f/(h) =hV"H(N +1)h— N).
In particular, we find
f'(hi) = (hi = h) - TJ(hi = hj) = h} "1 (N + Dh; — N)
J#i
N

F'(h)y =TJh=h) =" (N +1)h - N).

i=1
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Therefore,

(—1)(N2+1) H(hl _ hj>2 _ Hz]\il f'(hi) H’f\il thil((N +1)h; = N) .

f/(hy  hNL(N+1)h—N)

1<j

After substitution, the left hand side of equation (57) becomes

_q(_l)N 2 1 B hV+1
1—h hN-1(N+1h—-N) (N+1)h—-N’
where equation (56) was used in the last step. O

The same method can be used to determine the series B, y for arbitrary values of
r = rank (V). While in general the formulas are less explicit, for rank (V) = 2 and
N = 2, we obtain

(L4 VI=3)" (14 VT (1- VT = 162)
2048t2 - /1 — 16t2 ‘

5. VIRTUAL INVARIANTS OF SURFACES: DIMENSION 1 QUOTIENTS

Boao(—t%) =

5.1. Overview. Let X be a nonsingular, simply connected, projective surface, and let
D an effective divisor on X. We compute here invariants associated to the scheme

Quot x (CV, n, D) of short exact sequences
085—>C"o®0x -Q—0, x(Q) =n, a(@) =D, rank(Q) =0.

In particular, we will prove Proposition 20, Theorem 21, and Theorem 23.

5.2. Tangent-obstruction theory. Since X is simply connected, the Hilbert scheme

of curves is isomorphic to
Quot x (C!,n, D) ~ XM x P

where P = |D|. Here
DD+ K
m=n-+ ( 2 X):n+(g_1)7

where ¢ is the genus of a nonsingular curve in the linear series |D|. Indeed, to each pair

(Z,C) with C € |D|, we can associate the sequence
0—=1z(-C)—0O0x -Q —0.

While the actual dimension is 2m + h°(D) — 1, the expected dimension of the Hilbert

scheme equals

D(D—-K
m—l—i( 5 X).

The first term m comes from the Hilbert scheme of points, while the second is the virtual

dimension of |D| endowed with its natural obstruction theory as a Hilbert scheme.
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We calculate the tangent-obstruction theory, following [38], in case m > 0. Let
L£L—|D| and Zc XM x X

denote the tautological bundle O|p|(1) and the universal subscheme of the Hilbert scheme
respectively. Over Quot x(C!,n, D), we compute

Tan — Obs = Ext*(S, Q)
= Ext*(Zz®0x(-D)® L 10 -T:20x(-D)® L)
= Ext*(Zz ® Ox(—D)® L™}, 0) — Ext*(Zz,Zz)
= Ext*(Zz ®Ox(—D),0)® L —Ext*(Zz,ZIz)
= H*(X,0x(D))® L —-Ext*(0Oz® Ox(—D),0) ® L — Ext*(Zz,Zz).
Two further calculations are needed. First,
Ext*(Iz,17) = Ext’(Iz,17) — Ext'(Iz,I7) + Ext?*(Iz,I7) = C — TX™ 4 HO(Kx)V,

where we have used that X is simply connected and Serre duality in the second equality.
Second,

Ext*(0z ® Ox(—D),0) = Ext%(Oz® Ox(-D),0) —Ext'(Oz @ Ox(-D),0)
+Ext*(07 ® Ox(—D),0)
= H(Kx(-D)® 0z)",
where we used vanishing for dimension reasons and Serre duality. Substituting, we find
Tan —Obs = H*(X,0x(D))® L — ((JF(X(—D))W)v @L+TXM —C—HY (Kx)Y
= TP- H'(X,0x(D))® L+ H*(X,0x(D))® L
- ((1r(X(—z)))["ﬂ)v ® L+ TXM — HO(Ky).
For the second equality, we have also used the Euler sequence
0—0— H(X,0(D)®L — Tanp — 0.
In conclusion, we see that the K-theory class of the obstruction bundle equals
H'(X,0x(D)) @ £~ H(X,0x(D) @ £ + ((Kx(~-D)") " & £ + H(Kx)".
After setting M = Kx — D, we can rewrite the obstruction bundle as
(58) Obs = (H' (M) — HO (M) + M"Y @ £ + HO(Kx)V.
By the definition of the virtual Euler characteristic,

(T X)) ¢(TP)
¢(Obs)

e""(Quot x (C!,n, D)) = / e(Obs)
XImIxp
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5.3. Examples (N = 1). We illustrate the calculations above by examples corresponding

to several different geometries.

