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ABSTRACT. Let S be a nonsingular projective surface. Each vector bundle V' on S of
rank s induces a tautological vector bundle over the Hilbert scheme of n points of S.
When s = 1, the top Segre classes of the tautological bundles are given by a recently
proven formula conjectured in 1999 by M. Lehn. We calculate here the Segre classes
of the tautological bundles for all ranks s over all K-trivial surfaces. Furthermore,
in rank s = 2, the Segre integrals are determined for all surfaces, thus establishing a
full analogue of Lehn’s formula. We also give conjectural formulas for certain series of
Verlinde Euler characteristics over the Hilbert schemes of points.

1. INTRODUCTION

1.1. The Hilbert scheme of points. Let S be a nonsingular projective surface, and
let S denote the Hilbert scheme of n points on S. Each line bundle L — S gives rise

to a tautological rank n vector bundle LI — S via the assignment
¢ HY(L® Og).

Tautological integrals over the Hilbert scheme of points or over their geometric subsets

emerge often in enumerative geometry. We mention three situations studied previously:

(i) the count of n-nodal curves in fixed linear system P" C |L| where L — S is
sufficiently positive. These counts were recast by Gottsche [G1] in terms of

Hilbert schemes. Specifically, for a suitable geometric subscheme
W, s SiB7

birational to S, the Severi degrees are encoded by the series

G@:Zw/cmm
n=0 n
(ii) the Verlinde series of holomorphic Euler characteristics [EGL]:
V(z) = Z 2"y (s, Ly ® E").
n=0

Here the line bundle ()(n) is pulled back from the symmetric product, and E

denotes —% of the exceptional divisor on the Hilbert scheme.
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(iii) integrals of Segre classes of tautological bundles considered by Lehn [L]:

Z:OOz" s(LI.
=3 [, s

There are strong reasons to study all three series above. The count of curves in (i) is
a central enumerative question. The Verlinde series (ii) captures all holomorphic Euler
characteristics of line bundles over the Hilbert scheme of points. Calculating the series
has applications to the study of K-theoretic Donaldson invariants on moduli spaces
of sheaves of arbitrary rank, as pursued in [GNY], [GY], [G3]. Indeed over elliptic
surfaces, higher-rank invariants can in many cases be matched to Verlinde numbers on
the Hilbert scheme via Fourier-Mukai techniques. Furthermore, knowledge of the series
(ii) is crucial to the strange duality problem for sheaves on surfaces. Interesting variants
of the Verlinde series, involving symmetric and exterior powers of tautological bundles,
were recently studied in [A]; see also [Sc].

The main focus of this paper is the Segre series (iii) in its general form, when L is
replaced by an arbitrary higher rank vector bundle. The Segre integrals appeared first
in the study of rank 2 Donaldson invariants of rational surfaces [T, Ty]. More recently,
the Segre series have turned up in the intersection theory of various parameter spaces
of sheaves with sections (higher rank Quot schemes, higher rank stable pairs), where
they naturally enter localization calculations via the obstruction bundles (cf [MOP1]).
This is a setup which parallels the appearance of Hodge integrals in Gromov-Witten
theory. The importance of systematically studying the Segre series (iii) and its higher
rank generalizations was highlighted in [OP] in the case of curves.

In a significant development, a conjectural relationship between the Verlinde and Segre
series was proposed in [J], aligned with the vaster conjectural framework of strange
duality for moduli spaces of sheaves. This picture acquired further precision in [MOP2]
where the series S and V were conjecturally matched through an explicit change of
variables. As a consequence, the Segre series holds the key to understanding the Verlinde
numbers (ii). This point will be addressed in Section 1.6.

The common feature of the expressions G, V, S is that all three factor (cf. [G1], [Tz,
[KST], [EGL]) as products of four universal series

Ul(z)L2 . UQ(Z)X(OS) . Ug(z)L'KS . U4(z)K§,
with
U17 U27 U37 U4 S Q[[ZH

The series U; and Us are uniquely determined by K-trivial geometries and are typically
more accessible. They are known in examples (i)-(iii), see [G1], [EGL], [MOP1]. For
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all types of tautological integrals considered over the past few decades, closed formulas
for the remaining series Us, U4 have proven very difficult to calculate or even conjecture.
Remarkably, the Segre geometry (iii) is the only nontrivial case known so far; the details

are explained in Section 1.3.

1.2. Higher rank. We undertake the study of the Segre series in higher rank. To set
the stage, let V' — S be a vector bundle of rank s, inducing a tautological rank sn vector
bundle

vl s gl
over the Hilbert scheme via the assignment
¢ HO(V®O).

The construction extends to K-theory. For each K-theory class a € K(S), there is an

associated K-theory class
ol — glnl

defined via locally free resolutions. We are interested in the Chern numbers of o™, but
it will be more convenient to work with Segre classes. Fixing a € K(.S), we consider its

associated Segre series

1 Sal2) = z"/ s(al™
W Sa@) = 3t
= Ag(2)2(@ . A1 ()20 . Ay(2)X(O5) . Ay(2) (@) Ks . g, ()KS,
The above factorization follows by [EGL]. The five series
A07 Alv A27 A3a Ay € QH’ZH

are independent of the surface S, and depend on « only through the rank s.

1.3. Lehn’s conjecture. Let us assume first that rank o« = 1 and « is represented by

a line bundle

L— 5.

Then, the series Ay is absent from (1). Lehn [L] conjectured closed formulas for all four
series Aj, Aa, Az, A4. In the rephrasing of [MOP1], after the change of variables

z = t(1 + 2t)?,
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the universal Segre series are given by
Ai(z) = (L+207,
Ax(z) = (1+2t)7-(1+6t)"
Asz(z) = =-(14+2t)7' (VI+2t+V1+6t),
Ay(2)

The series A1 and Ay were confirmed via the study of the virtual geometry of the

N

&
2
4-(1420)7-(1+68)2- (VIt2t+v/I16)

Quot scheme of K-trivial surfaces in [MOP1]. Using Reider type techniques, Voisin [V]
proved the vanishing of certain Segre integrals in the case of the blowup of a K3 surface
in one point, and showed these vanishings determined uniquely the series Az, A4. The
series were shown to have Lehn’s conjectured expressions via the residue calculations of
[MOP2]. As a result, the Segre series are calculated for all line bundles over nonsingular

projective surfaces S.

1.4. The series Ay, A1, As in arbitrary rank. Our first result gives a simple closed

form expression for the Segre series of all K-trivial surfaces, in all ranks. We prove

Theorem 1. Let S be a K-trivial surface, let o be a K-theory class of rank s, and set
r=s+1. We have

(2) Sa(z) = Zzn/[ | s(al™) = Ag(2)2@ . Ay (2)F(@) . A4y (2)X(©s)
n=0 St
where the formulas for the series A1, Aa, and As are
Ag(z) = (A+rt) "1+ 1 +r)t) 1,
Ai(z) = (1+m)T -1+ 14 2t
2

rf—1

N|=

Ao(z) = (41D T (14 U+r)) 24 (1 r(l4r)) %,

after the change of variables

(3) z=t(1+rt)".

Remark 1. In [J], Johnson computed the series Ay, A1, A2 up to order 6 and conjectured
several connections between them. Building on these calculations, the above formulas
for Ag, A1, As were proposed in [MOP2].

Remark 2. The simplicity of the expressions in Theorem 1 is deceiving. The individual

Segre integrals are quite complicated. For instance, for a K3 surface S and n = 2, we
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have

1
(4) /[]54(1/[2}) - Z((z(cf)%rzcg—4¢§(,=2—8c%+6@)Jrs(—gc%Jraczﬂz)
52

+ 52(—3¢c] + 2co 4 22) + 125° 4 2s7) |

where V is a vector bundle of rank s with Chern classes ¢; and ¢o. For arbitrary surfaces,

the answers are more involved.

