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Abstract

One of our most sophisticated accounts of objective chance in quantum mechanics
involves the Deutsch—Wallace theorem, which uses state-space symmetries to justify
agents’ use of the Born rule when the quantum state is known. But Wallace argues
that this theorem requires an Everettian approach to measurement. I find that this
argument is unsound. I demonstrate a counter-example by applying the Deutsch—
Wallace theorem to the de Broglie-Bohm pilot-wave theory.
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1 Introduction

Both defenders and critics of Everettian quantum mechanics (EQM) know the so-called
“problem of probability” well. Roughly put: Everettians claim that every quantum
measurement outcome occurs, so what could it mean for events to be more or less
probable? Surely, every event occurs with certainty, and so with probability one!
Brown puts it strikingly, imagining that you awake from a dream in which Prof. X
managed to toss a quantum coin:

The next day, relieved in the knowledge that there is at most one Prof. X, you
recall the moment in the dream when he claimed that the probability of heads
for the biased coin was around 0.7; it was before you were aware of the bizarre
consequences of tossing the coin. You now find yourself idly wondering what
Prof. X could have meant. [...] From the God’s-eye perspective, everything that
could happen was happening, and there was no uncertainty about the outcome
of the tosses. Was Prof. X not talking then about genuine probabilities at all?
(2011, p. 9)
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On the one hand, this story raises a genuine philosophical puzzle. But on the other, it
can easily be used as a sort of incredulous-stare response to EQM. In light of physicist-
philosophers making truly wild claims, it is natural to cast about for surface-level signs
of contradiction. Probability-talk is an obvious place to start.

Which, unfortunately, puts defenders of EQM on the defensive. On some level, the
situation is a bit odd. Everyone encounters similar skeptical hypotheses in childhood:
“the sun rises and sets,” but the earth actually does the turning; “the planets wander
through the stars,” but the stars are actually quite a bit further away.! We all have gone
through the (not unchallenging!) process of resolving surface-level conflicts between
theory and the immediate grammar of our experience. It seems distinctly uncharitable
not to lend EQMers the same effort. But many do not. And so before EQMers can
even get around to extolling the virtues of the view, they have to shore it up against
charges of incoherence. No one ought to envy the dreams of EQMers, plagued as they
are with bad-faith skeptics.

Upon reflection, the EQMer finds that this situation allows for a tempting rhetorical
gestalt: perhaps they could show that the many-worlds interpretation makes sense of
probability and makes more sense of it than non-branching theories. So perhaps a
many-worlds-exclusive derivation of chance will be enough for the EQMer to pull the
rug out from under the skeptic. Once put off-balance, they think, the skeptic will come
around.

Enter the Deutsch-Wallace theorem, a derivation of chance values (i.e., the Born
rule) from a thin, operational definition of objective probability and basic facts about
the quantum state space within the EQM framework. This theorem has been much-
celebrated within the philosophical literature—and rightly so! It is a lovely result that
deepens our understanding of quantum probability. But couched in the above context,
one can see the temptation to argue that this theorem only holds within the EQM
framework.

Perhaps in this spirit, Wallace puts the following words into the mouth of his anti-
skeptic:

Anti-sceptic: We're totally used to probability in Everettian contexts. Okay, it
might be philosophically a bit puzzling, but those puzzles don’t really matter
from the point of view of physics: practically speaking, we’ve got a sufficiently
solid grip on probability to do science. In the single-world interpretation, though,
we’re worried that the whole idea of probability makes no sense at all. Failure
to understand probability in a satisfactory way in the single-world interpretation
isn’t just problematic or puzzling: it’s fatal. (2012, p. 246)

Wallace, in his own voice, validates the anti-skeptic’s claim: “as long as probability talk
is understood operationally,” he writes, “the Everett interpretation is actually better
off than non-branching theories in making sense of that talk” (2012, p. 275). In sum,
Wallace seems to claim that the Deutsch-Wallace justification of the Born rule holds
in a many-worlds approach and not in single-world approaches, and the failure of the
latter to achieve anything similar is fatal.

11 borrow the latter analogy from Wallace (2012, pp. 427-428).
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But what if a single-worlder could make just as good use of the Deutsch-Wallace
theorem? Then, by Wallace’s lights, this single-worlder and the EQMer would be on
even footing—at least regarding probability.”

At this point, it is probably worth stressing that the anti-skeptic’s claim is about
as dramatic as it gets. Other proponents of EQM defend a weakened version of it.
Saunders asserts that “nothing comparable has been achieved for any other physical
theory of chance” (2010, p. 184). Read affirms that Deutsch and Wallace’s derivation
of the Born rule “renders the notion of objective probability less mysterious in EQM
than in antecedent physical theories” (2018, p. 5). But I would wager that the weakened
form of the claim makes the underlying philosophical question all the more pressing: is
it exclusively many-worlds that can avail itself of the derivation, or can a single-world
approach do so, too?

This paper demonstrates how a proponent of the de Broglie-Bohm pilot-wave theory
can make excellent use of Wallace’s proof of the Born rule. I then argue that the
Bohmian’s defense of the proof’s premises is just as good as the Everettian’s. Thus,
by Wallace’s lights, one world is just as good as many as far as explaining probability
goes. So if we wish to find unique advantages for the Everettian, then we ought to
look for them elsewhere.

To make this point, it helps to focus on Wallace’s discussion of a simple, non-
decision-theoretic version of his Born-rule proof, which I will call the symmetry
theorem (2012, pp. 148-156).3 This version uses an operational notion of chance, and
Wallace directly asserts that a Bohmian cannot use it. A key premise in this theorem is
state supervenience, the assumption that chances supervene on the wave function W.
Roughly, Wallace suggests that EQMers ought to justify state supervenience by noting
that W captures all that exists. He then asserts that particles’ configurations in pilot-
wave theories violate the premise by breaking symmetries in W. But the precise values
of configurations ¢ in Bohm’s theory are, indeed, “hidden” from agents—at least as
a practical limitation on their ability to measure a system (Bohm, 1952a,b). Bohm’s
theory does not take an agent to observe precise particle configurations ¢ directly, but
rather indirectly and approximately via the particle’s selection of a particular branch
of the overall wavefunction W of the system and the measuring device (Barrett 2019).
Thus, an agent only ever has approximate knowledge of g before measurement—an
epistemic fact that I call g-ignorance. Given that chance is “understood operationally”
(as detailed in Sect. 2.1), g-ignorance secures state supervenience. The Bohmian is free
to adopt Wallace’s operational approach to chance, and so they can use the symmetry
theorem to derive Born-rule chances. We can, indeed, justify probability in a single
world—in fact, Wallace’s theorem provides an example of how to do it.

2 1 am not making any claims about how well these theories deal with locality. In fact, I hope this paper
emphasizes locality as a deciding factor between interpretations by demonstrating the relative flexibility of
the probability problem.

3 Something like the symmetry theorem lies at the heart of several other recent derivations of the Born
rule, including the self-locating uncertainty approach of Sebens and Carroll (2018) and the “envarience”
approach of Zurek (2005, 2009). Both seem to require an Everettian approach. I focus exclusively on
Wallace’s derivation to provide one clear account of how to disentangle many-worlds assumptions from the
symmetry theorem.
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But is this justification just as good as the Everettian’s? I think so, at least on
a charitable approach to many-worlds. On the “Hydra” reading, an agent’s talk of
some physical system corresponds directly to some W. Hydra semantics arguably jus-
tify state supervenience on their own. But the Hydra view requires users of quantum
theory to accept speaking falsehoods the majority of the time. Thus, Wallace encour-
ages us to adopt the more charitable “Lewisian” view, where system-talk corresponds,
instead, to a particular branch of W (2012, Ch. 7). To secure state supervenience for
the Lewisian, Wallace appeals to what I call self-ignorance—the assumption that an
agent cannot reliably know the branch-identity fixing their future path in a branching
event (2012, p. 150). But, I argue, this assertion is only plausible due to environmen-
tal decoherence, the process responsible for generating W’s branching structure. In
short, one can reasonably claim that decoherence places a limit on an agent’s reliable
knowledge via a principle that I will call decoherence exclusivity. From this principle,
self-ignorance follows. But this principle also implies state supervenience directly,
rendering appeals to further physical or metaphysical details superfluous. Indeed, the
Bohmian can use the principle, too, and it provides a good explanation of g-ignorance
as a bonus. This argument yields a precise sense in which one world is (probably) just
as good as many.

