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Multiple Access Channel Resolvability Codes
From Source Resolvability Codes

Rumia Sultana™', Graduate Student Member, IEEE, and Rémi A. Chou

Abstract— We show that the problem of code construction for
multiple access channel (MAC) resolvability can be reduced to
the simpler problem of code construction for source resolvability.
Specifically, we propose a MAC resolvability code construction
that relies on a combination of multiple source resolvability
codes, used in a black-box manner, and leverages randomness
recycling implemented via distributed hashing and block-Markov
coding. Since explicit source resolvability codes are known, our
results also yield the first explicit coding schemes that achieve
the entire MAC resolvability region for any discrete memoryless
multiple-access channel with binary input alphabets.

Index Terms—Multiple access channel (MAC), resolvability,
randommess recycling, two-universal hash functions.

I. INTRODUCTION

HE concept of multiple access channel (MAC) resolv-
Tal:ri]it:,.r has been introduced in [3] as a natural exten-
sion of channel resolvability for point-to-point channels [4].
MAC resolvability represents a fundamental primitive that
finds applications in a large variety of network information-
theoretic problems, including strong secrecy for multiple
access wiretap channels [5], [6], cooperative jamming [3],
semantic security for multiple access wiretap channels [7],
and strong coordination in networks [8]. These applications
are, however, resiricted by the fact that no explicit coding
scheme is known to optimally implement MAC resolvabil-
ity. Note indeed that [3], [7] only provide existence results
and no explicit code constructions. The objective of this
paper is to bridge this gap by providing explicit coding
schemes that achieve the MAC resolvability region [7]. While
previous works have been successful in providing explicit
coding schemes for channel resolvability over point-to-point
channels,! to the best of our knowledge, the only known
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"Explicit constructions based on polar codes for channel resolvability
have been proposed for binary symmetric point-to-point channels [9] and
discrete memoryless point-to-point channels whose input alphabets have prime
cardinalities [10]. Another explicit construction based on injective group
homomorphisms has been proposed in [11] for channel resolvability over
binary symmetric point-to-point channels. Low-complexity, but non-explicit,
lincar coding schemes for channel resolvability over arbitrary memoryless
point-to-point channels have also been proposed in [12].

explicit constructions for MAC resolvability are those of [13].
However, the explicit constructions in [13], one based on
invertible extractors and a second one based on injective group
homomorphisms, are limited to symmefric multiple access
channels, and do not seem to generalize to arbitrary multiple
access channels.

In this paper, we propose a novel approach to the con-
struction of MAC resolvability codes by showing that such
a construction can be reduced to the simpler problem of code
construction for source resolvability [14]. Since explicit con-
structions of source resolvability codes are known, e.g., [10],
our results yield the first explicit construction of MAC
resolvability codes that achieve the entire MAC resolvability
region of arbitrary multiple access channels with binary input
alphabets. More specifically, our approach to the construc-
tion of MAC resolvability codes relies on a combination of
appropriately chosen source resolvability codes, and leverages
randomness recycling implemented with distributed hashing
and a block-Markov encoding scheme. In essence, the idea
of block-Markov encoding to recycle randomness is closely
related to recursive constructions of seeded extractors in
the computer science literature, e.g., [15]. We stress that
our construction is valid independently from the way those
source resolvability codes are implemented. Additionally, to
avoid time-sharing whenever it is known to be unnecessary,
we also show how to implement the idea of rate splitting,
first developed in [16] for multiple access channel coding,
for the MAC resolvability problem with two transmitters.
Note that the main difference with [13], is that our approach
aims to reduce the construction of MAC resolvability codes
to a simpler problem, namely the construction of source
resolvability codes, whereas [13] attempts a code construction
directly adapted to multiple access channels.

The remainder of the paper is organized as follows. The
problem statement is provided in Section II. Our main result
is summarized in Section III. Our proposed coding scheme
and its analysis are provided in Section IV and Section V,
respectively. While our main result focuses on multiple access
channels with two transmitters, we discuss an extension of our
result to an arbitrary number of transmitters in Section VL
Finally, Section VII provides concluding remarks.

II. PROBLEM STATEMENT AND REVIEW
OF SOURCE RESOLVABILITY

A. Notation

For a,b € R, define [a,b] £ [|a|, [b]]NN. The components
of a vector XV of size N are denoted with superscripts,
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e, XtV £ (X' X2 ... XV). For two probability dis-
tributions p and g defined over the same alphabet X, the
variational distance ¥{p,q) between p and g is defined as

Vip.q) £ X cx lp(z) — alz).

B. Problem Statement

Consider a discrete memoryless multiple access channel
(X x V,qzxv.Z), where X = {0,1} = V, and Z is
a finite alphabet. A tarpet distribution gz is defined as the
channel output distribution when the input distributions are gx
and gy, ie.,

Vz € Z,qz(z) 2 Y azxy(zlr,y)ax(zlay (y). (1)
reX ye¥

Definition 1: A (2V%: 2VRa N code for the memoryless
multiple access channel (X x V, gz xy, Z) consists of

« Two randomization sequences 5 and S; independent

and uniformly distributed over S, £ [1,2Vf1] and
Sy & [1,2VHz2], respectively;
« Two encoding functions fiy : S — AV and foy :
Sy — YV,
and operates as follows: Transmitters 1 and 2 form fi n(51)
and fa n(52), respectively, which are sent over the channel
{Xxy'.‘Ile}"aZ}'

Definition 2: (R, Ha) is an achievable resolvability rate
pair for the memoryless multiple access channel (A x
V., qzixv, Z) if there exists a sequence of (2VF1 2V )
codes such that

yim  Vipzn,gzuv) =0,

where gziv 2 [V, gz with gz defined in (1) and
Yyl e ZN1

1:N
- . gzrn vy (27| frv(s1), fan(s2)
Frn (z1V) éz I {|S X ! }
(81,82) 81 xSz !
The multiple access channel resolvability region Ry, is
defined as the closure of the set of all achievable rate pairs.
Theorem 1 ([7, Theorem 1]): We have Ry, = R;;z with

R’rng U{{Rl,jo:I{XY;ZIT}IER1+Rﬂ-.
Por9x rAy | T I{X..le} ‘:_: Rl:
I(Y; Z|T) < Ra},

where pr is defined over T £ [1,|Z|+ 3] and gx|r, qv|r are
such that, forany t € 7 and z € Z,

gz(2) = 3 Y axyr(=lt)avir (vlt)az xv (=], y).

red ye¥

Mote that reference [7] provides only the existence of a
coding scheme that achieves any rate pair in Ry, . By contrast,
our goal is to provide explicit coding schemes that can achieve
the region Ry, by relying on source resolvability codes,
which are used in a black box manner. The notion of source
resolvability is reviewed next.
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C. Review of Source Resolvability

Definition 3: A (2VE N) source resolvability code for
(X, gx ) consists of

« A randomization sequence S uniformly distributed over

s2 [1, 2NH];.

« An encoding function ey : § — AV
and operates as follows: The encoder forms XV 2 .0 (S)
and the distribution of X % is denoted by py1.n.

