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Abstract. Let S be a nonsingular projective surface. Each vector bundle V on S of
rank s induces a tautological vector bundle over the Hilbert scheme of n points of S.
When s = 1, the top Segre classes of the tautological bundles are given by a recently
proven formula conjectured in 1999 by M. Lehn. We calculate here the Segre classes
of the tautological bundles for all ranks s over all K-trivial surfaces. Furthermore,
in rank s = 2, the Segre integrals are determined for all surfaces, thus establishing a
full analogue of Lehn’s formula. We also give conjectural formulas for certain series of
Verlinde Euler characteristics over the Hilbert schemes of points.

1. Introduction

1.1. The Hilbert scheme of points. Let S be a nonsingular projective surface, and

let S[n] denote the Hilbert scheme of n points on S. Each line bundle L → S gives rise

to a tautological rank n vector bundle L[n] → S[n] via the assignment

ζ 7→ H0(L⊗Oζ).

Tautological integrals over the Hilbert scheme of points or over their geometric subsets

emerge often in enumerative geometry. We mention three situations studied previously:

(i) the count of n-nodal curves in fixed linear system Pn ⊂ |L| where L → S is

sufficiently positive. These counts were recast by Göttsche [G1] in terms of

Hilbert schemes. Specifically, for a suitable geometric subscheme

Wn ↪→ S[3n]

birational to S[n], the Severi degrees are encoded by the series

G(z) =

∞∑
n=0

zn
∫
Wn

c(L[n]).

(ii) the Verlinde series of holomorphic Euler characteristics [EGL]:

V(z) =

∞∑
n=0

zn · χ(S[n], L(n) ⊗ Er).

Here the line bundle ()(n) is pulled back from the symmetric product, and E

denotes −1
2 of the exceptional divisor on the Hilbert scheme.
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(iii) integrals of Segre classes of tautological bundles considered by Lehn [L]:

S(z) =
∞∑
n=0

zn
∫
S[n]

s(L[n]).

There are strong reasons to study all three series above. The count of curves in (i) is

a central enumerative question. The Verlinde series (ii) captures all holomorphic Euler

characteristics of line bundles over the Hilbert scheme of points. Calculating the series

has applications to the study of K-theoretic Donaldson invariants on moduli spaces

of sheaves of arbitrary rank, as pursued in [GNY], [GY], [G3]. Indeed over elliptic

surfaces, higher-rank invariants can in many cases be matched to Verlinde numbers on

the Hilbert scheme via Fourier-Mukai techniques. Furthermore, knowledge of the series

(ii) is crucial to the strange duality problem for sheaves on surfaces. Interesting variants

of the Verlinde series, involving symmetric and exterior powers of tautological bundles,

were recently studied in [A]; see also [Sc].

The main focus of this paper is the Segre series (iii) in its general form, when L is

replaced by an arbitrary higher rank vector bundle. The Segre integrals appeared first

in the study of rank 2 Donaldson invariants of rational surfaces [T, Ty]. More recently,

the Segre series have turned up in the intersection theory of various parameter spaces

of sheaves with sections (higher rank Quot schemes, higher rank stable pairs), where

they naturally enter localization calculations via the obstruction bundles (cf [MOP1]).

This is a setup which parallels the appearance of Hodge integrals in Gromov-Witten

theory. The importance of systematically studying the Segre series (iii) and its higher

rank generalizations was highlighted in [OP] in the case of curves.

In a significant development, a conjectural relationship between the Verlinde and Segre

series was proposed in [J], aligned with the vaster conjectural framework of strange

duality for moduli spaces of sheaves. This picture acquired further precision in [MOP2]

where the series S and V were conjecturally matched through an explicit change of

variables. As a consequence, the Segre series holds the key to understanding the Verlinde

numbers (ii). This point will be addressed in Section 1.6.

The common feature of the expressions G, V, S is that all three factor (cf. [G1], [Tz],

[KST], [EGL]) as products of four universal series

U1(z)
L2 · U2(z)

χ(OS) · U3(z)
L·KS · U4(z)

K2
S ,

with

U1, U2,U3,U4 ∈ Q[[z]].

The series U1 and U2 are uniquely determined by K-trivial geometries and are typically

more accessible. They are known in examples (i)-(iii), see [G1], [EGL], [MOP1]. For
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all types of tautological integrals considered over the past few decades, closed formulas

for the remaining series U3,U4 have proven very difficult to calculate or even conjecture.

Remarkably, the Segre geometry (iii) is the only nontrivial case known so far; the details

are explained in Section 1.3.

1.2. Higher rank. We undertake the study of the Segre series in higher rank. To set

the stage, let V → S be a vector bundle of rank s, inducing a tautological rank sn vector

bundle

V [n] → S[n]

over the Hilbert scheme via the assignment

ζ 7→ H0(V ⊗Oζ).

The construction extends to K-theory. For each K-theory class α ∈ K(S), there is an

associated K-theory class

α[n] → S[n]

defined via locally free resolutions. We are interested in the Chern numbers of α[n], but

it will be more convenient to work with Segre classes. Fixing α ∈ K(S), we consider its

associated Segre series

Sα(z) =
∞∑
n=0

zn
∫
S[n]

s(α[n])(1)

= A0(z)
c2(α) ·A1(z)

c1(α)2 ·A2(z)
χ(OS) ·A3(z)

c1(α)·KS ·A4(z)
K2

S .

The above factorization follows by [EGL]. The five series

A0, A1, A2, A3, A4 ∈ Q[[z]]

are independent of the surface S, and depend on α only through the rank s.

1.3. Lehn’s conjecture. Let us assume first that rank α = 1 and α is represented by

a line bundle

L→ S.

Then, the series A0 is absent from (1). Lehn [L] conjectured closed formulas for all four

series A1, A2, A3, A4. In the rephrasing of [MOP1], after the change of variables

z = t(1 + 2t)2,
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the universal Segre series are given by

A1(z) = (1 + 2t)
1
2 ,

A2(z) = (1 + 2t)
3
2 · (1 + 6t)−

1
2 ,

A3(z) =
1

2
· (1 + 2t)−1 ·

(√
1 + 2t+

√
1 + 6t

)
,

A4(z) = 4 · (1 + 2t)
1
2 · (1 + 6t)

1
2 ·
(√

1 + 2t+
√

1 + 6t
)−2

.

The series A1 and A2 were confirmed via the study of the virtual geometry of the

Quot scheme of K-trivial surfaces in [MOP1]. Using Reider type techniques, Voisin [V]

proved the vanishing of certain Segre integrals in the case of the blowup of a K3 surface

in one point, and showed these vanishings determined uniquely the series A3, A4. The

series were shown to have Lehn’s conjectured expressions via the residue calculations of

[MOP2]. As a result, the Segre series are calculated for all line bundles over nonsingular

projective surfaces S.

1.4. The series A0, A1, A2 in arbitrary rank. Our first result gives a simple closed

form expression for the Segre series of all K-trivial surfaces, in all ranks. We prove

Theorem 1. Let S be a K-trivial surface, let α be a K-theory class of rank s, and set

r = s+ 1. We have

(2) Sα(z) =

∞∑
n=0

zn
∫
S[n]

s(α[n]) = A0(z)
c2(α) ·A1(z)

c21(α) ·A2(z)
χ(OS)

where the formulas for the series A1, A2, and A3 are

A0(z) = (1 + rt)−r · (1 + (1 + r)t)r−1 ,

A1(z) = (1 + rt)
r−1
2 · (1 + (1 + r)t)−

r
2
+1 ,

A2(z) = (1 + rt)
r2−1

2 · (1 + (1 + r)t)−
r2

2
+r · (1 + r(1 + r)t)−

1
2 ,

after the change of variables

(3) z = t (1 + rt)r .

Remark 1. In [J], Johnson computed the series A0, A1, A2 up to order 6 and conjectured

several connections between them. Building on these calculations, the above formulas

for A0, A1, A2 were proposed in [MOP2].

Remark 2. The simplicity of the expressions in Theorem 1 is deceiving. The individual

Segre integrals are quite complicated. For instance, for a K3 surface S and n = 2, we
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have ∫
S[2]

s4(V
[2]) =

1

4

((
2(c21)

2 + 2c22 − 4c21c2 − 8c21 + 6c2
)

+ s(−9c21 + 6c2 + 12)(4)

+ s2(−3c21 + 2c2 + 22) + 12s3 + 2s4
)
,

where V is a vector bundle of rank s with Chern classes c1 and c2. For arbitrary surfaces,

the answers are more involved.

Remark 3. Even in rank 1, Theorem 1 gives additional information not covered by

Lehn’s conjecture. While the series A1, A2 were predicted by Lehn’s formula,

A0(z) = (1 + 2t)−2 · (1 + 3t) for z = t(1 + 2t)2

was absent from the line-bundle setup of the conjecture.

Remark 4. For nonsingular projective curves, the generating series of higher rank Segre

integrals was determined in [MOP2]. A change of variables similar to (3) was needed to

express the answer in closed form.