The paper is structured as follows. Section 2 sets the stage by describing the minimal
“operational” definition of probability needed for the subsequent results (Sect. 2.1).
It then motivates the symmetry theorem by noting that it addresses a question that
Gleason’s theorem fails to answer (Sect. 2.2). Section 3 contains my argument, which
proceeds as follows. Sect. 3.1 introduces the decoherent histories formalism as a
framework to house the Hydra, Lewisian, and Bohmian views. Section 3.2 gives a
precise statement of each view. Section 3.3 describes how each view justifies state
supervenience with decoherence exclusivity and argues that self-ignorance and g-
ignorance are epistemically on par; Sect. 3.4 assesses what goes wrong in Wallace’s
argument. Section 3.5 gives a precise statement of the symmetry theorem that applies
to all three views. Section 4 concludes with a preliminary discussion of where the
symmetry theorem sits with regards to existing Bohmian approaches to the Born
rule—particularly those of Diirr et al. (1992), (henceforth DGZ) and Valentini (2020).

2 Gleason does not give the last word on quantum probability
2.1 Setting the stage: what is an explanation of chance?

It may be useful to start by reviewing just what Deutsch and Wallace’s symmetry
theorem is doing and why it is so compelling. The symmetry theorem affords one
sort of explanation of chance values, i.e., the objective probability values associated
with some physical system. This explanation comes in three components: a theory of
physical states, a theory of chances, and some link between the two. We intend this
link to provide a telling answer to the following sort of why-question: given that the
physical state of a system is x, why should we assign measurement outcomes the
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chances ch, rather than others? We take a relevant answer to show how ch depends on
what x represents about the system in question.*

Our physical theory of interest is non-relativistic quantum mechanics (NRQM).
NRQM specifies kinematics, dynamics, and observables for microscopic systems.
We begin in the usual way, by associating a unit vector in a Hilbert space Hg with
our system of interest, S. S could include an electron’s spin, location, and any other
observables that we intend to measure. We represent the preparation and measurement
of such systems with projections onto linear subspaces of Hg; let P (H ) denote the set
of these projections. Recall that the spectra of the familiar self-adjoint observables are
associated with projection-valued measures (PVMs)—and thereby with o -algebras of
projections £ C P(H.s)—via the spectral theorem.> We allow the system to be open,
i.e., possibly coupled with its environment, E£. E might include air, dust, photons,
measurement devices, and so on; associate all these with a Hilbert space Hg. We
suppose that the S and E together describe a closed system, i.e., a system that is not
subject to any other influences from its environment. This total system is described by
a unit vector ¥ € Hgr = Hs @ Hg. Possible trajectories are given by the action of
unitary maps U; on unit vectors of Hsg, while the Schrodinger equation,

ih%kll(t) = HY (1), (1

for some Hamiltonian H acting on the system, picks out which of these trajectories
are dynamical (once appropriate initial and boundary conditions are specified).® At
any time ¢, the state p of the open system S is given by tracing out the environmental
degrees of freedom; that is,

p (1) =Tre|W (@) (W ()], 2

where p(t) is a density operator on Hs. In the special case that S is not coupled with
E, then p(¢) will equal |y) (/| for some wave function ¥ in H.

Note that the partial trace specifies the relationship between various physical degrees
of freedom at a given time. NRQM also specifies a temporal system-subsystem rela-
tionship that I will call the quantum updating rule. (This rule sometimes goes by the
more familiar name of “the projection postulate”—but as we will soon see, we need
not postulate it.) According to this rule, when a total system W yields an outcome P;
at time ¢ (via a “projective measurement”), the system at ¢ is effectively described by
P; W (appropriately normalized). This rule is crucial for ensuring that we can reliably
prepare states within a certain range. However, it does not entail anything so strong

4 Tuse van Fraassen’s (1980, pp. 134-157) pragmatic model as a framework, but I do not require this model
to give the final word on explanation.

5 Recall thata projection-valued measure, for some measurable space (X, ) and some subset £ of P(Hg),
isamap E : ¥ — & that is non-negative, normalized, and countably additive. For ease of exposition, I
will not be treating positive-operator-valued measurements (POVMs) in this paper. But note that we can
recover all POVMs as PVMs on closed systems via Neumark’s theorem. See Busch et al. (1995) for a
comprehensive discussion of these concepts.

6 Nothing hinges on the choice of the Schrodinger picture, here; the aim is merely to get one well-defined
notion of kinematics and dynamics on the table.
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as “the collapse of the wave function.” We will add to this skeleton to recover many-
worlds and pilot-wave theories that all deny this collapse (see Sect. 3.1). As such,
we say for now that the system’s dynamical state includes at least W, which evolves
according to Eq. (1).

My approach to the de Broglie-Bohm completion of NRQM will differ on one
key point from the well-known approaches of DGZ (1992) and Valentini (2020).
Unlike these authors, but in line with Wallace (2020), I suppose that NRQM is non-
cosmological. In other words, I will not demand that some wave function W describes
the entire universe, regardless of whether I adopt a Bohmian or an Everettian atti-
tude towards measurement. This choice raises the question of the precise relationship
between my approach to the Born rule and those of DGZ and Valentini. In Sect. 4,
I will briefly sketch how the symmetry theorem might still interest these cosmologi-
cal Bohmians (although I leave a thorough investigation for future work). Until then,
however, the reader should take W to denote the wavefunction of a closed system that
need not be the universe.

What about the chances of measurement outcomes for that system? It is widely
agreed that states in a formal theory of chance ought to be functions that satisfy
some (usually set-theoretic, logical, or algebraic) formalization of Kolmogorov’s three
axioms—namely, non-negativity, normality, and countable additivity. Various formal-
izations add surprising complications. The usual set-theoretic approach, for instance,
turns out to be too strict for our purposes. So I will stick to a simple and general alge-
braic approach. Let ¥ be a (possibly partial) o -algebra with top and bottom elements
T and L.7 Elements of ¥ represent events or utterances that given events occur. A
chance function ch : ¥ — R from the algebra of events to the real numbers must
satisfy

ch(e) > 0, 3)
ch(T) =1, and )

ch (\/ e,-) = Zch(ei) when e¢; < —e; fori # j, 5)

i i

where the later condition holds only when the argument of the function is defined. Prob-
ability theory, like quantum theory, also has a system-subsystem relation—namely,
conditional probability, the definition of which allows for modifications to the alge-
bra X of events. For instance, suppose we wish to restrict our attention to only those
elements of ¥ smaller than or equal to e (informally, events that occur given that e
occurs); these elements form a subalgebra, |, e. Via the usual definition of conditional
probability, the state ch on X yields the following state on the subsystem | e:

__ch(f Ne)

7 Recall that a partial o-algebra is a partial complemented lattice, i.e., a lattice with partial operations \/
and /\ which denote the least upper bound and greatest lower bound of a set of elements, respectively, and
the operation —, which denotes the complement of an element.
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This way of thinking about conditional probability will prove instructive: to answer
our why-question, we will strive to link the system-subsystem relations in both NRQM
and probability theory.

Now we can begin to fill in the variables in our why-question: given that the physical
state of a closed system is x, where W is at least a component of x, why should we
assign measurement outcomes P; € P(Hsg) the chances given by the Born rule, i.e.,

chy (P;) = (¥, V), @)

rather than others? As flagged above, a relevant answer shows how chy depends
on what x represents. To motivate this dependence—and assess the goodness of an
answer—it helps to say a bit more about what ch represents.