Definifion 4: R is an achievable resolution rate for a dis-
crete memoryless source (X', gx ) if there exists a sequence of
(2VE N source resolvability codes such that

(2)

yim  Vipx i, gyun) =0,
where gy1v 2 Hll gx. The infimum of such achievable
rates is called source resolvability.

Thearem 2 [4]: The source resolvability of a discrete mem-
oryless source (X, gx ) is H(X).

Note that explicit low-complexity source resolvability codes
can, for instance, be obtained with polar codes as reviewed
in Appendix A.

ITI. MaAIN RESULT

Our main result is summarized as follows.

Thearem 3: The coding scheme presented in Section IV,
which solely relies on source resolvability codes, used as black
boxes, and two-universal hash functions [17], achieves the
entire multiple access channel resolvability region Ry, for
any discrete memoryless multiple access channel with binary
input alphabets. Moreover, time-sharing is avoided whenever
it is known to be unnecessary.

As a corollary, we obtain the first explicit construction of
multiple access channel resolvability codes that achieve the
entire multiple access channel resolvability region Ry, for
any discrete memoryless multiple access channel with binary
input alphabets.

Corollary I: Since explicit constructions for source resolv-
ability codes and two-universal hash functions are known,
e.g., [17], [18], Theorem 3 yields an explicit coding scheme
that achieves Ry, for any discrete memoryless multiple access
channel with binary input alphabets.

IV. CODING SCHEME

We explain in Section I'V-A that the general construction of
MAC resolvability codes can be reduced to two special cases.
Then, we provide a coding scheme for these two special cases
in Sections IV-B, IV-C.

A. Reduction of the General Construction of MAC
Resolvability Codes to Two Special Cases

Definition 5: For the memoryless multiple access channel
(X =V, qz1xv, Z) we define

Rxy = {(R1,Ra) : I(XY;Z) < Ry + Ra,
I(X;Z) < Ry,
I(Y;Z) < Ra},
for some product distribution px py on A x Y.
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To show the achievability of T . it is sufficient to
show the achievability of Rx y. Indeed. note that if Rx v
is achievable, then CD""'{UM By Rxy) is also achievable,
where Conv denotes the convex hull. Hence, Ry, is achiev-

able because Conv(| ), ., Rxy) D Ry, by remarking that
the corner points of Ry are in Conv(lJ, , Rxy). For
instance, the point (I(X;Z|T),I(Y;Z|XT)) e Ry,
to Conv(lJ,, ,, Rx,y) since
(I(X; Z|T), I(Y; Z|XT))
=Y pr®)I(X; ZIT = 1),1(Y; Z|X,T = ¢)).
teT

Similarly, all the corner points of R, also belong to
Comr{prpY Rx v ). Next, we consider two cases to achieve

Region Ry y in Case I: I{XY;Z) > IX;Z)4+ 1Y Z).

belongs

the region Rxy for some fixed distribution px py-.
« Case 1 (depicted in Figure 1) I(XY;Z) = I(X;Z) +
IY:;Z). In this case, it is sufficient to achieve the
dominant face T of Rx y. where

D 2 {(Ry,Ra) : Ry €[I(X; Z),I(X; Z|Y)),
Ry =I(XY;Z)— Ry}.

« Case 2 (depicted in Figure 2): I(XY;Z) = I(X;Z) +
I(Y; Z). In this case, only the corner point ' needs to be
achieved. Note that it is impossible to have I{XY; Z) <
IX;Z)+1(Y;Z) by independence of X and Y.

B. Encoding Scheme for Case 1

Consider the region Ry for some product distribution
pxpy on A = V such that I(XY;Z) = I(|X;Z2)+ I(Y;Z).
Since Rxy is a contrapolymatroid [19]. to achieve the
region Rx y, it is sufficient to achieve any rate pair (Ry, Ra)
of the dominant face I of Rx y. We next show that D can
be achieved through rate-splitting using the following lemma
proved in Appendix C.

Lemma [: Consider f: Vx YV — ¥, (u,v) — max{u,v),
and form (¥ x V,pu.pv.).e € [0,1], such that py.v, =

PU.PV.. Pr(U.V.) = Py for fixed (y,u), pr. v w. (ylu) is
a continuous function of , and

Ueeo = 0 = Viey, 3)
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Fig. 2. Region Ry y in Case 2: I(XY;Z) = I(X;Z)+I(Y;Z).

Uez1 = f(Ue=1, Ve=1),
Ve—o = f(Ue=o, Ve=n)-

(4)
(5)

The above construction is indeed possible as shown in
[16, Example 3]. Then, we have I(XY; Z) = Ry + Ry + Ry,
where we have defined the functions

Ry :[0,1] —» RY e I(X;Z|U,),
Ry :[0,1] = Rt,e— I(Ug; Z),
Ry : [0,1] = RBf, e I(V; Z|UX).

Moreover, R; is continuous with respect to ¢ and
[{(X;Z),1(X;Z]Y)] is contained in its image.

When the context is clear, we do not explicitly write the
dependence of IV and V' with respect to ¢ by dropping the
subscript e.

Fix a point (R;, Ha) in T. By Lemma 1, there exists a
joint probability distribution gy xyz over ¥V x ¥V x & x
¥V x Z such that By = I(X:Z|U), Ra = Ry + Ry with
Ry = I[U;Z) and Ry = I(V;Z|UX). We provide next
a coding scheme that will be shown to achieve the point
(R, Aa). The encoding scheme operates over k& £ M blocks
of length NV and is described in Algorithms 1 and 2. A high
level description of the encoding scheme is as follows. For
the first transmitter, we perform source resolvability for the
discrete memoryless source (X', gx) using randomness with
rate H(X) in Block 1. Using Lemma 1, we perform rate
splitting for the second transmitter to get two virtual users such
that one virtual user is associated with the discrete memoryless
source (V, gy} and the other virtual user is associated with the
discrete memoryless source (Y, qv-). Then, we perform source
resolvability with rates H(L') and H(V) for the discrete
memoryless sources(V, g} and (V, qv-), respectively. For
the next encoding blocks, we proceed as in Block 1 using
source resolvability and rate splitting except that part of the
randomness is now recycled from the previous block. More
precisely, we recycle the bits of randomness used at the
inputs of the channel in the previous block that are almost
independent from the channel output. The rates of those bits
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will be shown to approach H(X |UZ), H(U|Z), H{V|UZX)

for User 1 and the two virtual users, respectively.
« The encoding at Transmitter 1 is described in Algorithm 1

and uses
— A hash function Gx : {0,1}¥ — {0,1}"* chosen
uniformly at random in a family of two-universal
hash functions, where the output length of the hash
function & x is defined as follows

rx & N(H(X|UZ) — 1/2), (6)
where 1 £ 2(84(N) +£), 64(N) £ log(|V[*|X| +

3}”"%{3+ log N}, £ = 0.