Remark 5. The expressions A1, A2 determined by Theorem 1 were subsequently con-

nected by Mellit with certain generating series of Hurwitz numbers in genus zero [M].

1.5. The series A3, A4. For surfaces S which are not K-trivial, and an arbitrary class

α ∈ K(S), the universal series A3, A4 appear in the Segre generating function Sα(z) and

are very difficult to evaluate.

We calculate the two remaining universal series for rankα = 2, thus proving a full

rank-two analogue of Lehn’s formulas. Thus, we provide a second nontrivial situation

for which all series involved are determined. Using the change of variables

z = t(1 + 3t)3,

Theorem 1 gives

A0(z) =
(1 + 4t)2

(1 + 3t)3
,

A1(z) =
(1 + 3t)

(1 + 4t)
1
2

,

A2(z) =
(1 + 3t)4

(1 + 4t)
3
2 · (1 + 12t)

1
2

.

To describe the remaining two series, let y(t) be the unique real solution of the quartic

equation
y · (1 + y)2

(1− y)(1− y3)
=

t

1 + 3t
, y(0) = 0.
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We have

y(t) = t− 6t2 + 41t3 − 314t4 + 2630t5 + . . . .

Theorem 2. For rank α = 2 the remaining universal Segre series are

A3(z) = (1 + 3t)−1 ·
(
y(t)

t

)−1/2
A4(z) = (1 + 3t) ·

(
y(t)

t

)3

· (1 + y)2

1− y
· 1

y′
.

Based on these expressions, we also formulate

Conjecture 1. For all ranks, the functions A3, A4 are algebraic.

Remark 6. Finding the series A3 and A4 for α of arbitrary rank remains an open

question. In addition to Lehn’s formula for rank one, and the substantial rank two

analysis carried out here, a few cases are trivially known:

• the case rank α = −1 is immediate. Set α = −L for some line bundle L → S.

For dimension reasons we have∫
S[n]

s(α[n]) =

∫
S[n]

c((−α)[n]) = 0 for n ≥ 1 =⇒ A3(z) = A4(z) = 1.

• for rank α = −2, we can prove geometrically, see (18) for instance, that∫
S[n]

s(α[n]) =

∫
S[n]

c((−α)[n]) =

(
c2(−α)

n

)
.

We again obtain

A3(z) = A4(z) = 1.

• for rank α = 0, we have A4(z) = 1 just by setting α = 0. Regarding the

remaining series, we state the following

Conjecture 2. In rank 0, we have

A3(z) = (1 + t)−1 · (1 + 2t)
1
2 for z = t(1 + t).

1.6. The Verlinde generating function. We now turn to the generating series of

holomorphic Euler characteristics of tautological line bundles over the Hilbert scheme.

We set

Vα(w) =

∞∑
n=0

χ(S[n], (detα)(n) ⊗ Er) · wn ,

where the line bundle ()(n) is pulled back from the symmetric product, and E denotes

−1
2 of the exceptional divisor on the Hilbert scheme. Since Vα only depends on detα,

only four power series are needed in the factorization

Vα(w) = B1(w)χ(c1(α)) ·B2(w)χ(OS) ·B3(w)c1(α)·KS− 1
2
K2

S ·B4(w)K
2
S .
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The different form of the exponents used here relative to (1) is justified by the fact that

with the current choices, we have the following symmetries

(5) B3 7→ B−13 as r → −r

B4 is invariant under the symmetry r → −r.

This was noted in Theorem 5.3 in [EGL] as a consequence of Serre duality. Also by

[EGL], we explicitly know B1 and B2. For

w = t(1 + t)r
2−1,

we have

B1(w) = 1 + t, B2(w) =
(1 + t)

r2

2

(1 + r2t)
1
2

.

The series B3, B4 remain mysterious in general. The cases r = 0 and r = ±1 are

immediate exceptions, obtained in [EGL], Lemma 5.1. Indeed for r = 0, we have

Vα(w) = (1− w)−χ(c1(α)) =⇒ B3(w) = B4(w) = 1,

and for r = ±1,

Vα(w) = (1 + w)χ(c1(α)) =⇒ B3(w) = B4(w) = 1.

For all surfaces, motivated by strange duality, Johnson [J] predicted a connection

between the Segre and Verlinde series

S−α(z)↔ Vα(w),

under an undetermined change of variables z ↔ w, and the shift

(6) r = rank α− 1.

These predictions were made precise in [MOP2] where the unknown change of variables

was proposed:

z = t(1− rt)−r, w =
t(1− (r − 1)t)r

2−1

(1− rt)r2
.

Using Theorem 1 we show under suitable numerics an equality between Verlinde num-

bers and tautological Chern integrals on Enriques surfaces, see Proposition 4. This is

consistent with strange duality.

Since the Segre series is now calculated for rank α = 1 (Lehn’s formula) and rank

α = 2 (in Theorem 2), this precise conjectural Verlinde-Segre relationship gives further

predictions for the unknown Verlinde universal series B3 and B4.
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For r = ±2, the formulas for B3 and B4 are captured by Conjecture 2 of [MOP2].

Indeed for r = 2, setting 1

w = t(1 + t)3,

we expect

B3(w) =
1 +
√

1 + 4t

2(1 + t)

B4(w) = (1 + t)
1
2 · (1 + 4t)

1
2 ·
(

1 +
√

1 + 4t

2

)− 5
2

.

Thanks to Theorem 2, we obtain the following predictions about the Verlinde series

for r = ±3. Let Y be the unique real solution of the quartic equation

y · (1 + y)2

(1− y)(1− y3)
= t, y(0) = 0.

We have

Y(t) = y

(
t

1− 3t

)
= t− 3t2 + 14t3 − 80t4 + 509t5 − 3459t6 + . . . .

Conjecture 3. For the Verlinde series Vα with r = 3, setting

w = t(1 + t)8

we have

B3(w) = (1 + t)−
3
2 ·
(
Y(t)

t

)− 1
2

,

B4(w) = (1 + t)
3
4 ·
(
Y(t)

t

) 13
4

· (1 + Y)2

1− Y
· 1

Y′
.

The expressions for r = −3 are obtained via the symmetry (5).

Finding the general expression for the unknown series B3 and B4 for arbitrary r, thus

determining all rank 1 Verlinde numbers, is a central question in the enumerative theory

of Hilbert schemes of points on surfaces.

Remark 7. Due to the rank shift (6), the Serre duality symmetry

s→ −s

on the Verlinde side translates into a conjectural transformation rule for the remaining

unknown Segre universal series A3, A4, as

s→ −s− 2.

1To be in agreement with the formulas of [MOP2], one has to change t 7→ t/(2 + 2t).
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In particular, we can also state predictions for the Segre series A3, A4 in rank α = −3

and rank α = −4 from the series in rank α = 1 and rank α = 2. The exact expressions

are more cumbersome, but they support Conjecture 1.

1.7. Strategy of proofs. We first explain how Theorem 1 is derived. To find the three

universal series A0, A1, A2, we pick α to be the class of a suitable vector bundle

V → S

over a K3 surface S. As witnessed by (4), the Segre integrals are generally very com-

plicated. It is a key observation that the answers take a simpler form for sheaves with

small deformation spaces. The most beautiful formulas are obtained for spherical vector

bundles V and for vector bundles with isotropic Mukai vectors. Let

v = chV ·
√

td(S) ∈ H2?(S,Z)

be the Mukai vector of V , and recall the Mukai pairing

〈v, v〉 =

∫
S
v22 − 2v0v4 where v = (v0, v2, v4) ∈ H2?(S).

Set χ = χ(S, V ). We show:

Theorem 3. Let S be a K3 surface, and let V → S be a rank s = r − 1 vector bundle.

(i) If 〈v, v〉 = −2, then ∫
S[n]

s2n(V [n]) = rn
(
χ− rn
n

)
.

(ii) If 〈v, v〉 = 0, then∫
S[n]

s2n(V [n]) = rn
(
−r +

1

r
+
χ

n

)(
χ− rn− 1

n− 1

)
.

Theorem 3 is proven by a direct geometric argument using Reider techniques [R], also

employed in rank 1 in [V]. The crucial insight here is the identification of the optimal

geometric setup for which the complicated Segre integrals become manageable. We will

then show by a residue calculation that Theorems 1 and 3 are equivalent.

The analysis is quite intricate for Theorem 2, requiring in particular delicate excess

calculations for Segre classes. The key statements are captured by the following

Theorem 4. Let π : S → X be the blowup of a K3 surface X at a point, with exceptional

divisor E. Let V0 → X be a rank 2 bundle whose Mukai vector satisfies 〈v0, v0〉 = −2.

Set

V = π?V0 ⊗ E−k,
and assume that

χ(V ) = 4n− 1.
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(i) If k = n− 2, then ∫
S[n]

s2n(V [n]) = (−1)n(2n+ 1).

(ii) If k = n− 1, we have∫
S[n]

s2n(V [n]) = 1 for n ≡ 0 mod 3.

∫
S[n]

s2n(V [n]) = 0 for n 6≡ 0 mod 3.