Many agree that whatever ch represents, it must account for the functional roles that
chance-talk plays in our day-to-day and scientific reasoning. EQMers, in particular,
identify two roles that chances must recover:

1. the inferential link, i.c., the chance of an event is measured (roughly) by (actual)
relative frequencies of that event; and

2. the credential link, i.e., all else being equal, one’s subjective degree of belief or
credence in an event ought to equal the chance of that event,

where we suppose that repeatable processes yield chancy events (making good sense
of relative frequencies). Note well that the “ought” in the credential link roughly
implies “can.” We assume that we can roughly measure chance values and use the
results of such measurements to make predictions. One can concoct “chances” that
are less accessible to agents—but these would fail to capture the function of “chances”
in scientific reasoning.

Papineau (1996) introduces these roles under slightly different names, and Saunders
(2010), Brown (2011), Wallace (2012), and Read (2018) all endorse them. Wallace
assumes that the credential link benefits an agent’s pragmatic aims, e.g., their desire
to avoid losing money in bets. Thus, he calls it the “decision-theoretic link.” However,
as Brown (2011) notes, the link with credence need not be spelled out in terms of
pragmatic decision-making—it could, instead, be a matter of epistemic (truth-seeking)
aims. Additionally, as Saunders (2010) notes, there is another notable role that chance-
talk plays in our discourse—namely,

3. thelink with uncertainty, i.e., chance events, prior to their occurrence, are uncer-
tain.

However, it is not clear that this last link is essential to chance-talk. So, assuming that
the inferential and credential links capture the essential bits of this talk, we may try to
define chance as the thing satisfying them.

Wallace follows this strategy. He formalizes an agent’s credences with a function cr
satisfying the probability axioms (3)—(6). Then he defines chance in terms of credence
using Lewis’s (1980) principal principle (PP).
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Principal principle (PP). ch is a chance function iff for any event e, if the theory
t together with admissible background information b entails that ch(e) = x, then
an agent ought to set their credence as cr(e |b A t) = x.8

On the operational approach, it is crucial that b only includes information that agents
can reliably access. As long as it does, agents can increase their credence in the
right theory ¢ by updating. Suppose our agent notes the number of times that e
occurs in a large number of trials N all satisfying b. Let e, represent them seeing
e a total of m times. Assuming each e is independent, PP implies that the agent’s
prior credence cr (e, | b A t) is given by the binomial distribution for ch(e)—which is
well-approximated by a sharply-peaked Gaussian centered on the chance value. After
seeing M occurrences of e, our agent updates using Bayes’s theorem

which, recall, is a consequence of (6). Thus, their new credence in ¢ will be very
low unless ¢ and b imply that ch(e) ~ M /N. Relative frequency thereby (roughly)
measures chance. And in the idealized case where an agent has full credence in 7, they
will update to set their credence in e equal to the appropriate chance value given b. So
if something plays the role of chance in PP (so defined!), it satisfies both the inferential
and credential links. PP (once combined with Bayesian updating) thereby elucidates
the standard scientific use of “chance.”

This much—equations (3)—(6) and PP—suffices to establish a thin, operational
definition of chance. Note well that the non-decision-theoretic version of Deutsch-
Wallace that I aim to generalize assumes only this operational definition. I will argue
that single-world theorists can use this version of Deutsch-Wallace, too, provided they
assume at least this definition (although they may assume more).

The bare operational definition has a clear explanatory deficit. It posits Kol-
mogorov’s rules (3)—(6) by fiat, and it does little to elucidate why these rules have
anything to do with chance. Here, decision theory or relative frequencies may enter
the story. But nothing in a single-world approach requires a commitment to any sort
of frequentism. It just happens to be the most popular single-world theory of chance
on hand. So while Wallace (2012, Ch. 4) seeks to motivate the anti-skeptic’s view by
offering a lengthy critique of frequentism, it is not clear that the single-world theorist
needs anything so contentious to motivate Kolmogorov’s rules.

I will not address the question of how the Bohmian should justify Kolmogorov’s
rules. One might rightly assert, then, that Wallace’s full decision-theoretic derivation
for the Everettian offers a deeper explanation than the Bohmian derivation that I present
here. Unfortunately, I do not have the space to discuss an analog of this version for the
Bohmian. However, note that Wallace (2012) takes the symmetry theorem to suffice
to illustrate his claim that Bohmians cannot use his derivations (in Chapter 4). Prima

8 I borrow this statement of Lewis’s PP from Wallace (2012, p. 141). PP is a specific formalization of the
intuitions described by the credential and inferential links. The links themselves are ambiguous between
Lewis’s formalization and, e.g., those of Hall (2004) and Ismael (2008). The differences among various
formalizations are relevant for chance functions that are self-undermining, i.e., that do not assign ch(t) = 1
(Pettigrew, 2012). But on the operational approach, we assume that chances are not self-undermining.

@ Springer



Synthese (2022) 200:97 Page9of32 97

facie, then, once we remove this barrier to Bohmians’ use of the symmetry theorem,
they ought to be able to make use of the full decision-theoretic derivation. They ought
to be able to use the symmetry theorem with other justifications of Kolmogorov’s rules,
too—including frequentist ones. Subtleties abound, but I will leave the development
of these stronger Bohmian derivations for future work.

So, let us make peace, for the moment, with simply positing Kolmogorov’s rules.
Many physicists, after all, are happy to do so. But these same physicists often raise
a different concern about the Deutsch-Wallace derivation—namely, that Gleason’s
theorem provides all the explanation that quantum probabilities need. So with this
much scaffolding in place, let us assess whether Gleason’s theorem answers our why-
question.

2.2 Gleason’s theorem, measurement neutrality, and the coordination problem

Does Gleason’s theorem tell us why we ought to assign chances ch when the physical
state of a system includes W? I argue that there are two reasons why the theorem
does not give a satisfying answer. First, it assumes that chances are independent of the
context of measurement—an empirical fact that merits explanation. Second, it faces a
problem of coordination: it identifies the right set of chance states, but it does not favor
any particular link between W and ch over any other. Thus, the casual frequentist would
be mistaken to think that Gleason’s theorem renders the Deutsch-Wallace argument
otiose.

The thought that it does originates in Barnum, Caves, Finkelstein, Fuchs, and
Schack’s (2000) infamous response to Deutsch’s (1999) original decision-theoretic
argument. “By assuming that measurements are described by probabilities that are
consistent with the Hilbert-space structure of the observables, Gleason’s theorem
derives in one shot the state-space structure of quantum mechanics and the probabil-
ity rule,” Barnum et al. forcefully claim (2000, p. 1182; emphasis theirs). They are
right about the state-space structure but wrong about the probability rule.

Specifically, they are right that Gleason’s theorem pins down chance states’ structure
for open systems, i.e., for systems p = Trg|W)(W|. It is easy to see that the Born rule
yields functions that must follow Kolmogorov’s rules. In more detail: for a set £ of
projections that pairwise commute, define \/; P; as the projection onto the closed
linear subspace spanned by the ranges of the P; and define /\; P; as the projection
onto the intersection of those ranges, and for each P;, define =P; := 1 — P;. Then
P(Hs) is a (partial) o-algebra, and it is straightforward to check that the Born rule
maps states in NRQM to functions that satisfy (3)—(5).? But it is a far subtler matter to
verify that only Born-rule functions satisfy these rules. Gleason (1957) shows us one
way to do it.!0

9 Note that while P(H s) is a partial complemented lattice, it is not a Hilbert lattice; these latter lattices
are complete, but non-intuitive from the standpoint of probability. For more technical details on Hilbert
lattices, see Rédei (1998); for a critical perspective, see Kochen (2015).