Remark 3. Even in rank 1, Theorem 1 gives additional information not covered by

Lehn’s conjecture. While the series A1, As were predicted by Lehn’s formula,
Ag(z) = (142t)72 - (14 3t) for z = t(1 + 2t)?

was absent from the line-bundle setup of the conjecture.

Remark 4. For nonsingular projective curves, the generating series of higher rank Segre
integrals was determined in [MOP2]. A change of variables similar to (3) was needed to

express the answer in closed form.

Remark 5. The expressions Aq, Ay determined by Theorem 1 were subsequently con-

nected by Mellit with certain generating series of Hurwitz numbers in genus zero [M].

1.5. The series As, A4. For surfaces S which are not K-trivial, and an arbitrary class
a € K(S5), the universal series A3, A4 appear in the Segre generating function S, (z) and

are very difficult to evaluate.

We calculate the two remaining universal series for rank o« = 2, thus proving a full
rank-two analogue of Lehn’s formulas. Thus, we provide a second nontrivial situation

for which all series involved are determined. Using the change of variables
2z =t(1+ 3t)3,

Theorem 1 gives

(1+4t)2

(14 3t)3°

(1+3t)

(144t)z

(1+3t)*
(144t)2 - (14 12t)2

To describe the remaining two series, let y(¢) be the unique real solution of the quartic

equation
y-(1+y? ¢
(1-y)(1-y*) 143t

, y(0) =0.
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We have
y(t) =t — 612 + 413 — 314" 4 263065 + .. ..

Theorem 2. For rank o = 2 the remaining universal Segre series are

~1/2
Az(z) = (1+3t)7L. (y(tt)>

3 2
Ag(z) = <1+3t).(y<tt)) (11+_yy>y1

Based on these expressions, we also formulate
Conjecture 1. For all ranks, the functions Az, A4 are algebraic.

Remark 6. Finding the series A3 and A4 for « of arbitrary rank remains an open
question. In addition to Lehn’s formula for rank one, and the substantial rank two
analysis carried out here, a few cases are trivially known:

e the case rank o = —1 is immediate. Set a = —L for some line bundle L — S.

For dimension reasons we have
/ s(al") = / c((—a)M)y =0forn>1 = As(z) = Ay(z) = 1.
Slnl Sln]

e for rank o = —2, we can prove geometrically, see (18) for instance, that

/sw slal) = /sw (o)) = <C2(;a)>'

We again obtain
Ag(z) = A4(Z) =1.
e for rank & = 0, we have A4(z) = 1 just by setting & = 0. Regarding the

remaining series, we state the following

Conjecture 2. In rank 0, we have

1

Az(z) = (1+ )71 (14+26)2 for z = t(1 +1).

1.6. The Verlinde generating function. We now turn to the generating series of
holomorphic Euler characteristics of tautological line bundles over the Hilbert scheme.
We set -

Vo (w) = Z x(S™M (det )y @ E") - w",

n=0
where the line bundle ()(n) is pulled back from the symmetric product, and E denotes

—% of the exceptional divisor on the Hilbert scheme. Since V, only depends on det «,

only four power series are needed in the factorization

Vo (w) = By (w)XE1@) . By(10)X(©O8) . By(w)a1(@)-Ks=3K5 . B, (4)K3,
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The different form of the exponents used here relative to (1) is justified by the fact that

with the current choices, we have the following symmetries

(5) B3+ Bylasr — —r

B, is invariant under the symmetry r — —r.
This was noted in Theorem 5.3 in [EGL] as a consequence of Serre duality. Also by
[EGL], we explicitly know B; and Bs. For
w=t1+t)""",

we have

7‘2
(1+1t)=
(147r2t)2

The series Bs, B4 remain mysterious in general. The cases r = 0 and r = *1 are

Bl(w) =1 +t, Bg(’u)) =

immediate exceptions, obtained in [EGL], Lemma 5.1. Indeed for r = 0, we have
Vo(w) = (1 —w)X@) — Bs(w) = By(w) = 1,

and for r = £1,
Vo(w) = (1 +w)X (@) — Bs(w) = By(w) = 1.

For all surfaces, motivated by strange duality, Johnson [J] predicted a connection

between the Segre and Verlinde series

S_a(2) & Va(w),
under an undetermined change of variables z <+ w, and the shift
(6) r =rank a — 1.

These predictions were made precise in [MOP2] where the unknown change of variables
was proposed:
t1—(r— 1))t

(1 —rt)r

Using Theorem 1 we show under suitable numerics an equality between Verlinde num-

z=t(l—rt)”", w=

bers and tautological Chern integrals on Enriques surfaces, see Proposition 4. This is
consistent with strange duality.

Since the Segre series is now calculated for rank o = 1 (Lehn’s formula) and rank
a = 2 (in Theorem 2), this precise conjectural Verlinde-Segre relationship gives further

predictions for the unknown Verlinde universal series Bs and Bj.
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For r = £2, the formulas for B3 and B, are captured by Conjecture 2 of [MOP2].
Indeed for r = 2, setting !

w=t(1+1)3,
we expect
141+ 4t
Bs(w) TR
2(1+1)
5
14+ V144t 2
Bi(w) = (1+4)3-(1+4b)3- <+2+> .

Thanks to Theorem 2, we obtain the following predictions about the Verlinde series

for r = £3. Let Y be the unique real solution of the quartic equation

y-(1+y)?
WUy )=,
(1-y)(1 -y
We have
t
Y(t)=y (1&) =t — 3t> + 14¢> — 80t* + 509> — 3459t° + . ...
Conjecture 3. For the Verlinde series V, with r = 3, setting
w=t(1+1)
we have
1
Y(t)\ 2
Bs(w) = (1+1)7%- (i)) :
Y\ T (1+Y)? 1
3
B = (1+t)s- . T
1(w) (1+1t)4 < n > 1_Y \Z
The expressions for r = —3 are obtained via the symmetry (5).

Finding the general expression for the unknown series B3 and By for arbitrary r, thus
determining all rank 1 Verlinde numbers, is a central question in the enumerative theory

of Hilbert schemes of points on surfaces.

Remark 7. Due to the rank shift (6), the Serre duality symmetry
s — —s

on the Verlinde side translates into a conjectural transformation rule for the remaining

unknown Segre universal series Ag, Ay4, as
§— —s— 2.

IT6 be in agreement with the formulas of [MOP2], one has to change ¢ —» t/(2 + 2t).
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In particular, we can also state predictions for the Segre series A3, A4 in rank o = —3
and rank o = —4 from the series in rank o = 1 and rank o = 2. The exact expressions

are more cumbersome, but they support Conjecture 1.

1.7. Strategy of proofs. We first explain how Theorem 1 is derived. To find the three

universal series Ag, A1, Ao, we pick a to be the class of a suitable vector bundle
V-5

over a K3 surface S. As witnessed by (4), the Segre integrals are generally very com-
plicated. It is a key observation that the answers take a simpler form for sheaves with
small deformation spaces. The most beautiful formulas are obtained for spherical vector

bundles V' and for vector bundles with isotropic Mukai vectors. Let

v=chV-y/td(S HQ*SZ

be the Mukai vector of V', and recall the Mukai pairing
(v,v) = / v3 — 2ugvy  where v = (vg, va,v4) € H**(S).
S
Set x = x(5,V). We show:

Theorem 3. Let S be a K3 surface, and let V. — S be a rank s = r — 1 vector bundle.
(i) If (v,v) = =2, then

/ SQn(VM) =" <X B rn) .
Sln] n
(ii) If (v,v) =0, then

/ Son (V) = pm (—7‘ + E + X) (X e 1> .
Slnl roon n—1

Theorem 3 is proven by a direct geometric argument using Reider techniques [R], also
employed in rank 1 in [V]. The crucial insight here is the identification of the optimal
geometric setup for which the complicated Segre integrals become manageable. We will

then show by a residue calculation that Theorems 1 and 3 are equivalent.

