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Multiple Access Channel Resolvability Codes
From Source Resolvability Codes
Rumia Sultana ,Graduate Student Member, IEEE, and Rémi A. Chou

Abstract— We show that the problem of code construction for
multiple access channel (MAC) resolvability can be reduced to
the simpler problem of code construction for source resolvability.
Specifically, we propose a MAC resolvability code construction
that relies on a combination of multiple source resolvability
codes, used in a black-box manner, and leverages randomness
recycling implemented via distributed hashing and block-Markov
coding. Since explicit source resolvability codes are known, our
results also yield the first explicit coding schemes that achieve
the entire MAC resolvability region for any discrete memoryless
multiple-access channel with binary input alphabets.

Index Terms— Multiple access channel (MAC), resolvability,
randommess recycling, two-universal hash functions.

I. INTRODUCTION

THE concept of multiple access channel (MAC) resolv-
ability has been introduced in[3] as a natural exten-

sion of channel resolvability for point-to-point channels [4].
MAC resolvability represents a fundamental primitive that
finds applications in a large variety of network information-
theoretic problems, including strong secrecy for multiple
access wiretap channels [5], [6], cooperative jamming [5],
semantic security for multiple access wiretap channels [7],
and strong coordination in networks [8]. These applications
are, however, restricted by the fact that no explicit coding
scheme is known to optimally implement MAC resolvabil-
ity. Note indeed that [3], [7] only provide existence results
and no explicit code constructions. The objective of this
paper is to bridge this gap by providing explicit coding
schemes that achieve the MAC resolvability region [7]. While
previous works have been successful in providing explicit
coding schemes for channel resolvability over point-to-point
channels,1to the best of our knowledge, the only known
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1Explicit constructions based on polar codes for channel resolvability
have been proposed for binarysymmetricpoint-to-point channels [9] and
discrete memoryless point-to-point channels whose input alphabets have prime
cardinalities [10]. Another explicit construction based on injective group
homomorphisms has been proposed in [11] for channel resolvability over
binarysymmetricpoint-to-point channels. Low-complexity, but non-explicit,
linear coding schemes for channel resolvability over arbitrary memoryless
point-to-point channels have also been proposed in [12].

explicit constructions for MAC resolvability are those of [13].
However, the explicit constructions in [13], one based on
invertible extractors and a second one based on injective group
homomorphisms, are limited tosymmetricmultiple access
channels, and do not seem to generalize toarbitrarymultiple
access channels.
In this paper, we propose a novel approach to the con-
struction of MAC resolvability codes by showing that such
a construction can be reduced to the simpler problem of code
construction for source resolvability [14]. Since explicit con-
structions of source resolvability codes are known, e.g., [10],
our results yield the first explicit construction of MAC
resolvability codes that achieve the entire MAC resolvability
region of arbitrary multiple access channels with binary input
alphabets. More specifically, our approach to the construc-
tion of MAC resolvability codes relies on a combination of
appropriately chosen source resolvability codes, and leverages
randomness recycling implemented with distributed hashing
and a block-Markov encoding scheme. In essence, the idea
of block-Markov encoding to recycle randomness is closely
related to recursive constructions of seeded extractors in
the computer science literature, e.g., [15]. We stress that
our construction is valid independently from the way those
source resolvability codes are implemented. Additionally,to
avoid time-sharing whenever it is known to be unnecessary,
we also show how to implement the idea of rate splitting,
first developed in [16] for multiple access channel coding,
for the MAC resolvability problem with two transmitters.
Note that the main difference with [13], is that our approach
aims to reduce the construction of MAC resolvability codes
to a simpler problem, namely the construction of source
resolvability codes, whereas [13] attempts a code construction
directly adapted to multiple access channels.
The remainder of the paper is organized as follows. The
problem statement is provided in Section II. Our main result
is summarized in Section III. Our proposed coding scheme
and its analysis are provided in Section IV and Section V,
respectively. While our main result focuses on multiple access
channels with two transmitters, we discuss an extension of our
result to an arbitrary number of transmitters in Section VI.
Finally, Section VII provides concluding remarks.

II. PROBLEMSTATEMENT ANDREVIEW
OFSOURCERESOLVABILITY

A. Notation

Fora, b∈R,define[[a, b]] [a,b]∩N. The components
of a vectorX1:N of sizeN are denoted with superscripts,
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i.e.,X1:N (X1,X2,...,XN). For two probability dis-
tributionspandqdefined over the same alphabetX,the
variational distanceV(p, q)betweenpandqis defined as
V(p, q) x∈X|p(x)−q(x)|.

B. Problem Statement

Consider a discrete memoryless multiple access channel
(X ×Y,qZ|XY,Z),whereX = {0,1}= Y,andZ is
a finite alphabet. A target distributionqZ is defined as the
channel output distribution when the input distributions areqX
andqY, i.e.,

∀z∈Z,qZ(z)
x∈Xy∈Y

qZ|XY(z|x, y)qX(x)qY(y).(1)

Definition 1:A(2NR1,2NR2,N)code for the memoryless
multiple access channel(X×Y,qZ|XY,Z)consists of

• Two randomization sequencesS1andS2independent
and uniformly distributed overS1 [[ 1,2NR1]]and
S2 [[ 1,2NR2]], respectively;

• Two encoding functionsf1,N:S1→X
N andf2,N:

S2→Y
N;

and operates as follows: Transmitters 1 and 2 formf1,N(S1)
andf2,N(S2), respectively, which are sent over the channel
(X×Y,qZ|XY,Z).
Definition 2:(R1,R2)is an achievable resolvability rate

pair for the memoryless multiple access channel(X ×
Y,qZ|XY,Z)if there exists a sequence of(2

NR1,2NR2,N)
codes such that

lim
N→+∞

V(pZ1:N,qZ1:N)=0,

where qZ1:N
N
i=1qZ with qZ defined in(1)and

∀z1:N ∈ZN,

pZ1:N(z
1:N)
(s1,s2)∈S1×S2

qZ1:N|X1:NY1:N z
1:N|f1,N(s1),f2,N(s2)

|S1||S2|
.

The multiple access channel resolvability regionRqZ is
defined as the closure of the set of all achievable rate pairs.
Theorem 1 ([7, Theorem 1]):We haveRqZ =RqZ with

RqZ
pT,qX|T,qY|T

{(R1,R2):I(XY;Z|T)≤R1+R2,

I(X;Z|T)≤R1,

I(Y;Z|T)≤R2},

wherepTis defined overT [[ 1,|Z|+3]]andqX|T,qY|Tare
such that, for anyt∈Tandz∈Z,

qZ(z)=
x∈Xy∈Y

qX|T(x|t)qY|T(y|t)qZ|XY(z|x, y).

Note that reference [7] provides only the existence of a
coding scheme that achieves any rate pair inRqZ. By contrast,
our goal is to provide explicit coding schemes that can achieve
the regionRqZ by relying on source resolvability codes,
which are used in a black box manner. The notion of source
resolvability is reviewed next.

C. Review of Source Resolvability

Definition 3:A (2NR,N)source resolvability code for
(X,qX)consists of

• A randomization sequenceSuniformly distributed over
S [[ 1,2NR]];

• An encoding functioneN :S →X
N;

and operates as follows: The encoder formsX1:N eN(S)
and the distribution ofX1:N is denoted bypX1:N.
Definition 4:Ris an achievable resolution rate for a dis-
crete memoryless source(X,qX)if there exists a sequence of
(2NR,N)source resolvability codes such that

lim
N→+∞

V(pX1:N,qX1:N)=0, (2)

whereqX1:N
N
i=1qX. The infimum of such achievable

rates is called source resolvability.
Theorem 2 [4]:The source resolvability of a discrete mem-
oryless source(X,qX)isH(X).
Note that explicit low-complexity source resolvability codes
can, for instance, be obtained with polar codes as reviewed
in Appendix A.