— A source resolvability code for the discrete memo-
ryless source (X, gx ) with encoder function e and
rate H(X) + %, such that the distribution of the
encoder output py .~ satisfies V{pxow, gyuw) <
d(N'), where (V) is such that impy . .. (V) = 0.

In Algorithm 1, the hash function output E.ie [2, ],
with length rx corresponds to recycled randomness from
Block i — 1.

« The encoding at Transmitter 2 is described in Algorithm 2
and uses

— Two hash functions Gy : {0,1}¥ — {0,1}™ and
Gy : {0,1} — {0,1}"v chosen uniformly at
random in families of two-universal hash functions,
where the output lengths of the hash functions Gy,
and Gy are defined as follows

rv £ N(H(U|Z) — e1/2),

rv @ NH(VIUZX) —e1/2). (N

— A source resolvability code for the discrete mem-
oryless source (I, qrr) with encoding function ek
and rate H(U) + %, such that the distribution of
the encoder output pyri.~ satisfies V{prr-w, gpraon ) <
d(N'), where (V) is such that impy . .. (V) = 0.

— A source resolvability code for the discrete memory-
less source (V,qy) with encoding function e}, and
rate H(V) + 3, such that the distribution of the
encoder output pr-.v satisfies V{pyows, gron) <
d(N'), where (V) is such that impy . .. §(N) = 0.

In Algorithm 2, the hash function outputs D, and Fj,
i € [2,k], with lengths vy and v, respectively, corre-
spond to recycled randomness from Block i — 1.
The dependencies between the random variables involved in
Algorithms | and 2 are represented in Figure 3.

C. Encoding Scheme for Case 2

The encoding scheme for Case 2 is same as the encoding
for Case 1 with the substitutions [7 «— @ and V — V.

V. CODING SCHEME ANALYSIS
A. Coding Scheme Analysis for Case 1

First, we show that in each encoding Block i € [1,k],
the random variables U1V VIV XN YIN ZLN induced

361l

Algorithm 1 Encoding Algorithm at Transmitter 1 in Case 1
Require: A vector Ey of N{H (X )+e¢1) uniformly distributed
bits, and for 1 € [2, k], a vector E; of N(I(X;UZ) + )
uniformly distributed bits.
1: for Block i =1 to k do
if i =1 then
Define X}V £ X (E)
else if i = 1 then _
Define E; £ Gy (X 1Y
Define X'V £ X (E,| E;), where || denotes concate-
nation
7 end if_
% Send X over the channel
9: end for

=l LR

Algorithm 2 Encoding Algorithm at Transmitter 2 in Case 1

Require: A vector Iy of N (H (U} +«1) uniformly distributed
bits, and for : £ [2,k], a vector D; of N(I(U; Z) + )
uniformly distributed bits. A vector Fy of N(H(V) + &)
uniformly distributed bits, and for ¢ € [2,k], a vector F;
of N{I{V;UZX) + e;) uniformly distributed bits.

1: for Block i =1 to k do
2. if i =1 then
3 Define U}V £ el (D) and VY 2 &) (Fy)
4 elseif i > 1 then _ _ _
5. Define D; £ Gy(ULY) and F; 2 Gy (VEY)
6 Define U}V 2 ¥ (Dy|| Dy) and V¥V 2 e} (Fy|| Fy)
7. Define Y,'V & f(UXN VIV) where f is defined in
Lemma 1
& end if
9:  Send ¥,"*V over the channel
10: end for
F; Block i Block i+1

Fip

Fig. 3. Dependence graph for the random vanables involved in the encoding
for Case 1. W, i € [1,k], is the channel noise comesponding to the
transmission over Block i. For Block i £ [2, k], (Dy, Dy, (Fy, Fy), (Ex, Ex)
are the random sequences used at the encoders to form ﬁ'l':N, ivf":N, J-{“':N,
respectively.

by the coding scheme approximate well the target distribu-
tion grriwypiw xvy v ges. Then, we show that the target
output distribution gzi«~ is well approximated jointly over
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all blocks. To do so, we show that the recycled randomness
E,, Dy, F, in Block i € [2 k] that appears in Line 5 of
Algorithms 1 and 2 is almost independent of the channel
output in Block i—1. Note that randomness recycling is studied
via a distributed version of the leftover hash lemma stated
in Lemma 17. Finally, we prove that the encoding scheme of
Section IV-B achieves the desired rate-tuple.

For convenience, define Ey 2@, Dy 2 0, and Fy £ 0. Let

PE,D,F, X:NDEN VLN Y LN Z1N (8)
denote the joint probability distribution of the random
variables E’ﬁhﬁjj{l:N1ﬁr‘1:N’ﬁ1:N’ﬁ1:N, and E{l:N cre-
ated in Block 1 € [1, k] of the coding scheme of Section IV-B.

We first prove in the following lemma that in Block @ £
[2,K]. if the inputs X1V, TN VUV of the hash functions
Gx, Gy, Gy, respectively, are replaced by X'V, WV,
VN distributed according to gy 1w vy 2 Hf:l XUV s
then the output of these hash functions are almost jointly
uniformly distributed.

Lemma 2: Let p;mf , p;"” ,p;’“‘f denote the uniform dis-
tributions over {0,1}"*, {0,1}™, {0,1}", respectively.
Then,

1 1 1
v (qu[xl:N)GU[Ul:N)GV[Vl:szl:N,pE.n 'rptgi !P;n qul:N)

< §O(N),

where 5((N) £ 2/N + 7.2-7.

Proof: Define 4 £ {U,V, X} and, for any S C A4, define
Ts £ (W)wes. Hence, we have

TA:N — {XIZN, UI:N1 VI:N},
‘i'rj:"zl:h' = le:NUI:NV'I:H'zl:N.

Then, by Lemma 16 in Appendix B, applied to the product dis-
tribution Grisn z1:N there exists a subnormalized non-negative
function Wi Z1.n such that, for any & C A,

9
(10)
where the min-entropy Hm{ulr;:-'tzhnlqzl:u} is defined in
Lemma 16 in Appendix B, and ds(N) £ log(|Ts| +
3]”"%{3 + log N} with T is the domain over which T's is
defined. Next, let ggpp define the joint distribution of

E £ Gx(X"™),D & Gy(U™™),F £ Gy(VY), (1)

where UYN, VEN and XUV are distributed according to
QUrN V1N X 1N . T]'lﬂl'j, we have

WViwyrwpinpes gin, gyuapnpen zen ) < 1N,
Hoo(wrpn zun|gzin ) 2N H(I5|Z) — Nés(N),

i 1] i
Vigeprziv, PEH !P;n IP;" I'i'.zh"f]'

(2}
=< Vigeprz1v , Weprziv)

unif unif unif

+ Viwgprzun.Pg " Pg  Pp - dzuw)

(B}
= v{qax (X 1N )G (DTN )Gy (V1N LN

T.!J.Gx[xl:hl'}gu[UI:N)GV[VI:N::ZI:N]

+ Viwgpraus, PE“”P%"”PEMIQZH )

IEEE TRAMNSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 6, JUNE 2022

(e}

< V{qxhnyhnvl:p{zhn WX LNTLEN LN TN }
i i i

+ V(wgpraziw :PE_—H IPBH !P;n Tazin)