We finally show by a residue calculation that Theorems 2 and 4 are equivalent.

1.8. Moduli of surfaces. The Segre integrals can be viewed as part of a richer theory

which is important to explore further. For each flat family

π : S → B

of nonsingular projective surfaces carrying line bundles L1, . . . , L` → S, we define the

κ-classes

κ[a1, . . . , a`, b] = π?

(
c1(L1)

a1 · · · c1(L`)a` · c1(ωπ)b
)
∈ A?(B) .

When π is the universal family of the moduli of polarized surfaces

π : S →M,

the κ-classes thus defined generate the tautological ring R?(M) analogous to the well-

studied tautological ring R?(Mg) of the moduli of curves. Finding relations between the

κ-classes in R?(M) is a very interesting problem.

In the case of the moduli of K3 surfaces, a strategy for κ-relations was laid out in

[MOP1] via the study of the virtual class of the Quot scheme; a different approach via

Gromov-Witten theory was pursued in [PY]. The discussion however makes sense for

arbitrary polarized surfaces as well. In this approach, the center stage is taken by the

calculation of the push-forwards

∞∑
n=0

qnπ
[n]
?

(
si1(L

[n]
1 ) · · · si`(L

[n]
` )
)
∈ A?(M)

in terms of the classes κ[a1, . . . , a`, b]. In the K-trivial case, or more ambitiously for

arbitrary surfaces, it becomes important to obtain explicit formulas, thus generalizing

the results of this paper.
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2. K3 surfaces

2.1. Residue calculations. Our first goal is to prove Theorem 1. We begin by ex-

plaining how the special formulas of Theorem 3 are predicted by the series in Theorem

1. Conversely, we will prove in Section 2.4 that these predictions are equivalent to the

statement of Theorem 1.

We keep the same notation as in the introduction. Let S be a K3 surface. For a

vector bundle V → S with Mukai vector

v = ch (V )
√

td(S),

let

χ = χ(S, V ) , c1 = c1(V ) , c2 = c2(V ) ,

as in Section 1.7. Recall that s = rk V and r = s + 1. Taking the K-theory class α to

be V , the statement of Theorem 1 becomes

S(z) = (1 + (1 + r)t)[(r−1)c2+(− r
2
+1)c21−r2+2r] · (1 + tr)[−rc2+

r−1
2
c21+(r2−1)] · 1

1 + r(1 + r)t
.

For convenience, we define

(7) d = (r − 1)c2 +
(
−r

2
+ 1
)
c21 − r2 + 2r .

We then need to prove

(8) S(z) = (1 + (1 + r)t)d · (1 + tr)−d+χ+1 · 1

1 + r(1 + r)t
.
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An important observation is that the quantity (7) is half the dimension of the moduli

space Mv of stable sheaves of type v on the K3 surface S,

dimMv = 〈v, v〉+ 2 = 2d .

We can express the individual Segre integrals as the residues∫
S[n]

s2n(V [n]) =
1

2πi

∮
S(z) · dz

zn+1
.

Substituting equation (8) in the above residue and using the change of variables (3)

z = t(1 + rt)r,

we are equivalently seeking to prove the following formula for the top Segre classes:∫
S[n]

s2n(V [n]) =
1

2πi

∮
(1 + (1 + r)t)d · (1 + rt)−d+χ−rn · dt

tn+1

= Coeff tn

[
(1 + (1 + r)t)d · (1 + rt)−d+χ−rn

]
.

The formula yields a remarkably simple answer in the following two cases, leading to the

statement of Theorem 3.

(i) When d = 0, we expect∫
S[n]

s2n(V [n]) = rn
(
χ− rn
n

)
.

In particular, when r = 2 we recover the known line bundle result of [MOP1],∫
S[n]

s2n(L[n]) = 2n
(
χ− 2n

n

)
.

(ii) When d = 1, we expect∫
S[n]

s2n(V [n]) = rn
(
−r +

1

r
+
χ

n

)(
χ− rn− 1

n− 1

)
.

2.2. Vanishing results. We now prove the formulas above, thus establishing Theorem

3. The proof is guided by the simple form of the expected answers.

Throughout this Section, we let S be a K3 surface of Picard rank one,

Pic (S) = ZH.

Let V → S be an H-stable 2 vector bundle of rank s > 1 with c1(V ) = H, so that the

Mukai vector equals

v = (s,H, χ− s).

We assume that

〈v, v〉 = −2 or 〈v, v〉 = 0.

2H-stability is Gieseker stability with respect to the polarization H.
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In both of these cases, we know the moduli space of H-stable sheaves with Mukai vector

v is nonempty, see [Y3], Theorem 0.1 for a general result. The moduli space is either a

point, or a K3 surface, see Theorems 1.4 and 3.6 in [Mu].

Since s > 1, the locus of locally free sheaves V in the moduli space with Mukai vector

v is nonempty. Nonemptiness is obtained by invoking Yoshioka’s classification of Mukai

vectors yielding moduli consisting entirely of nonlocally free sheaves in Proposition 0.5

of [Y3]. His classification does not include vectors v as above.

Under these assumptions, we show the following vanishings.

Proposition 1. We have

(i) If 〈v, v〉 = −2, then s2n(V [n]) = 0 for rn ≤ χ(V ) < (r + 1)n.

(ii) If 〈v, v〉 = 0, then s2n(V [n]) = 0 for rn+ 1 ≤ χ(V ) < (r + 1)n.

Proof. Recall that V is said (n− 1)-very ample if the evaluation map

(9) H0(S, V )→ H0(S, V ⊗OZ)

is surjective for all Z ∈ S[n]. This is equivalent to the surjectivity of the natural vector

bundle map

H0(S, V )⊗OS[n] −→ V [n] on S[n].

We will show that this is the case under our numerics in Proposition 2 below.

By the definition of Segre classes, whenever the evaluation map is surjective, we have

the vanishing

sj(V
[n]) = 0 for j > h0(S, V )− rankV [n] .

In our situation

h0(S, V ) = χ(V ).

Indeed, by Serre duality and stability,

h2(S, V ) = h0(S, V ∨) = 0 .

Furthermore, for χ > 0 we have

(10) h1(S, V ) = 0 .

The vanishing (10) is established in the proof of Proposition 2 below, where it is argued

that there do not exist nontrivial extensions

0→ V ∨ → E → OS → 0 .

Therefore, (n− 1)-very ampleness of V implies the vanishing

sj(V
[n]) = 0 for j > χ(V )− sn .
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In particular, we obtain

s2n(V [n]) = 0 for (r + 1)n > χ(V ).

�

Proposition 2. We have

(i) If 〈v, v〉 = −2 and χ(V ) ≥ rn, then V is (n− 1)-very ample.

(ii) If 〈v, v〉 = 0 and χ(V ) ≥ rn+ 1, then V is (n− 1)-very ample.

Proof. The evaluation map (9) is surjective if H1(V ⊗ IZ) = 0 for all Z ∈ S[n]. Assume,

for contradiction, that

(11) H1(V ⊗ IZ) 6= 0 .

The cohomology group (11) is Serre dual to Ext1(IZ , V
∨) which is the space of extensions

(12) 0→ V ∨ → E → IZ → 0 .

By assumption, we have a non-split extension.

If V is H-stable with c1(V ) = H, then Lemma 2.1 of [Y2] shows that the middle term

E of any non-split extension

0→ V ∨ → E → IZ → 0

is H-stable.

For the benefit of the reader, let us recall the argument in [Y2] in our context. Since

c1(V ) = H is primitive, note first that the H-stability of V implies that V is in fact

slope-stable, therefore V ∨ is slope-stable, hence V ∨ is H-stable as well.

Assuming now that E is not H-stable, let G ↪→ E be the maximal semistable desta-

bilizing subsheaf. We have

rkG < rkE and µG ≥ µE > µV ∨ .

We see that G cannot be a subsheaf of the kernel V ∨ since this would contradict the

H-stability of the latter. Therefore, we have a nonzero morphism

φ : G→ IZ .

The H-semistability of G now gives µG ≤ 0 . Writing c1(G) = aH we deduce a ≤ 0.

Since µG ≥ µE , we obtain

aH2

rkG
≥ − H2

rkE
=⇒ a > −1 .

Therefore, we have

a = 0 and c1(G) = 0 .
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Furthermore, if nonzero, the kernel K of φ is a subsheaf of V ∨ of slope greater than or

equal to zero, contradicting the H-stability of V ∨. Thus, we have

φ : G→ IZ is injective =⇒ G = IW

for a zero-dimensional subscheme W ⊂ S. We consider the exact sequence

0→ G→ IZ → Q→ 0

and the associated sequence of extension groups

Ext1(Q,V ∨)→ Ext1(IZ , V
∨)

f→ Ext1(G,V ∨) .

The first group is zero by Serre duality since Q is supported at finitely many points. We

conclude that f is injective. However, the image of the extension (12) in Ext1(G,V ∨) is

trivial. The contradiction shows that E must be H-stable.