III. MAINRESULT

Our main result is summarized as follows.
Theorem 3:The coding scheme presented in Section IV,
which solely relies on source resolvability codes, used as black
boxes, and two-universal hash functions [17], achieves the
entire multiple access channel resolvability regionRqZ for
any discrete memoryless multiple access channel with binary
input alphabets.Moreover, time-sharing is avoided whenever
it is known to be unnecessary.
As a corollary, we obtain the first explicit construction of
multiple access channel resolvability codes that achieve the
entire multiple access channel resolvability regionRqZ for
any discrete memoryless multiple access channel with binary
input alphabets.
Corollary 1:Since explicit constructions for source resolv-
ability codes and two-universal hash functions are known,
e.g., [17], [18], Theorem 3 yields an explicit coding scheme
that achievesRqZ for any discrete memoryless multiple access
channel with binary input alphabets.

IV. CODINGSCHEME

We explain in Section IV-A that the general construction of
MAC resolvability codes can be reduced to two special cases.
Then, we provide a coding scheme for these two special cases
in Sections IV-B, IV-C.

A. Reduction of the General Construction of MAC
Resolvability Codes to Two Special Cases

Definition 5:For the memoryless multiple access channel
(X×Y,qZ|XY,Z)we define

RX,Y {(R1,R2):I(XY;Z)≤R1+R2,

I(X;Z)≤R1,

I(Y;Z)≤R2},

for some product distributionpXpY onX×Y.
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Fig. 1. RegionRX,Y in Case 1:I(XY;Z)>I(X;Z)+I(Y;Z).

To show the achievability ofRqZ, it is sufficient to
show the achievability ofRX,Y. Indeed, note that ifRX,Y
is achievable, then Conv(pXpY

RX,Y)is also achievable,
where Conv denotes the convex hull. Hence,RqZ is achiev-
able because Conv(pXpY

RX,Y)⊃RqZ by remarking that

the corner points ofRqZ are in Conv(pXpY
RX,Y).For

instance, the point(I(X;Z|T),I(Y;Z|XT))∈RqZ belongs
to Conv(pXpY

RX,Y)since

(I(X;Z|T),I(Y;Z|XT))

=
t∈T

pT(t)(I(X;Z|T=t),I(Y;Z|X, T=t)).

Similarly, all the corner points ofRqZ also belong to
Conv(pXpY

RX,Y). Next, we consider two cases to achieve

the regionRX,Y for some fixed distributionpXpY.

• Case 1 (depicted in Figure 1):I(XY;Z)>I(X;Z)+
I(Y;Z). In this case, it is sufficient to achieve the
dominant faceDofRX,Y,where

D {(R1,R2):R1∈[I(X;Z),I(X;Z|Y)],

R2=I(XY;Z)−R1}.

• Case 2 (depicted in Figure 2):I(XY;Z)=I(X;Z)+
I(Y;Z). In this case, only the corner pointCneeds to be
achieved. Note that it is impossible to haveI(XY;Z)<
I(X;Z)+I(Y;Z)by independence ofXandY.

B. Encoding Scheme for Case 1

Consider the regionRX,Y for some product distribution
pXpY onX×Ysuch thatI(XY;Z)>I(X;Z)+I(Y;Z).
SinceRX,Y is a contrapolymatroid [19], to achieve the
regionRX,Y, it is sufficient to achieve any rate pair(R1,R2)
of the dominant faceDofRX,Y. We next show thatDcan
be achieved through rate-splitting using the following lemma
proved in Appendix C.
Lemma 1:Considerf:Y× Y →Y,(u, v)→max(u, v),

and form(Y×Y,pUpV), ∈ [0,1], such thatpUV =
pUpV,pf(U,V)=pY,forfixed(y, u),pf(U,V)|U(y|u)is
a continuous function of,and

U=0=0=V=1, (3)

Fig. 2. RegionRX,Y in Case 2:I(XY;Z)=I(X;Z)+I(Y;Z).

U=1=f(U=1,V=1), (4)

V=0=f(U=0,V=0). (5)

The above construction is indeed possible as shown in
[16, Example 3]. Then, we haveI(XY;Z)=R1+RU+RV,
where we have defined the functions

R1:[0,1]→ R+,→I(X;Z|U),

RU:[0,1]→ R+,→I(U;Z),

RV:[0,1]→ R+,→I(V;Z|UX).

Moreover, R1 is continuous with respect to and
[I(X;Z),I(X;Z|Y)]is contained in its image.
When the context is clear, we do not explicitly write the
dependence ofUandVwith respect to by dropping the
subscript.
Fix a point(R1,R2)inD. By Lemma 1, there exists a
joint probability distributionqUV XY Z overY×Y×X×
Y×Zsuch thatR1=I(X;Z|U),R2=RU +RV with
RU = I(U;Z)andRV = I(V;Z|UX). We provide next
a coding scheme that will be shown to achieve the point
(R1,R2).The encoding scheme operates overk∈Nblocks
of lengthNand is described in Algorithms1and2. A high
level description of the encoding scheme is as follows. For
the first transmitter, we perform source resolvability for the
discrete memoryless source(X,qX)using randomness with
rateH(X)in Block1. Using Lemma1, we perform rate
splitting for the second transmitter to get two virtual users such
that one virtual user is associated with the discrete memoryless
source(Y,qU)and the other virtual user is associated with the
discrete memoryless source(Y,qV). Then, we perform source
resolvability with ratesH(U)andH(V)for the discrete
memoryless sources(Y,qU)and(Y,qV), respectively. For
the next encoding blocks, we proceed as in Block1using
source resolvability and rate splitting except that part of the
randomness is now recycled from the previous block. More
precisely, we recycle the bits of randomness used at the
inputs of the channel in the previous block that are almost
independent from the channel output. The rates of those bits
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will be shown to approachH(X|UZ),H(U|Z),H(V|UZX)
for User1and the two virtual users, respectively.

• The encoding at Transmitter1is described in Algorithm 1
and uses

–A hash functionGX :{0,1}
N −→ {0,1}rX chosen

uniformly at random in a family of two-universal
hash functions, where the output length of the hash
functionGX is defined as follows

rX N(H(X|UZ)− 1/2), (6)

where 1 2(δA(N)+ξ),δA(N) log(|Y|2|X |+

3) 2
N(3 + logN),ξ>0.

–A source resolvability code for the discrete memo-
ryless source(X,qX)with encoder functione

X
N and

rateH(X)+1

2, such that the distribution of the
encoder outputpX1:N satisfiesV(pX1:N,qX1:N)≤
δ(N),whereδ(N)is such thatlimN→+∞ δ(N)=0.

In Algorithm 1, the hash function outputEi,i∈[[ 2,k]],
with lengthrX corresponds to recycled randomness from
Blocki−1.

• The encoding at Transmitter2is described in Algorithm 2
and uses

–Two hash functionsGU:{0,1}
N −→ {0,1}rU and

GV :{0,1}
N −→ {0,1}rV chosen uniformly at

random in families of two-universal hash functions,
where the output lengths of the hash functionsGU
andGV are defined as follows

rU N(H(U|Z)− 1/2),

rV N(H(V|UZX)− 1/2). (7)

–A source resolvability code for the discrete mem-
oryless source(U,qU)with encoding functione

U
N

and rateH(U)+1

2, such that the distribution of
the encoder outputpU1:N satisfiesV(pU1:N,qU1:N)≤
δ(N),whereδ(N)is such thatlimN→+∞ δ(N)=0.

–A source resolvability code for the discrete memory-
less source(V,qV)with encoding functione

V
N and

rateH(V)+1

2, such that the distribution of the
encoder outputpV1:N satisfiesV(pV1:N,qV1:N)≤
δ(N),whereδ(N)is such thatlimN→+∞ δ(N)=0.

In Algorithm 2, the hash function outputsDiandFi,
i∈[[ 2,k]], with lengthsrU andrV, respectively, corre-
spond to recycled randomness from Blocki−1.

The dependencies between the random variables involved in
Algorithms 1 and 2 are represented in Figure 3.

C. Encoding Scheme for Case 2

The encoding scheme for Case2is same as the encoding
for Case1with the substitutionsU←∅ andV←Y.