10 Note that by taking the domain of the chance function to be the partial o-algebra P(Hy), Gleason’s
theorem assigns probabilities to all projections on the Hilbert space—and so to all possible measurements,
not just to those that can be done simultaneously. In particular, this choice of domain assumes that the
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Gleason’s theorem. For dim(Hs) > 3, A function ch : P(Hs) — R satisfies
Kolmogorov’s rules if and only if there exists some density operator p such that

ch(P;)) =Tr(pP;). ©)

Equation (9) gives one statement of the Born rule for open quantum systems. Thus,
Gleason’s theorem proves that there is a bijection between chance-states and QM-states
for (nearly all) open quantum systems.'!

But note two strange things about Gleason’s approach. First, by taking the domain
of the chance function to be the partial o-algebra P (Hs), Gleason assigns probabilities
to all projections on the Hilbert space at once—and so to all possible measurements at
once, including those that cannot be made simultaneously! As a consequence, he tacitly
assumes that the probability values are measurement-neutral, or independent of which
additional, compatible measurements we choose to perform. To illustrate, note that we
can only empirically verify Born’s rule for one choice of compatible measurements—
i.e., one (non-partial) o-subalgebra £ C P(Hg)—at a time. So suppose that & # &
and P; € & N &. It is not a logical necessity that the probability of P; measured
with £ matches the probability of P; measured with &. It is an empirical fact that
is worthy of explanation. But this point is obscured by picking the domain P(Hy),
which contains just the one copy of P;. In short, if we aim to derive the Born rule
from theory, it seems odd to assume that probabilities agree in different measurement
contexts from the outset, as Gleason tacitly does.!2

Second, Gleason’s theorem does not favor any particular bijection between QM
states and chance states over any other. The necessary and sufficient condition that it
identifies for ch to be Kolmogorovian is that there is some density operator that yields
it via the Born rule. Therefore, Gleason’s theorem does not decide between the Born
rule and, say, the Shmorn Rule—a rule which instructs the user of QM to first rotate a
unit vector ninety degrees about some one-dimensional subspace before applying the
Born rule. In other words, Gleason’s theorem straightforwardly yields the following:

Shmleason’s theorem. For dim(Hg) > 3, a function ch : P(Hs) — R satisfies
Kolmogorov’s rules if and only if there exists a density operator p’ such that

ch(P) :==Tr(UTp'UP)). (10)

for some fixed unitary operator U # I.

For the proof, let p be the state from Gleason’s theorem and define p’ := U pU . Now
note that Shmleason’s theorem “endorses” a different probability rule. Shmleason’s

Footnote 10 continued

probability values are measurement-neutral, or independent of a choice of additional, compatible mea-
surements. For more on measurement-neutrality (which is also sometimes called “noncontextuality”), see
Sect. 3.5 (and especially footnote 19).

11" As Busch (2003) has shown, we can remove the parenthetical by attending to POVMs, which generalize
PVMs. I will be sticking with PVMs for ease of exposition, but the proceeding arguments all generalize
naturally to allow for POVMs.

12" Wallace (2003) also emphasizes this point, and he notes that the symmetry theorem offers an explanation
of measurement neutrality. I recover this explanation for the Bohmian in Sect. 3.5.
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theorem is just as sound as Gleason’s theorem; as of yet, we have no reason to privilege
(9) over (10).13

Thankfully, Gleason’s theorem invokes very little of the structure of NRQM. In
particular, it does not invoke the quantum updating rule. This rule is one key ingredient
of the symmetry theorem. However, its physical significance has long been a matter
of controversy—so we had better justify it if we wish for the symmetry theorem to
answer our why-question properly! Following Wallace, I begin my justifications of
the quantum updating rule by positing environmental decoherence.

3 A symmetry theorem for pilot-wave and many-worlds theories

This section shows how both the Everettian and the Bohmian can use decoherence to
secure the physical meaning of the quantum updating rule. Then, it argues that each the-
orist can use decoherence to give an equally good justification of state supervenience.
To review the structure of the argument: Sect. 3.1 describes how to use decoherence
to recover quasi-classical histories in an interpretation-neutral way, closely follow-
ing the accounts of Wallace (2012) and Rosaler (2016). Section 3.2 uses this account
as a framework to house two Everettian approaches to measurement, the Hydra and
Lewisian views, in addition to the Bohmian view. Section 3.3 argues that the Lewisian
and the Bohmian motivate state supervenience equally well, and Sect. 3.4 assesses
what goes wrong with Wallace’s argument that the Bohmian cannot do so. Finally,
Sect. 3.5 states my interpretation-neutral version of the symmetry theorem.

3.1 An interpretation-neutral approach to decoherence

Recall the decoherence program’s core idea: when a subsystem of interest couples
with its environment, coherence among its pointer states leaks into the total system,
leaving the subsystem in a mixture of these states. As Schlosshauer (2007) cogently
argues, positing just this much on top of the bare quantum theory described above
does not solve the measurement problem. Instead, it addresses two closely related
issues: why some pointer bases (like Gaussian wave packets or spin eigenstates) seem
to be preferred by given observations and why it is so difficult to observe the effects
of quantum coherence at macroscopic levels. It resolves the former by specifying a
physical mechanism—namely, the system-environment interaction—that picks out the
preferred basis. It addresses the latter by positing that macroscopic systems undergo
much quicker decoherence than their microscopic cousins. But the program does not
try to explain the appearance of specific outcomes. This final question is one that the
traditional interpretations of quantum theory (many-worlds and pilot-wave theories
among them) are poised to answer. All three of these elements combined provide

13 1n (2003, pp. 433—434), Wallace points to this underlying problem when he asserts that were we to try
to use Gleason’s theorem to derive the Born rule, we would still need to appeal to the “games” developed in
Deutsch’s original proof of the symmetry theorem. As Gill (2005) notes, it is possible to add one of Deutsch’s
assumptions to Gleason’s theorem in order to derive the right bijection (viz., what appears below as the
“normalization link”). But it is less clear that a similar strategy can offer an explanation of measurement
neutrality.
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one or another physical justification of the quantum updating rule as a description of
repeatable preparations and measurements.

If the preceding is right, then decoherence does not favor any given traditional
interpretation. Likewise, any tool that tracks it—including the decoherent histories
formalism—cannot carry interpretive commitments. Nonetheless, it is worth reviewing
the formalism, as its relationship to interpretations is often unclear. Gell-Mann and
Hartle’s (1990) original proposal does not spell out the role of measurement, and
their subsequent works take interestingly divergent approaches. For example, while
one may read Hartle (2010) as recommending a many-worlds approach, Gell-Mann
and Hartle (2012) explicitly endorse just one history as “real.” So, closely following
Wallace (2012) and Rosaler (2016), I will briefly detail how I take their histories
formalism to accommodate both many-worlds and pilot-wave theories.

We start wth our total, closed system described by some state ¥ € Hgg at time
to. Now suppose that on a very brief timescale tp, the interaction between the system
and the environment Hgr dominates the Hamiltonian in equation (1). Pick an Hg-
spanning set of states {1}, the pointer states, that are robust under the action of HsE.
More precisely, for some At < 7p, a system prepared in a pointer state (with some
environmental “ready state” E) couples with its environment and evolves as

W) ®IE) 25 1v)) ® |E)), (11)

where E; is some final environmental state. If, instead, the system begins in a super-
position of pointer states, then due to the linearity of (1), the total system evolves
as

(@ly1) +bv2) ® |E) =5 alyn) ® |E1) + bly) @ |Ea). (12)

This completes our first step of decoherence, which we suppose ends at #;. Applying
the partial trace of Eq. (2), we see that the final state of the system is given by

ps(t1) = lal*[y1) (1| + 161 [Y2) (W2l + a*b(E1| E2) [W2) (Y1] + b*a(Ea | Ex) [¥r1) (Y2l
(13)

If the environment interacts strongly enough with the system, then we can suppose
that (E1|E») ~ 0. For example, take 1| and ¥, to be well-separated, localized states
of a heavy dust particle S, and take E to be a short-wavelength air particle scattering
strongly off the dust. Then E; and E» would be roughly orthogonal states of the air
particle. So we have

ps(tr) = lal* 1Y) (1] + b1 1y) (W, (14)

an approximate mixture of pointer states. In this way, decoherence has (approximately)
moved the initial superposition of the system into its environment.