The analysis is quite intricate for Theorem 2, requiring in particular delicate excess

calculations for Segre classes. The key statements are captured by the following

Theorem 4. Let m: S — X be the blowup of a K3 surface X at a point, with exceptional
divisor E. Let Vo — X be a rank 2 bundle whose Mukai vector satisfies (vo,vo) = —2.
Set
V=rV®E*,
and assume that
x(V)=4dn —1.
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(i) If k =n — 2, then

/ son (V) = (=1)"(2n + 1).
Sln]
(ii) If k =n — 1, we have

/ son(VI"Y =1 for n=0 mod 3.
S[n]

/ 5on(VM) =0 for n#0 mod 3.
Sln]

We finally show by a residue calculation that Theorems 2 and 4 are equivalent.

1.8. Moduli of surfaces. The Segre integrals can be viewed as part of a richer theory

which is important to explore further. For each flat family
m:S—>B

of nonsingular projective surfaces carrying line bundles Lq,...,L; — S, we define the

Kk-classes
Alar, a8 = 7 (L) e (L) - ex(wn)’) € A*(B).

When 7 is the universal family of the moduli of polarized surfaces
m:S —> M,

the k-classes thus defined generate the tautological ring R*(M) analogous to the well-
studied tautological ring R*(My) of the moduli of curves. Finding relations between the
k-classes in R*(M) is a very interesting problem.

In the case of the moduli of K3 surfaces, a strategy for x-relations was laid out in
[MOP1] via the study of the virtual class of the Quot scheme; a different approach via
Gromov-Witten theory was pursued in [PY]. The discussion however makes sense for
arbitrary polarized surfaces as well. In this approach, the center stage is taken by the

calculation of the push-forwards
S (s (L), (L) € (M)
n=0

in terms of the classes k[ay,...,asb]. In the K-trivial case, or more ambitiously for
arbitrary surfaces, it becomes important to obtain explicit formulas, thus generalizing

the results of this paper.
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2. K3 SURFACES

2.1. Residue calculations. Our first goal is to prove Theorem 1. We begin by ex-
plaining how the special formulas of Theorem 3 are predicted by the series in Theorem
1. Conversely, we will prove in Section 2.4 that these predictions are equivalent to the
statement of Theorem 1.

We keep the same notation as in the introduction. Let S be a K3 surface. For a

vector bundle V' — S with Mukai vector
v =ch (V)/td(95),

let
x=x(8V), aca=a(V), ca=c(V),
as in Section 1.7. Recall that s = rk V and r = s + 1. Taking the K-theory class a to

be V, the statement of Theorem 1 becomes

” r— 1
— (1 1 [(r=1)co+(=5+1)c}—r2+2r] | 1 [—rea+ 5t ed+(r2-1)] | -t
S(z) =14+ 1+7r)) 2 (1+tr) 2 ey

For convenience, we define
(7) d:(w—n@+(—g+1)ﬁ—r1+w.

We then need to prove

1

_ d —d+x
(8) a@_a+u+mw.a+w)++PT:Rﬁ;ﬁ
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An important observation is that the quantity (7) is half the dimension of the moduli

space M, of stable sheaves of type v on the K3 surface S,
dim M, = (v, v) +2 =2d.
We can express the individual Segre integrals as the residues

1 dz
]y — = i
/S[n] san (V") 211 745(2) ntl -’

Substituting equation (8) in the above residue and using the change of variables (3)

z=1t(1+rt)",
we are equivalently seeking to prove the following formula for the top Segre classes:
1 dt
"y — _— . —dtx—rn
LV = o dasasnnt- e ad

= Coeffyn [(1 + A+t 1+ rt)_dJrX_m] .
The formula yields a remarkably simple answer in the following two cases, leading to the
statement of Theorem 3.

(i) When d = 0, we expect

/ SQn(VM) =" <X B rn) .
Sin] n

In particular, when r = 2 we recover the known line bundle result of [MOP1],

/ Sgn(L[n]) — on <X - 277,) '
Sln] n

(ii) When d = 1, we expect

/ o (V) = 7 (—T+1+X> <XTn1> .
Slnl A ) n—1

2.2. Vanishing results. We now prove the formulas above, thus establishing Theorem
3. The proof is guided by the simple form of the expected answers.
Throughout this Section, we let S be a K3 surface of Picard rank one,
Pic(S) = ZH.

Let V — S be an H-stable 2 vector bundle of rank s > 1 with ¢;(V) = H, so that the
Mukai vector equals

v=_(s,H,x — ).
We assume that

(v, v) = =2 or (v, v) = 0.

2H-s‘cability is Gieseker stability with respect to the polarization H.
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In both of these cases, we know the moduli space of H-stable sheaves with Mukai vector
v is nonempty, see [Y3], Theorem 0.1 for a general result. The moduli space is either a
point, or a K3 surface, see Theorems 1.4 and 3.6 in [Mu].

Since s > 1, the locus of locally free sheaves V' in the moduli space with Mukai vector
v is nonempty. Nonemptiness is obtained by invoking Yoshioka’s classification of Mukai
vectors yielding moduli consisting entirely of nonlocally free sheaves in Proposition 0.5
of [Y3]. His classification does not include vectors v as above.

Under these assumptions, we show the following vanishings.

Proposition 1. We have

(1) If (v, v) = =2, then so,(VI™) =0 for rn < x(V) < (r+ 1)n.
(ii) If (v, v) = 0, then so, (V™) =0 for rn +1 < x(V) < (r 4+ 1)n.

Proof. Recall that V is said (n — 1)-very ample if the evaluation map
(9) H(S,V) = H(S,V ® Og)

is surjective for all Z € S, This is equivalent to the surjectivity of the natural vector
bundle map
HY(S,V)® Ogpy — VM on S

We will show that this is the case under our numerics in Proposition 2 below.
By the definition of Segre classes, whenever the evaluation map is surjective, we have

the vanishing
s;(VIy =0 for j > h°(S,V) —rank VI,
In our situation
K8, V) = x(V).
Indeed, by Serre duality and stability,
h*(S, V) =h(S,VV)=0.
Furthermore, for y > 0 we have
(10) hY(S,V)=0.

The vanishing (10) is established in the proof of Proposition 2 below, where it is argued

that there do not exist nontrivial extensions
0—-VVY—SE—05—0.
Therefore, (n — 1)-very ampleness of V' implies the vanishing

s;(VIy =0 for j > x(V) — sn.
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In particular, we obtain

son(VIM) = 0 for (r + 1)n > x(V).

Proposition 2. We have
(i) If (v, v) = =2 and x(V) > rn, then V is (n — 1)-very ample.
(ii) If (v, v) =0 and x(V) > rn+1, then V is (n — 1)-very ample.

Proof. The evaluation map (9) is surjective if HY(V @ Iz) = 0 for all Z € S"l. Assume,

for contradiction, that

(11) HYV®Iz)#0.

The cohomology group (11) is Serre dual to Ext!(Iz, VV) which is the space of extensions
(12) 0—-VY—=E—=1I;—0.

By assumption, we have a non-split extension.
If V is H-stable with ¢; (V) = H, then Lemma 2.1 of [Y2] shows that the middle term

E of any non-split extension
0>V E—>I;,—0

is H-stable.

For the benefit of the reader, let us recall the argument in [Y2] in our context. Since
c1(V) = H is primitive, note first that the H-stability of V implies that V is in fact
slope-stable, therefore V'V is slope-stable, hence V'V is H-stable as well.

Assuming now that E is not H-stable, let G — FE be the maximal semistable desta-
bilizing subsheaf. We have

kG <rk E and pg > pg > pyv .

We see that G cannot be a subsheaf of the kernel V'V since this would contradict the

H-stability of the latter. Therefore, we have a nonzero morphism
¢ : G—1Iy.