V. CODINGSCHEMEANALYSIS

A. Coding Scheme Analysis for Case 1

First, we show that in each encoding Blocki∈[[ 1,k]],

the random variablesU1:Ni ,V1:Ni ,X1:Ni ,Y1:Ni ,Z1:Ni induced

Algorithm 1Encoding Algorithm at Transmitter1in Case 1

Require:A vectorE1ofN(H(X)+1)uniformly distributed
bits, and fori∈[[ 2,k]], a vectorEiofN(I(X;UZ)+1)
uniformly distributed bits.

1:forBlocki=1tokdo
2: ifi=1then
3: DefineX1:N1 eXN(E1)
4: else ifi>1then
5: DefineEi GX(X

1:N
i−1)

6: DefineX1:Ni eXN(EiEi),where denotes concate-
nation

7: end if
8: SendX1:Ni over the channel
9:end for

Algorithm 2Encoding Algorithm at Transmitter2in Case 1

Require:A vectorD1ofN(H(U)+1)uniformly distributed
bits, and fori∈[[ 2,k]], a vectorDiofN(I(U;Z)+1)
uniformly distributed bits. A vectorF1ofN(H(V)+1)
uniformly distributed bits, and fori∈[[ 2,k]], a vectorFi
ofN(I(V;UZX)+1)uniformly distributed bits.

1:forBlocki=1tokdo
2: ifi=1then
3: DefineU1:N1 eUN(D1)andV

1:N
1 eVN(F1)

4: else ifi>1then
5: DefineDi GU(U

1:N
i−1)andFi GV(V

1:N
i−1)

6: DefineU1:Ni eUN(DiDi)andV
1:N
i eVN(FiFi)

7: DefineY1:Ni f(U1:Ni ,V1:Ni ),wherefis defined in
Lemma 1

8: end if
9: SendY1:Ni over the channel
10:end for

Fig. 3. Dependence graph for the random variables involved in the encoding
for Case 1.Ni,i∈ [[ 1,k]], is the channel noise corresponding to the
transmission over Blocki. For Blocki∈[[ 2,k]],(Di,Di),(Fi,Fi),(Ei,Ei)

are the random sequences used at the encoders to formU1:Ni ,V1:Ni ,X1:Ni ,
respectively.

by the coding scheme approximate well the target distribu-
tionqU1:NV1:NX1:NY1:NZ1:N. Then, we show that the target
output distributionqZ1:kN is well approximated jointly over
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all blocks. To do so, we show that the recycled randomness
Ei,Di,Fiin Blocki∈ [[ 2,k]]that appears in Line5of
Algorithms 1 and 2 is almost independent of the channel
output in Blocki−1. Note that randomness recycling is studied
via a distributed version of the leftover hash lemma stated
in Lemma17. Finally, we prove that the encoding scheme of
Section IV-B achieves the desired rate-tuple.
For convenience, defineE1 ∅,D1 ∅,andF1 ∅.Let

pEiDiFiX1:Ni U1:Ni V1:Ni Y1:Ni Z1:Ni
(8)

denote the joint probabilitydistribution of the random

variablesEi,Di,Fi,X
1:N
i ,U1:Ni ,V1:Ni ,Y1:Ni ,andZ1:Ni cre-

ated in Blocki∈[[ 1,k]]of the coding scheme of Section IV-B.
We first prove in the following lemma that in Block i∈

[[ 2,k]], if the inputsX1:Ni−1,U
1:N
i−1,V

1:N
i−1 of the hash functions

GX,GU,GV, respectively, are replaced byX
1:N,U1:N,

V1:N distributed according toqX1:NU1:NV1:N
N
i=1qXUV,

then the output of these hash functions are almost jointly
uniformly distributed.
Lemma 2:Letpunif

Ē
,punif
D̄
,punif
F̄

denote the uniform dis-

tributions over{0,1}rX,{0,1}rU,{0,1}rV, respectively.
Then,

V qGX(X1:N)GU(U1:N)GV(V1:N)Z1:N,p
unif

Ē
punif
D̄
punif
F̄
qZ1:N

≤δ(0)(N),

whereδ(0)(N) 2/N+
√
7·2−

Nξ
2 .

Proof:DefineA {U, V, X}and, for anyS⊆A,define
TS (W)W∈S.Hence, we have

T1:NA =(X1:N,U1:N,V1:N),

qT1:NA Z1:N =qX1:NU1:NV1:NZ1:N.

Then, by Lemma 16 in Appendix B, applied to the product dis-
tributionqT1:NA Z1:N, there exists a subnormalized non-negative
functionwT1:NA Z1:N such that, for anyS⊆A,

V(wX1:NU1:NV1:NZ1:N,qX1:NU1:NV1:NZ1:N)≤1/N , (9)

H∞(wT1:NS Z1:N|qZ1:N)≥NH(TS|Z)−NδS(N), (10)

where the min-entropyH∞(wT1:NS Z1:N|qZ1:N)is defined in

Lemma 16 in Appendix B, andδS(N) log(|TS|+

3) 2
N(3 + logN)withTS is the domain over whichTS is

defined.Next, letqEDF define the joint distribution of

E GX(X
1:N),D GU(U

1:N),F GV(V
1:N), (11)

whereU1:N,V1:N,andX1:N are distributed according to
qU1:NV1:NX1:N. Then, we have

V(qEDFZ1:N,p
unif

Ē
punif
D̄
punif
F̄
qZ1:N)

(a)

≤V(qEDFZ1:N,wEDFZ1:N)

+V(wEDFZ1:N,p
unif
Ē
punif
D̄
punif
F̄
qZ1:N)

(b)
=V(qGX(X1:N)GU(U1:N)GV(V1:N)Z1:N,

wGX(X1:N)GU(U1:N)GV(V1:N)Z1:N)

+V(wEDFZ1:N,p
unif

Ē
punif
D̄
punif
F̄
qZ1:N)

(c)

≤V(qX1:NU1:NV1:NZ1:N,wX1:NU1:NV1:NZ1:N)

+V(wEDFZ1:N,p
unif

Ē
punif
D̄
punif
F̄
qZ1:N)

(d)

≤1/N+V(wEDFZ1:N,p
unif

Ē
punif
D̄
punif
F̄
wZ1:N)

+V(punif
Ē
punif
D̄
punif
F̄
wZ1:N,p

unif

Ē
punif
D̄
punif
F̄
qZ1:N)

(e)

≤2/N+V(wEDFZ1:N,p
unif

Ē
punif
D̄
punif
F̄
wZ1:N)

(f)

≤2/N+

S⊆A,S=∅

2
rS−H∞ (wT1:N

S
Z1:N

|qZ1:N )

(g)

≤2/N+

S⊆A,S=∅

2rS−NH(TS|Z)+NδS(N)

(h)

≤2/N+
S⊆A,S=∅

2rS−NH(TS|Z)+NδA(N)

where(a)holds by the triangle inequality,(b)holds by (11),
(c)holds by the data processing inequality,(d)holds by (9)
and the triangle inequality,(e)holds by (9),(f)holds by
Lemma 17 in Appendix BandrS i∈Srisimilar to the
notation of Lemma 17,(g)holds by (10),(h)holds because
for anyS⊆A,δS(N)≤δA(N).Next,wehave

S⊆A,S=∅

2rS−NH(TS|Z)+NδA(N)

(a)
= 2N(H(X|UZ)−

1
2)−NH(X|Z)

+2N(H(U|Z)−
1
2)−NH(U|Z)

+2N(H(V|UZX)−
1
2)−NH(V|Z)

+2N(H(X|UZ)−
1
2)+N(H(U|Z)−

1
2)−NH(XU|Z)

+2N(H(U|Z)−
1
2)+N(H(V|UZX)−

1
2)−NH(UV|Z)

+2N(H(V|UZX)−
1
2)+N(H(X|UZ)−

1
2)−NH(VX|Z)

+2N(H(X|UZ)−
1
2)+N(H(U|Z)−

1
2)+N(H(V|UZX)−

1
2)

×2−NH(XUV|Z)
1
2

×2
1
2NδA(N)

(b)
= 2−NI(X;U|Z)−N

1
2 +2−N

1
2 +2−NI(V;UX|Z)−N

1
2

+2−N 1+2−N 1−NI(V;X|UZ)+2−N
31
2

+2−NI(V;U|ZX)−NI(X;U|Z)−N 1

1
2

×2
1
2NδA(N)

(c)

≤δ(0)(N)−2/N
N→+∞
−−−−−→0,

where(a)holds by(6)and(7),(b)holds by the definition of
mutual information and the chain rule for entropy,(c)holds
by the definition ofδ(0)(N)and because1=2(δA(N)+ξ).