(d)

< 1/N + V(wgppziv, PE—MIPEMIP;"” w1 )

o
unif unif unijf unif unif unif

+Vipz ‘Pp Pp wzun.Pp Pp  Pp o 9zin)
(e}
< 2/N + V(wgppzn,py  pg  pa T wyin)
[é} 92/N + Z ETE_H:I:[WT%:NK'I:NIQZI:N:I

SCAS#D

(g}
< 2/N + Z Irs—NH(Tg|Z)+Ndg(N)
SCAS#D

(R}
< 2/N + Z Ors—NH(Ts|Z)+N&4(N)
SCA. 50

where (a) holds by the triangle inequality, (b) holds by (11),
{c) holds by the data processing inequality, (d) holds by (9)
and the triangle inequality, (e) holds by (9), (f) holds by
Lemma 17 in Appendix B and rs £ ¥,y similar to the
notation of Lemma 17, (g) holds by (10), (k) holds because
for any & C A, ds(N) < d4(N). Next, we have

Z ors—NH(Ts|Z)+NE4(N)
SCAS#0

{ih (EN(H(MUZ}—%}—NHEXIZ)

4 oN(H(U|Z)-3)-NH(U|Z)
4 oN(H(VIUZX)—3)-NH(V|Z)

+ oN(HIX|UZ)— 3 )+N (H(U|Z)-3)-NH(XU|Z)

+ 9N(HU|Z)=FHN(H(V|UZX)— 3 )-NH({UV|Z)
4+ gN(H(VIUZX)— F)+N(H(X|UZ)-F)-NH(VX|Z)

4 ON(H(X|UZ)— 3 )4+N (H(UIZ)- F)+N (H(VIUZX)- )
1
xg—NH[XUVlZ})“ % 9ENEA(N)
& (E—Nnx:wz;—nr:}+2—N}+2—N:[V;UX|Z}—N;}

1 9-Nea | 9-Ne—NIVX|UZ) +2—N3;

4o~ NI(ViU|ZX)-NI(X ;UlZJ—Nn) 1 x DENEA(N)

{.:_‘}’ SO(N) —2/N D=t

where (a) holds by (6) and (7), (b) holds by the definition of

mutual information and the chain rule for entropy, (c) holds

by the definition of 5'°/(N') and because e; = 2(d4(N) + &).
O

We now show that in each encoding block, the random

variables induced by the coding scheme approximate well the

target distribution.

Lemma 3: For Block i € [1,k], we have

Wipprwp1n x1my 18 g1on, Qv i y ey an g ) S 8N ),

where 5,(N) £ 3(5(N) + 8@ (N))(3* — 1) + 3H15(N).
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Progf: We prove the result by induction. We first prove
that the lemma holds for i = 1. Remark that

- (a) ~
_‘pyl'l:.'l' |U}=N V11=Nx-=':" = _‘pyl'l:.'l' |U}=N V]_l:N

]
= QY 1:N|[J LNV LN

(;) Y 1:N|JL:N LN X 1N, (12)
where (a) holds because X1V is independent from
(OEN VEN ¥ EN) (b) holds by the construction of ¥V
and Y"V, (c) holds because X'V is independent from
(UEN VN y 1N Next, we have

V{ﬁu}:NVII:Nx%:NYI'I:Hz%:N, QEri-N 1N Y LNy LN gL |

'[5}15;“Ir - -

= {szm|x11=nry11:HpU11=NV11:HxI:HY11=N,
qz'l:lel:Ny'l:H' Qrrl=N LN 1N yl:N]

{EIV{N LN el o4 1Ny 1N LN LN y1:N 'IH'}
PV N LNy LN, Qri:Ny 1N y LNy L

{;:I V{i}'ulhn VN X LN UriNy LN X1 )

(d) e -
= V{px%mp[_r}mylhnr SPX LN QLN LN

ey - -
= v{PxI:H_PU%:NVI'I:H?l'!'x'l:N_PU]:!.:NVI'I:H}
+ v{EXI:Hﬁ;%:NVII:H? X 1N QUILNY LN )

{éj V{ﬁx}:n Jgxn ) + v{_ﬁyll:nﬁyll:n, grri=n gt )

(g)

= V{Px%:N,qxl:N] +V|{p;_;11:.-rp|r.-11:.-r? U1:.-tp-|r.-11:.-r}
+v{g‘Ul:N§Vll:H,g‘Ul:NWI:H}

= ‘ﬁ"{ﬁx%m?qu} + V{i}'ullm Jqon ) + v{ﬁyll:n?qylm )

< asv), (13)

where (a) holds by the two Markov chains (U5, V1V) —
{XI:N"_VI:N} — ZFUN and {UII:N, Vil:N:I _ {XII:N,YII:N} _
Z{N, (b) holds because qzin|xinyin = Pzrn|xinyin,
(c) holds by (12), (d) holds because X'V is indepen-
dent from (UYN VEN) and X{*V is independent from
(TN VYY), () holds by the triangle inequality, (f£) holds
because 7'V is independent from VN and UV is inde-
pendent from V%V, (g) holds by the triangle inequality, (k)
holds by the source resolvability codes used at the transmitters
because Bl > H(X) + /2, B = H(U) + & /2,8 >
H(V) + e /2.

Assume now that, for i € [2,k — 1], the lemma holds.
For i € [2,k], consider E,, Dy F; distributed according
o p;.m‘r?pzm'r,p;m‘r, respectively. Let PX1N, PObn , PRn
denote the distribution of XV £ X(E, E,), 0N £
e (Dy, DY), VYN & N (F,, Fy), respectively. Then, for
1€ [1,k—1], we have

V{ﬁu;l-l_{:' VIN X LNy LN g LN QN LN Y LNy LN ZLN)

a) _ _ _

< Vipxyy, gxvw) + Vipyyy, quen ) + V(pygy quie)

®)

< Vipxyy, peyy) + Vipxny, gxen)

+ Vipuyy, poxy) + Vieoyy, quiw)

3613

+ Vipvay pogy ) + Vipray, gy )

(c) - .

< 3(N) + V(pxry.pxuy) + Vievry  pory)
V@ pryy)

(d) _ .