Now let the system continue to evolve to a later time. Once the system is in a mixture
of pointer states, the environment has very little effect on its further evolution—so,
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to a good approximation and for some intermediate time At’ > 7p, the system and
the environment evolve independently under their own self-Hamiltonians. Since this
dynamical evolution is linear, each of the terms in equation (12) evolves into a new
superposition of pointer states tensored with a new ready state of the environment. For
example, the evolution might look like

alyn) ®E1)+blyn) Q| Ez) 2% (arlyn) +axY2))® | E)+b (bilyn) +b2|2)) ®| ES).
15)

Then decoherence will occur again, but for each of the terms in the superposition on
the right-hand side of equation (15). This process yields the total evolution

(@) +blYa) ®IE) 2522 10y @ (aar | Ey 1) + bby | E.1))

+v2) (aaz| E12)+bb2| E)) (16)

completing our second instance of decoherence (which we suppose ends at #,). Note
that decoherence ensures that either of E1 j or E3 ; is approximately orthogonal with
either of E 5 or E3 >. But we also expect the information recorded by the first decoher-
ence event to be distributed widely throughout the environmental degrees of freedom
(so new bits of the environment, e.g., other particles in the air scattering off of our sys-
tem, are doing the second bit of decoherence). Thus we expect the pairs E1 1, E2,1 and
E1 2, E2 > to be approximately orthogonal, as well. In this way, decoherence yields a
natural branching structure wherein the environment records four different sequences
of pointer states (1 then yr1, ¥, then ¥, ¥ then yrp, and v, then ), and none of
these sequences interfere with each other. Naturally, this process may be iterated an
arbitrary number of times.

Note well that the set of pointer states might be uncountable and overcomplete.
Both Schlosshauer (2007, Sect. 2.8, Sect. 5.2) and Wallace (2012, Sect. 3) argue that
a particularly natural choice of pointer states (for a single spinless particle) is the set
of coherent states

a2 i
Yg,p)x) = (xlq, p) = ae AMx—q)* yipx (17

(for ¢ and p reflecting “position” and “momentum” values ranging over the reals,
and where A denotes the width of the Gaussian wave-packet). For these pointers, an
arbitrary initial state ¥ € Hgg may be written as

V(1) = / dqodpo c(qo, po) 190, po) ® |E(qo, po)), (18)

where c(qo, po) is the coefficient for the appropriate pointer state and |E(qo, po)) €
‘HE is its associated environment state. To clean up our notation a bit, let us intro-
duce the sequence A = (Aj, ..., A,) to represent a sequence of pointer states like
lg0, Po)» - - - |qn, pn) for n steps of decoherence. Let c(A) be the product of transition
amplitudes for the appropriate pointer states—so, for example, in equation (16), we
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have c(Y1, ¥2) = aas and c(Yq, Y1) = aaj. At t,, the state in equation (18) has
evolved to

v(t,) = /dqo--~dqndpo---dpn c(A) lqn, pn) ® |E(A)), 19)

where |g,,, p,) is the final state in A and
(E(AH|E(A)) ~0if A" £ A. (20)

Equation (20) points to the idea that n steps of decoherence result in a number of
incompatible environment states, each recording a different history of n pointer states.
Capitalizing on this idea, let us idealize equation (20) such that at each of the n steps,
the environmental states are exactly orthogonal. Given this idealization, consider all
possible pointer states A; at time #; and note that their associated projections

o = |A))(Ai| ® [E(A1, ..., ADNE(AL ..., A 2y

form a mutually orthogonal set.

To derive the Born rule, it would help to organize these projections within a familiar
algebraic structure. Luckily, our idealization allows us to form a natural o -algebra of
events. First, note that each time-indexed projection «; is associated with a PVM,
which in turn specifies a o-algebra S' of projections on Hsg. So, following Wallace
(2012, pp. 95-96), define the history algebra {S'} as the n-fold direct product of such
o -algebras of projections,

{Si}:zslx...xS", (22)

the elements of which are given by complete specifications of histories ¢ =
(aq, ..., o) (for the appropriate initial state and dynamics, and where the algebraic
operations are performed pointwise). Our idea now is to characterize when a history
algebra witnesses the branching structure described above.

One natural way to do so is to consider the transition weights for projections in
atomic coarse-grainings of the algebra. We say that a coarse-graining of {Si } isa
history algebra {C'} where every projection in C' is a sum of projections in S’ (for
every i). A coarse-graining is atomic if each C' is the free o-algebra generated by
some countable set of projections. Now define the transition weight between any two
projections, for #; < t; as follows:

1B;U (ti, t;) iU (1o, t;) ¥|?
T (e fy) == ?cinJ)(to,ti)\Ifl2 ’ @9

where U (t, ;)W = W (t;) and U (t;, t;) ¥ (t;) = W(¢;). We say that a history algebra
is branching when each projection “receives weight” from just one of its predecessors,
which amounts to satisfying the following condition.
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Fig.1 Schematic illustration of
a branching history algebra with
n = 3 steps of decoherence.
Events have been labelled for the
two histories « and g (note that

o = B1)

Branching criterion. A history algebra {S'} is branching for W (or W-
branching) when it admits an atomic coarse-graining {C'} such that, for any
a, o ,peCandt; <tj,

it T(e,a}) #0and T (,31», a;) £0, then oy = f. (24)

If the above is satisfied for {C'} = {S'}, then we say that {S'} is strictly branching
(or strictly V-branching).

Figure 1 gives a heuristic illustration of the branching that results. We need to invoke
one final idealization before proceeding: we assume that every decohering kinematic
trajectory is dynamically possible. As such, we can avail ourselves of environmental
decoherence along any pointer basis for any suitable dynamics:

Decoherence availability. Let {S’} be an atomic history algebra with n steps of
decoherence. For any W (1), any set of unitary maps {U1, ..., Uy} for which for
which {S'} is strictly W-branching is available (where U; W = W (;) for each 7).

The coarse-grained dynamics {U;} idealize, in part, the evolution generated by the
system’s self-Hamiltonian and the environment’s. Thus, decoherence availability cap-
tures the idea that the system can evolve in any unitary manner during the time intervals
At’ between decoherence events along an arbitrary pointer basis (as described above).
In other words, the principle just ensures that we can perform all of what Wallace calls
the “physically performable operations” (2012, p. 153).

We can now see how decoherence conditionally justifies the quantum updating rule.
In short, (24) ensures that every branch is dynamically isolated from all the others. So as
long as we can associate projective measurements with branches, the quantum updating
rule holds. Thus, each branching event «; creates a new closed system with the wave
function ¥’ = o; W (1;)/|a; W (;)|. We might loosely call this recursive specification
of closed systems ““subsystem-recursivity in time”’; Figure 2 illustrates this recursivity.
We also have what we might roughly call “subsystem-recursivity in space.” At every
time step £, the projected wave function W'(5;) = |A;)R|E(A¢, ..., A;)) is separable.
Thus, the system’s wave function |A;) € Hs is decoupled from the environment, and
it may be promoted to a closed system.'* Assuming that agents reliably know pointer

14 Wallace (2019) provides a rigorous, formal theory of subsystem-recursivity that informs my brief and
qualitative discussion here.
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Fig.2 Subsystem-recursivity in time shared by both many-worlds and pilot-wave theory

states, they can reliably know which new closed systems a branching event yields.
Decoherence then justifies our repeated “discovery” of closed systems with specific,
explicit wave functions W—so long as we can explain why we see only one of the
options in the post-branching superposition (or otherwise show that this question is
ill-posed). Thus, to complete the justification of the quantum updating rule, we turn
to how the many-worlds and pilot-wave theorists respond to the question of specific
outcomes.