5.3.1. Rational surfaces. A rich theory is obtained when X is a rational surface. Since

HY(Kx) = 0 for rational surfaces, the obstruction bundle simplifies to
Obs = (H'(M) — HO(M) + M™)¥ ® L.

Proof of Proposition 20. Let X be the blow-up of a rational surface at one point with

exceptional divisor . Take D = FE so that
v

Obs = (M[ml)

Thus for n =m + 1,

. v [m]
e""(Quot x (C', n, F)) = / e <<M[m]> > C(L)v
Xm] C ((M[m]) )
Such integrals have been computed in equation (40) of Corollary 38. We find
= n—1_vir _1\K2+1
> q" e (Quotx (Cyn E)) = (1 - q)*(1 —2¢) ") ¥

n=1

5.3.2. K3 surfaces. Let X be a K3 surface, and let D be a primitive big and nef curve

class. In particular, we have
H(M)=H'(M) =0.
We write g for the genus of D. The obstruction bundle
v
Obs = (M[m1> © L+ H(Kx)"

has a trivial summand. As a result, all virtual invariants vanish.
A reduced obstruction bundle can be defined by removing the trivial factor. With the

new obstruction theory, we find

[m] <P

(59)  e*(Quot x(C',n, D)) = / (M) @ L)

X

for M = Ox(—D,).

Proof of Theorem 21. Without the dual placed on the tautological bundle M integrals
similar to (59) also appear in Gottsche’s conjecture and are computed by the Kawai-
Yoshioka formula (11):

TXM) o(TP)
60 Ny, = plml g ) <
(60) & /X[m]xpe ( ® ) ¢(DM @ L)

This was noted in [24, Section 4].
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To prove the claim of Theorem 21,
e4(Quot x(C',n, D)) = Ny,

we will use formulas (59) and (60). Since X" is holomorphic symplectic, we can replace

the tangent bundle in (59) with the isomorphic cotangent bundle. Thus, we must show

e (o) ) e ((rxtm)’) erp)

(M) © L)

TXM) ¢(TP)
- Dl g ) 4 .
Jrunr (P 22) o g

After integrating out the hyperplane class on P, we are led to the statement

/X[m] i (Ci ((M[m])v> xe ((TX[ml)v>) _ /Xw P (e(D"), e (1x1™))

where P is a uniquely defined universal polynomial in the Chern classes of various tauto-

logical bundles on the Hilbert scheme X", After removing the duals (since X ™ is even

dimensional), we must show

60 [, PO erxi) = [ e (i, crxi).

Equality (61) is then a consequence of [9, Theorem 4.1]. Expressions such as the ones
in (61) are given by universal formulas in the Chern numbers. For the left hand side,

these Chern numbers are
a(M)?, K%, ci(M)-Kx, c(X).
The right hand side is similar, with the relevant numbers being
a(D)?, K%, c(D) -Kx, c(X).
Since X is a K3 surface, all the Chern numbers match, including
caa(M)-Kx=c(D)-Kx =0,
which may in general sign change. O
The case D = 0 is not covered by Theorem 21. However, in the K3 case, we can
consider the reduced theory of the Hilbert scheme of points X[ obtained by removing

the canonical trivial factor from the obstruction bundle (O[”])v. The reduced virtual

dimension is n + 1, and the obstruction bundle equals
v
Obs = (O~ 0) " — X1,

While the question does not involve any curve classes, the calculation below makes use

of Theorem 21 for curves of genus 1.
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Proposition 40. We have

24

n red [n] q
(X

Z ae T 1-92

Proof. We have

red y[n]y _ o(TXM) n v o(TX M)
ered(xnly = /X[n] e(Obs) - (Ob) /X[n]e <<(9[ } —(9) > c(((’)["] —(’))V) .

For n > 0, we will prove

(62) eed(xhy = Ny, .