< 36(N) + V(pe,,,.Pa’) + V(Pp,, .. P )
+V(Br,,, e ), (14)

where (a) holds similar to (13), (b) holds by the triangle
inequality, () holds by the source resolvability codes used at
the transmitters because 'Elwﬂ = H{X}+£1fﬂ,w"|j\,ﬂ =
H(V)+er /2, 2Bl _ (7)) 4 ¢, /2, (d) holds by the data
processing inequality. Next, we have

max (V{.'.EEi-a- 1 Puﬁni_f ): V(PD, 15 P’E:’“f ), V(pF,, ., P;ﬂff ])

—~ i 1 i
= V{PE.'+1D.'+1FE+1::PE“ IPBH IP;R I}

(a)
= V(PE 1D Py G0 4 (X1:8) Gy (U1N) @y (V1:N) )

+ Vigex (x 2¥)eu 0= )ev (v V) P“EMIPEMIPEMI )

() J——
= v{PGx(xi1=")c.‘u{ug=":r3-;(v..'="3:

qu[th)GLr{Ul:":IGv[Vl:")}
unif uwnif unif
+ V(gox xomjqumiay vy Pg  Pp Ppo )

]
< V(Pxrwprayin, gxivpenyis ) + 6 (N)

< 5,(N) +6ON), (15)

where (a) holds by the triangle inequality, (b) holds because
Eip1 2 Gx(XFN), Dysr 2 Gu(UFY), Fipy 2 Gy (V1Y)
by Line 5 of Algorithm 1 and Algorithm 2 , (c) holds by
the data processing inequality and Lemma 2, (d) holds by the
induction hypothesis. By combining (14) and (15), we have

V(Puryv iy xENy e ZN, QUEN YN X 1Ny 1N Z1N )
< 3(8(N) + &(N) + 6V (N))
= dy41(N).

O
The next lemma shows that the recycled randomness in Block
i € |2,k] is almost independent of the channel output in
Block i — 1.
Lemma 4: For i € [2, k], we have

- - - (1)
V(Pz1n g.p.F P21y PE:D:F;) < 8 ' (N),

where 8" (N) £ 48,_1(N) + 26@(N).
Proof: We have

V(Pz‘!j; E.D;F;» Pz} ¥ PE,D;F; )

@ _ ~
< V(BzngporPrvpg g pE)
+ V(@B yrg g P Brpype.n.R)

— i~ i H i
< WV(Frng,pors Pin P Py pp )

(&)
<2 (V{PE.-D;FiZ}ﬂ 4B DF N )
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uri i H
+V¥{geprzi~, Pp IPB“ IP;n !

unif unif unif unif unif unif~ N})

gzi:n )
+¥(pz Py P 9zvN.Pg Pp Pp o PziN

]
< 2 (V{ﬁx]m UENY LN ZLN Y 1N 1N V1N ZLn )

if _wnif unif

+V(geprzin. Pg Pp  Pg  gzin)

+V(gzn, zey) )

@
< 22V(Pxrwprnyan v, gunprny zin ) +8O (V)

(€) -
< 48,1(N) + 26"7(N),

where (a) and (b) hold by the triangle inequality, (c) holds
by the data processmg lﬂ.ﬂqualll}’ using {11) and E, 2

Gx (XEY), Dy & Gu(ULY), Fy 2 Gy (VEY) from Line 5
of Algorithm 1 and Mgmmm 2, (d) ]mlds by (11) and
Lemma 2, (&) holds by Lemma 3. O

The next lemma shows that the recycled randomness in Block
i € [2,k] is almost independent of the channel outputs in
Blocks 1 to i — 1 considered jointly.

Lemma 5: For i € [2, k], we have

—~ — —~ 2
v (Pz;;;[ \DEF; PZEN ,PﬂiE.-Fi) < 5,7(N),

where 817 (N) £ (2°-1 — 1)(48,_,(N) + 268 (N)).

Progf: 'We prove the result by induction. The lemma is
true for ¢« = 2 by Lemma 4. Assume now that the lemma holds
for i € |2,k — 1]. Then, for i € [3, k], we have

~ — — 2
v (FZ};i’izﬂi_1Ei_1F.'_1 fPZ};f_EPDi_lEi_lFi_l) < ‘51[—)1{N]'

We have

v (Pz;;;-; | DiE:Fss Pzi:N | PDE:F; )

(z} - . .
< V (Pziy, pomer Pz Prenpor, )

+V (ﬁz.}f‘.{ﬂﬁz:iNlDiEiFi?ﬁz'}::i{ﬂﬁz&:—ﬂl'ﬁuiEiFi)
+V (Pay PranPooe.r Pay Po.er,)
=V (ﬁz%f‘-{lﬂiEiFiTﬁz%;f_ﬂﬁziliqﬂi'gipi)
+‘a"( leDEF:PZ‘”PDEF)
+V (52%;’115231“{ Py )
L)
{V( Pzl:N D.E.F PziN PZI”DEF)

(e -
< 2V (PZL’[ 1Pt B 1 Fiona

- - 1
Pz%:ﬁ'!PZ&:_"lﬂi—l:iEi—l:iFi—l:i) + ‘5£ ){N}

(d) oy

= P‘z‘ N oD 1 Ei aFio Ilel NIDE:Fi|Di 1B 1 Fioa

— — 1
Pz%:ﬁ'!PZ&:_"lﬂi—l:iEi—l:iFi—l:i) + ‘5£ ){N}

=2V (PZ};?_ED.-_1E.-_1R_1:?2};.{2?9.'_157.'_1&_1)
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+6(N)

()

< 6 (N) + 262, (N)

< &7(N),
where (a) holds by the triangle inequality, (b) holds by
Lemma 4, (c) follows from the data processing inequal-
ity, (d) holds by the Markov chain (D, E, F;,Z\Y) —
(Di—1,Ei_1,Fiy) — Z{7%s. (e) holds by the induction
hypothesis. O
The next lemma shows that the channel outputs of all the

blocks are asymptotically independent.
Lemma 6. We have

k
v (ﬁz,lgf, Hﬁz;m) < (k- 1)a7(N),

i=1

where 8\°'(N) is defined in Lemma 5.
Proaf: We have

E
v (ﬁzll;f 1 5zew )

i=1

(@) &
;ZV(PZ‘” H leN:Pz'" H:F'le

=141

- Z V (B, B Bzow )

(
Eg"’(

LN DR R PEVY DR R PN )
(b) vz - - -
= Z Z1:N |G EF:PZNN D B F o PELN D B P PZLEN

E
=yv (Pz;;f_ \D.E,F;s Py IPDiE.-Fi)
i=2

(e} k (2)
<> & (N)

=2

< (k—1) max 6y (N),

iyl
where (a) holds by the triangle inequality, (b) holds by the
Markov chain Z”’" — (Dy, By, Fy) — ZHL, (c) holds by
Lemma 5. O
We now show that the target output distribution is well
approximated jointly over all blocks.
Lemma 7: For Block 1 € [1, k], we have

V (B azn ) < (k= DS (N) + kéx(N),

where 4"/ (N) is defined in Lemma 5 and 8,(N) is defined
in Lemma 3.
Proaf: We have

V{‘.Hz,l;f s gzin )

(a) k
< (k— DS (V) + V([ ] Bz, gzraw)

i=1
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k k
® > - s _
< (k=15 (N) + V(g [[5zv, a0 [[5z2w)
i=2 i=2
k

+ Vigzr.x ]__[!:-;Z}“"". Gzien )
=2
k

()
< (k= 1)80(N) +81(N) + V(]| Bzrw s azoe )
=2

(d) . -
< (k=15 (V) + 3 6(N)
=1

(2)
< — ;
<(k-1)d; ' (N)+ kjgiﬁlﬁj{N].

where (a) holds by the triangle inequality and Lemma 6,
(b) holds by the triangle inequality, () holds by Lemma 3,
(d) holds by induction. O
Finally, the next lemma shows that the encoding scheme of
Section IV-B achieves the desired rate-tuple.