3.2 The Hydra, Lewisian, and Bohmian views

How do we square our talk of specific outcomes with the claim that every history (with
non-zero weight) does, in fact, occur? Everettians have developed several distinct ways
of answering this question. I will focus on just two of these: the Hydra view and the
Lewisian view.!?

On the Hydra view, we dig in our heels and claim that talk of specific outcomes is
confused. If agents wish to talk about the physics of the universe, the thought goes,
then they ought to talk about everything in it—so the claim that a spin-superposed
electron is only measured in a spin-up state is just false. This view, illustrated in
Figure 3a, instructs us to ignore the question of specific outcomes: strictly speaking,
such outcomes are illusory. But this response is distinctly uncharitable to users of
the theory. Suppose you and a friend toss a fair quantum coin to decide who leaves
a tip for your waiter: if you claim that the coin did not land heads, clearing you of
responsibility, you are, strictly speaking, wrong. By the lights of the Hydra view, users
of quantum theory speak falsehoods the vast majority of the time. So the view is not
terribly kind to its adherents (although it might, incidentally, turn out to be quite a bit
kinder to waiters).

Notably, the Hydra view eliminates uncertainty about future events. Every propo-
sition in {S'} with non-zero weight is true. As flagged by the story of Prof. X, this
view must sever the link between chance and uncertainty flagged in Sect. 2.1. On
the one hand, the insight that we can sever this link is one of the modern Everettian

151 borrow this terminology from Wallace (2012, p. 281). These views have natural analogs that cut
branches into Siderian stages rather than Lewisian worms—Wallace refers to these as the Disconnected
view and the Stage view, respectively (2012, p. 282). Tappenden (2011) has extensively developed the Stage
view, and he saliently notes that the view yields post-measurement, pre-observation uncertainty that is quite
similar to single-world uncertainty about chancy events. But since the Hydra and Lewisian views suffice to
make my point about the symmetry theorem, I will not cover the Disconnected and Stage views here.
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(a) Hydra view (b) Lewisian view (c) pilot-wave view

Fig.3 Schematic illustrations of the many-worlds completions of a branching history algebra on the Hydra
and Lewisian views, as well as a sketch of the Bohmian completion

program’s crowning achievements. On the other, it shows another way in which the
Hydra view is uncharitable: agents are, strictly speaking, incorrect to claim that chancy
events are uncertain. Given these difficulties, it would be nice to have a more charitable
alternative on hand, one that vindicates agents’ talk of uncertainty.

Wallace presents the Lewisian view as one such alternative (a view inspired by, but
importantly distinct from, David Lewis’s views on personal identity; cf. Saunders and
Wallace 2008; Saunders 2010; Wallace 2012). On this view, any individual referenced
by an agent (including any person or any thing) ought to refer to an appropriate part of
the universal state. Explicitly, suppose again that our agent claims to only see spin-up.
Let «; denote this measurement event, occurring in some appropriate history «. The
agent’s “spin-up” corresponds to some ordered pair x = (¥, «) of a universal state
and total branch history, where « contains «;. The state y makes « true, and it makes
all the other atomic propositions in {S'} false. Saunders (2010, p. 192) provides a
metaphysics compatible with these semantics by associating every complete history
a with a particular spacetime worm, an individual object to which any observer can
refer. Figure 3b gives a schematic illustration, singling out the history o (a complete
history with a non-zero weight).

The pilot-wave theory that I consider at length adapts Barrett’s (2019) presenta-
tion of Bohm’s (1952a, 1952b) theory. This theory posits (point-like) particles whose
motion is governed by the wave function. We might view the wave function as a real,
physical field or merely as a governing-law. In either case, its physical significance
is chiefly dynamical. In turn, only one history is “real” in the sense that only one
can (approximately!) describe the particles’ actual trajectories. So the Bohmian state
makes some o € {Si } true, and it makes all the other atomic propositions false.
The wave function still contains information regarding all the other possible paths
(represented by the dotted lines in Figure 3c).!®

We can complete our description of Bohmian particles with a bit more formalism.
Specifically, we add states and dynamics directly describing the particles themselves.

16 Note well that I am not making any specific ontological claims here about ! The dotted lines in Fig. 3¢
are meant to represent possible particle paths in (four-dimensional) spacetime, much like the solid lines in
Fig. 3b are meant to represent worms in (four-dimensional) spacetime. This view of Bohmian particles is
compatible with taking W to be an object that lives in an ontic 3N-dimensional configuration space. It is
compatible with taking W to specify a multi-valued field in spacetime in the style of Romano (2021). Itis also
compatible with taking W to be purely nomic, nothing more than a law governing the motions of particles
in spacetime. The reader should feel free to choose whichever view of W seems most natural! Nothing in
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Describe a total system of N particles evolving in R3 with a point ¢ = (g1, ..., gy)
in the configuration space R3V. For a given time 7, W is a spinor-valued function
on this space. (Recall that “spinors” are vectors of complex numbers that allow for
the description of systems that “have spin”; see Norsen (2014) for a more detailed
discussion.) While Eq. (1) still governs W, it leaves the evolution of the point-particles
under-determined. We adopt one natural option, namely, the guiding equation

dgi h_ W*V;W

a o ey @ (25)
where g; = (x;, yi, z;) is the position of the i th particle and V; = (9/0x;, d/dy;, 9/0z;)
is the gradient with respect to that position (and the products of spinors in the numerator
and the denominator are scalar products). Just as it does for the Schrodinger dynamics,
decoherence guarantees that these particle dynamics are always well-behaved: the
motion of the particles is the same regardless of whether or not we apply the quantum
updating rule to W after decoherence. If we do apply the rule, we get one instance of
what DGZ call an effective wave function—very roughly, a wave packet in ¥ whose
support contains the actual particle configuration and is macroscopically distinct from
the supports of the other wave packets that comprise W.!7 The complete state of a
closed system, then, is x = (W, ¢g), where (1) and (25) specify the dynamics (and
where W may be an effective wave function). With our three views of measurement
on the table, let us now turn to the crucial question of how each might justify state
supervenience.

3.3 How each view justifies state supervenience

Recall that state supervenience, the claim that chances supervene on W, is a crucial
ingredient for the symmetry theorem—and it is the one ingredient that Wallace argues
the Bohmians can’t have. The Hydra view might seem to have an easy enough time
justifying this principle: W, after all, is the only thing that agents can talk about.

Plausibly, however, this fact about Hydra semantics does not give the right sort
of explanation of why W is so important to chance. It seems more relevant to this
question that the dynamics of decoherence limit the ways that agents can prepare or
measure quantum systems. Let us reify as a principle the claim that decoherence limits
an agent’s reliable knowledge to W.

Decoherence exclusivity. Agents gain reliable knowledge about quantum sys-
tems exclusively through decoherence along known pointer states, and so W is
the most that they can reliably know.

This claim is well-motivated by NRQM, which does not seem to contain (on its own)
any other dynamical resources that could influence measurement—pathological cases

Footnote 16 continued

the subsequent argument will hinge on this choice, so long as W’s main role remains the specification of
point-particle dynamics.

I7 See Sect. 5 and fn. 20 of DGZ (1992) for precise definitions and a brief discussion of how decoherence
yields effective wave functions. For a longer discussion, see Romano (2016).
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such as the recoherence of branches notwithstanding. Elevating the claim to the level
of an axiom primarily serves to rule out those possible pathological cases by fiat. But
it also rules out any esoteric metaphysical possibilities that might arise on views less
spartan than the Hydra one.

Note that this decoherence principle, on its own, directly implies state superve-
nience. We have stipulated that admissible background information in PP must be
reliable. So if W is the most that agents can reliably know, then chances must super-
vene on it; end of story. Moreover: decoherence exclusivity is not exclusive to any one
view. The Hydra, Lewisian, and Bohmian views are all free to endorse it.