The H-semistability of G now gives ug < 0. Writing ¢1(G) = aH we deduce a < 0.
Since pug > pug, we obtain
aH? H?
>

_ 1.
kG- kB %7

Therefore, we have
a=0and 1(G)=0.



HIGHER RANK SEGRE INTEGRALS 15

Furthermore, if nonzero, the kernel K of ¢ is a subsheaf of V'V of slope greater than or
equal to zero, contradicting the H-stability of VV. Thus, we have
¢: G — Iz is injective — G = Iy
for a zero-dimensional subscheme W C S. We consider the exact sequence
0=>G—=>1;—-0Q—0
and the associated sequence of extension groups
Ext!(Q,VY) — Ext'(Iz, V") & Ext' (G, V).
The first group is zero by Serre duality since @ is supported at finitely many points. We
conclude that f is injective. However, the image of the extension (12) in Ext*(G, V") is
trivial. The contradiction shows that E must be H-stable.
Now, we calculate
X(E,E) = x(VV,VV)+2x (VY, Iz) +x(z, Iz)
= —(v,v)+2(x(V)—sn)+2—-2n

2(—<U’ o) +X(V)—m+1).

2

In both cases of Proposition 2, we obtain
X(E,E) >4 — ext’(E,E) + ext*(E,E) > 4.
Therefore, by Serre duality,
ext®(E,E) > 2.
Since E is H-stable and therefore simple, we have a contradiction. Thus, (11) does not

hold. The proofs of Proposition 2 and Proposition 1 are therefore complete. ]

2.3. Proof of Theorem 3. We consider case (i) of the Theorem. Fix the rank s > 1
throughout. 3 By Theorem 4.1 in [EGL], over K3 surfaces, the Segre integral

/ 52n(v[n])
sln]

is given by a universal polynomial of degree n in ¢1(V)? and co(V). When
(v,v) = =2

both ¢1(V)? and c2(V) can be expressed in terms of xy = x(V'), and therefore
[ sV =P,
Sln]

for a degree n universal polynomial P,,.

3For s = 1, the functions A1, A2 are known by [MOP1, V]. All three functions Ag, A1, Az for s =1
follow from the case s > 1 via the polynomiality argument of Section 2.5.
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For each x > s, let (S, H) be a K3 surface of Picard rank one Pic(S) = ZH and of
genus
H*>=29—-2, g=s(x—s).
Let V be the unique H-stable vector bundle with Mukai vector v = (s, H, x — s) whose
existence we noted in the beginning of Section 2.2. Since (v,v) = —2, Proposition 1 (i)

shows that the top Segre class of V" vanishes when
rn < x < (r+1)n.

These n values of x are the n roots of the polynomial P,,. Therefore,

Pr(x) = c- X—nm = [ sV =c X—nrn
]

for some constant c. We will identify the constant ¢ = r™ by proving
n
/ Szn(V[ }) = —X + lower order terms (l.o.t.) in x.
Slnl n!

The argument is most naturally expressed by rewriting (2) in exponential form,

Z / Son (V™) = exp <A0( )-c (V)2 + A1(2) - ea(V) + A2(2)> .

Restricting to the line (v, v) = —2 in the (c?, cp)-plane, we obtain

Z / R (VIR —exp(U(z)-erT(z)),

for power series U and T. Let
U(z) =u1z +ugz® +....

Extracting the coefficient of 2™ in the above expression yields

. ]SQn(V )= X + Lo.t. .

In particular, for n = 1, we obtain

/ s2(V) =uix + lo.t. .
5

Direct calculation shows s3(V) = ry — 2 so that u; = r. After substitution, we find the

leading term to be

n n
uy _r

n!  onl’
For part (ii) of the Theorem, Proposition 1 (ii) gives only n— 1 roots of the polynomial

expressing the Segre integral. Combined with the leading term calculations, we conclude
that if (v,v) = 0 we have

[ sV = e (N0,
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for some constant ¢. We will prove

()
c=n|—-r+-—
r

by computing the next term in the Segre polynomial in x. Indeed, for the right hand

n—1

side, the x coeflicient is easily seen to be

r’ c n(T+l)
(13) n((n—l)!_ (n—2§! '

1

We compute the x" ™ coefficient on the left. As before, we have

izn /S[n] SQn(V[n}) = exp (U(z) X+ T(z))

where
U(2) = w1z +ugz® + ... , T(2) =tz +tez+. ...
We obtain
ul unfltl un72u2
V[”] _ 1 \n 1 1 on—1
/Sm (V) =S Xt G T o)X T

When n = 1, we find
Xr—r2+1:/32(V):u1x+v1 — u=r t;=—1r>+1.
S

When n = 2, for isotropic vectors (v,v) = 0, equation (4) simplifies to

/ sy(VEY =42 (—r+1+X> (x—2r—1).
512] r 2

Using the above asymptotics, we have

2

u
/[]84(]/[2])_ 21 X (urty Fup) X+ = up = -1 — —.
Sl2

1

Thus, for arbitrary n, the ™ *-coeflicient equals

T”_l(l _ rz) 7“"72(—7“3 _ ﬁ)
(14) T e

Comparison of (13) and (14) yields the requisite value for the constant ¢, completing

the argument. ([l
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2.4. Proof of Theorem 1. By [EGL], the generating series of Segre integrals takes the

form
S(z) =) 2" / y 5o (V) = ag(2)2M) - ay (2)2 V) - gy (2)X(Os) |
n=0 s

for three power series ag(2), a1(2), a2(z) € Q[[2]]. We show that these power series are as

claimed by Theorem 1:
ap(z) = Ao(2), a1(z) = A1(z), az(z) = Az(2).

Fix an integer x > s, and let g = s(x — s). Consider (X, H) a K3 surface of genus g,

and let V' be a vector bundle with Mukai vector
v=(s,H,x—s) = (v,v) =-2.
We calculate
(V) =x(s—1) =52 +2s -1, c;(V)? =2(sy — 1 — 5%).
The residue calculations of Section 2.1 and the first part of Theorem 3 together imply
(AS_IA%S)X (Aas2+25—1A1—2—252A%) _ (ag_la%‘*)x (a652+25—1a1—2—2$2a%) '
Since x is arbitrary, we obtain

(15) AgflAQS = agfla%‘s,

_ g2 _ _9_9¢2 2 _ _9_9a2
(16) A()S +2s 1A12 2s A%:aos +2s 1a12 2s CL%.

We now derive an additional equation using isotropic bundles corresponding to the
second part of Theorem 3. To this end, let ¢ = s(x — s) + 1. Let V. — S be a vector
bundle with Mukai vector

v=_(s,H,x —s) = (v,v)=0.
We then calculate
a(V)=x(s—1)—s*+2s, (V) =2(sx -5,

Repeating the above argument for the new numerics, we replicate equation (15) and in

addition we obtain
—82425 4 —28%2 42 —s2425 —2¢%2 2
(17) A AT Ay =ag ay " aj.

Constraints (15), (16), (17) show that A; = a; for 1 < i < 3, as claimed.
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2.5. Chern classes. Let a — S be a K-theory class of rank s on a K3 surface S, and
let s =r+ 1. As a corollary of Theorem 1, we also obtain expressions for the Chern

classes of tautological bundles,
Zz”/[ ]CQn(Oé[n]) = Ag(z)2@ . AI(Z)C%(a) - Ay(2)X(Os)
n=0 s

After the change of variables

z=t(l—rt)™",
the series are given by
Ag(z) = (A —rt)" (14 (—r+1)t)"+,
A(z) = (=) (14 (—r+ 172,
D) = (- rtbr)h () T (e )T

Remark 8. The rank s = 2 case (corresponding to r = 1) is easily calculated from
geomety by assuming the existence of a transverse section of V', see [J]. The derivation

using our formulas is also simple,
A():i A =1, A2:1’ Z:%_tézi():l—l-z
We find
18 2" Con vy = (1 4 2)e2(V) 7
(18) et [ eV =+

which is the correct answer.