We now show that in each encoding block, the random
variables induced by the coding scheme approximate well the
target distribution.
Lemma 3:For Blocki∈[[ 1,k]],wehave

V(pU1:Ni V1:Ni X1:Ni Y1:Ni Z1:Ni
,qU1:NV1:NX1:NY1:NZ1:N)≤δi(N),

whereδi(N)
3
2(δ(N)+δ

(0)(N))(3i−1) + 3i+1δ(N).

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on June 10,2022 at 21:57:54 UTC from IEEE Xplore.  Restrictions apply. 



SULTANA AND CHOU: MULTIPLE ACCESS CHANNEL RESOLVABILITY CODES FROM SOURCE RESOLVABILITY CODES 3613

Proof: We prove the result by induction. We first prove
that the lemma holds fori=1. Remark that

pY1:N1 |U1:N1 V1:N1 X1:N1

(a)
=pY1:N1 |U1:N1 V1:N1

(b)
=qY1:N|U1:NV1:N

(c)
=qY1:N|U1:NV1:NX1:N, (12)

where (a) holds because X1:N1 is independent from

(U1:N1 ,V1:N1 ,Y1:N1 ), (b) holds by the construction ofY1:N

andY1:N1 , (c) holds becauseX1:N is independent from
(U1:N,V1:N,Y1:N).Next,wehave

V(pU1:N1 V1:N1 X1:N1 Y1:N1 Z1:N1
,qU1:NV1:NX1:NY1:NZ1:N)

(a)
=V(pZ1:N1 |X1:N1 Y1:N1

pU1:N1 V1:N1 X1:N1 Y1:N1
,

qZ1:N|X1:NY1:NqU1:NV1:NX1:NY1:N)

(b)
=V(pU1:N1 V1:N1 X1:N1 Y1:N1

,qU1:NV1:NX1:NY1:N)

(c)
=V(pU1:N1 V1:N1 X1:N1

,qU1:NV1:NX1:N)

(d)
=V(pX1:N1 pU1:N1 V1:N1

,qX1:NqU1:NV1:N)

(e)

≤V(pX1:N1 pU1:N1 V1:N1
,qX1:NpU1:N1 V1:N1

)

+V(qX1:NpU1:N1 V1:N1
,qX1:NqU1:NV1:N)

(f)
=V(pX1:N1 ,qX1:N)+V(pU1:N1 pV1:N1 ,qU1:NqV1:N)

(g)

≤V(pX1:N1 ,qX1:N)+V(pU1:N1 pV1:N1 ,qU1:NpV1:N1 )

+V(qU1:NpV1:N1 ,qU1:NqV1:N)

=V(pX1:N1 ,qX1:N)+V(pU1:N1 ,qU1:N)+V(pV1:N1 ,qV1:N)

(h)

≤3δ(N), (13)

where(a)holds by the two Markov chains(U1:N,V1:N)−
(X1:N,Y1:N)−Z1:N and(U1:N1 ,V1:N1 )−(X1:N1 ,Y1:N1 )−

Z1:N1 ,(b)holds becauseqZ1:N|X1:NY1:N =pZ1:N1 |X1:N1 Y1:N1
,

(c)holds by (12),(d)holds becauseX1:N is indepen-

dent from (U1:N,V1:N)andX1:N1 is independent from
(U1:N1 ,V1:N1 ),(e)holds by the triangle inequality,(f)holds
becauseU1:N is independent fromV1:N andU1:N1 is inde-
pendent fromV1:N1 ,(g)holds by the triangle inequality,(h)
holds by the source resolvability codes used at the transmitters
because|E1|N >H(X)+1/2,

|D1|
N >H(U)+1/2,

|F1|
N >

H(V)+1/2.
Assume now that, fori∈[[ 2,k−1]], the lemma holds.

Fori∈ [[ 2,k]], considerĒi,̄Di,̄Fidistributed according
topunif

Ē
,punif
D̄
,punif
F̄
, respectively. Letp̄X1:Ni ,p̄U1:Ni ,p̄V1:Ni

denote the distribution ofX̄1:Ni eXN(̄Ei,Ei),̄U
1:N
i

eUN(̄Di,Di),̄V
1:N
i eVN(̄Fi,Fi), respectively. Then, for

i∈[[ 1,k−1]],wehave

V(pU1:Ni+1V1:Ni+1 X1:Ni+1Y1:Ni+1 Z1:Ni+1,qU1:NV1:NX1:NY1:NZ1:N)

(a)

≤V(pX1:Ni+1,qX1:N)+V(pU1:Ni+1,qU1:N)+V(pV1:Ni+1 ,qV1:N)

(b)

≤V(pX1:Ni+1,p̄X1:Ni+1)+V(p̄X1:Ni+1,qX1:N)

+V(pU1:Ni+1,p̄U1:Ni+1)+V(p̄U1:Ni+1,qU1:N)

+V(pV1:Ni+1 ,p̄V1:Ni+1 )+V(p̄V1:Ni+1 ,qV1:N)

(c)

≤3δ(N)+V(pX1:Ni+1,p̄X1:Ni+1)+V(pU1:Ni+1,p̄U1:Ni+1)

+V(pV1:Ni+1 ,p̄V1:Ni+1 )

(d)

≤3δ(N)+V(pEi+1,p
unif
Ē
)+V(pDi+1,p

unif
D̄
)

+V(pFi+1,p
unif

F̄
), (14)

where(a)holds similar to (13),(b)holds by the triangle
inequality,(c)holds by the source resolvability codes used at

the transmitters because|̄Ei|+|Ei|N =H(X)+1/2,
|̄Fi|+|Fi|
N =

H(V)+1/2,
|̄Di|+|Di|
N =H(U)+1/2,(d)holds by the data

processing inequality. Next, we have

max V(pEi+1,p
unif
Ē
),V(pDi+1,p

unif
D̄
),V(pFi+1,p

unif
F̄
)

≤V(pEi+1Di+1Fi+1,p
unif
Ē
punif
D̄
punif
F̄
)

(a)

≤V(pEi+1Di+1Fi+1,qGX(X1:N)GU(U1:N)GV(V1:N))

+V(qGX(X1:N)GU(U1:N)GV(V1:N),p
unif

Ē
punif
D̄
punif
F̄
)

(b)
=V(pGX(X1:Ni )GU(U1:Ni )GV(V1:Ni ),

qGX(X1:N)GU(U1:N)GV(V1:N))

+V(qGX(X1:N)GU(U1:N)GV(V1:Ni ),p
unif

Ē
punif
D̄
punif
F̄
)

(c)

≤V(pX1:Ni U1:Ni V1:Ni
,qX1:NU1:NV1:N)+δ

(0)(N)

(d)

≤δi(N)+δ
(0)(N), (15)

where(a)holds by the triangle inequality,(b)holds because
Ei+1 GX(X

1:N
i ),Di+1 GU(U

1:N
i ),Fi+1 GV(V

1:N
i )

by Line5of Algorithm 1 and Algorithm 2 ,(c)holds by
the data processing inequality and Lemma 2,(d)holds by the
induction hypothesis. By combining (14) and (15), we have

V(pU1:Ni+1V1:Ni+1 X1:Ni+1Y1:Ni+1 Z1:Ni+1,qU1:NV1:NX1:NY1:NZ1:N)

≤3(δ(N)+δi(N)+δ
(0)(N))

=δi+1(N).