We start by writing a1, ..., o, for the roots of O with the convention that o = 0

corresponds to the trivial summand of the obstruction bundle. Then, claim (62) becomes

fmly _
(63) /X[H]Hlal X1 = N,

By deformation invariance, we may assume X is an elliptically fibered K3 with fiber
class f. We apply Theorem 21 for the curve class D = f. The associated line bundle
D has no higher cohomology, and the proof of Theorem 21 applies even though D is not

big. We find
v XM e(TP!
Nl,n = / e <<M[n]> ® ;C) C( )\C/( ) ,
X 7] xp1 (M) @ L)

where M = Ox(—f).
We write puy, ..., u, for the roots of M and let ¢ be the hyperplane class on the

projective line. The above integral becomes

_ ¢ — pi [n]
M= [ [WH (TXI)(1+20)

1+¢— i
_ - [n]
Jeo (P S T 2 | e,

where, in the second equality, we have integrated out the hyperplane class on P!. The

n

= 1

resulting integral is a universal polynomial in the quantities
(64) M?, M-Kx, K%, c(X).

Indeed, the expression

n n
— i 1 — 1y
2 +
U iy,

can be written in terms of the Chern classes of M[™. The claimed universality then

follows from [9, Theorem 4.1].
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Since the four numerical invariants (64) are the same if M = —f or M = 0, we are free

to replace the p;’s by the «;’s without changing the answer. Therefore,

Nl,n = /
XIn]

Since o = 0, we obtain

[n]
1—a2H1—a o(TXT).

=1

Nln—/n]_[l_% o(TXMy

as claimed in (63).

Finally, using the Kawai-Yoshioka formula (11), we find

N _['n}<\f—1>_2ﬁ 1 = 24n
1n=19"Y \/17 (1 — qn)20(1 — yqn)Z(l _ yflqn)Q - )

n=1

for n > 0. O

5.3.3. Surfaces of general type. Let X be a nonsingular, simply connected, projective
surface of general type with py(X) > 0. For D = K, the obstruction bundle (58) takes
the form

Obs = (O™ — O) @ £+ H(Kx)"
Due to the presence of a trivial summand, the virtual Euler characteristic vanishes

eVir(QUOtX(Cl, n, Kx)) =0
for m > 0. The case
m=0 <= n= —Kg(

is special, yielding the answer

€ (Quotx(Chin i) = [ oy = (1P = (N

in agreement with [6, 8.

Proof of Proposition 22. Let D be an arbitrary effective curve class. To start, we take
N =1 and assume
D 7& 07 D ?é Kx ’
since these cases have already been considered. Recall
Obs = (H'(M) — HO(M) + M)V @ £ + H°(Kx)".

If M = Kx — D is not effective, then HY(M) = 0. The virtual class is then forced to
vanish by the trivial summand H?(Kx)V of the obstruction bundle.
We may therefore assume M to be effective. By Serre duality,

rank Obs = h'(D) — h*(D) +m +p, .
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We also have
[Quotx (C',n, D)™ = e(Obs) N [IP’ X X[ml} :
where
dimP = h°(D) — 1.
We write h € A'(P) for the hyperplane class and a; for the Chern roots of M on X™.
The virtual class then equals the degree p, +m + h'(D) — h%(D) part of

(65) c(Obs) = (1+ RV PO TTA+h - ay).
i=1

The expression (65) contains terms of the form

R* . symmetric polynomial of degree at most m in the roots a;,
where k < h%(D) — 1 for dimension reasons. All terms therefore have degree bounded by
(66) h(D) —1+m < h'(D) — h*(D) +m + p, .

Consequently, the Euler class vanishes.

To justify inequality (66), we use the following chain of equivalences:
h'(D) =1 < h'(D) =B} (D) +p, <= x(D) <1+ ps=x(Ox)
<~ D - (D-Kx)<0
<~ D-M>0.
The inequality D - M > 0 holds since the pair (D, M) is a nontrivial effective splitting of
Kx (the canonical class is 1-connected for minimal surfaces of general type [5, Proposition
6.1]). The proof of Proposition 22 for N = 1 is complete.

For N > 1, we use C*-equivariant localization. The natural C*-action on Quot x (C",n, D)

has fixed loci
F[(nh Dl)a SRR (7’LN, DN)]
indexed by all possible effective splittings
n+...+ny=n, Di+...+Dny=0D.