But an Everettian might think that the semantics of the Hydra view does explain
state supervenience well, contra the plausible claim above. Such an Everettian might
wonder if an analogous strategy is available to the Lewisian. Can they use semantics
alone to justify state supervenience? If so, then they might have a leg up on the
Bohmian, after all.

To answer this question, let us take a closer look at Saunders’s (2010) version of
Lewisian semantics. Saunders supposes that agents can refer to time-slices of quantum
states along branches. The natural metaphysical correlate, here, is an instantaneous
worm-slice, or stage. (Henceforth, I will simply talk about stages and worms, but bear
in mind that one is always free to take a deflationary approach to these objects!) Let
us denote stages with tuples x = (¥, «, a;), or «; for short (when this usage is clear
from context). There now arises a crucial question as to whether worms share their
temporal parts before branching. In the case of two worms « and B, if their parts do
so “overlap,” then there is numerically one worm-slice o; = f; at a time ¢ before
branching, and numerically two slices after. Nevertheless, it might be the case that
there are numerically two worm-slices at all times. In this case, one history of worm-
slices might qualitatively agree with another up to the time of branching, at which
time the former “diverges” from the latter.

It is clear that the divergence view, at least, provides one good way of vindicating
uncertainty-talk. On divergence, a stage on a worm is bit like a driver on a forking
road—but we suppose (somewhat counter-intuitively) that before the road forks, there
are two drivers and two roads that just happen to coincide. One driver and one road
follow the left fork; the others follow the right. A bit more precisely: when an agent
thinks about their future at time 7, this thought is possessed by a slice «;, and this
slice is distinct from any other slice 8; of a worm § whereon the agent sees a different
outcome. Then we can say that, before branching, our agent is uncertain about whether
their fully-extended worm is « or . Lewis (2007) argues that things do not go quite
as smoothly on the overlap view. Here, there is one driver and one road before the
fork; oy = B; numerically. But if it is right that slices possess thoughts (rather than
entire worms), then there is just one stage possessing one thought at 7. And so the
uncertainty seems to disappear. At the very least, care is needed to flesh out Lewisian
semantics that can deliver on Wallace’s promise of charity towards uncertain agents.

But regardless of whether the Lewisian chooses divergence or overlap, they need to
do a bit more work to explain why agents cannot use worms or stages as background
information in PP. Wallace provides a principle that does this work. He asserts that,
on any Lewisian view, “each agent does have a unique future, but it is in principle
impossible for him to possess reliable knowledge of that future” (2012, p. 150, fn. 25).
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In other words, an agent cannot know the identity of their history « in x = (¥, ) with
a grain fine enough to fix future facts (regardless of how we divvy up their worm’s
temporal parts). I will call this assertion self-ignorance.

Self-ignorance. An agent cannot reliably know the identity of the history « that
determines which branch they will take before the branching.

Self-ignorance implies that chances cannot depend on «. The question, now, is how
the Lewisian can justify this principle.

Does self-ignorance follow from the semantics alone? It might seem so, at first
glance. After all, on both the divergence and overlap views, worms are spatially and
temporally coincident—and so at least dynamically identical—before branching. But
this observation alone does not imply self-ignorance on either view. For divergence,
suppose that, say, my chair and the corresponding chair-wise arrangement of atoms
are numerically two objects. These objects are spatially and temporally coincident,
and they evolve the same way in time. But I see both, and I am clear on which is
which. For overlap, suppose one version of me decides to remove my chair’s armrests.
Another decides otherwise. There is numerically one chair before the time my second
self removes the armrests and two afterward. At the moment I make my decision, I am
quite clear on which of the two future chairs is mine—even though there is numerically
one chair at that moment! So in either case: why should a lack of dynamical difference
before branching limit agents’ knowledge?

The best way that I can see for the Lewisian to respond is to invoke decoherence
exclusivity. With this principle, they can stop fretting about my armchair and simply
appeal to the dynamics of decoherence to limit knowledge directly. The only price
they have to pay is the admission that Bohmians can make this appeal, too.

For the sake of comparison, it is worth spelling out how decoherence exclusivity
justifies the Bohmian’s lack of reliable knowledge of particle configurations. Barrett
(2019) nicely illustrates a pilot-waver’s ignorance of a configuration g with a toy model
of a Stern-Gerlach experiment. In this toy model, an electron e in a superposition of
spins travels a path B if its configuration lies in the support of the spin-down wave
packet (and it otherwise travels a path A). Barrett then introduces a particle p that
acts as an idealized measuring device. The particle’s wavefunction entangles with the
electron’s such that p moves to a region b if and only if e took path B. Of this model,
Barrett writes:

Suppose that the recording particle p in the two-path experiment moves to region
b. This does not tell us precisely where the electron is. It might be anywhere in
the wave packet that traveled path B. Rather, it tells us which wave packet the
configuration (and hence the electron) is associated with. That is, the empirical
content of the record, what one can deduce from the value of the record, is given
by the effective wave function selected by the current particle configuration. This
is what an observer has epistemic access to given her measurement record. In
this precise sense, this is what she sees. (2019, pp. 213-214, emphasis Barrett’s)

Thus, the Bohmian agent only ever knows g approximately, at least in domains where
this model of measurement applies. And conveniently, we have in our pocket a separate
dynamical condition that will guarantee that this model applies: namely, decoherence

@ Springer



Synthese (2022) 200:97 Page210f32 97

exclusivity. The environmental record states of the decoherent histories formalism
simply generalize Barrett’s recording particle p. So decoherence exclusivity explains
why agents cannot reliably know the precise value of ¢ before measurement. This
claim is the one that I call g-ignorance in the introduction.

g-ignorance. An agent cannot reliably know a system’s configuration g before
measurement.

Bohm (1952a, 1952b) motivates g-ignorance as a “practical limitation” rather than
as a consequence of decoherence exclusivity, as I do here, and I grant that not all
Bohmians would be willing to accept my axiom-style approach. For one thing, deco-
herence exclusivity does not reduce all facts about agents to dynamics: it invokes
“reliable knowledge” as a primitive. But I would wager that this decoherence prin-
ciple is dynamical enough to be of interest to at least some pilot-wavers. Indeed, as
Callender (2007) notes, many Bohmians are willing to go further and simply posit the
Born rule as an axiom (as there are plenty of non-dynamical laws in physics already).

It seems, then, that g-ignorance and self-ignorance enjoy equally good dynamical
justifications via decoherence exclusivity. Moreover, the strategy of using Lewisian
semantics alone to justify self-ignorance—and thereby state supervenience—does not
look promising. So, by my tally, the Lewisian and the Bohmian motivate state super-
venience equally well.

But if that’s right, then Wallace’s argument that no single-world theory can justify
this supervenience principle must be unsound. In the next section, I diagnose where
Wallace’s argument goes wrong.