Now, we calculate

χ(E,E) = χ(V ∨, V ∨) + 2χ
(
V ∨, IZ

)
+ χ(IZ , IZ)

= −〈v, v〉+ 2(χ(V )− sn) + 2− 2n

= 2

(
−〈v, v〉

2
+ χ(V )− rn+ 1

)
.

In both cases of Proposition 2, we obtain

χ(E,E) ≥ 4 =⇒ ext0(E,E) + ext2(E,E) ≥ 4 .

Therefore, by Serre duality,

ext0(E,E) ≥ 2 .

Since E is H-stable and therefore simple, we have a contradiction. Thus, (11) does not

hold. The proofs of Proposition 2 and Proposition 1 are therefore complete. �

2.3. Proof of Theorem 3. We consider case (i) of the Theorem. Fix the rank s > 1

throughout. 3 By Theorem 4.1 in [EGL], over K3 surfaces, the Segre integral∫
S[n]

s2n(V [n])

is given by a universal polynomial of degree n in c1(V )2 and c2(V ). When

〈v, v〉 = −2

both c1(V )2 and c2(V ) can be expressed in terms of χ = χ(V ), and therefore∫
S[n]

s2n(V [n]) = Pn(χ),

for a degree n universal polynomial Pn.

3For s = 1, the functions A1, A2 are known by [MOP1, V]. All three functions A0, A1, A2 for s = 1
follow from the case s > 1 via the polynomiality argument of Section 2.5.
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For each χ > s, let (S,H) be a K3 surface of Picard rank one Pic(S) = ZH and of

genus

H2 = 2g − 2, g = s(χ− s).

Let V be the unique H-stable vector bundle with Mukai vector v = (s,H, χ− s) whose

existence we noted in the beginning of Section 2.2. Since 〈v, v〉 = −2, Proposition 1 (i)

shows that the top Segre class of V [n] vanishes when

rn ≤ χ < (r + 1)n.

These n values of χ are the n roots of the polynomial Pn. Therefore,

Pn(χ) = c ·
(
χ− rn
n

)
=⇒

∫
S[n]

s2n(V [n]) = c ·
(
χ− rn
n

)
for some constant c. We will identify the constant c = rn by proving∫

S[n]

s2n(V [n]) =
rn

n!
χn + lower order terms (l.o.t.) in χ.

The argument is most naturally expressed by rewriting (2) in exponential form,
∞∑
n=0

zn
∫
S[n]

s2n(V [n]) = exp
(
Ā0(z) · c1(V )2 + Ā1(z) · c2(V ) + Ā2(z)

)
.

Restricting to the line 〈v, v〉 = −2 in the (c21, c2)-plane, we obtain
∞∑
n=0

zn
∫
S[n]

s2n(V [n]) = exp
(
U(z) · χ+ T (z)

)
,

for power series U and T . Let

U(z) = u1z + u2z
2 + . . . .

Extracting the coefficient of zn in the above expression yields∫
S[n]

s2n(V [n]) =
un1
n!
χn + l.o.t. .

In particular, for n = 1, we obtain∫
S
s2(V ) = u1χ+ l.o.t. .

Direct calculation shows s2(V ) = rχ− r2 so that u1 = r. After substitution, we find the

leading term to be
un1
n!

=
rn

n!
.

For part (ii) of the Theorem, Proposition 1 (ii) gives only n−1 roots of the polynomial

expressing the Segre integral. Combined with the leading term calculations, we conclude

that if 〈v, v〉 = 0 we have∫
S[n]

s2n(V [n]) =
rn

n
(χ+ c)

(
χ− rn− 1

n− 1

)
,
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for some constant c. We will prove

c = n

(
−r +

1

r

)
by computing the next term in the Segre polynomial in χ. Indeed, for the right hand

side, the χn−1 coefficient is easily seen to be

(13)
rn

n

(
c

(n− 1)!
−
n
(
r + 1

2

)
(n− 2)!

)
.

We compute the χn−1 coefficient on the left. As before, we have

∞∑
n=0

zn
∫
S[n]

s2n(V [n]) = exp
(
U(z) · χ+ T (z)

)
where

U(z) = u1z + u2z
2 + . . . , T (z) = t1z + t2z

2 + . . . .

We obtain ∫
S[n]

s2n(V [n]) =
un1
n!
· χn +

(
un−11 t1
(n− 1)!

+
un−21 u2
(n− 2)!

)
· χn−1 + . . . .

When n = 1, we find

χr − r2 + 1 =

∫
S
s2(V ) = u1χ+ v1 =⇒ u1 = r, t1 = −r2 + 1 .

When n = 2, for isotropic vectors 〈v, v〉 = 0, equation (4) simplifies to∫
S[2]

s4(V
[2]) = r2

(
−r +

1

r
+
χ

2

)
· (χ− 2r − 1) .

Using the above asymptotics, we have∫
S[2]

s4(V
[2]) =

u21
2
· χ2 + (u1t1 + u2) · χ+ . . . =⇒ u2 = −r3 − r2

2
.

Thus, for arbitrary n, the χn−1-coefficient equals

(14)
rn−1(1− r2)

(n− 1)!
+
rn−2(−r3 − r2

2 )

(n− 2)!
.

Comparison of (13) and (14) yields the requisite value for the constant c, completing

the argument. �
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2.4. Proof of Theorem 1. By [EGL], the generating series of Segre integrals takes the

form

S(z) =
∞∑
n=0

zn
∫
S[n]

s2n(V [n]) = a0(z)
c2(V ) · a1(z)c1(V )2 · a2(z)χ(OS) ,

for three power series a0(z), a1(z), a2(z) ∈ Q[[z]]. We show that these power series are as

claimed by Theorem 1:

a0(z) = A0(z), a1(z) = A1(z), a2(z) = A2(z).

Fix an integer χ > s, and let g = s(χ− s). Consider (X,H) a K3 surface of genus g,

and let V be a vector bundle with Mukai vector

v = (s,H, χ− s) =⇒ 〈v, v〉 = −2 .

We calculate

c2(V ) = χ(s− 1)− s2 + 2s− 1, c1(V )2 = 2(sχ− 1− s2) .

The residue calculations of Section 2.1 and the first part of Theorem 3 together imply(
As−10 A2s

1

)χ (
A−s

2+2s−1
0 A−2−2s

2

1 A2
2

)
=
(
as−10 a2s1

)χ (
a−s

2+2s−1
0 a−2−2s

2

1 a22

)
.

Since χ is arbitrary, we obtain

(15) As−10 A2s
1 = as−10 a2s1 ,

(16) A−s
2+2s−1

0 A−2−2s
2

1 A2
2 = a−s

2+2s−1
0 a−2−2s

2

1 a22 .

We now derive an additional equation using isotropic bundles corresponding to the

second part of Theorem 3. To this end, let g = s(χ − s) + 1. Let V → S be a vector

bundle with Mukai vector

v = (s,H, χ− s) =⇒ 〈v, v〉 = 0 .

We then calculate

c2(V ) = χ(s− 1)− s2 + 2s , c1(V )2 = 2(sχ− s2) .

Repeating the above argument for the new numerics, we replicate equation (15) and in

addition we obtain

(17) A−s
2+2s

0 A−2s
2

1 A2
2 = a−s

2+2s
0 a−2s

2

1 a22 .

Constraints (15), (16), (17) show that Ai = ai for 1 ≤ i ≤ 3, as claimed.
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2.5. Chern classes. Let α → S be a K-theory class of rank s on a K3 surface S, and

let s = r + 1. As a corollary of Theorem 1, we also obtain expressions for the Chern

classes of tautological bundles,∑
n=0

zn
∫
S[n]

c2n(α[n]) = Ã0(z)
c2(α) · Ã1(z)

c21(α) · Ã2(z)
χ(OS) .

After the change of variables

z = t(1− rt)−r ,

the series are given by

Ã0(z) = (1− rt)−r · (1 + (−r + 1)t)r+1 ,

Ã1(z) = (1− rt)
r−1
2 · (1 + (−r + 1)t)−

r
2 ,

Ã2(z) = (1− rt+ r2t)−
1
2 · (1− rt)

r2−1
2 · (1 + t(−r + 1))−

r2

2
−r.

Remark 8. The rank s = 2 case (corresponding to r = 1) is easily calculated from

geomety by assuming the existence of a transverse section of V , see [J]. The derivation

using our formulas is also simple,

Ã0 =
1

1− t
, Ã1 = 1 , Ã2 = 1 , z =

t

1− t
=⇒ Ã0 = 1 + z.

We find

(18)
∑
n=0

zn
∫
S[n]

c2n(V [n]) = (1 + z)c2(V ) ,

which is the correct answer.

The evaluation of Ã0, Ã1, and Ã2 for Chern classes follows by regarding the Segre

integrals of Theorem 1 as functions on the K-theory of the surface S which depend

polynomially on

rank α = s, c1(α)2 , c2(α) ,

see [EGL]. Having established these polynomials for positive s > 0, we may then also

allow s to be negative, and replace α by −α.

As before, if V is a bundle with 〈v, v〉 = −2, we obtain∫
S[n]

c2n(V [n]) = (−r)n
(
−χ+ rn

n

)
.