The corresponding subsheaves are
N
S=@1Iz - C"®0x, «(Z)=D;, x(Oz)=ni.
i=1
The induced virtual class of

Fl(n1,D1),...,(ny, Dn)] = Quot x(C!,ny, D;) x --- x Quot x(C', ny, Dy)
is determined by the fixed part of
Ext*(S, Q)™ = @D Ext*(Iz, Oz,)
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and, therefore, splits over the factors. Using the case N = 1 already established, in order

to obtain a nontrivial virtual fundamental class on the i*" factor, we must have
DiZO or DZ'ZKX - DZEKX for OSKSN

By the paragraph preceding the proof of Proposition 22, the choice D; = Kx forces Z;

to be supported only on canonical curves, without any point contributions. O

5.4. Proof of Theorem 23. The N = 1 case of Theorem 23 is a consequence of the
calculations of Section 5.3.3. In the N = 2 case, Theorem 23 can be derived from Theorem
3: the localization contributions can be expressed as integrals over the symmetric product
with 7 Segre factors.'? However, we will treat all the cases N > 1 together using the
strategy of the proof Theorem 18.

Let X be a nonsingular, simply connected, minimal surface of general type admitting

a nonsingular canonical curve C' C X of genus
g=K5%x+1.
Let 0 </ < N. Let

Z5% narcy () = Z ¢"e"™(Quotx (CN,n, (Kx)).
neZ

The formula of Theorem 23 is

Z(;(,N,U(X (q) = (_1)£.X(OX) qf(l—g) ’ Z A(riy, - - vriNfz)l_g .
1<i1 <. <in ¢ <N

The sum is taken over all ( N]\i g) choices of N — £ distinct roots of the equation

N =qz-1V.

Furthermore,
N—¢ N—¢
Alz EN-1) = () 11 (1+2)"(1 = @) 11 (zi — x;)?
1y-- TN—¢ NN-¢ : V-1 § e p—
=1 3 i<j

In the case £ = N, the formula is interpreted as

Z()g(, N NEKx(2) = (—1)Nx(Ox) gN=g),

To prove the claimed evaluation, we consider the C*-action on Quotyx(CY, n,/Kx)

with weights wi,...,wy on the middle term of the sequence
0-85—-C"®0x »Q—0.

We write
n=m+4(1-g).

12We leave the argument to the intrepid reader.
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For convenience, we set
k=N-—1¢.
By the last sentence in the proof of Proposition 22, the contributing fixed loci correspond

to kernels of the form
¢

k
SZ@Ox(—Di)@®IZj ‘—>CN®O_)(,

i=1 j=1

where D; € |[Kx| and Z; is a O-dimensional scheme of length m;. Of course, we have

k
Z m;=m
j=1
The weights w1, ..., wy are distributed over the summands of .S in (],:,f ) possible ways,
depending on the location of the curves and points. The fixed loci are therefore indexed
by tuples (m1,...,my) as well as choices of (],Z ) summands of CV. For a fixed partition
(m1,...,myg), there are (]IX) fixed loci all isomorphic to

0 k
Flmy,...,mg] = <HP> X HX[mj}
i=1 j=1

Here, P denotes the linear series |Kx|. The obstruction bundle splits into obstruction

bundles over the factors,

\Y%
1 k

Obs = Y pr} (HO(Kx)" - £) + | S Ky

i—1 j=1
We therefore obtain

\%
L

k
Fima, . omell™ = e | S prt (HO(Kx)Y - £) + [ 3 K
j=1

1Ie (1))

T A =

= (1) (=1)™, ([pt] X - X [pt] X [C[ml] Ko X C[mk]D ’

The subscript on the second line indicates that we need to select the terms of top degree.

In addition, x = x(Ox), and, for the canonical curve C' C X, we have written

¢
L [pt] x -+ x [pt] x (C[ml] X - X C[md) — (HP) X (X[ml] X e xX[m’“]>
i=1

for the natural morphism.
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We write
.j : F[m17 v 7mk] — QUOtX(CN, n,EKX)
for the natural inclusion. The integral
e (Quotx (CV, n, (K x)) :/ (T Quotx)
[Quot x (CN i K x)|"™"

can be calculated by C*-equivariant localization. Each fixed locus F = F[my, ..., mg]

yields a contribution

(67) / C(j*TvirQuotX) _ (_1)m+€x/ * <C(Tvir|:) C.(Nvir)> ‘
(Flma,e..ymp]]¥" e(Nvr) Clm1) .o Clmg e(NVir)