The evaluation of Ay, A;, and Ay for Chern classes follows by regarding the Segre
integrals of Theorem 1 as functions on the K-theory of the surface S which depend

polynomially on
rank o = s, c1(a)?, cala),

see [EGL]. Having established these polynomials for positive s > 0, we may then also
allow s to be negative, and replace a by —au.
As before, if V' is a bundle with (v,v) = —2, we obtain

/sw (VI = (=n)" <_X: T”) '

In particular, paralleling Proposition 1, when (v,v) = —2 we obtain the vanishing

con (VI =0 for (s — 2)n < x(V) < (s — Dn.
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3. ABELIAN AND ENRIQUES SURFACES

3.1. Abelian surfaces. Having established the K3 case, we can also determine the
Segre integrals over abelian or bielliptic surfaces S. Indeed, by the universality results
of [EGL], we have

Zzn/ 52n(V[n]) — Ao(z)CQ(V) 'A]_(Z)C%(V).
n=0 Stn]
Residue calculations give the coefficients of the right hand side
/ san (V") = Coeff [(1 + @+t A +rt) T (L r(r+ 1))
Sln]

where (v,v) = 2d. In particular, we obtain the following generalization of the s = 1
result of [MOP1].

Proposition 3. Let V. — S be a vector bundle of rank s = r — 1 on an abelian or
bielliptic surface S. If (v,v) =0, then

My _ . X (X—Tn—1
/9[n]82"(v )=ty ( n—-1 )°

3.2. Enriques surfaces and strange duality. When S is an Enriques surface, the
link between the Segre and Verlinde series yields individual equalities of intersection
numbers, as the numerical data can be suitably matched. The Proposition below parallels
Conjecture 2.2 of [J] formulated for del Pezzo surfaces. The corresponding result does

not hold for other K-trivial surfaces.

Proposition 4. Let V. — S be a vector bundle of rank s = r + 1, determinant L, and
x(V)=(r—1)n+1. We have

/ can (V) = x(SM, Ly @ E7).
Sln]

The left hand side interprets enumeratively the Verlinde number on the right as an
integral over the Hilbert scheme — counting the expected (finite) number of quotients
VV — I with Z a subscheme of length n. Implications of Proposition 4 for strange

duality over K3 and Enriques surfaces will be taken up elsewhere.

Proof. Write x = x(L) and note that the assumption of the Proposition translates into
oV)=x-(r-1nh-1).
By Subsection 2.5, the Chern integral on the left hand side is the coefficient of 2™ in the

series

AO(Z)CQ(V) 'Al(Z)C%(V) Ay (2),
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or equivalently, the residue of the differential form

dz

Ag(z)X === 4y (2)22 - Ay () - ntl

Using the change of variables z = ¢(1 — rt)™", the differential form becomes

(19)  (L—tr(1—7)2 - (1 —tr) X (772) 73 (1 4 (1 — ) )} (0= 2) =1 ﬂ%

For the right hand side, we use the calculations of Lemma 5.2 of [EGL]:
anx(S[n], Ly ®@E") = F(w)% - G(w)X
where

(14 u)"”

Fw) = 14 r2u

, Gw)=1+u
for the change of variables
w=u(l+ u)rLl.
Therefore, x (S M,L(n) ® E") is the residue of the differential form

dw
wn+1

du
un+1

(200 F(w)? Gw)* - —or = (1+7%u)2 - (1+up " (772) 00,

The change of variables
t
u =
1—1r
matches the two differential forms (19) and (20) and completes the proof. O

4. K3 BLOWUPS

In order to determine the functions As, A4, we need to consider surfaces which are
not K-trivial. We will look at two different families of examples over the blowup of a
K3 at a point. These examples are stated in Theorem 4. We will prove this theorem
first. As before, Reider-type arguments play a key role in the calculation. In addition,
several excess intersection calculations are needed. Afterwards we show Theorem 2: the

integrals calculated in Theorem 4 give the rank 2 series for all surfaces.

4.1. Stability in extensions. Let
m: 85— X
be the blowup of a K3 surface X at one point. We assume that Pic X = ZH. Then
PicS =7ZH + ZF,

where E is the exceptional divisor on S and H denotes the pullback to S of the ample
Picard generator on X. Note that H is a nef line bundle on S.

The notion of H-stability and H-semistability have the usual meaning:
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Definition 1. We say that a torsion-free sheaf V' on S is H-stable if for any nonzero
subsheaf G of strictly smaller rank, we have
a(G)-H - a(V)-H
kG tkV
For the notion of H-semistability the inequality is not required to be strict.

We first prove several statements regarding vanishing of cohomology which will be
useful in the proof of Theorem 4. We consider a vector bundle Vy — X with Mukai

vector vg such that
(21) rank Vo =2, ¢1(Vo) = H, (vo,v0) = —2, Vp is Gieseker H-stable.

The existence of the bundle Vj was noted in the beginning of Section 2.2: V; is the
unique point in the moduli space of Gieseker H-stable bundles with Mukai vector vg.

Such vector bundles are necessarily rigid, that is
Ext!(Vo, Vo) = 0.
Let
(22) V=rVo®E" on S, for k>0.

In order to compute Segre classes of VI — S we analyze the surjectivity of the

evaluation map:

(23) H' (V) ® Ogpy — VI on S,

Thus, for a zero dimensional subscheme Z of length n, we investigate the vanishing of
HY(S,V®Iz)=Ext'(VY,Iz) = Ext'(Iz,VY @ E)V.

Assume that a non-zero element exists in the extension group. We prove

Lemma 1. (i) Assume k > n — 1. For any nonsplit extension
(24) 0VQE—-W =1z —0
with Z € S, the middle sheaf W is H-stable.

(ii) Assume k =n—2. The same conclusion holds, unless the scheme Z is supported

on the exceptional divisor E.
Proof. Assume G — W is an H-semistable destabilizing subsheaf. We then have

HG 2 W > QY VQE-

Since Vp is H-slope stable on X, V" is also H-slope stable. The pullback 7*V’ is
H-stable on S. Thus VY ® E is also H-stable. As a consequence, we see that G' cannot
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be a subsheaf of the kernel VV @ E since this would contradict the H-stability of the
latter.

Thus we have a nonzero morphism ¢ : G — Iz. The H-semistability of G now gives
pua < 0.1If ¢1(G) = aH + bE, we deduce

aH? S H?
tkG — kW’
from which we conclude that ¢ = 0 and pug = 0. Furthermore, if nonzero, the kernel K

0>pe zpw = 02>

of ¢ is a subsheaf of V'V ® I of slope greater than or equal to zero, contradicting the
H-semistability of V¥ ® E. Thus we have in fact that ¢ : G — I is injective, so

G=IyFE™™

for a zero-dimensional subscheme U C S and m > 0. In particular Z is supported on the

exceptional curve E and on U. We turn to the exact sequence
0>G—1;—>0Q—0
and the associated sequence of extension groups
Ext'(Q,VY ® E) — Ext' (I, V¥V ® E) % Ext! (G, VY ® E).
The image of the extension (24)
0#ec€Ext'(Iz,VV®E)

under « is trivial since the resulting extension is seen to be split. Turning to the first

extension group, we have
Ext'(Q, VY@ E)Y = H(V ® Q).
Recall the notation V = 7V, @ E~*. We claim that
H'(V®Q)=0, for k>n—1.

This would imply « is injective, and in turn that the original extension e splits — a
contradiction.