In particular, paralleling Proposition 1, when 〈v, v〉 = −2 we obtain the vanishing

c2n(V [n]) = 0 for (s− 2)n < χ(V ) ≤ (s− 1)n.
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3. Abelian and Enriques surfaces

3.1. Abelian surfaces. Having established the K3 case, we can also determine the

Segre integrals over abelian or bielliptic surfaces S. Indeed, by the universality results

of [EGL], we have
∞∑
n=0

zn
∫
S[n]

s2n(V [n]) = A0(z)
c2(V ) ·A1(z)

c21(V ).

Residue calculations give the coefficients of the right hand side∫
S[n]

s2n(V [n]) = Coeff tn

[
(1 + (1 + r)t)d · (1 + rt)−d+χ−rn−1 · (1 + r(r + 1)t)

]
,

where 〈v, v〉 = 2d. In particular, we obtain the following generalization of the s = 1

result of [MOP1].

Proposition 3. Let V → S be a vector bundle of rank s = r − 1 on an abelian or

bielliptic surface S. If 〈v, v〉 = 0, then∫
S[n]

s2n(V [n]) = rn · χ
n
·
(
χ− rn− 1

n− 1

)
.

3.2. Enriques surfaces and strange duality. When S is an Enriques surface, the

link between the Segre and Verlinde series yields individual equalities of intersection

numbers, as the numerical data can be suitably matched. The Proposition below parallels

Conjecture 2.2 of [J] formulated for del Pezzo surfaces. The corresponding result does

not hold for other K-trivial surfaces.

Proposition 4. Let V → S be a vector bundle of rank s = r + 1, determinant L, and

χ(V ) = (r − 1)n+ 1. We have∫
S[n]

c2n(V [n]) = χ(S[n], L(n) ⊗ Er) .

The left hand side interprets enumeratively the Verlinde number on the right as an

integral over the Hilbert scheme – counting the expected (finite) number of quotients

V ∨ → IZ with Z a subscheme of length n. Implications of Proposition 4 for strange

duality over K3 and Enriques surfaces will be taken up elsewhere.

Proof. Write χ = χ(L) and note that the assumption of the Proposition translates into

c2(V ) = χ− (r − 1)(n− 1) .

By Subsection 2.5, the Chern integral on the left hand side is the coefficient of zn in the

series

Ã0(z)
c2(V ) · Ã1(z)

c21(V ) · Ã2(z) ,
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or equivalently, the residue of the differential form

Ã0(z)
χ−(r−1)(n−1) · Ã1(z)

2χ−2 · Ã2(z) ·
dz

zn+1
.

Using the change of variables z = t(1− rt)−r, the differential form becomes

(19) (1− tr(1− r))
1
2 · (1− tr)−χ+r2(n−

1
2)− 1

2 · (1 + (1− r) t)χ−r
2(n− 1

2)+(n−1) · dt

tn+1

For the right hand side, we use the calculations of Lemma 5.2 of [EGL]:∑
wnχ(S[n], L(n) ⊗ Er) = F (w)

1
2 ·G(w)χ

where

F (w) =
(1 + u)r

2

1 + r2u
, G(w) = 1 + u

for the change of variables

w = u(1 + u)r
2−1.

Therefore, χ(S[n], L(n) ⊗ Er) is the residue of the differential form

(20) F (w)
1
2 ·G(w)χ · dw

wn+1
= (1 + r2u)

1
2 · (1 + u)χ−r

2(n− 1
2)+(n−1) · du

un+1

The change of variables

u =
t

1− tr
matches the two differential forms (19) and (20) and completes the proof. �

4. K3 blowups

In order to determine the functions A3, A4, we need to consider surfaces which are

not K-trivial. We will look at two different families of examples over the blowup of a

K3 at a point. These examples are stated in Theorem 4. We will prove this theorem

first. As before, Reider-type arguments play a key role in the calculation. In addition,

several excess intersection calculations are needed. Afterwards we show Theorem 2: the

integrals calculated in Theorem 4 give the rank 2 series for all surfaces.

4.1. Stability in extensions. Let

π : S → X

be the blowup of a K3 surface X at one point. We assume that PicX = ZH. Then

PicS = ZH + ZE,

where E is the exceptional divisor on S and H denotes the pullback to S of the ample

Picard generator on X. Note that H is a nef line bundle on S.

The notion of H-stability and H-semistability have the usual meaning:
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Definition 1. We say that a torsion-free sheaf V on S is H-stable if for any nonzero

subsheaf G of strictly smaller rank, we have

c1(G) ·H
rkG

<
c1(V ) ·H

rkV
.

For the notion of H-semistability the inequality is not required to be strict.

We first prove several statements regarding vanishing of cohomology which will be

useful in the proof of Theorem 4. We consider a vector bundle V0 → X with Mukai

vector v0 such that

(21) rank V0 = 2, c1(V0) = H, 〈v0, v0〉 = −2, V0 is Gieseker H-stable.

The existence of the bundle V0 was noted in the beginning of Section 2.2: V0 is the

unique point in the moduli space of Gieseker H-stable bundles with Mukai vector v0.

Such vector bundles are necessarily rigid, that is

Ext1(V0, V0) = 0.

Let

(22) V = π?V0 ⊗ E−k on S, for k ≥ 0.

In order to compute Segre classes of V [n] → S[n], we analyze the surjectivity of the

evaluation map:

(23) H0(V )⊗OS[n] → V [n] on S[n].

Thus, for a zero dimensional subscheme Z of length n, we investigate the vanishing of

H1(S, V ⊗ IZ) = Ext1(V ∨, IZ) = Ext1(IZ , V
∨ ⊗ E)∨.

Assume that a non-zero element exists in the extension group. We prove

Lemma 1. (i) Assume k ≥ n− 1. For any nonsplit extension

(24) 0→ V ∨ ⊗ E →W → IZ → 0

with Z ∈ S[n], the middle sheaf W is H-stable.

(ii) Assume k = n−2. The same conclusion holds, unless the scheme Z is supported

on the exceptional divisor E.

Proof. Assume G ↪→W is an H-semistable destabilizing subsheaf. We then have

µG ≥ µW > µV ∨⊗E .

Since V0 is H-slope stable on X, V ∨0 is also H-slope stable. The pullback π?V ∨0 is

H-stable on S. Thus V ∨ ⊗ E is also H-stable. As a consequence, we see that G cannot
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be a subsheaf of the kernel V ∨ ⊗ E since this would contradict the H-stability of the

latter.

Thus we have a nonzero morphism φ : G → IZ . The H-semistability of G now gives

µG ≤ 0. If c1(G) = aH + bE, we deduce

0 ≥ µG ≥ µW =⇒ 0 ≥ aH2

rkG
≥ − H2

rkW
,

from which we conclude that a = 0 and µG = 0. Furthermore, if nonzero, the kernel K

of φ is a subsheaf of V ∨ ⊗ IZ of slope greater than or equal to zero, contradicting the

H-semistability of V ∨ ⊗ E. Thus we have in fact that φ : G→ IZ is injective, so

G = IU ⊗ E−m

for a zero-dimensional subscheme U ⊂ S and m ≥ 0. In particular Z is supported on the

exceptional curve E and on U . We turn to the exact sequence

0→ G→ IZ → Q→ 0

and the associated sequence of extension groups

Ext1(Q,V ∨ ⊗ E)→ Ext1(IZ , V
∨ ⊗ E)

α−→ Ext1(G,V ∨ ⊗ E).

The image of the extension (24)

0 6= e ∈ Ext1(IZ , V
∨ ⊗ E)

under α is trivial since the resulting extension is seen to be split. Turning to the first

extension group, we have

Ext1(Q,V ∨ ⊗ E)∨ = H1(V ⊗Q).

Recall the notation V = π?V0 ⊗ E−k. We claim that

H1(V ⊗Q) = 0, for k ≥ n− 1.

This would imply α is injective, and in turn that the original extension e splits – a

contradiction.

Note that Q is supported on the exceptional divisor and a finite number of points in

S. To prove the claimed vanishing, let us first assume that U is empty. The argument is

best illustrated by the case m = 1. In this case, the defining sequence

0→ E−1 → IZ → Q→ 0

shows that Q = IZ/E is the ideal sheaf of n points on the exceptional divisor. Since

V |E = C2 ⊗OE(k),

we see that

H1(V ⊗Q) = H1(OE(k − n))⊗ C2 = 0 for k ≥ n− 1.
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We now consider the case of arbitrary m, continuing to assume that U = ∅. We let

W` = `E be the scheme defined by the ideal sheaf E−`. Set Zm = Z and Qm = Q. The

defining exact sequence

0→ E−m → IZ → Q→ 0

shows that

0→ Qm → OWm → OZm → 0.

Inductively define the scheme-theoretic intersection

Z` = Z`+1 ∩W` ↪→W`+1

for 1 ≤ ` ≤ m− 1, and let Q` be given by the exact sequence

0→ Q` → OW`
→ OZ`

→ 0.