We will analyze these contributions separately. We assume the weights w1, ..., w; are

distributed on the curve summands and the weights wy;1,...,wy are distributed on the
point summands. In other words, the kernels are

12 k

S =P Ox(—Di)[wi) ® P Iz [wjse] -

i=1 j=1
We will use the indices 4,4’ to refer to the curve summands, while the indices 7, 7/ will be

reserved for the point summands. We obtain

l k
TYE = ZTP+ZTX[mj1—0bs

- ZTP+ZTX’”7]— Zpr (H)(Kx)Y - +Z(Kx[m’> )

Jj=1

which yields

/¢ k
STVCE — Zcpg—1+ZL*TX[mj] — Zcpg—1+z <KX m]])
=1 j=1

k

— [m;] (m;] _ [ @lmy] V)
j; (TC + ol — (o)
_ g <(ng1)v il _ (@[mﬂ)v> |

Here, © = Ox(C)|c is the theta characteristic. The last equality was shown in the proof
of Theorem 18, see (39). There are no equivariant weights for *TV"F.

The virtual normal bundle splits into four terms

NY" = N; + Ng + N3 + Ny
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where

[
Ny = ) D Ext*(Ox(—D;),0z)wjse — wil

i=1 j=1
Lk
Ny = Z ZEXt'(IZj, ODi)[wi - ij] ,
i=1 j=1
¢
N3 = Z ZEXt.(Ox(—Di), ODi/)[wi’ — wj],
i=1 i/

k
Ny = Z Z EXt'(IZj, Ozj,)[wjurg — wj_,_g] .
J=13'#j
We would normally include the tautological line bundle £ in the expression of the sub-
sheaf, but, since we are in the end restricting to a point via ¢, there is no need.
We write Nij for the ¢j-summand of N;. We find

ONY = (K x) M wye — wi] = O wy g — wi].
Similarly
UNY =t (Ext® (O - Oz, 0 — Ky w; — wj))
= o (0 - mr) = () (™)) - g,
where we have used, suppressing indices, that
Ext*(0z,0) = Ext>™*(0,Kx ® Oz)" = ((KX>[m1)V ,
Ext® (07, K¢') = Bxt?> (K3}, Kx ® 0z) = ((K;??)[ml)v .
Since
H*(0) - H*(Kx') = —C71,
we have
ONg = —C9 M wi — wje] - <@[mj]>v [wi — wjd] + <K[c:nj]>v [wi — wjie] -
For the third term of the virtual normal bundle,
PNY = (H*(O(Ds)) — HY(O(D; — D}))) [wy —wi] = (H*(Kx) — H*(Ox)) [wiy —w;] = 0.

For the fourth term, we have already computed in equation (35) of the proof of Lemma
34, for j # j',
2 (Nf ) = Tjj + Njjr
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where
T = EXtav(OZj, OZj/ ® @)[’qu_g - wj+g] ,
ij' = EXt&’(IZﬁ OZj/)[wj’-l-é - wj+f] .
We also observed there that, as a consequence of Serre duality,
e(Tjj/ + Tj’j) =1.
Moreover, N = ., Nj; is identified with the normal bundle of the fixed locus
clml s ..o x ¢l — Quote (CF,m) |

where the C*-action has weights w41, ..., wy on CF.

After collecting all terms, the fixed locus contribution becomes

. C<(K[ij]>v) ce(elmly (Ol [w; y — w;])
(1)m+€><./c[mﬂ>< ol 1;[ ((@[mf] V) . +£

) j
¢k |e ((@[mj])v [w; — wj+€]) | c <(K}}”ﬂ>v [w; — wj+f]) (wi— wjg)9!
(1) ) _

111

i=1j=1 C((@[mj])v[wz’—wﬂe]) e( K

[T eTyeNg) - o)

1<j#j' <k
We note a cancellation between the Euler classes in the denominator of the second product

and the numerator of the third product, yielding the answer

ﬁ c ((K[m’}) > ~c(@[mi})
it ((@[mﬂ)v)

‘ c(Omilw;y — wi)) <<K[mj]) Nt ) (wi —wjy0)?"
) o

(68) (—1ymHx . (—1)m /

clmi x...xClmg]

<

111

==t C((@[mj])v [wi _wj“) <(K[mj] V wj+€> A wi— )

H e(Tj)e(Njj0) - W'

1< <k
Let Contr[myq,...,mg] € Q((w)) denote the integral thus obtained (without including
the sign (—1)DmHX) We have

(69) 2% nuky (@) =Y q"e™ (Quotx (CN, (K x,n)) =Y Z[my, ... my)
nez

where
Z[my,...,my) = (=1)EFDmHX LA=9+m Contrlmy, ..., my) .
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As usual, the sum on the right in the equation (69) has (]Z ) terms depending on the
placement of the weights (and is also over myq,...,my). We will set w = 0 at the end.