Lemma 8: Let g > 0. For k large enough and £ = 0,
we have

m Ry =I{X;ZU) + ey + 2¢,
N— 4o
yim Ry =I(U;Z) + e + 2,
Jim Ry =I(V;ZUX) +e0 + 2.

Progf:  Let k be such that %max{H{X]..H{U],
H({V)} < eg. Then, by the definition of £;, we have
S |Ed
Bi="N
_NH(X)+e)+ (E-1)N{I(X;2U) + &)
B kN
H(X)

£T+I{X;ZU}+E1
Cea+I(X;2U)+e
Nohee, (X3 ZU) + ep + 2€,
>ic1 104l
Ry = &==11

EN
_ N(HU) + e+ (k- YN{I(U;Z) +e1)

kN
H(U)
k

<

+I(U;2)+ &
<ea+I{U;Z)+e
N, (U3 Z) + €0 + 2¢,

YR
B NHVI+e)+(E-1)N{I[V;ZUX) + )
o EN

H(V)

<eg+I(V;ZUX) + g
Nodoo, (V3 ZUX) + e + 28,

{T+I{V;ZUX]+EI

O
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B. Coding Scheme Analysis for Case 2
For Case 2, U = @ and V' =Y, so that by Lemma 8, the
achieved rate pair is such that
yhim Ry =IX;2Z) + e +2¢,
im_Ra= Jim (Ry -+ o)
=IY;ZX)+ep +2¢
DY ZIX) + e + 28

G 1Y:Z) +e0 + 26,

where (a) holds by independence between X and ¥, and
(&) holds because I(XY; Z) =I(X;Z)+1(Y;Z) in Case 2.

VI. EXTENSION TO MORE THAN TWO TRANSMITTERS

Consider a discrete memoryless multiple access channel
(Xe,azx,, Z), where Xp = {0,1}, I € £ £ [LL],
Z is a finite alphabet, and X £ (X;);cc. The definitions in
Section II-B immediately extend to this multiple access chan-
nel with L transmitters and we have the following counterpart
of Theorem 1.

Theorem 4: We have Ry, =R,

R, 2 U ((Riee : 1(Xsi ZIT) < R VS € ),
Pridx;rhee

where pr is defined over T £ [1,|2|+2% —1] and (gx, 7 )iec
are such that, forany t €7 and = € Z,

qz(z) = Y azx,(zlzc) [ axur (xilt)-

rreXy el

with

Proaf: The converse is an immediate extension of the
converse of Theorem 1 from [7]. The achievability follows
from Theorem 5. O

Thearem 5: The coding scheme presented in Section VI-A,
which solely relies on source resolvability codes, used as black
boxes, and two-universal hash functions, achieves the entire
multiple access channel resolvability region Ry, of Theorem 4
for any discrete memoryless multiple access channel with
binary input alphabets.

A. Achievability Scheme

In the following, we use the notation X5 £ (X))jes for
SC L and Xiq 2 Xpy g for I € L. Let px, £ [[1epPx,-
We will show the achievability of the region

R(px:) £ {(Ri)iec : I(Xs;Z) < Rs,¥S C L},

which reduces to showing the achievability of the rate-
tuple (I(X;; Z|X1:—1))hies. Indeed, the set function & —
—I(X35;Z) is submodular, e.p., [20], and the region
R (px.) thus forms a contrapolymatroid [19] whose dom-
inant face is the convex hull of its extreme points given
by {{”X.:r{x}iZ|X{am::e[1,:—1]}}heﬁ : o € B(L)}, where
&(L) is the symmetric group over £. By time-sharing and
symmetry of the extreme points, the achievability of the
dominant face reduces to showing the achievability of one
extreme point, which without loss of generality can be chosen
as (I( X1 2| Xpa—1))iec-

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on June 10,2022 at 21:57:54 UTC from IEEE Xplore. Restrictions apply.



3616

The encoding scheme to achieve (I(Xy;Z|X1.4-1)hec
operates over k € [ blocks of length V. In this section,
we use the double subscripts notation X, where the first
subscript corresponds to Transmitter [ € £ and the second
subscript corresponds to Block ¢ € [1,k]. The encoding at
Transmitter [ € £ is described in Algorithm 3 and uses

« A hash function Gx, : {0,1}¥ — {0,1}™% chosen

uniformly at random in a family of two-universal hash
functions, where the output length of the hash function
Gy, is defined as follows

Tx, 2 N(H(X1|ZX1:4-1) — €2/2). (16)

« A source resolvability code for the discrete memoryless
source (A, qx,) with encoder function eﬁ' and rate
H(X;) + %, where e £ 2(85(N) + &), dz(N) £
log(|Xz| + 3)y/&(L +logN), & = 0, such that
the distribution of the encoder output ﬁx!hn satisfies
Vipxpv,gxp~) < 6(N), where §(N) is such that
lmpy_ 4o 8(N) =0.

In Algorithm 3 and for any [ £ £, the hash function output
E':,n i € [2,k], with length rx, corresponds to recycled
randomness from Block i — 1.

Algorithm 3 Encoding Algorithm at Transmitter [ € £

Require: A vector Ey; of N(H(X;) + e2) uniformly dis-
tributed bits, and for « € [2,k], a vector E;; of
N{I(X; ZX14-1) + €2) uniformly distributed bits.

I: for Block i =1 to k& do

2. if i =1 then

3 Define X}V £ e} (Ei1)

4 elseif i = 1 tllen

3 Define E;, £ Gx!{Xi N

6 Define X1V £ ey (Eyy| By

T

B

9

end if _
: Send X ;¥ over the channel
- end for

B. Achievability Scheme Analysis

For convenience, define, for any [ € L, ﬁu £ . Let
P, L XIN Z1N denote the joint probability distribution of

the randnm variables E; ;,XI N, and ZIN | € L, created in
Block i € [1, k] of the coding scheme of Section VI-A.