Clearly,

length (Z`) ≤ length (Zm) = n.

We will show inductively that

(25) H1(V ⊗Q`) = 0

for all ` ≤ m. The base case ` = 1 was verified above. For the inductive step, form the

diagram

0

��

0

��

0

��
0 // K`

//

��

OE(`− 1) //

��

M`
//

��

0

0 // Q` //

��

OW`
//

��

OZ`
//

��

0

0 // Q`−1 //

��

OW`−1
//

��

OZ`−1
//

��

0

0 0 0

Note that the support of M` has length at most n. As we already noted

V |E = C2 ⊗OE(k).

If ` ≥ 1 and k + 1 ≥ n, we have just enough positivity to ensure that the morphism

(26) H0(V ⊗OE(`− 1)) = C2 ⊗H0(E,OE(k + (`− 1))→ H0(V ⊗M`)
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is surjective. Using the first row we conclude

H1(V ⊗K`) = 0.

Using the first column and invoking the inductive hypothesis, we conclude

H1(V ⊗Q`) = 0.

This completes the argument when U is empty. For the general case, let T denote the

scheme with ideal E−m⊗IU , and recall Wm had ideal E−m. The defining exact sequence

gives

0→ IT → IZ → Q→ 0 =⇒ 0→ Q→ OT → OZ → 0.

By composing the first map with the canonical restriction OT → OWm we obtain an

exact sequence

(27) 0→ Q→ OWm → A→ 0.

Furthermore

OZ → A→ 0,

so A = O
Z̃

is supported on at most n points. Then the previous argument applied to

the exact sequence (27)

0→ Q→ OWm → OZ̃ → 0

gives the vanishing H1(V ⊗Q) = 0. This finishes the proof when k = n− 1.

When k = n−2, the same argument carries through, unless m = 1 and Z is contained

in E, as one can easily check going through the details, in particular by examining

(26). �

Lemma 2. If W is H-stable, then for any k ≥ 0, the dimension of Hom(W,W ⊗ Ek)
equals 1.

Proof. The H-stability of W implies that any nonzero homomorphism φ : W →W ⊗Ek

is injective. This can be seen as usual by examining the kernel and image of φ. Let λ

be an eigenvalue of φ at a point p in S where W is locally free and p 6∈ E. Let I be

the canonical homomorphism W →W ⊗Ek obtained by W -twisting the unique section

O → Ek. We claim

φ = λI.

Indeed, assuming otherwise, set

ψ := φ− λI 6= 0.

By the first line of the proof, the morphism ψ : W →W⊗Ek must be injective. Consider

the induced morphism

detψ : detW → detW ⊗ Ekr.
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Writing as before I for the detW -twisting of the unique section of Ekr, we conclude

detψ = µI

for some constant µ. By construction, detψ vanishes at p. However I only vanishes

along E and p 6∈ E. This shows that µ = 0, so detψ = 0. This contradicts the fact that

ψ is injective. �

Lemma 3. Let V = π?V0 ⊗ E−k with V0 a rank 2 bundle satisfying (21). Assume 4

χ(V ) = 4n− 1.

(i) If k = n− 2 then

H1(V ⊗ IZ) = 0

for all Z ∈ S[n] unless Z ⊂ E.

(ii) If k = n− 1 then any nontrivial extension W in (24) is a rigid sheaf.

(iii) In both cases, H1(V ) = H2(V ) = 0.

Proof. We continue working with the exact sequence (24). If Z 6⊂ E, W must be H-stable

by Lemma 1. Using Lemma 2, we compute

χ(W,W ) ≤ ext0(W,W ) + ext2(W,W ) = ext0(W,W ) + ext0(W,W ⊗ E) = 2.

On the other hand, from the defining exact sequence (24), we calculate:

χ(W,W ) = χ(V ∨, V ∨) + χ
(
V ∨ ⊗ E, IZ

)
+ χ

(
V ∨, IZ

)
+ χ(IZ , IZ)

= −〈v0, v0〉+ (χ(V0)− 2n− (k + 1)(k + 2)) + (χ(V0)− 2n− k(k + 1)) + 2− 2n

= 2

(
−〈v0, v0〉

2
+ χ(V0)− 3n+ 1− (k + 1)2

)
= 2

(
−〈v0, v0〉

2
+ χ(V )− 3n− k

)
= 2 (n− k) .

Note now that if k = n− 2, then

χ(W,W ) = 2(n− k) = 4

which is a contradiction. This establishes (i).

If k = n − 1, then χ(W,W ) = 2. Since Ext0(W,W ) = Ext2(W,W ) = C we find that

Ext1(W,W ) = 0 so W is rigid. This establishes (ii).

Note that the same argument for Z = ∅ shows that H1(V ) = 0, while H2(V ) = 0

follows by stability. �

We will analyze the two situations (i) and (ii) in Propositions 5, 6, and 7 below.

4This assumption uniquely specifies the genus H2 = 2g − 2 of the K3 surface X in terms of n and k,
as well as the Mukai vector v0 for each such K3 surface.
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4.2. Excess calculations for k = n−2. The goal of this section is to prove the following

result which corresponds to Theorem 4 (i).

Proposition 5. Let S be the blowup of a K3 surface at one point. Let

V = π?V0 ⊗ E−(n−2)

with V0 a rank 2 bundle satisfying (21). Assume furthermore that χ(V ) = 4n− 1. Then∫
S[n]

s(V [n]) = (−1)n(2n+ 1).

Proof. We compute s2n(V [n]) as an excess intersection over the nonsurjectivity locus of

the evaluation map (23). By Lemma 3, this nonsurjectivity locus consists of those Z

with Z ⊂ E, or in other words

Z ∈ E[n] ' Pn.

For the excess calculation, we need to interpret the Segre class s2n in connection with

the top Chern class of a vector bundle, where the excess formula is easier to understand.

This connection is as follows, cf. Fulton [F].

Let G(2n, 4n − 1) be the Grassmannian of 2n planes Λ ↪→ H0(V ), with tautological

bundle E of rank 2n. Consider the product S[n] ×G(2n, 4n− 1) with projection

π : S[n] ×G(2n, 4n− 1)→ S[n].

By [F], Proposition 14.2.2,

s2n(V [n]) = π?

(
ctop(E∨ ⊗ V [n])

)
.

Here E and V [n] are pulled back to the product from G(2n, 4n− 1) and S[n] respectively.

The vector bundle E∨ ⊗ V [n] has a natural section s. This is induced by the morphism

E → V [n] on S[n] ×G(2n, 4n− 1)

obtained by composing the inclusion

E ↪→ H0(V )⊗O

on G(2n, 4n− 1) with the evaluation map (23)

H0(V )⊗O → V [n] on S[n].

The zero locus D of the section s is expected to be zero-dimensional, but let us suppose

it is in excess with dimension d, so that

D ⊂ S[n] ×G(2n, 4n− 1), with normal bundle N.
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The excess intersection formula of Section 14.4 in [F] reads

(28) s2n(V [n]) = π?

(
cd

(
E∨ ⊗ V [n]|D −N

))
,

where π : D→ S[n].

We now compute the right hand side of equation (28). By definition,

D = {(Z,Λ) so the map Λ ↪→ H0(V )→ H0(V ⊗OZ) is zero}.

We describe D in concrete terms. Observe that

V |E = C2 ⊗OP1(n− 2),

and set

Λ0 = kerH0(V )→ H0(V |E).

The argument of Lemma 3 shows that H1(V ⊗O(−E)) = 0. Therefore

dim Λ0 = (4n− 1)− (2n− 2) = 2n+ 1.

Observe next that

D = {(Z,Λ) with Z ∈ E[n] and Λ ⊂ Λ0} ⊂ S[n] ×G(2n, 4n− 1).

Indeed, if Z 6⊂ E, by Lemma 3

H0(V )→ H0(V |Z)

is surjective. The kernel is of dimension (4n− 1)− 2n = 2n− 1, hence it cannot contain

a subspace W of dimension 2n. Furthermore, for Z ⊂ E, the restriction

H0(V )→ H0(V |Z)

factors through H0(V |E). Since V |E = OE(n− 2)⊗ C2, the restriction

H0(V |E)→ H0(V |Z)

is injective. Therefore,

W ↪→ H0(V )→ H0(V |E) is zero =⇒ Λ ⊂ Λ0.

Consequently, we have

D = E[n] ×G(2n,Λ0) ⊂ S[n] ×G(2n, 4n− 1),

so that

D ' Pn × P2n.

This identification holds scheme-theoretically. Indeed, it is easy to check that the above

pointwise arguments can also be carried out in families. The key observation is that

cohomology and base change commute for all relative constructions involved.
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In K-theory, the normal bundle to D is

N = NE[n]/S[n] +NP2n/G(2n,4n−1) = O(E)[n] + E∨ ⊗ C2n−2.

Here 2n − 2 is the dimension of the quotient H0(V )/Λ0 and the two summands are

restricted to D. We now calculate

s2n(V [n]) = π?