Note that @ is supported on the exceptional divisor and a finite number of points in
S. To prove the claimed vanishing, let us first assume that U is empty. The argument is

best illustrated by the case m = 1. In this case, the defining sequence
0—-E'5I,5Q—0
shows that @ = Iz, is the ideal sheaf of n points on the exceptional divisor. Since
Vg =C*® Og(k),

we see that
H'V®Q)=H(Op(k—n))@C?>=0for k>n—1.
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We now consider the case of arbitrary m, continuing to assume that U = (). We let
W, = (E be the scheme defined by the ideal sheaf E~¢. Set Z,, = Z and Q,,, = Q. The

defining exact sequence
0O—-E™—=I,—-Q—=0
shows that
0—=Qmn— Ow,, = Oz, —0.
Inductively define the scheme-theoretic intersection
Zyp = Zgpr "Wy = Wiypy
for 1 </Z<m—1, and let QQy be given by the exact sequence
0—=Q¢— Ow, = Oz, = 0.
Clearly,
length (Z;) < length (Z,,) = n.

We will show inductively that

(25) H' (V®Q) =0
for all £ < m. The base case £ = 1 was verified above. For the inductive step, form the
diagram
0 0 0
0 Ky Op(l—1) My 0
0 Qr Ow, Oz, 0
0 Qéfl OWg,l - OZefl —0
0 0 0

Note that the support of M, has length at most n. As we already noted
Vg = C’ Ogp(k).
If £>1 and £+ 1 > n, we have just enough positivity to ensure that the morphism

(26) H Ve Op(t-1)=C*0 H'(E,0p(k+ (£ — 1)) = H*(V ® M,)
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is surjective. Using the first row we conclude
H! (V& Ky =0.
Using the first column and invoking the inductive hypothesis, we conclude
H'V®Q,) =0.
This completes the argument when U is empty. For the general case, let T' denote the
scheme with ideal E~™ ® Ij;, and recall W,,, had ideal E~™. The defining exact sequence
gives
O=>Ir—>1I;-Q—-0 = 0—->0Q —>0r—>0z—0.
By composing the first map with the canonical restriction Or — Ow,, we obtain an

exact sequence
(27) 0—Q— Ow, > A—0.

Furthermore
Oz - A—0,
so A = O is supported on at most n points. Then the previous argument applied to
the exact sequence (27)
0—-Q— 0w, -0;—0
gives the vanishing H'(V ® Q) = 0. This finishes the proof when k =n — 1.
When k£ = n — 2, the same argument carries through, unless m = 1 and Z is contained

in F, as one can easily check going through the details, in particular by examining
(26). O

Lemma 2. If W is H-stable, then for any k > 0, the dimension of Hom(W,W @ E¥)

equals 1.

Proof. The H-stability of W implies that any nonzero homomorphism ¢ : W — W ® EF
is injective. This can be seen as usual by examining the kernel and image of ¢. Let A
be an eigenvalue of ¢ at a point p in S where W is locally free and p € FE. Let I be
the canonical homomorphism W — W ® E* obtained by W-twisting the unique section
O — E*. We claim

¢ = Al

Indeed, assuming otherwise, set

v:=¢— N #0.
By the first line of the proof, the morphism v : W — W ® E* must be injective. Consider
the induced morphism
det ) : det W — det W @ EF.
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Writing as before I for the det W-twisting of the unique section of E*", we conclude
dety = ul

for some constant p. By construction, det vanishes at p. However I only vanishes
along F and p € E. This shows that u = 0, so det ) = 0. This contradicts the fact that

1) is injective. O

Lemma 3. Let V = 7V ® E~% with Vi a rank 2 bundle satisfying (21). Assume 4
x(V)=4n—1.
(i) If k =n — 2 then
H'(V®Iz)=0

for all Z € S unless Z C E.
(ii) If k =n — 1 then any nontrivial extension W in (24) is a rigid sheaf.
(iii) In both cases, HY (V) = H*(V) = 0.

Proof. We continue working with the exact sequence (24). If Z ¢ E, W must be H-stable
by Lemma 1. Using Lemma 2, we compute
x(W, W) < ext® (W, W) + ext?(W, W) = ext®(W, W) + ext®(W,W @ E) = 2.
On the other hand, from the defining exact sequence (24), we calculate:
x(W, W) = x(v¥,v¥ ) +Xx(VYQE, Iz)+x (VY, Iz) + x(z, Iz)
= —(vo, ( (Vo) =2n— (k+1)(k+2)) + (x(Vo) =2n —k(k+ 1)) +2 —2n
”0’ %) (Vo) = 3n+1— (k + 1)2>

|
DO

Il
)

< {20, o) (V)—Sn—k:>:2(n—k).
Note now that if £ =n — 2, then
XW,W)=2(n—k)=4

which is a contradiction. This establishes (i).

If k =n — 1, then x(W, W) = 2. Since Ext®(W, W) = Ext?>(W, W) = C we find that
Ext! (W, W) = 0 so W is rigid. This establishes (ii).

Note that the same argument for Z = ) shows that H'(V) = 0, while H*(V) = 0
follows by stability. O

We will analyze the two situations (i) and (ii) in Propositions 5, 6, and 7 below.

4This assumption uniquely specifies the genus H? = 2g — 2 of the K3 surface X in terms of n and k,
as well as the Mukai vector vg for each such K3 surface.
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4.2. Excess calculations for k£ = n—2. The goal of this section is to prove the following

result which corresponds to Theorem 4 (i).

Proposition 5. Let S be the blowup of a K3 surface at one point. Let

with Vy a rank 2 bundle satisfying (21). Assume furthermore that x(V) = 4n — 1. Then
/ s(VIhy = (—1)™(2n + 1).
Sln]

Proof. We compute SQn(V[n]) as an excess intersection over the nonsurjectivity locus of
the evaluation map (23). By Lemma 3, this nonsurjectivity locus consists of those Z

with Z C F, or in other words
Z € EP ~ pn,

For the excess calculation, we need to interpret the Segre class so, in connection with
the top Chern class of a vector bundle, where the excess formula is easier to understand.

This connection is as follows, cf. Fulton [F].
Let G(2n,4n — 1) be the Grassmannian of 2n planes A — H%(V'), with tautological
bundle € of rank 2n. Consider the product S x G(2n,4n — 1) with projection
7: S % G(2n,4n — 1) — S,
By [F], Proposition 14.2.2,
son (V1) = 7, (ciop(€¥ @ VIT)).

Here € and VI are pulled back to the product from G(2n,4n—1) and S ] respectively.

The vector bundle €Y ® V[ has a natural section s. This is induced by the morphism
& —vlon S x G(2n,4n —1)
obtained by composing the inclusion
E=H' (V)@ O
on G(2n,4n — 1) with the evaluation map (23)
H'WV)® 0 — v on s

The zero locus D of the section s is expected to be zero-dimensional, but let us suppose

it is in excess with dimension d, so that

D c S x G(2n,4n — 1), with normal bundle N.
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The excess intersection formula of Section 14.4 in [F] reads
(28) san(VI) = m, (ca (€ @ VPl - ),

where 7 : D — S,
We now compute the right hand side of equation (28). By definition,

D = {(Z,A) so the map A — H°(V) = HY(V ® Oy) is zero}.
We describe D in concrete terms. Observe that
Vig =C%® Opi(n —2),
and set
Ao =ker HO(V) — H°(V|g).
The argument of Lemma 3 shows that H(V ® O(—FE)) = 0. Therefore
dimAp=(4n—-1)—2n—2) =2n+ 1.