The next lemma shows that the recycled randomness in Block
i∈[[ 2,k]]is almost independent of the channel output in
Blocki−1.
Lemma 4:Fori∈[[ 2,k]],wehave

V(pZ1:Ni−1EiDiFi,pZ1:Ni−1pEiDiFi)≤δ
(1)
i (N),

whereδ
(1)
i (N) 4δi−1(N)+2δ

(0)(N).
Proof: We have

V(pZ1:Ni−1EiDiFi,pZ1:Ni−1pEiDiFi)

(a)

≤V(pZ1:Ni−1EiDiFi,pZ1:Ni−1p
unif
Ē
punif
D̄
punif
F̄
)

+V(pZ1:Ni−1p
unif

Ē
punif
D̄
punif
F̄
,pZ1:Ni−1pEiDiFi)

≤2V(pZ1:Ni−1EiDiFi,pZ1:Ni−1p
unif

Ē
punif
D̄
punif
F̄
)

(b)

≤2V(pEiDiFiZ1:Ni−1,qEDFZ1:N)
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+V(qEDFZ1:N,p
unif

Ē
punif
D̄
punif
F̄
qZ1:N )

+V(punif
Ē
punif
D̄
punif
F̄
qZ1:N,p

unif

Ē
punif
D̄
punif
F̄
pZ1:Ni−1)

(c)

≤2V(pX1:Ni−1U1:Ni−1V1:Ni−1Z1:Ni−1,qX1:NU1:NV1:NZ1:N)

+V(qEDFZ1:N,p
unif

Ē
punif
D̄
punif
F̄
qZ1:N)

+V(qZ1:N,pZ1:Ni−1)

(d)

≤2(2V(pX1:Ni−1U1:Ni−1V1:Ni−1Z1:Ni−1,qX1:NU1:NV1:NZ1:N)+δ
(0)(N))

(e)

≤4δi−1(N)+2δ
(0)(N),

where(a)and(b)hold by the triangle inequality,(c)holds
by the data processing inequality using (11) andEi
GX(X

1:N
i−1),Di GU(U

1:N
i−1),Fi GV(V

1:N
i−1)from Line5

of Algorithm 1 and Algorithm 2,(d)holds by (11) and
Lemma 2,(e)holds by Lemma 3.
The next lemma shows that the recycled randomness in Block
i∈[[ 2,k]]is almost independent of the channel outputs in
Blocks1toi−1considered jointly.
Lemma 5:Fori∈[[ 2,k]],wehave

V pZ1:N1:i−1DiEiFi,pZ1:N1:i−1pDiEiFi ≤δ
(2)
i (N),

whereδ
(2)
i (N) (2i−1−1)(4δi−1(N)+2δ

(0)(N)).
Proof: We prove the result by induction. The lemma is

true fori=2by Lemma 4. Assume now that the lemma holds
fori∈[[ 2,k−1]]. Then, fori∈[[ 3,k]],wehave

V pZ1:N1:i−2Di−1Ei−1Fi−1,pZ1:N1:i−2pDi−1Ei−1Fi−1 ≤δ
(2)
i−1(N).

We have

V pZ1:N1:i−1DiEiFi,pZ1:N1:i−1pDiEiFi

(a)

≤V pZ1:N1:i−1DiEiFi,pZ1:N1:i−2pZ1:Ni−1DiEiFi

+V pZ1:N1:i−2pZ1:Ni−1DiEiFi,pZ1:N1:i−2pZ1:Ni−1pDiEiFi

+V pZ1:N1:i−2pZ1:Ni−1pDiEiFi,pZ1:N1:i−1pDiEiFi

=V pZ1:N1:i−1DiEiFi,pZ1:N1:i−2pZ1:Ni−1DiEiFi

+V pZ1:Ni−1DiEiFi,pZ1:Ni−1pDiEiFi

+V pZ1:N1:i−2pZ1:Ni−1,pZ1:N1:i−1
(b)

≤V pZ1:N1:i−1DiEiFi,pZ1:N1:i−2pZ1:Ni−1DiEiFi

+V pZ1:N1:i−2pZ1:Ni−1,pZ1:N1:i−1 +δ
(1)
i (N)

(c)

≤2V pZ1:N1:i−1Di−1:iEi−1:iFi−1:i,

pZ1:N1:i−2pZ1:Ni−1Di−1:iEi−1:iFi−1:i +δ
(1)
i (N)

(d)
=2V pZ1:N1:i−2Di−1Ei−1Fi−1pZ1:Ni−1DiEiFi|Di−1Ei−1Fi−1,

pZ1:N1:i−2pZ1:Ni−1Di−1:iEi−1:iFi−1:i +δ
(1)
i (N)

=2V pZ1:N1:i−2Di−1Ei−1Fi−1,pZ1:N1:i−2pDi−1Ei−1Fi−1

+δ
(1)
i (N)

(e)

≤δ
(1)
i (N)+2δ

(2)
i−1(N)

≤δ
(2)
i (N),

where (a)holds by the triangle inequality,(b)holds by
Lemma 4,(c)follows from the data processing inequal-

ity,(d)holds by the Markov chain(Di,Ei,Fi,Z
1:N
i−1)−

(Di−1,Ei−1,Fi−1)−Z
1:N
1:i−2,(e)holds by the induction

hypothesis.
The next lemma shows that the channel outputs of all the
blocks are asymptotically independent.
Lemma 6:We have

V pZ1:N1:k ,

k

i=1

pZ1:Ni ≤(k−1)δ
(2)
k (N),

whereδ
(2)
k (N)is defined in Lemma 5.

Proof: We have

V pZ1:N1:k ,
k

i=1

pZ1:Ni

(a)

≤

k

i=2

V

⎛

⎝pZ1:N1:i

k

j=i+1

pZ1:Nj ,pZ1:N1:i−1

k

j=i

pZ1:Nj

⎞

⎠

=

k

i=2

V pZ1:N1:i ,pZ1:N1:i−1pZ1:Ni

≤
k

i=2

V pZ1:N1:i DiEiFi,pZ1:Ni DiEiFipZ1:N1:i−1

(b)
=

k

i=2

V pZ1:N1:i−1|DiEiFipZ1:Ni DiEiFi,pZ1:Ni DiEiFipZ1:N1:i−1

=

k

i=2

V pZ1:N1:i−1DiEiFi,pZ1:N1:i−1pDiEiFi

(c)

≤

k

i=2

δ
(2)
i (N)

≤(k−1) max
j∈[[ 2,k]]

δ
(2)
j (N),

where(a)holds by the triangle inequality,(b)holds by the
Markov chain Z1:Ni −(Di,Ei,Fi)−Z

1:N
1:i−1,(c)holds by

Lemma 5.
We now show that the target output distribution is well
approximated jointly over all blocks.
Lemma 7:For Blocki∈[[ 1,k]],wehave

V pZ1:N1:k ,qZ1:kN ≤(k−1)δ
(2)
k (N)+kδk(N),

whereδ
(2)
k (N)is defined in Lemma 5 andδk(N)is defined

in Lemma 3.
Proof: We have

V(pZ1:N1:k ,qZ1:kN)

(a)

≤(k−1)δ
(2)
k (N)+V(

k

i=1

pZ1:Ni ,qZ1:kN)
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(b)

≤(k−1)δ
(2)
k (N) +V(pZ1:N1

k

i=2

pZ1:Ni ,qZ1:N

k

i=2

pZ1:Ni )

+V(qZ1:N
k

i=2

pZ1:Ni ,qZ1:kN)

(c)

≤(k−1)δ
(2)
k (N)+δ1(N)+V(

k

i=2

pZ1:Ni ,qZ1:(k−1)N)

(d)

≤(k−1)δ
(2)
k (N)+

k

i=1

δi(N)

≤(k−1)δ
(2)
k (N)+kmax

j∈[[ 1,k]]
δj(N),

where(a)holds by the triangle inequality and Lemma 6,
(b)holds by the triangle inequality,(c)holds by Lemma 3,
(d)holds by induction.
Finally, the next lemma shows that the encoding scheme of
Section IV-B achieves the desired rate-tuple.
Lemma 8:Let 0 > 0.Forklarge enough andξ >0,
we have

lim
N→+∞

R1=I(X;ZU)+0+2ξ,

lim
N→+∞

RU=I(U;Z)+0+2ξ,

lim
N→+∞

RV=I(V;ZUX)+0+2ξ.