We will transform the above contribution formulas into integrals over the Quot scheme
Quotc(CF,m). Recall, from the proof of Theorem 18, the virtual bundle

Tm = EXtE)’(Q, Q ® @)
on Quotc(C*,m). The tautological bundle
L™ — Quote(CF, m)

associated to a line bundle L on C' was defined in Section 1.2. We define

Zop(qlwi, ... we|wegr, ..., wN) =

O w)) c ((Két”])v [wi]>
(@) e (3t )

In the integrand, twists by trivial bundles with nontrivial equivariant weights are included.

l
m / c(TQUOtC((Ckam))'c(Tm)'H
Quotc (Ck m) =1

We consider the function above as a C*-equivariant integral given by the C*-action on
the Quot scheme with weights w1, ..., wy. The function Z¢; depends on ¢ and on the

weights w. By an algebraic cobordism argument, we see
Zoy =AY
where
A:A(q|w17"'7wé‘w£+17'"7wN)
is a universal function which does not depend on the genus g of C.
We will apply C*-equivariant localization to the integrals appearing in the formula for

Zc . The result is related to (68): each integral in Z¢ ) becomes a sum of contributions
of the fixed loci

L Ol oo olmal s Quote (CF, m) .
We note the restrictions

*TQuot(CF, m) ZTCW + Y Ny,
I

P =Y Ty +Z eimil — (elmihyvy
J#3’
Here, for 7 = j', we have used

Vv
Ext*(0z,07 ® 0) = 0 _ (@W)
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Furthermore, the C*-equivariant restrictions of the tautological bundles ©™ on the Quot

scheme to the fixed loci are given by

k
O —w] =) 0wy —wil,

J=1

(O [w; — wj ],

M-

> (@[ml)v [w;] =

where the sign —wj;, on the second line appears because the dual was taken. Finally,
v

The above C*-equivariant localization terms of Z¢ j, match expression (68) up to a com-

<
Il
—_

(KN Y s — )]

M-

<
Il
-

mon factor and signs. Summarizing, we find:

1-yg
Z5 Nty (@) = (D)X g0 3 Hlezwz T
i=1j=1
A=) g lw, - we Jwegs . wn )Y
We write
~ Lk 1+ wi —wjpy
A(q|wi, ..., we|weyg, . I[ljl_[l Wi — wiee
-A((—l)“lq\wl,...,wg Wetly -y WN ),

so we have

ZS:(,N,KKX (q) = (—1)@( qz(l_g) ) Z'&(q w1, we [ we, - ',wN)l_g-

The last remaining step is to determine the function A. After specializing the curve
C = P!, we have

A(Q‘wlv'”7wf|wf+17"‘7wN) =

%qm /Quotn»l (CF,m) C(TQUOtC(Ck7m))'C(Tm)'£[1 ¢ <(®[m])v [wi]) | € <(K[c7’n]>v [wi]>

All tautological structures in the above integral have been understood in the proof of

Theorem 18. In fact, compared to the integrals which appear in the proof of Theorem
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18, the only new terms are

ﬁ ﬁ (O [w; g — wi]) | c ((K[Cmﬂy [w; — wj+e])
i—1j=1\ ¢ ((@[mj])v [w; — ’wj+£]> e ((Kg”j])\/ s — wj+g]>

considered over the product

(70) P .o x PR

As before, we write hq, ..., h; for the hyperplane classes on the respective projective

spaces in the product (70). Using Lemma 27, we obtain
¢ (@W [w]) —(1—h+w)™, ¢ ((@[ml)V[—w}) = (1+h—w)™,

c((K[Cm)v[—w]> _ (1+h_w)m+1, e(<K[cm]>v[—wO _ w

1—w —w

The new terms contribute the expression

Lk .
HH<(1_hj+wj+€_wi)mj~1+hj+wi_wj+é' Wi — Wyjtp )
1\ wi—w)™ Ttwi—wjpe  hj+wi—wjpe)