Observe next that

D = {(Z,A) with Z € E" and A c Ag} € S x G(2n,4n — 1).
Indeed, if Z ¢ E, by Lemma 3

HY(V) = HY(V|z)

is surjective. The kernel is of dimension (4n — 1) — 2n = 2n — 1, hence it cannot contain

a subspace W of dimension 2n. Furthermore, for Z C E, the restriction
H (V) — H°(V|z)
factors through H°(V|g). Since V|g = Op(n — 2) ® C2, the restriction
H°(V|p) = H(V|z)
is injective. Therefore,
W — H(V) = H(V|g) is zero = A C Ay.
Consequently, we have
D = EM x G(2n, Ag) c S x G(2n,4n — 1),

so that
D ~ P" x P?",
This identification holds scheme-theoretically. Indeed, it is easy to check that the above

pointwise arguments can also be carried out in families. The key observation is that

cohomology and base change commute for all relative constructions involved.
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In K-theory, the normal bundle to D is
N = Ny g1 + Np2ejganan—1) = O(B)M + €Y @ €2,

Here 2n — 2 is the dimension of the quotient H°(V)/A¢ and the two summands are

restricted to D. We now calculate
Sgn(V[n]) = m, (an (8\/ ® V[n} _ O(E)[n] o g\/ ® CQn—Qm}))
= T <C3n (5\/ RC?® O(n — 2)["} — (’)(—1)[”] _&V e (CQ"*2)>

Let ¢ denote the hyperplane class on El"l ~ P and h denote the hyperplane in the
Grassmannian G(2n, Ag) ~ P?". We have

(€)=

c(om-2) = 1-¢
c (0(—1)[”}) = 1-om
The last two formulas for the total Chern classes of tautological vector bundles over the

Hilbert scheme of points on P! are explained for instance in the proof of Theorem 2 of
[MOP2]. Completing the calculation,

1
[n] _ _ ~\3n+2 _ 1\2n—2
son (V™) = Coeff ponen [(1 Q) (1—nh) A ® O(n — D)2
_ (1 o <)3n+2
- CoeﬁhQnCn 7(1 —_ h — C)Q

= (-1)"2n+1). O

4.3. The case k = n — 1. Consider now the case k =n — 1, so that
V=V® E—(n=1)
with Vp satisfying (21), and x(V) = 4n — 1. By Lemma 3 (ii), all nontrivial extensions
(29) 0=VVQE W =17 -0
must have the middle term W a rigid H-stable sheaf of rank 3. Of course,
(30) aa(W)=—H+2nE.

We record the following

Lemma 4. There are no rigid H-stable sheaves of rank 3 satisfying (30) when n % 0
mod 3.
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When n =0 mod 3, the sheaf W must necessarily be of the form
W=1mWy® E%n
where Wy — X is a bundle over the K3 surface with

(31) rank Wo =3, c1(Wy) = —H, Wy rigid and Gieseker H -stable.

Proof. As noted in [G2], [Y1], stability with respect to the non-ample divisor H on the
blowup is equivalent to H — eF-stability for e sufficiently small. Thus the moduli space
of H-stable sheaves on the blowup admits a natural scheme structure. In general, the
moduli space M 5(3, —H + 2nFE, c9) of H-stable sheaves on the blowup has expected
dimension 6d — 16 where d denotes the discriminant. For rigid moduli spaces, we have
d= %. The corresponding moduli of H-stable sheaves is zero dimensional and consists of
isolated points. To count the stable rigid sheaves, we compute the Euler characteristic
of the moduli space.

To this end, we use the blowup formulas of Proposition 3.4 in [Y1] or Proposition 3.1
(2) in [G2]. The generating series of Euler characteristics on the blowup is computed in

terms of the same series on the underlying K3 surface X as

o
1 2 2
E d—f _ E +zy+

m=1 (z.y)

(qu— e(M3 (3, Hd)))

where x,y € Z + %” To complete the proof, we compute the constant term in the above

expression. If n £ 0 mod 3, there is no constant term due to the factor

Indeed, as n # 0 mod 3, we have (z,y) # (0,0) so 2? + 2y + y? > 0.

For n =0 mod 3, the constant term is 1. The moduli space consists of a single rigid
sheaf. Note that when x (V') = 4n — 1, a direct calculation shows that there exists a rigid
sheaf Wy on X such that W = m*WyQ E % on S has the numerics determined by the

exact sequence (29). Specifically the numerical assumptions on V' require
H? = 4n® +12n — 14
and we select Wy to be in the moduli space with Chern numbers
ch(Wp) =3—H + (gnz +2n — 5) [pt] .

This W is then the only sheaf in its moduli space.
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By the Lemma, if n Z 0 mod 3 the extension W cannot exist. Consequently, we have
HY \V®Iz) =0
for all Z. This shows that the evaluation map (23) over the Hilbert scheme is surjective,
and we have obtained the following result corresponding to Theorem 4 (ii):
Proposition 6. If V =1V @ E-"Y with x(V) = 4n — 1 and Vi a rank 2 bundle as
n (21), then
/ son(VI) =0 for n 20 mod 3.
Sl
We now focus on the remaining statement of Theorem 4. We show
Proposition 7. If V = 7V ® E-("1 with x(V) = 4n — 1 and Vy a rank 2 bundle as
n (21), then
/ son(VI) =1 for n=0 mod 3.
Sln]
Proof. As usual, the top Segre class is supported on the locus D where the evaluation

map (23) is not surjective. We now identify I as a subvariety of the Hilbert scheme S ],

The nonsurjectivity locus consists of subschemes Z such that

HYV ®1Iz) #0,
in other words corresponding to the existence of nontrivial extensions
(32) 0=-VYQE W =1z 0.

When n = 3¢ for £ € Z, as seen in Lemma 4, all such extensions have the same middle
term, the unique stable rigid rank 3 vector bundle W on S with numerics specified by

the lemma. A direct calculation establishes further that
(33) VYo EW)=1.
We now show that
D ~ PHom(VY ® E,W) =PH(V @ W @ E!).
To start, note the useful vanishing
H'(VeW)=0
which will be established in Lemma 5 using Reider arguments. By Serre duality and
stability
HVeW)=0, H (Ve V'®E)=C.

From the exact sequence (32), upon tensoring with V', these vanishings imply

(34) HY\(V ®I;) =C.
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By (34), for any given Z in the degeneracy locus, the basic extension (32) is unique.

Conversely, any non-zero morphism
VVQE —-W

must be injective by stability, and the cokernel sheaf ) must have rank 1 and trivial
determinant. We claim that ) = Iz for some scheme Z which necessarily has length n.
This is clear if @) is torsion-free. However, if () had torsion T, then there would be a

torsion-free quotient Q" of rank 1,
05T —Q— Q¥ —0, and QY = I;(—D), for a subscheme U.

Comparing determinants, we find D = detT effective so that D - H > 0. This however
contradicts stability of W — Q¥ unless D- H = 0, in which case D = ¢F for some ¢ > 0.
We argue that ¢ = 0. Indeed, consider the kernel K of the surjection

W = Q — Q" = Iy(—qE).

Using K — W and W is H-stable, it follows that K is H-stable as well. Write
m = length (U).
A direct calculation shows that
XK K) = x(W—1Iy(—qE),W — Iy(—qE))

= 24-4m+4n(qg—1)+3¢* > 2,

which contradicts stability. The only exception is
¢=0, m<n = QY =1,.

The torsion part 7' must have trivial determinant hence it must be supported on points.

Computing Euler characteristics
X(Iy) +x(T) = x(Q) = x(V' @ E) = x(W) =1-n = x(T)=m—n <0.

This is only possible if T' = 0 so that @ is torsion free, in fact Q = Iy for some zero
dimensional scheme U of length n.

Thus we have identified the degeneracy locus D as
D=PH(VeoWaEY).

It is straightforward to carry out the above argument in families. The crux of the matter
is that (34) has constant rank, hence cohomology and base change commute over the

degeneracy locus D. We set

d = dimD.
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Since H*(V ® W ® EV) = 0 by Serre duality and stability, it follows from (33) that
(VoW ®EY)=d

On D x S we have a universal exact sequence
(35) 0V E®O(-1) =W = Iz —0.

which restricts to (32) for each point of D. Here V, W, E are pulled back to the product
from S, O(1) is the hyperplane bundle on D, and Zz is the restriction to D x S of the

universal ideal sheaf on S x §.