(
c3n

(
E∨ ⊗ V [n] −O(E)[n] − E∨ ⊗ C2n−2|D

))
= π?

(
c3n

(
E∨ ⊗ C2 ⊗O(n− 2)[n] −O(−1)[n] − E∨ ⊗ C2n−2

))
Let ζ denote the hyperplane class on E[n] ' Pn and h denote the hyperplane in the

Grassmannian G(2n,Λ0) ' P2n. We have

c(E∨) =
1

1− h
,

c
(
O(n− 2)[n])

)
= 1− ζ,

c
(
O(−1)[n]

)
= (1− ζ)n.

The last two formulas for the total Chern classes of tautological vector bundles over the

Hilbert scheme of points on P1 are explained for instance in the proof of Theorem 2 of

[MOP2]. Completing the calculation,

s2n(V [n]) = Coeffh2nζn

[
(1− ζ)3n+2 · (1− h)2n−2 · 1

c(h∨ ⊗O(n− 2)[n])2

]
= Coeffh2nζn

(1− ζ)3n+2

(1− h− ζ)2

= (−1)n(2n+ 1). �

4.3. The case k = n− 1. Consider now the case k = n− 1, so that

V = V0 ⊗ E−(n−1)

with V0 satisfying (21), and χ(V ) = 4n− 1. By Lemma 3 (ii), all nontrivial extensions

(29) 0→ V ∨ ⊗ E →W → IZ → 0

must have the middle term W a rigid H-stable sheaf of rank 3. Of course,

(30) c1(W ) = −H + 2nE.

We record the following

Lemma 4. There are no rigid H-stable sheaves of rank 3 satisfying (30) when n 6≡ 0

mod 3.
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When n ≡ 0 mod 3, the sheaf W must necessarily be of the form

W = π?W0 ⊗ E
2n
3

where W0 → X is a bundle over the K3 surface with

(31) rank W0 = 3, c1(W0) = −H, W0 rigid and Gieseker H-stable.

Proof. As noted in [G2], [Y1], stability with respect to the non-ample divisor H on the

blowup is equivalent to H − εE-stability for ε sufficiently small. Thus the moduli space

of H-stable sheaves on the blowup admits a natural scheme structure. In general, the

moduli space MS
H(3,−H + 2nE, c2) of H-stable sheaves on the blowup has expected

dimension 6d − 16 where d denotes the discriminant. For rigid moduli spaces, we have

d = 8
3 . The corresponding moduli of H-stable sheaves is zero dimensional and consists of

isolated points. To count the stable rigid sheaves, we compute the Euler characteristic

of the moduli space.

To this end, we use the blowup formulas of Proposition 3.4 in [Y1] or Proposition 3.1

(2) in [G2]. The generating series of Euler characteristics on the blowup is computed in

terms of the same series on the underlying K3 surface X as∑
d

qd−
8
3 e(MS

H(3,−H + 2nE, d)) =
∞∏
m=1

1

(1− qm)3
·

∑
(x,y)

qx
2+xy+y2


·

(∑
d

qd−
8
3 e(MX

H (3,−H, d))

)
where x, y ∈ Z+ 2n

3 . To complete the proof, we compute the constant term in the above

expression. If n 6≡ 0 mod 3, there is no constant term due to the factor∑
qx

2+xy+y2 .

Indeed, as n 6≡ 0 mod 3, we have (x, y) 6= (0, 0) so x2 + xy + y2 > 0.

For n ≡ 0 mod 3, the constant term is 1. The moduli space consists of a single rigid

sheaf. Note that when χ(V ) = 4n−1, a direct calculation shows that there exists a rigid

sheaf W0 on X such that W = π?W0 ⊗ E
2n
3 on S has the numerics determined by the

exact sequence (29). Specifically the numerical assumptions on V require

H2 = 4n2 + 12n− 14

and we select W0 to be in the moduli space with Chern numbers

ch(W0) = 3−H +

(
2

3
n2 + 2n− 5

)
[pt] .

This W is then the only sheaf in its moduli space.

�
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By the Lemma, if n 6≡ 0 mod 3 the extension W cannot exist. Consequently, we have

H1(V ⊗ IZ) = 0

for all Z. This shows that the evaluation map (23) over the Hilbert scheme is surjective,

and we have obtained the following result corresponding to Theorem 4 (ii):

Proposition 6. If V = π?V0 ⊗ E−(n−1) with χ(V ) = 4n− 1 and V0 a rank 2 bundle as

in (21), then ∫
S[n]

s2n(V [n]) = 0 for n 6≡ 0 mod 3.

We now focus on the remaining statement of Theorem 4. We show

Proposition 7. If V = π?V0 ⊗ E−(n−1) with χ(V ) = 4n− 1 and V0 a rank 2 bundle as

in (21), then ∫
S[n]

s2n(V [n]) = 1 for n ≡ 0 mod 3.

Proof. As usual, the top Segre class is supported on the locus D where the evaluation

map (23) is not surjective. We now identify D as a subvariety of the Hilbert scheme S[n].

The nonsurjectivity locus consists of subschemes Z such that

H1(V ⊗ IZ) 6= 0,

in other words corresponding to the existence of nontrivial extensions

(32) 0→ V ∨ ⊗ E →W → IZ → 0.

When n = 3` for ` ∈ Z, as seen in Lemma 4, all such extensions have the same middle

term, the unique stable rigid rank 3 vector bundle W on S with numerics specified by

the lemma. A direct calculation establishes further that

(33) χ(V ∨ ⊗ E,W ) = 1.

We now show that

D ' PHom(V ∨ ⊗ E,W ) = PH0(V ⊗W ⊗ E−1).

To start, note the useful vanishing

H1(V ⊗W ) = 0

which will be established in Lemma 5 using Reider arguments. By Serre duality and

stability

H2(V ⊗W ) = 0, H2(V ⊗ V ∨ ⊗ E) = C.

From the exact sequence (32), upon tensoring with V , these vanishings imply

(34) H1(V ⊗ IZ) = C.
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By (34), for any given Z in the degeneracy locus, the basic extension (32) is unique.

Conversely, any non-zero morphism

V ∨ ⊗ E →W

must be injective by stability, and the cokernel sheaf Q must have rank 1 and trivial

determinant. We claim that Q = IZ for some scheme Z which necessarily has length n.

This is clear if Q is torsion-free. However, if Q had torsion T , then there would be a

torsion-free quotient Qtf of rank 1,

0→ T → Q→ Qtf → 0, and Qtf = IU (−D), for a subscheme U.

Comparing determinants, we find D = detT effective so that D ·H ≥ 0. This however

contradicts stability of W → Qtf unless D ·H = 0, in which case D = qE for some q ≥ 0.

We argue that q = 0. Indeed, consider the kernel K of the surjection

W → Q→ Qtf = IU (−qE).

Using K ↪→W and W is H-stable, it follows that K is H-stable as well. Write

m = length (U).

A direct calculation shows that

χ(K,K) = χ(W − IU (−qE),W − IU (−qE))

= 2 + 4m+ 4n(q − 1) + 3q2 > 2,

which contradicts stability. The only exception is

q = 0, m ≤ n =⇒ Qtf = IU .

The torsion part T must have trivial determinant hence it must be supported on points.

Computing Euler characteristics

χ(IU ) + χ(T ) = χ(Q) = χ(V ∨ ⊗ E)− χ(W ) = 1− n =⇒ χ(T ) = m− n ≤ 0.

This is only possible if T = 0 so that Q is torsion free, in fact Q = IU for some zero

dimensional scheme U of length n.

Thus we have identified the degeneracy locus D as

D = PH0(V ⊗W ⊗ E∨).

It is straightforward to carry out the above argument in families. The crux of the matter

is that (34) has constant rank, hence cohomology and base change commute over the

degeneracy locus D. We set

d = dimD.
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Since H2(V ⊗W ⊗ E∨) = 0 by Serre duality and stability, it follows from (33) that

h1(V ⊗W ⊗ E∨) = d.

On D× S we have a universal exact sequence

(35) 0→ V ∨ ⊗ E ⊗O(−1)→W → IZ → 0.

which restricts to (32) for each point of D. Here V,W,E are pulled back to the product

from S, O(1) is the hyperplane bundle on D, and IZ is the restriction to D × S of the

universal ideal sheaf on S[n] × S.

The Segre integral ∫
S[n]

s2n(V [n])

is calculated as an excess intersection on the degeneracy locus D as follows. Consider

the Grassmannian G(2n, 4n− 1) of subspaces

Λ ↪→ H0(V ) = C4n−1.

Write E for the tautological bundle, and let F denote the tautological quotient. The

vector bundle

E∨ ⊗ V [n] → G(2n, 4n− 1)× S[n]

has a natural section s obtained as the composition

Λ→ H0(V )→ H0(V ⊗OZ).

Let

D0 ⊂ G(2n, 4n− 1)× S[n]

be the zero locus of this section. It consists of those pairs (Z,Λ) where

Λ ⊂ H0(V ⊗ IZ).