Proof: Let k be such that 1
kmax(H(X),H(U),

H(V))< 0.Then, by the definition of 1,wehave

R1=
k
i=1|Ei|

kN

=
N(H(X)+1)+(k−1)N(I(X;ZU)+1)

kN

≤
H(X)

k
+I(X;ZU)+1

≤ 0+I(X;ZU)+1
N→+∞
−−−−−→I(X;ZU)+0+2ξ,

RU=
k
i=1|Di|

kN

=
N(H(U)+1+(k−1)N(I(U;Z)+1)

kN

≤
H(U)

k
+I(U;Z)+1

≤ 0+I(U;Z)+1
N→+∞
−−−−−→I(U;Z)+0+2ξ,

RV=
k
i=1|Fi|

kN

=
N(H(V)+1)+(k−1)N(I(V;ZUX)+1)

kN

≤
H(V)

k
+I(V;ZUX)+1

≤ 0+I(V;ZUX)+1
N→+∞
−−−−−→I(V;ZUX)+0+2ξ.

B. Coding Scheme Analysis for Case 2

For Case2,U=∅andV=Y, so that by Lemma8,the
achieved rate pair is such that

lim
N→+∞

R1=I(X;Z)+0+2ξ,

lim
N→+∞

R2= lim
N→+∞

(RV+RU)

=I(Y;ZX)+0+2ξ
(a)
=I(Y;Z|X)+0+2ξ
(b)
=I(Y;Z)+0+2ξ,

where(a)holds by independence betweenX andY,and
(b)holds becauseI(XY;Z)=I(X;Z)+I(Y;Z)in Case2.

VI. EXTENSION TOMORETHANTWOTRANSMITTERS

Consider a discrete memoryless multiple access channel
(XL,qZ|XL,Z), whereXl = {0,1},l∈ L [[ 1,L]],

Zis a finite alphabet, andXL (Xl)l∈L. The definitions in
Section II-B immediately extend to this multiple access chan-
nel withLtransmitters and we have the following counterpart
of Theorem 1.
Theorem 4:We haveRqZ =RqZ with

RqZ
pT,(qXl|T)l∈L

{(Rl)l∈L:I(XS;Z|T)≤RS,∀S ⊆ L},

wherepTis defined overT [[ 1,|Z|+2L−1]]and(qXl|T)l∈L
are such that, for anyt∈Tandz∈Z,

qZ(z)=
xL∈XL

qZ|XL(z|xL)
l∈L

qXl|T(xl|t).

Proof: The converse is an immediate extension of the
converse of Theorem 1 from [7]. The achievability follows
from Theorem 5.
Theorem 5:The coding scheme presented in Section VI-A,
which solely relies on source resolvability codes, used as black
boxes, and two-universal hash functions, achieves the entire
multiple access channel resolvability regionRqZ of Theorem 4
for any discrete memoryless multiple access channel with
binary input alphabets.

A. Achievability Scheme

In the following, we use the notationXS (Xl)l∈S for
S⊆L,andX1:l X[[ 1,l]]forl∈L.LetpXL l∈LpXl.
We will show the achievability of the region

R(pXL) {(Rl)l∈L:I(XS;Z)≤RS,∀S ⊆ L},

which reduces to showing the achievability of the rate-
tuple(I(Xl;Z|X1:l−1))l∈L. Indeed, the set functionS →
−I(XS;Z)is submodular, e.g., [20], and the region
R(pXL)thus forms a contrapolymatroid [19] whose dom-
inant face is the convex hull of its extreme points given
by{(I(Xσ(l);Z|X{σ(i):i∈[[ 1,l−1]]}))l∈L :σ∈S(L)},where
S(L)is the symmetric group overL. By time-sharing and
symmetry of the extreme points, the achievability of the
dominant face reduces to showing the achievability of one
extreme point, which withoutloss of generality can be chosen
as(I(Xl;Z|X1:l−1))l∈L.
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The encoding scheme to achieve(I(Xl;Z|X1:l−1))l∈L
operates overk∈Nblocks of lengthN. In this section,
we use the double subscripts notationXl,i, where the first
subscript corresponds to Transmitterl∈Land the second
subscript corresponds to Blocki∈[[ 1,k]]. The encoding at
Transmitterl∈Lis described in Algorithm3and uses

• A hash functionGXl :{0,1}
N −→ {0,1}rXl chosen

uniformly at random in a family of two-universal hash
functions, where the output length of the hash function
GXlis defined as follows

rXl N(H(Xl|ZX1:l−1)− 2/2). (16)

• A source resolvability code for the discrete memoryless
source(Xl,qXl)with encoder functione

Xl
N and rate

H(Xl)+ 2

2, where2 2(δ∗L(N)+ξ),δ
∗
L(N)

log(|XL|+3)
2
N(L+logN),ξ > 0, such that

the distribution of the encoder outputpX1:Nl satisfies
V(pX1:Nl ,qX1:Nl )≤ δ(N), whereδ(N)is such that
limN→+∞ δ(N)=0.

In Algorithm3and for anyl∈L, the hash function output
El,i,i∈ [[ 2,k]], with lengthrXl corresponds to recycled
randomness from Blocki−1.

Algorithm 3Encoding Algorithm at Transmitterl∈L

Require:A vectorEl,1ofN(H(Xl)+2)uniformly dis-
tributed bits, and fori ∈ [[ 2,k]], a vectorEl,i of
N(I(Xl;ZX1:l−1)+2)uniformly distributed bits.

1:forBlocki=1tokdo
2: ifi=1then
3: DefineX1:Nl,1 eXlN (El,1)
4: else ifi>1then
5: DefineEl,i GXl(X

1:N
l,i−1)

6: DefineX1:Nl,i eXlN (El,iEl,i)
7: end if
8: SendX1:Nl,i over the channel
9:end for

B. Achievability Scheme Analysis

For convenience, define, for anyl∈L,El,1 ∅.Let
pE1:L,iX1:N1:L,iZ1:Ni denote the joint probability distribution of

the random variablesEl,i,X
1:N
l,i,andZ

1:N
i ,l∈L, created in

Blocki∈[[ 1,k]]of the coding scheme of Section VI-A.
We prove in the following lemma that in Block i∈

[[ 2,k]], if the inputsX1:N1:L,i−1of the hash functions(GXl)l∈L
are replaced byX1:N1:L distributed according toqX1:N1:L
N
i=1qX1:L, then the outputs of these hash functions are
almost jointly uniformly distributed. Define

GX1:L(X
1:N
1:L) GXl(X

1:N
l )

l∈L
.

Lemma 9:Letpunif
Ē1:L

denote the uniform distribution over

{0,1} l∈LrXl. Then, we have

V qGX1:L(X
1:N
1:L )Z

1:N,p
unif

Ē1:L
qZ1:N ≤δ∗(0)(N),

whereδ∗(0)(N) 2/N+2
L
22−

Nξ
2 .