We prove in I‘hemfnlluwmg lemma that in Block i £
[2, K], if the inputs Xl'L ¢ Of the hash functions (Gx, )ier
are replaced by X3 N distributed according 10 gxiw =

H1—1‘?x1 .. then the outputs of these hash fum:lmns are
almost jointly uniformly distributed. Define

Gy, (XENy & (Gl (X1 Diee -
Lemma 9: Let pun:f denote the uniform distribution over
{0, 1} e, 'Il'lﬂll we have
v(qaxm.'[xll;f}z‘m:Puf,lfqzl:n) < E*EGJ{NL

where 8*@(N) £ 2/N + 2372~ %
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Proaf: Using Lemma 16 in Appendix B, with the substi-
tutions A — L, Ty — X}V applied to the product distri-
bution gx LN Z1N, there exists a subnormalized non-negative
function wy 1w 71w such that for any S C £

an
NE3(N), (18)

V{wxlflem’ qXI::fz1=N] = lfN:
Hm{“’x?"zl:” |qzl=N:| = NH{XSIE"F} -

where the min-entropy He.(wy 1~ gin|gziv) is defined in
Lemma 16 in Appendix B, and d%(N) £ log(|Xs| +

3)y/ %{L + log V). Let gg,,, define the distribution of

EI:L £ GXIL{XIIE.J] {lg)

where X7}V is distributed according to gy .. We have

i
V(QEI:LZLN-.PEI{QZIN}
(m)
{ v{?ﬂh LELN W, o7l N] + V{H'IE1 LELN ’PE’
(B
< V{qxl NN Wy LN g W) +VI:1LFE1 L B H,pE

jr'E’z“"'}

" gx)

"_: /N + Viwg,, LZl:N,pE," b 1w )
+ Vg, wzn, P az)

(d)
< 2/N + V(wg, , z1v, Py wzsx)

>, 2

SCL5#D

{E 2N + Z grxg—NH(Xs|Z)+N53(N)
SCL,540

_Hm[wx;:ﬂ' LN B0 )

(e}
< 9/N +

(@) 2N + Z 9 s (N(H(X|ZX1a1)-F )
SCL.S5#0

1/2
e EJEEH{XJ|zx[l:1_1]n5)+N5E{N)) /

{%) 2/N + Z 93 1es N(—F+I2(N))

SCL,S#0
(1) -
< 9/N + v2La-Ng Nt g

where (a) holds by the triangle inequality, (b) holds by (19)
and the data processing inequality, (c) holds by (17) and the
triangle inequality, (d) holds by (17), (&) holds by Lemma 17
in Appendix B, { f) holds by (18) and because for any & C L,
d5(N) < §-(N). (g) holds by (16) and the chain rule, (k)
holds because conditioning reduces entropy, () holds because
|5] = 1 and en = 2{d3(N') + £). O
We now show that in each encoding block, the random
variables induced by the coding scheme approximate well the
target distribution.
Lemma 10: For Block i € [1, k],

Vipxyy zv, axpyzon) < 5 (N),

where 8*(N) £ L(4(N) + E‘IDJ{N}]{%} + L*H5(N).

(20)
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Progf: We prove the result by induction. For i = 1, we
have

V{_‘.Ex'l:ﬂ z'l:]'m':l xl:Nz‘l:H'}

= V(p. Pzi¥|xL:y, Px, P z'="|x11;f*;‘x,1;f]
) grem

= Viexpy, axy)

‘_i Zviﬁxw: x1:% )

lec

(e}
< L&(N),

rz

21

where {E} holds because gz lel = le le'l N .t {b] holds
by the triangle inequality and because {X jep A€ jointly
independent, and (X V)< are jointly mdependrm, () holds
by the source resolvability codes used at the transmitters
because Er1l > H(X;) +ea/2,1 € L.

ﬁssume now that, for i € [2, k—1], (20) holds. For any [ €
L and i € [2,k], consider E;, distributed according to p ““"‘f .
the uniform distribution over {0,1}™:, and let PxiN denole
the distribution of X}V £ X! (Ey4, Ey4). For i € [1 k—1],
we have

Vxi a2 Dy o)

(a)

< D VExpa, axpew)
lel

(b)

{Z"'[lel Pz )+ Viexey o)
lel

(c)

< D Vipxen, pxey, ) +3(N)
lel

? S ViE w4y 4 8(N)

PEi:11:Pg,

lel

(g

< 3 (60N) + V(B cons g, x2m)
el

H
+V(ga, XN P;T I})

() -
Eh Z (ﬂN} + V{PGx,{x,‘:;NJ:‘;‘Gx,(x‘lw:,}
=L

V(g xpmys ptér:sr})

(g} _ .
= Z‘“N} +V(lel,=‘.~: xun) + 48 @)
lel

)
< D O(N) + & (N) + 8 ON)
lel

-L (amr} + 8 (N) + a*fﬂﬁ{N)) .

where (a) holds similar to (21), (b) holds by the triangle
inequality, (=) holds by the source resolvability codes used at
the transmitters because Z=IHEul _ Xy 4 ep/21 € £,
(d) holds by the data processing inequality, (e) holds by
the triangle inequality, (f) holds because for any [ € L,
Eis1 2 Gx, {X},;N} by Line 5 of Algorithm 3, (g) holds
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by the data processing inequality and Lemma 9, (h) holds by
the induction hypothesis.
Next, we show that the recycled randomness in Block
i £ [2,k] is almost independent from the channel outputs
of Block i — 1.
Lemma 11: For i € [2,k], we have
VB, , 08 Prr Pz ) < 6D (N).

where &, (V) £ 457 ,(N) + 26*@ ().
Proaf: We have

v{.FP”EhL:iz:iNl !lﬁEhL,i_FP'z;_l:_Hl}

(@)
< V{PEI b

+ V{PELLPZ.-IE: ’PEM.,i z:_:;}

= EV{!::"ELL,i = Ifﬁz.l_l:}

’PE f ZIN}

UTE
250 Py,
(&)
<2 (WPEI Lo ZEN9Gx,  (XEN)Z1N)
+V{qul L[x1=")zl=N:P_;§_- ‘r';'!'zh"]
+v|:‘-PT.I.I1- rqzl N ’PEll-.r z'l N})

{ E{V{ xlN Zl:M, qX'I N g N:I +£'[DJ{N}

gi—1

+ Vigzuw, pziy))

(d) - =(0)
< 46;_4(N) +267(N),

where (a) and (b) hold by the triangle inequality, (c)
holds by the data processing inequality because Ey.p, £
Gx,, (XEN. ) by Line 5 of Algorithm 3, and by Lemma 9,
(d) holds by Lemma 10. O

Next, we show that the recycled randomness in Block
i € [2,K] is almost independent of the channel outputs in
Blocks 1 to ¢ — 1 considered jointly.

Lemma 12: For i € [2,k], we have

— o — w2
v (PE-hLI‘-ZL:i"i-.TPEI:L:iPZ%;.-"iI) < ‘51{ }{N]f

where 8" (N) £ (2-1 — 1)(48;_,(N) + 28* @ (N)).