The Segre integral

/ Szn(V[n])
Sinl

is calculated as an excess intersection on the degeneracy locus D as follows. Consider

the Grassmannian G(2n,4n — 1) of subspaces
A= H'(V)=C""".

Write £ for the tautological bundle, and let F denote the tautological quotient. The

vector bundle

&V o vl - G(2n,4n — 1) x S
has a natural section s obtained as the composition

A— HY (V)= H(V®0Oy).
Let
Dy C G(2n,4n — 1) x S
be the zero locus of this section. It consists of those pairs (Z,A) where
AC H(V®Iy).

In particular, h%(V ® Iz) > dim A = 2n. Note now that

xXV&lIz)=x(V)—2n=2n-1,

while H?(V ® Iz) = 0 by Serre duality and stability. For (Z, A) in the degeneracy locus

Dy, we have then
AV eIz) >1.

This shows that Z must be in the degeneracy locus D, and in this case h'(V ® Iz) =1
by (34). We are thus forced to have A = H*(V ® I) so that

Do = {(Z, A = H(V ® Iz)) with Z € D} c S x G(2n,4n — 1).
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Note that the projection onto S induces an isomorphism
]D)o ~ D.

By [F], Section 14.4, we have

Joy eV = [ cat®)

where the excess virtual bundle E is
E=¢&"oVM-N,
with N the normal bundle of Dy € S x G(2n,4n — 1). We have in K-theory,
N =¢&"®F+TSM - TDy.
Putting all together,
(36) E=¢&"® VM- F)+ 1Dy —T8M.

It remains to identify E explicitly in terms of the universal sequence (35). For simplicity

we write identities in K-theory on fibers. To start, note that on Dy we have
Elz = HYV®Iy),
Flz = HYV)-H(V®Iy),
TS|, = Extl(iz, 1),
and from the Euler sequence
(37) Dy =H'VeWeEY)®O(1) - C.
The evaluation sequence
0= H(VeIz) - H (V) H VRO - H(V®Iz) =0
gives
Vil — F = R'm (V@ Iz),

a line bundle on Dy. Here 7 : D x S — D is the projection. From the sequence (35),

after tensoring with V and pushing forward to D via m we obtain
0—=0(-1) = H(VeW)— R (V®Iz)—0,
0= Rn (VeIz)— O(-1)—0.
Therefore in K-theory
Rm(V®Iz) = HY(VeW)-0(-1)
R'm.(V®Iz) = O(-1).
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We obtain
(38) VoW -F) =HVeoW)@0(-1) - C.
Noting from (35) that
Iz=W-V'® E®O(-1),
it follows that
T RIz:=VoV'4WeW' - VaWeE' 0(1)-V'eW'eFE®O(-1).
Here all tensor products are derived. We therefore finally calculate
(39) TSN = Extl(Zz, Iz)
= —&atd(Zz,Zz) +C+C
= H'VeW®E)20(1)+H(VeW)' ®0(-1)-C-C.
This last equality uses the fact that V, W are stable and rigid, and that V ® W has no
higher cohomology.

Collecting the expressions (37), (38), (39) in the excess bundle E given by (36), we
find

E=H'{VeWeEY)20(1)=C'eO0(1).

/ sZn(v[nl):/ cd(E):/ hd =1.
X[ Do Do

This completes the proof. ]

We conclude

Lemma 5. Let n = 3¢. Assume
V — 7_‘_*‘/'0 ® E—3€+1’ W — W*WO ® EQK

where x(V) = 4dn—1 and Vo, Wy are two rigid bundles satisfing conditions (21) and (31).
We have

H' (VeoW)=0.
Proof. The argument is an application of Reider’s method. Assume that
H'\VeoW)=Ext!(W,VVeE)" #0.
We construct a nontrivial extension
0-VV®E—-F—W—=0.

The middle sheaf F'is H-stable by an argument similar to that of Proposition 2. Indeed,
if F'is not H-stable, let G — F' be the maximal semistable destabilizing subsheaf. Then

kG <tk F and pup(G) > pg(F) > ug(VY @ E).
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We see that G cannot be a subsheaf of the kernel VV ® E since this would contradict

the H-stability of the latter. Therefore, we have a nonzero morphism
¢:G—=>W = uu(G) < pa(W).
Writing ¢1(G) = aH + bE we see that

a

pr(F) < pu(G) <pup(W) = —o < omm < =

(SR
W =

which is impossible.

Finally, a direct calculation shows
X(F,F) = x(WW)+x(VVQE VYQE)+x(V'®@EW)+x(W,V'®E)
= 24+24+1+2n+1)>2
contradicting the stability of F'. O

4.4. Proof of Theorem 2. We now prove Theorem 2. The statement will follow com-

binatorially using the geometric input provided by Theorem 4.

Define first the following combination of the basic power series A;:
(40) f(2) = Ao(2)” - A1 (2) - A3(2)°
9(2) = Ao(2) ™ A1(2) 722 - Az(2)% - As(2) ™! - Au(2) 7
h(z) = Ag(2) ™2 - A1(2) 718 Ag(2)? - A3(2) 72 Ag(2) L.
We will derive identities between the functions f, g, h using the two calculations provided
by Theorem 4.

First, over the K3 blowup, let V = Vi ® E~("=2) with V; rigid H-stable of rank 2 so
that x(V) = 4n — 1. ® One checks that

(V) =20mn — 22, (V) =5n—4, (V) -Kg=2(n—-2), K&=—1.
Using (1) for the vector bundle V', we obtain that
[ SV = 7 A a2 A - Al a() = S 9(2)
V\;gith the aid of Proposition 5 this rewrites as
"] f(2)" - g(2) = (=1)"(2n + 1),

where the brackets denote the suitable coefficient in the given power series. Therefore

- n n _Oon n _1_2
S o) = o e ) =

5As noted in Lemma 3, this numerical setup only exists over K3s of certain genus determined by n.
The argument here strongly uses the universality of the Segre series.
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Write
w
41 Z=—.
() Flw)
The Lagrange-Biirmann inversion formula [WW] is the general identity
S (L] £ yn n_ gw) dw
> (A o) 2 = i

In our situation, it gives

1—2 g(w) dw
42 pr— . _—
(42) (1422  f(w) dz

In similar fashion, for V = Vy ® E~("~1 by making use of Proposition 6 and Propo-

sition 7, we obtain

43 S S
(43) 1—23 (w) dz
The expression

1 o0
_ 3k
1— 23 Z z
k=0

encodes the fact that the Segre integrals are 0 for n 2 0 mod 3 and equal to 1 for n =0
mod 3.
We now explain how equations (42) and (43) give the remaining functions As and Ay.

Dividing the two equations we obtain
hw)  (1+2)?

glw) (1 =2)(1-2%)

This gives via (41)
w  h(w) (1+ 2)?
Fw) glw) ~ 7 A=)
Let us write
w = t(1+3t)3.

We compute
w  h(w) -4 ~16 t
—— ——==w- Ag(w) " - A1 (w =—)
Flw) glwy A A oy
where the first equality follows by (40), and the second equality uses the expressions for
Agp, Ay given by Theorem 1. Therefore
21422t
(1—-2)(1-23) 143t
for the function y(¢) of the introduction. With this understood, we find via (41)
w (14 3t)
flw) = 2 = LLEHE
z y

= z=y(t),
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Using (40), we obtain

ol

1 1/2
Az(w) = f(w)? - Ag(w)™ 2 - Al(w)_10 1 <t)

T 143t \y
where in the last equality we used the expressions for Ag, A; in Theorem 1.

Similarly, from equation (42) we compute

_ 1—z dz/dt  t(1+3t) 1-y y
9(w) = 1) TR Gujat = C(A4y)? 1+ 3021+ 12t)
(1+2) dw/dt y (T+y)? (1+30)2(1+12t)
Combined with (40) we obtain the expression for A4 claimed in Theorem 2. O
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