Therefore, using (50), the contribution of the fixed locus of Quoth(CF,m) corresponding

to the partition (my,...,my) equals
(—1)mk=D+(3) / Oy (hy)™ - gy (hye)™ - U(ha, ... hy)
P™1x...xP™k
where
i L S 4+ Wiy —w
B . e — W
() = [[ A -hj+wjre—wiye) [[ i +wjrpe—wjpe) [ —2—
X . X h +’U]Z Wity
J'=1 J'#3 i=1 J J
and

V=[] (hy—hy+wpre—wiee)® [ [+ hytwpre—wjre)- (Lt by —hy+wje—wjee) ™
§'<i Jd
£k 14+ h; +w; —wigy W; — Wiy
. H(hj + wjrgp — wj+€)_1 . H H ( J ¢ Ite ! It > .

hj +w; — w; 14w —wj
G5 i=1j=1 J + ? 4+ + 1 j+L

Only the products involving i are different from the expressions written in the proof of
Theorem 18.

We now apply the Lagrange-Biirmann formula for the change of variables

P hj :ﬂ hj +wa — wjqe
J (I)j(hj) 1-— hj + Wit — Wq '

a=1
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In the above product, the index « collects the terms in ®; corresponding to both i and

j" into a uniform expression. We find

By U
A=(-1)G) . Z(hy,....h
( ) K( 1 ) k)
where
N
k=1, hj + W — Wjpe
o) =t= 1)1,
1 - j+wj+f_wa
Let
U= [[(hj—hy+wype—wipe) T [ +Rj+wype—wipe)- (14 hy =yt wy e —wipe) ™!
J'<i i’
et L+ By 4 wi — wyp
I +wjre —wino)™ - TI 1 rT—
% imijo1 Wi Wik
We find

~ Ky U
A(q |w17° : 'aw€|wf+la" 'awN) = (71)(2)?(h17 7h’k‘)

where, taking all signs into account, we have

N
hj 4+ wa — wjiy

LT wie -

g(—1)(F=DHERD)

In the limit w — 0, the above equation becomes
a(~)Y = ¥(1—h)V.

The limit is justified as in the proof of Theorem 18: we let Hy, ..., Hy be the roots of

the single equation

N
h+w — w1
1N = a
q( ) H 1—h+w —w
a=1
and then we have
hj = Hjye+wjre —

The final answer is a sum of ( k) terms corresponding to choices of subsets of k roots
out of Hy,...,Hy. Using the explicit expressions for U and K, the answer is seen to be
symmetric in the H’s and, therefore, expressible in terms of the elementary symmetric
functions which are polynomials in w.

We find % simplifies in the limit to the expression

k N\ k 1.
[T (ks = hypy? - @) T = (g =g~ T 70 “Zf”~H1NhJ

J<y’ 33’ Jj=1 Jj=1 J J=1
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where the last product comes from the K-term. Further simplification yields

(hy — hyr) b+ h)N (1 - hy)
Nk H (hj —h ) H N1 ’
j=1 J

which is precisely the formula stated in Theorem 23. U

APPENDIX A. A COMBINATORIAL PROOF OF THEOREM 11

We present here a purely combinatorial argument for Theorem 11. For simplicity of
notation, we consider trees whose edges are painted in only two colors denoted A and B.
The generalization to several colors does not require additional ideas.

We write a for the total number of A edges, b for the number of B edges, and n for

the number of vertices of a tree T'. Clearly
a+b=n—1.

For each vertex v, we write a, and b, for the number of outgoing edges colored A and B

wt(T) = (n_ll)[Ha”!b”! .
:Zwt(T
T

tn(a,b):i<2a;—b> (a:%)‘

The claim of Theorem 11 in the case of two colors is

(71) wp(a,b) =ty(a,b).

respectively. Therefore,
We set

Let

Define the generating series

W(q|z,y) = Z > wala,b) -2y,

n=1a+b=n—1

T(q|x,y) = Z > tala,b) - ay'q"
n=1 a+b=n—1
By Lemmas 41 and 42 below, both W and T satisfy the cubic equation
(72) Z-1—2Z)-(1—yZ)=9q, Z|g=0=0.
Since the solution of (72) is unique, we obtain

W=T
which implies (71) and completes the proof of Theorem 11.
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Lemma 41. We have
T-(1—2aT)-(1—-yT)=gq.