Proaf: We prove the result by induction. The lemma is
true for ¢ = 2 by Lemma 11. Assume now that the lemma
holds for i € [2,k — 1]. Then, for i € [3, k], we have

v (ﬁzi;i’i]EhL:.‘?ﬁZI;ﬁ 1§E1=L:.‘)

(a)
< v(leffi1El:L,i*Pz%fi’iapzilih{EhL:i)

+V (ﬁz;;f_ PEENE, , s PziN Pzix ﬁEhL,.-)
+V( Pzl PZlNPElLa*le" PElLa)

-V (ﬁzm

1o L:isz'}::iH—-'! PZ&:_"{ Errq )

+v(.FPUZENE]_:Li?ﬁZ?‘i’:ﬁEl:L,i)
+V( Pziy pzlnr, z}:.r_l)

(B) w1 o ~ —
< ‘51( :I{N} +2V (PZ%:£1E1::.,,i_1=ifpzlljf_zpzi1=_“{El=L,i_1=i)
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(-] —~ ~
= '51[ :I{N} + 2V (Pz%;f_gEl:L,i—lpz}in'l:L,ilE'l:L,i—lﬁ

Pz%:i{ﬂpz%:_ﬁlEl:L:i—l:{)

w1 — —~ —~—
= 5V N +2V (Brin 5,y B PR )

< 5O + 25,2,

where (a) holds by the triangle inequality, (b) holds by

Lemma 11, {c} holds by the Markov chain (E}. Lasdy” ZLN 1) —

E. Li-1— Zl 4ita, (d) holds by the induction hypothesis. [
The following lemmas show that the channel outputs of all

the blocks are asymptotically independent, and that the target

output distribution is well approximated jointly over all blocks.
Lemma 13: We have

(zm,npzm]_

where 4;'% (N) is defined in Lemma 12.
Lemma 14: For block i € [1, k], we have

V (Pazprazean ) < (k

where 4; %) (N) is defined in Lemma 12 and &7 (N) is defined
in Lemma 10.

The proofs of Lemmas 13 and 14 are similar to the proofs
of Lemmas 6 and 7, respectively, and are thus omitted.
Finally, the next lemma shows that the encoding scheme of
Section VI-A achieves the desired rate-tuple.

Lemma 15: Let eg = 0. For k large enough and any [ € L,
we have l.un Ry =1I{Xy;; Z1X10-1) + e + 26,

Pmaf Let kE be such that for any [ € L£ we have
—'[—1 < eg. Then, by the definition of es, for any [ € L,
we have

_ E:E:i |EI11|
B = kN
_ N(H(Xi) + e

— 182 (),

— 15 P (N) + ka3 (N),

+(kE—1)N(I(X;; ZX101) +€2)
EN

< + X ZX )+ e
< £u+ I(Xy; ZX 1) + €2
Mo, N(X; ZX1a-1) +eo + 2¢.

H'[XIJ

VII. CONCLUDING REMARKS

We showed that codes for MAC resolvability can be
obtained solely from source resolvability codes, used as
black boxes, and two-universal hash functions. The crux
of our approach is randomness recycling implemented with
distributed hashing across a block-Markov coding scheme.
Since explicit constructions for source resolvability codes
and two-universal hash functions are known, our approach
provides explicit codes to achieve the entire multiple access
channel resolvability region for arbitrary channels with binary
input alphabets.
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APPENDIX A
AN ExpLICIT CODING SCHEME
FOR SOURCE RESOLVABILITY
Letn e Nand N £ 27 Let G, 2 [}9]%" be the source
polarization matrix defined in [21]. For any set 4 C [1,N]
and any sequence X'V, let XV 4] be the components
of X"V whose indices are in 4. Next, consider a binary
memoryless source (X, gx ), where |X| = 2. Let X'V he
distributed according to gx1.v 2 []I, qx . and define A1V 2
GnX V. Define also for 8 < 1/2, dy 2 2V, the sets

Vx £ {i € [1,N]: H(A'|AY¥™ Y > 1 —én},
Hx 2 {i€ [1,N]: H(A'|A™") > dn }.

Algorithm 4 Encoding Algorithm for Source Resolvability
Require: A vector R of |Vy | uniformly distributed bits

I: Define A¥V[Vx] 2 R

2: Define A7 according to qaijari— for j € VE\HY and as

;{j & arg;na.‘x_inlAhj_l{ﬂlﬂ.l:j_l} for JE ch
as{0,1}
3 Define X'V £ AING,

In Algorithm 4, the distribution of X'V is such that
By oo V(Fyrn, gxrw) = 0 by [22], [23]. Moreover, the
rate of R is xl Y%, p(X) by [24, Lemma 1], and the
rate of randomness used in Line 2 is 00 by [10, Lemma 20].

Hence, Algorithm 4 achieves the source resolvability
of (X, qx).

APPENDIX B
SUPPORTING LEMMAS

A function fy defined over a finite alphabet X is
subnormalized non-negative if fy(r) > 0O¥r £ &
and } 5 fx(z) < 1. Additionally, for a subnormalized

non-negative  function fyxy defined over a finite
alphabet A = ), iis marginals are defined as
fx(x) Yyey fxv(z,y)¥z € X and fy(y) £

¥ rex fxv(z,y), ¥y € V., similar to probability distributions.

Lemma 16 (1251126, Lemma 2]): Define A £ [1,A]. Let
(Ta)aca be A finite alphabets and define for S C 4, Ts £
XKaesT,. Consider the random variables TV 2 (T1V), o 4
and Z1:V d.f:ﬁllﬂd over T2 x ZN with p{ﬂhahllll}' distribution

gringin = Hf_l'ET,:.Z For any € = 0, there exists a
subnormalized non-negative function Wyl Z1n defined over

T % ZV such that v{qu N ZLN WL H’le] < € and
Hoo(wrpn givlgzen ) 2 NH(T5|Z) — Nés(N), V5 € A,

where ds(N) £ log(|Ts| + 3)y/2(A — loge), and we have
defined the min-entropy as in [27], [28], i.e.,

Hm{wr_;"zl:h' |gz1:m )
w‘]}h"’zh"{t}s:w ZI:N}
gz (21V)

g - ]-Dg 1:N N
ts €T
21N csnpplg1:n )
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Lemma 17 ([25], [26, Lemma 1]); Consider a sub-normal-
ized non-negative function px,z defined over )QE,;A:'; % 2,
where X 2 (X)iec and, Z, A}, [ € L, are finite alphabets.
For | € L, let Fj : {0,1}™ — {0,1}", be uniformly
chosen in a family J; of two-universal hash functions. Define
sp & I1;c |71l and for any S C L, define rs = Y ies e
Define also Fr £ (Fi)icc and Fr(X ) 2 (Fi(X1)),e - Then,
for any gz defined over 2 such that supp(gz) C suppipz),
we have

V(pro(xc),Fc.2: PUCPUSPZ)

< Z ors—He(pxgzlgz)
SCL54D

where py;,_ and py,. are the uniform distributions over [1,27<]
and [1, s¢], respectively.

APPENDIX C
ProOOF OF LEMMA |

The proof is similar to [16]. We have

1(xy;z) 2 i(xov; z)

® U, Z) + [(X; Z|U) + I(V; Z|UX),

where (a) holds because I{XU'V; Z2) = I(XY; Z) since ¥ =
FIULV), and IXUV;Z) < I(XY; Z) since (X, U, V) —
(X.,Y)— Z forms a Markov chain, () holds by the chain rule.

We know by [16, Lemma 6] that I{X; ZL7) is a continuous
function of , hence so is

Ry = I(X; Z|U) = I(X; ZU),

where the last equality holds by the independence between
X and UU. Then, I{X;Z) and I(X;Z|Y") are in the image
of By by (3), and hence, using I({X;7) < I(X;YZ) =
IX;Z)Y), [I(X;Z),I(X;Z]Y)] is also in the image of
R, by continuity.
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