Proof:Using Lemma 16 in Appendix B, with the substi-
tutionsA ←L,T1:NA ← X1:NL , applied to the product distri-
butionqX1:NL Z1:N, there exists a subnormalized non-negative
functionwX1:NL Z1:N such that for anyS⊆L

V(wX1:N1:L Z1:N,qX1:N1:L Z1:N)≤1/N , (17)

H∞(wX1:NS Z1:N|qZ1:N)≥NH(XS|Z)−Nδ
∗
S(N),(18)

where the min-entropyH∞(wX1:NS Z1:N|qZ1:N)is defined in

Lemma 16 in Appendix B, andδ∗S(N) log(|XS|+

3) 2
N(L+logN).LetqE1:L define the distribution of

E1:L GX1:L(X
1:N
1:L), (19)

whereX1:N1:L is distributed according toqX1:N1:L . Wehave

V(qE1:LZ1:N,p
unif

Ē1:L
qZ1:N)

(a)

≤V(qE1:LZ1:N,wE1:LZ1:N)+V(wE1:LZ1:N,p
unif
Ē1:L
qZ1:N)

(b)

≤V(qX1:N1:L Z1:N,wX1:N1:L Z1:N)+V(wE1:LZ1:N,p
unif

Ē1:L
qZ1:N)

(c)

≤1/N+V(wE1:LZ1:N,p
unif

Ē1:L
wZ1:N)

+V(punif
Ē1:L
wZ1:N,p

unif
Ē1:L
qZ1:N)

(d)

≤2/N+V(wE1:LZ1:N,p
unif

Ē1:L
wZ1:N)

(e)

≤2/N+

S⊆L,S=∅

2
rXS−H∞ (wX1:N

S
Z1:N

|qZ1:N )

(f)

≤2/N+

S⊆L,S=∅

2rXS−NH(XS|Z)+Nδ
∗
L(N)

(g)
=2/N+

⎛

⎝

S⊆L,S=∅

2 l∈S(N(H(Xl|ZX1:l−1)−
2
2))

×2−N l∈S H(Xl|ZX[[ 1,l−1]]∩S)+Nδ
∗
L(N)

1/2

(h)

≤2/N+

S⊆L,S=∅

2 l∈S N(−
2
2+δ

∗
L(N))

(i)

≤2/N+
√
2L2−Nξ

N→+∞
−−−−−→0,

where(a)holds by the triangle inequality,(b)holds by (19)
and the data processing inequality,(c)holds by (17) and the
triangle inequality,(d)holds by (17),(e)holds by Lemma 17
in Appendix B,(f)holds by (18) and because for anyS⊆L,
δ∗S(N)≤δ

∗
L(N),(g)holds by (16) and the chain rule,(h)

holds because conditioning reduces entropy,(i)holds because
|S| ≥1and2=2(δ

∗
L(N)+ξ).

We now show that in each encoding block, the random
variables induced by the coding scheme approximate well the
target distribution.
Lemma 10:For Blocki∈[[ 1,k]],

V(pX1:N1:L,iZ1:Ni ,qX1:N1:L Z1:N)≤δ
∗
i(N), (20)

whereδ∗i(N) L(δ(N)+δ∗(0)(N))(L
i−1
L−1)+L

i+1δ(N).
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Proof: We prove the result by induction. For i=1,we
have

V(pX1:N1:L,1Z1:N1 ,qX1:N1:L Z1:N)

=V(pZ1:N1 |X1:N1:L,1
pX1:N1:L,1,qZ1:N|X1:N1:L qX1:N1:L )

(a)
=V(pX1:N1:L,1,qX1:N1:L )

(b)

≤
l∈L

V(pX1:N
l,1
,qX1:N

l
)

(c)

≤Lδ(N), (21)

where(a)holds becauseqZ1:N|X1:N1:L =pZ1:N1 |X1:N1:L,1
,(b)holds

by the triangle inequality and because(X1:Nl,1 )l∈L are jointly

independent, and(X1:Nl )l∈Lare jointly independent,(c)holds
by the source resolvability codes used at the transmitters

because
|El,1|
N >H(Xl)+2/2,l∈L.

Assume now that, fori∈[[ 2,k−1]], (20) holds. For anyl∈
Landi∈[[ 2,k]], consider̄El,idistributed according top

unif

Ēl
,

the uniform distribution over{0,1}rXl,andletp̄X1:Nl,i denote

the distribution ofX̄1:Nl,i eXlN (̄El,i,El,i).Fori∈[[ 1,k−1]],
we have

V(pX1:N1:L,i+1Z1:Ni+1,qX1:N1:L Z1:N)

(a)

≤
l∈L

V(pX1:N
l,i+1
,qX1:N

l
)

(b)

≤
l∈L

V(pX1:Nl,i+1,p̄X1:Nl,i+1)+V(p̄X1:Nl,i+1,qX1:Nl )

(c)

≤
l∈L

V(pX1:Nl,i+1,p̄X1:Nl,i+1)+δ(N)

(d)

≤
l∈L

V(pEl,i+1,p
unif
Ēl
)+δ(N)

(e)

≤
l∈L

δ(N)+V(pEl,i+1,qGXl(X
1:N
l ))

+V(qGXl(X
1:N
l ),p

unif

Ēl
)

(f)
=
l∈L

δ(N)+V(pGXl(X
1:N
l,i )
,qGXl(X

1:N
l ))

+V(qGXl(X
1:N
l ),p

unif

Ēl
)

(g)

≤
l∈L

δ(N)+V(pX1:Nl,i ,qX1:Nl )+δ
∗(0)(N)

(h)

≤
l∈L

δ(N)+δ∗i(N)+δ
∗(0)(N)

=L δ(N)+δ∗i(N)+δ
∗(0)(N),

where(a)holds similar to (21),(b)holds by the triangle
inequality,(c)holds by the source resolvability codes used at

the transmitters because
|̄El,i|+|El,i|

N =H(Xl)+2/2,l∈L,
(d)holds by the data processing inequality,(e)holds by
the triangle inequality,(f)holds because for anyl∈ L,
El,i+1 GXl(X

1:N
l,i)by Line5of Algorithm 3,(g)holds

by the data processing inequality and Lemma 9,(h)holds by
the induction hypothesis.
Next, we show that the recycled randomness in Block
i∈[[ 2,k]]is almost independent from the channel outputs
of Blocki−1.
Lemma 11:Fori∈[[ 2,k]],wehave

V(pE1:L,iZ1:Ni−1,pE1:L,ipZ1:Ni−1)≤δ
∗(1)
i (N).

whereδ
∗(1)
i (N) 4δ∗i−1(N)+2δ

∗(0)(N).
Proof: We have

V(pE1:L,iZ1:Ni−1,pE1:L,ipZ1:Ni−1)

(a)

≤V(pE1:L,iZ1:Ni−1,p
unif

Ē1:L
pZ1:Ni−1)

+V(punif
Ē1:L
pZ1:Ni−1,pE1:L,ipZ1:Ni−1)

≤2V(pE1:L,iZ1:Ni−1,p
unif
Ē1:L
pZ1:Ni−1)

(b)

≤2V(pE1:L,iZ1:Ni−1,qGX1:L(X
1:N
1:L )Z

1:N)

+V(qGX1:L(X
1:N
1:L )Z

1:N,p
unif

Ē1:L
qZ1:N)

+V(punif
Ē1:L
qZ1:N,p

unif

Ē1:L
pZ1:Ni−1)

(c)

≤2(V(pX1:N1:L,i−1Z1:Ni−1,qX1:N1:L Z1:N)+δ
∗(0)(N)

+V(qZ1:N,pZ1:Ni−1))

(d)

≤4δ∗i−1(N)+2δ
∗(0)(N),

where (a)and(b)hold by the triangle inequality,(c)
holds by the data processing inequality becauseE1:L,i
GX1:L(X

1:N
1:L,i−1)by Line5of Algorithm 3, and by Lemma 9,

(d)holds by Lemma 10.
Next, we show that the recycled randomness in Block

i∈[[ 2,k]]is almost independent of the channel outputs in
Blocks1toi−1considered jointly.
Lemma 12:Fori∈[[ 2,k]],wehave

V pE1:L,iZ1:N1:i−1,pE1:L,ipZ1:N1:i−1 ≤δ
∗(2)
i (N),

whereδ
∗(2)
i (N) (2i−1−1)(4δ∗i−1(N)+2δ

∗(0)(N)).
Proof: We prove the result by induction. The lemma is

true fori=2by Lemma 11. Assume now that the lemma
holds fori∈[[ 2,k−1]]. Then, fori∈[[ 3,k]],wehave

V pZ1:N1:i−1E1:L,i,pZ1:N1:i−1pE1:L,i

(a)

≤V pZ1:N1:i−1E1:L,i,pZ1:N1:i−2pZ1:Ni−1E1:L,i

+V pZ1:N1:i−2pZ1:Ni−1E1:L,i,pZ1:N1:i−2pZ1:Ni−1pE1:L,i

+V pZ1:N1:i−2pZ1:Ni−1pE1:L,i,pZ1:N1:i−1pE1:L,i

=V pZ1:N1:i−1E1:L,i,pZ1:N1:i−2pZ1:Ni−1E1:L,i

+V pZ1:Ni−1E1:L,i,pZ1:Ni−1pE1:L,i

+V pZ1:N1:i−2pZ1:Ni−1,pZ1:N1:i−1
(b)

≤δ
∗(1)
i (N)+2V pZ1:N1:i−1E1:L,i−1:i,pZ1:N1:i−2pZ1:Ni−1E1:L,i−1:i
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(c)
=δ

∗(1)
i (N)+2V pZ1:N1:i−2E1:L,i−1pZ1:Ni−1E1:L,i|E1:L,i−1,

pZ1:N1:i−2pZ1:Ni−1E1:L,i−1:i

=δ
∗(1)
i (N)+2V pZ1:N1:i−2E1:L,i−1,pZ1:N1:i−2pE1:L,i−1

(d)

≤δ
∗(1)
i (N)+2δ

∗(2)
i−1(N),

where (a)holds by the triangle inequality,(b)holds by
Lemma 11,(c)holds by the Markov chain(E1:L,i,Z

1:N
i−1)−

E1:L,i−1−Z
1:N
1:i−2,(d)holds by the induction hypothesis.