Proof. The argument exactly follows the proof of Lemma 28. Set

) =Q—at) QA -yt)™!

For a +b=n—1, we have

Therefore,
T(q) = Z‘i& ([ (1= at) (1 — yt) ™)
_ S ﬁ n— 1 n—1
= LT s ).
Then,

nzlq"l (1) £ @) = 5

where equation (16) was used above for the change of variables ¢ = % Hence, we obtain
T=t,
and the change of variables proves the Lemma. ([l

Lemma 42. We have
W-(1—-2W)-(1—-yW)=gq.

Proof. We will prove a recursion for wy,(a,b) which implies the cubic equation of the
Lemma. For convenience, we set wy,(a,b) = 0 whenever a + b # n + 1.

Fix a labelled 2-colored tree T with n vertices. Consider the vertex * with the highest
label n. After removing the vertex x and all its incident edges from the tree T', we obtain

disjoint subtrees 17, ...,T;. We set up the following notation:

e r and s denote the number of edges incident to the vertex x which are colored A
and B respectively (where ¢ =1 + s),
® ny,...,ny are the number of vertices of the subtrees T, ..., T, respectively,

e (ay,b1),...,(ag by) are the numbers of edges of each color for the subtrees 11, ..., T}.
The above quantities satisfy various constraints which are most easily expressed using
partitions. We denote an ordered partition by

a® = (aq,...,0q),
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and we write |a®| for the sum of parts. Then
In®l=n—1, |a®|4+r=a (counting Aedges), [b*|+ s ="b (counting B edges).
The removal of the vertex % yields the following recursion:
(73) wp(a,b) Znn. Wy, (a1,b1) - - - wy, (ag, be)

with the combinatorial factor
r! s!

e = Aut(ny,...,ny) Aut(nep1,...,ne)

Here, Aut(n®) counts the automorphisms of the partition n®, and thus can be expressed
as a product of factorials determined by the repetitions amongst the parts of n®. To

justify equation (73), note that the vertex x contributes r!s! to the weight of 7', while

the other vertices are contained in one of the trees 11, ..., ;. Therefore
1 l
wt(T) = mr!s! .jlj[l(nj — D)!wt(Ty).
After summing over all trees, we obtain
1 l
zT:wt(T) = ch. : mr!s! ]1_[1(nj — Dl wp,(aj,b;) .

The combinatorial factor
Cn‘ — (nlng) . <

arises as follows

n—1 1 1
ni,...,ng) Aut(ng,...,n.) Aut(ngg1,...,ne)

e the term n; - - - ny counts all possible ways to attach the vertex % to one of the n;
vertices of the tree T}, for 1 < j </,
. ( n-l ) counts all possible ways of distributing the labels {1,...,n — 1} to the

n1,...,Me

trees 11, ...,Ty,

e the last two terms account for automorphisms.

Equation (73) then follows by collecting terms.

For notational convenience, we define the relabelling
/ !/ / .
N =MNjgr, @ =aj4r, b;=bjyy, 1<75<s.

In the new notation, recursion (73) takes the form:

r! s! J ,
b) = Z Aut(n®)  Aut(n'*) 'j];[lw"j(a]’ H (a, 5)

We define
W,, = Z wy(a,b) - z%°

a+b=n—1
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satisfying

oo o

W= Z Z wn(aa b) ’ xaybqn = Z qan
n=1a+b=n—1 n=1

We compute

W [o@)
= = > wa(ab)a"y’q"

q
- St sy T o) Tt a1
- / LUVANa R
Aut(n®) Aut(n'*) i

Z r! s! r sire
Aut(n®) Aut(n'*) ]1_11 j | |1 n & y°q

- (S i LT 0 ) (i T

= (1-aw)™! -(1 —yW)~!

where, on the third line, we have summed over the a’s and b’s.

For the last line, we have used the identity

1 .
r|n®
(74) 1-— xW Aut H Wn] g

which is easily derived from the Binomial Theorem. Indeed, after setting
an =Wy, - 2q", a:Zan:xW,

equation (74) becomes

(6% )
1-a Z Aut H "
which is true since the two sides are different ways of expressing > a’. 0
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