In particular, h0(V ⊗ IZ) ≥ dim Λ = 2n. Note now that

χ(V ⊗ IZ) = χ(V )− 2n = 2n− 1,

while H2(V ⊗ IZ) = 0 by Serre duality and stability. For (Z,Λ) in the degeneracy locus

D0, we have then

h1(V ⊗ IZ) ≥ 1.

This shows that Z must be in the degeneracy locus D, and in this case h1(V ⊗ IZ) = 1

by (34). We are thus forced to have Λ = H0(V ⊗ IZ) so that

D0 = {(Z, Λ = H0(V ⊗ IZ)) with Z ∈ D} ⊂ S[n] ×G(2n, 4n− 1).
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Note that the projection onto S[n] induces an isomorphism

D0 ' D.

By [F], Section 14.4, we have∫
S[n]

s2n(V [n]) =

∫
D0

cd(E),

where the excess virtual bundle E is

E = E∨ ⊗ V [n] −N,

with N the normal bundle of D0 ⊂ S[n] ×G(2n, 4n− 1). We have in K-theory,

N = E∨ ⊗F + TS[n] − TD0.

Putting all together,

(36) E = E∨ ⊗ (V [n] −F) + TD0 − TS[n].

It remains to identify E explicitly in terms of the universal sequence (35). For simplicity

we write identities in K-theory on fibers. To start, note that on D0 we have

E|Z = H0(V ⊗ IZ),

F|Z = H0(V )−H0(V ⊗ IZ),

TS[n]|Z = Ext1(IZ , IZ),

and from the Euler sequence

(37) TD0 = H0(V ⊗W ⊗ E∨)⊗O(1)− C.

The evaluation sequence

0→ H0(V ⊗ IZ)→ H0(V )→ H0(V ⊗OZ)→ H1(V ⊗ IZ)→ 0

gives

V [n] −F = R1π?(V ⊗ IZ),

a line bundle on D0. Here π : D × S → D is the projection. From the sequence (35),

after tensoring with V and pushing forward to D via π we obtain

0→ O(−1)→ H0(V ⊗W )→ R0π?(V ⊗ IZ)→ 0,

0→ R1π?(V ⊗ IZ)→ O(−1)→ 0.

Therefore in K-theory

R0π?(V ⊗ IZ) = H0(V ⊗W )−O(−1)

R1π?(V ⊗ IZ) = O(−1).
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We obtain

(38) E∨ ⊗ (V [n] −F) = H0(V ⊗W )∨ ⊗O(−1)− C.

Noting from (35) that

IZ = W − V ∨ ⊗ E ⊗O(−1),

it follows that

I∨Z ⊗ IZ = V ⊗ V ∨ +W ⊗W∨ − V ⊗W ⊗ E∨ ⊗O(1)− V ∨ ⊗W∨ ⊗ E ⊗O(−1).

Here all tensor products are derived. We therefore finally calculate

TS[n] = Ext1π(IZ , IZ)(39)

= −Ext•π(IZ , IZ) + C + C

= H•(V ⊗W ⊗ E∨)⊗O(1) +H0(V ⊗W )∨ ⊗O(−1)− C− C.

This last equality uses the fact that V,W are stable and rigid, and that V ⊗W has no

higher cohomology.

Collecting the expressions (37), (38), (39) in the excess bundle E given by (36), we

find

E = H1(V ⊗W ⊗ E∨)⊗O(1) = Cd ⊗O(1).

We conclude ∫
X[n]

s2n(V [n]) =

∫
D0

cd(E) =

∫
D0

hd = 1.

This completes the proof. �

Lemma 5. Let n = 3`. Assume

V = π?V0 ⊗ E−3`+1, W = π?W0 ⊗ E2`

where χ(V ) = 4n−1 and V0,W0 are two rigid bundles satisfing conditions (21) and (31).

We have

H1(V ⊗W ) = 0.

Proof. The argument is an application of Reider’s method. Assume that

H1(V ⊗W ) = Ext1(W,V ∨ ⊗ E)∨ 6= 0.

We construct a nontrivial extension

0→ V ∨ ⊗ E → F →W → 0.

The middle sheaf F is H-stable by an argument similar to that of Proposition 2. Indeed,

if F is not H-stable, let G ↪→ F be the maximal semistable destabilizing subsheaf. Then

rkG < rkF and µH(G) ≥ µH(F ) > µH(V ∨ ⊗ E) .
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We see that G cannot be a subsheaf of the kernel V ∨ ⊗ E since this would contradict

the H-stability of the latter. Therefore, we have a nonzero morphism

φ : G→W =⇒ µH(G) < µH(W ).

Writing c1(G) = aH + bE we see that

µH(F ) ≤ µH(G) < µH(W ) =⇒ −2

5
≤ a

rkG
< −1

3

which is impossible.

Finally, a direct calculation shows

χ(F, F ) = χ(W,W ) + χ(V ∨ ⊗ E, V ∨ ⊗ E) + χ(V ∨ ⊗ E,W ) + χ(W,V ∨ ⊗ E)

= 2 + 2 + 1 + (2n+ 1) > 2

contradicting the stability of F . �

4.4. Proof of Theorem 2. We now prove Theorem 2. The statement will follow com-

binatorially using the geometric input provided by Theorem 4.

Define first the following combination of the basic power series Ai:

(40) f(z) = A0(z)
5 ·A1(z)

20 ·A3(z)
2

g(z) = A0(z)
−4 ·A1(z)

−22 ·A2(z)
2 ·A3(z)

−4 ·A4(z)
−1

h(z) = A0(z)
−3 ·A1(z)

−18 ·A2(z)
2 ·A3(z)

−2 ·A4(z)
−1.

We will derive identities between the functions f, g, h using the two calculations provided

by Theorem 4.

First, over the K3 blowup, let V = V0 ⊗ E−(n−2) with V0 rigid H-stable of rank 2 so

that χ(V ) = 4n− 1. 5 One checks that

c1(V )2 = 20n− 22, c2(V ) = 5n− 4, c1(V ) ·KS = 2(n− 2), K2
S = −1.

Using (1) for the vector bundle V , we obtain that∫
S[n]

s(V [n]) = [zn]A0(z)
5n−4 ·A1(z)

20n−22 ·A2(z)
2 ·A3(z)

2n−4 ·A4(z)
−1 = f(z)n · g(z).

With the aid of Proposition 5 this rewrites as

[zn] f(z)n · g(z) = (−1)n(2n+ 1),

where the brackets denote the suitable coefficient in the given power series. Therefore
∞∑
n=0

[zn] f(z)n · g(z) =
∞∑
n=0

zn(−1)n(2n+ 1) =
1− z

(1 + z)2
.

5As noted in Lemma 3, this numerical setup only exists over K3s of certain genus determined by n.
The argument here strongly uses the universality of the Segre series.
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Write

(41) z =
w

f(w)
.

The Lagrange-Bürmann inversion formula [WW] is the general identity
∞∑
n=0

([zn] f(z)n · g(z)) · zn =
g(w)

f(w)
· dw
dz
.

In our situation, it gives

(42)
1− z

(1 + z)2
=
g(w)

f(w)
· dw
dz
.

In similar fashion, for V = V0 ⊗E−(n−1), by making use of Proposition 6 and Propo-

sition 7, we obtain

(43)
1

1− z3
=
h(w)

f(w)
· dw
dz
.

The expression

1

1− z3
=
∞∑
k=0

z3k

encodes the fact that the Segre integrals are 0 for n 6≡ 0 mod 3 and equal to 1 for n ≡ 0

mod 3.

We now explain how equations (42) and (43) give the remaining functions A3 and A4.

Dividing the two equations we obtain

h(w)

g(w)
=

(1 + z)2

(1− z)(1− z3)
.

This gives via (41)
w

f(w)
· h(w)

g(w)
= z · (1 + z)2

(1− z)(1− z3)
.

Let us write

w = t(1 + 3t)3.

We compute
w

f(w)
· h(w)

g(w)
= w ·A0(w)−4 ·A1(w)−16 =

t

1 + 3t
,

where the first equality follows by (40), and the second equality uses the expressions for

A0, A1 given by Theorem 1. Therefore

z(1 + z)2

(1− z)(1− z3)
=

t

1 + 3t
=⇒ z = y(t),

for the function y(t) of the introduction. With this understood, we find via (41)

f(w) =
w

z
=
t(1 + 3t)3

y
.
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Using (40), we obtain

A3(w) = f(w)
1
2 ·A0(w)−

5
2 ·A1(w)−10 =

1

1 + 3t
·
(
t

y

)1/2

where in the last equality we used the expressions for A0, A1 in Theorem 1.

Similarly, from equation (42) we compute

g(w) = f(w) · 1− z
(1 + z)2

· dz/dt
dw/dt

=
t(1 + 3t)3

y
· 1− y

(1 + y)2
· y′

(1 + 3t)2(1 + 12t)
.

Combined with (40) we obtain the expression for A4 claimed in Theorem 2. �
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[G3] L. Göttsche, Verlinde-type formulas for rational surfaces, J. Eur. Math. Soc. 22 (2020), 151 – 212.
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