The following lemmas show that the channel outputs of all
the blocks are asymptotically independent, and that the target
output distribution is well approximated jointly over all blocks.
Lemma 13:We have

V pZ1:N1:k ,
k

i=1

pZ1:Ni ≤(k−1)δ
∗(2)
k (N),

whereδ
∗(2)
k (N)is defined in Lemma 12.

Lemma 14:For blocki∈[[ 1,k]],wehave

V pZ1:N1:k ,qZ1:kN ≤(k−1)δ
∗(2)
k (N)+kδ∗k(N),

whereδ
∗(2)
k (N)is defined in Lemma 12 andδ∗k(N)is defined

in Lemma 10.
The proofs of Lemmas 13 and 14 are similar to the proofs
of Lemmas 6 and 7, respectively, and are thus omitted.
Finally, the next lemma shows that the encoding scheme of
Section VI-A achieves the desired rate-tuple.
Lemma 15:Let 0>0.Forklarge enough and anyl∈L,
we have lim

N→+∞
Rl=I(Xl;Z|X1:l−1)+0+2ξ.

Proof: Letkbe such that for anyl∈ Lwe have
H(Xl)
k < 0.Then, by the definition of 2,foranyl∈L,

we have

Rl=
k
i=1|El,i|

kN

=
N(H(Xl)+2)+(k−1)N(I(Xl;ZX1:l−1)+2)

kN

≤
H(Xl)

k
+I(Xl;ZX1:l−1)+2

≤ 0+I(Xl;ZX1:l−1)+2
N→+∞
−−−−−→I(Xl;ZX1:l−1)+0+2ξ.

VII. CONCLUDINGREMARKS

We showed that codes for MAC resolvability can be
obtained solely from source resolvability codes, used as
black boxes, and two-universal hash functions. The crux
of our approach is randomness recycling implemented with
distributed hashing across a block-Markov coding scheme.
Since explicit constructions for source resolvability codes
and two-universal hash functions are known, our approach
provides explicit codes to achieve the entire multiple access
channel resolvability region for arbitrary channels with binary
input alphabets.

APPENDIXA
ANEXPLICITCODINGSCHEME
FORSOURCERESOLVABILITY

Letn∈NandN 2n.LetGn
10
11

⊗n
be the source

polarization matrix defined in [21]. For any setA⊆[[ 1,N]]
and any sequenceX1:N,letX1:N[A]be the components
ofX1:N whose indices are inA. Next, consider a binary
memoryless source(X,qX),where|X |=2.LetX

1:N be
distributed according toqX1:N

N
i=1qX, and defineA

1:N

GnX
1:N. Define also forβ<1/2,δN 2−N

β

,thesets

VX i∈[[ 1,N]] :H(Ai|A1:i−1)>1−δN ,

HX i∈[[ 1,N]] :H(Ai|A1:i−1)>δN .

Algorithm 4Encoding Algorithm for Source Resolvability

Require:A vectorRof|VX|uniformly distributed bits
1:DefineA1:N[VX] R
2:DefineAjaccording toqAj|A1:j−1 forj∈V

c
X\H

c
X and as

Aj argmax
a∈{0,1}

qAj|A1:j−1(a|a
1:j−1)forj∈HcX

3:DefineX1:N A1:NGn

In Algorithm 4, the distribution ofX1:N is such that
limN→∞ V(pX1:N,qX1:N)=0by [22], [23]. Moreover, the

rate ofRis|VX|N
N→+∞
−−−−−→H(X)by [24, Lemma 1], and the

rate of randomness used in Line 2 is0by [10, Lemma 20].
Hence, Algorithm 4 achieves the source resolvability
of(X,qX).

APPENDIXB
SUPPORTINGLEMMAS

A function fX defined over a finite alphabetX is
subnormalized non-negative iffX(x) ≥ 0,∀x ∈ X
and x∈XfX(x)≤ 1. Additionally, for a subnormalized
non-negative function fXY defined over a finite
alphabet X × Y, its marginals are defined as
fX(x) y∈YfXY(x, y),∀x ∈ X andfY(y)

x∈XfXY(x, y),∀y∈Y, similar to probability distributions.

Lemma 16 ([25],[26, Lemma 2]):DefineA [[ 1,A]].Let
(Ta)a∈A beAfinite alphabets and define forS⊆A,TS

a∈STa. Consider the random variablesT
1:N
A (T1:Na )a∈A

andZ1:N defined overTNA ×Z
N with probability distribution

qT1:NA Z1:N
N
i=1qTAZ.Forany > 0, there exists a

subnormalized non-negative functionwT1:NA Z1:N defined over

TNA ×Z
N such thatV(qT1:NA Z1:N,wT1:NA Z1:N)≤ and

H∞(wT1:NS Z1:N|qZ1:N)≥NH(TS|Z)−NδS(N),∀S ⊆ A,

whereδS(N) log(|TS|+3)
2
N(A−log), and we have

defined the min-entropy as in [27], [28], i.e.,

H∞(wT1:NS Z1:N|qZ1:N)

−log max
t1:NS ∈TNS

z1:N∈supp(qZ1:N )

wT1:NS Z1:N(t
1:N
S ,z

1:N)

qZ1:N(z1:N)
.
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Lemma 17 ([25], [26, Lemma 1]):Consider a sub-normal-
ized non-negative functionpXLZ defined over l∈LXl×Z,

whereXL (Xl)l∈Land,Z,Xl,l∈L, are finite alphabets.
Forl∈ L,letFl:{0,1}

nl −→ {0,1}rl, be uniformly
chosen in a familyFlof two-universal hash functions. Define
sL l∈L|Fl|,andforanyS⊆L,definerS i∈Sri.

Define alsoFL (Fl)l∈LandFL(XL) (Fl(Xl))l∈L.Then,
for anyqZ defined overZsuch that supp(qZ)⊆supp(pZ),
we have

V(pFL(XL),FL,Z,pUKpUFpZ)

≤

S⊆L,S=∅

2rS−H∞ (pXSZ|qZ),

wherepUK andpUF are the uniform distributions over[[ 1,2
rL]]

and[[ 1,sL]], respectively.

APPENDIXC
PROOF OFLEMMA1

The proof is similar to [16]. We have

I(XY;Z)
(a)
=I(XUV;Z)

(b)
=I(U;Z)+I(X;Z|U)+I(V;Z|UX),

where(a)holds becauseI(XUV;Z)≥I(XY;Z)sinceY=
f(U, V),andI(XUV;Z)≤ I(XY;Z)since(X, U, V)−
(X, Y)−Zforms a Markov chain,(b)holds by the chain rule.
We know by [16, Lemma 6] thatI(X;ZU)is a continuous
function of, hence so is

R1=I(X;Z|U)=I(X;ZU),

where the last equality holds by the independence between
X andU. Then,I(X;Z)andI(X;Z|Y)are in the image
ofR1by (3), and hence, usingI(X;Z)≤ I(X;YZ) =
I(X;Z|Y),[I(X;Z),I(X;Z|Y)]is also in the image of
R1by continuity.
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