3.4 Wallace’s argument that Bohmians cannot justify state supervenience

Here is Wallace’s argument that only a many-worlds theory can justify state superve-
nience, in brief. Wallace’s key premise is that if part of a measurement event breaks
the symmetries of W’s deterministic evolution, then the chance of that event cannot
supervene on it. With this premise in tow, Wallace supposes, contra the many-worlds
hypothesis, that measurement is a single-world event. He claims that this measure-
ment process is either stochastic or deterministic. If it is stochastic, he writes, we could
either specify the process or leave it unstated. He argues that the former breaks W’s
symmetries and that the latter is question-begging. If the process is deterministic, he
claims, then we ought to posit a distribution over microstates—and then the actual
microstate (e.g., for the pilot-wave theory, the configuration ¢) breaks W’s symme-
tries. In either case, the only live options break W’s symmetries. So by the key premise,
chances cannot supervene on W in a single-world theory.
Wallace summarizes the moral:

Whether we are considering a stochastic or a deterministic process, the problem
is ultimately the same. We are attempting to use a dynamical symmetry between
two possible outcomes to argue that the outcomes are equally likely. But since
only one outcome actually occurs, something must break the symmetry—be it
the actual microconditions of the system, or the actual process that occurs in
a stochastic situation. Either way, we have to build probabilistic assumptions
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into that symmetry-breaking process, and in doing so we effectively abandon
the goal of explicating probability. (Wallace, 2012), pp. 147-148

This objection originates in (Wallace, 2003), Sect. 7, where it arises as part of aresponse
to Barnum et al. (2000). In addition to their claim that Gleason’s theorem renders
Deutsch’s argument otiose, Barnum et al. level two other criticisms. First, they note that
while Deutsch claims to derive probability using the non-probabilistic part of NRQM
and decision theory, one can derive the probability axioms from decision-theoretic
principles on their own. Second, they claim that Deutsch’s proof contains a technical
non-sequitur. Wallace (2003) handily dispenses with the first of these criticisms. In so
many words: Deutsch is deriving the NRQM-chance link, not probability tout court.
The supposed non-sequitur to which the second criticism points turns out to be a
consequence of measurement neutrality, which in turn follows from the assumption of
state supervenience Wallace (2003), p. 432; Wallace (2012), p. 197. If we can defend
state supervenience, then the criticisms of Barnum et al. (2000) dissolve. With the
above argument, Wallace (2003, 2012) claims that EQM is unique in its ability to give
such a defense.

As demonstrated in the previous section, this argument is not sound: the key premise
that symmetry-breaking scuttles state supervenience is false. Decoherence exclusivity
directly implies state supervenience for any of the three views of measurement. To
be sure, interesting differences remain. But these differences cannot have any impact
on an agent’s reliable knowledge—and so they cannot have any impact on chance (as
long as we are defining chance with PP). The Hydra, Lewisian, and Bohmian views
each have equal claim to decoherence exclusivity. And the semantics-first strategy
exclusive to the Lewisian does not look promising.

There is no denying that the Hydra view’s proponents have a particularly elegant
strategy for defending state supervenience: they simply note that W is all they care
to talk about. But my strategy for Lewisians and pilot-wavers, while not quite as
simple, seems no less elegant: they simply note that, due to decoherence, W is all we
can reliably know. Supervenience then follows from Wallace’s operational approach
to chance.!® So, for the Lewisian and the Bohmian, the game is zero-sum. Nothing
probabilistic is gained or lost when switching from many worlds to one.

We have secured state supervenience for each of the Hydra, Lewisian, and Bohmian
views. To derive the Born rule, all that remains is to draw structural links between our
chance states and our NRQM states.

18 Inan early footnote, Wallace might concede that this argumentative strategy is open to the Bohmian. He
notes that the relevant symmetries may only appear at the level of distributions on phase space (2003, p.
435, fn. 8). But using the symmetries in distributions raises the specter of circularity. My approach assigns
only dynamical significance to the pilot wave W (in the manner discussed in Sect. 3.2).
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3.5 The symmetry theorem

The symmetry theorem flows from a simple observation: if a system starts in a super-
position of two pointer states with the same weights, we can construct symmetric
measurements that yield the same final state. Explicitly, imagine a Stern-Gerlach
apparatus measuring an electron in a superposition of spin-up and spin-down. The
system evolves with the unitary map U on ¥ as

(@l t) + b)) ® |E) > alup) + bldown). (26)

Now suppose we rotate the apparatus upside-down run the experiment again. The
rotation is implemented by another unitary map U’, codifying a symmetry between
this measurement and the first. This upside-down experiment thus evolves with the
map U'U on V¥ as

@) +b11) ® 1E) L% aldown) + blup). 27)

Now if a = b, U¥ = U'UW. Thus, given state supervenience (and the rules of
probability), the chances assigned to up and down both ought to equal one-half. In brief,
the symmetry theorem uses decoherence availability and minimal chance-NRQM links
to extend the above argument to arbitrary W and arbitrary observables. Specifically,
we need two premises that connect the structure of chance states to that of NRQM
states. But if these premises hold for any one of the Hydra, Lewisian, or Bohmian
views, then they hold for all three.

First, we assign chance functions to our branching history algebras that satisfy the
rules of probability:

Probability. For every W-branching history algebra {S 7}, there is a chance func-
tion chy : {S'} — R that satisfies .Kolmogorov’s ru!es (3)—(6). This assignment
defines a chance function chy : S — R on each S’ as follows:

chy (@) = chw (\/ (7 173 = ai}) . (28)

In other words, the chance that ¢; is the ith event is given by the chance that any one
of the histories y with that event occurs. It is easy to check that chy also follows all
of Kolmogorov’s rules (a property it inherits from chy). The Hydra, Lewisian, and
Bohmian views may all adopt the operational definition of chance with PP given in
Sect. 2.1. As flagged there, this definition stipulates Kolmogorov’s rules, and so the
reader might (rightly) demand more. But to maintain a tight focus on how the Bohmian
can use the core theorem, I leave the question of motivating these rules for future work.

Second, we assume that normalization and conditionalization of chance and NRQM
states agree with each another. Explicitly, we assume:
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Structural links. Two of them:

1. Normalization link. chy («;) = 1 if and only if W (%;) lies in the range of «;.
2. Temporal link. The conditional quantum state (W, o;) := o; W (#;) /] W (2;) |2
agrees with the definition of conditional probability, i.e.,

chwe)(-) = Chw(' ‘ \/{V lyi = Oli}> . (29)

The normalization link connects NRQM states that lie in the range of projections with
probability-one chance states. It is a weaker version of the eigenstate-eigenvalue link:
a state lies in the range of a projection only if it possesses the relevant observable
property (as opposed to “if and only if””). The temporal link simply coordinates the
conditional chance and quantum states that are defined when some event «; occurs.
Each of the three views of measurement adds strictly more structure to NRQM-plus-
decoherence. So if the above coordination of structure is justified for one view, it is
justified for all three.

Before stating the symmetry theorem, we formalize state supervenience with the
chance functions defined by probability.

State supervenience. If W (7;) = ®(7;), then chy («;) = che (o).

As flagged at the jump, state supervenience is the core assumption of the symmetry
theorem. Accordingly, the theorem lives or dies on our ability to justify it. But the
premise follows from decoherence exclusivity, and (as we have seen) all three views
can adopt this axiom. The Hydra theorist might wish to forgo this axiom, as their
semantics suffice to justify state supervenience. But decoherence exclusivity seems to
be the best that either the Lewisian or the pilot-wave theorist can do.

The preceding allows for a simple statement of the symmetry theorem for all three
views:

The symmetry theorem. For a quantum system satisfying decoherence avail-
ability, decoherence exclusivity, probability, and structural links, the chance
functions are given by the Born rule,

chy (o) = (W (%), a; W (1;)). (30)

And so the symmetry theorem explains why systems with the physical state x including
W ought to be assigned the chance state ¢k on multiple accounts of what x represents.
I provide a proof in Appendix A.

While Saunders (2004) provides an explicitly operational derivation of the symme-
try theorem, the role of decoherence in his proof is not immediately apparent. I borrow
Wallace’s (2012) more transparent strategy for my proof. Saunders also suggests that
his operational derivation is only applicable to one pointer basis and serves as an
alternative to Gleason’s theorem (2004, pp. 1786—1787). But the above shows that
the symmetry theorem applies to all pointer bases by attending to all the dynamical
possibilities.
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Moreover, while Wallace asserts that Gleason’s theorem does not add anything
to the symmetry argument (2003, p. 434), the former complements the latter. The
symmetry theorem proves that the NRQM-chance link ought to be given by the Born
rule, while Gleason’s theorem shows that this rule does not miss any of the possible
measurement-neutral chance states for open quantum systems. Explicitly, so long
as the projections « have the form (21), the Born rule for open quantum systems,
equation (9), follows from the Born rule for closed quantum systems, (30), for every
density operator p. (This fact is an immediate consequence of Stinespring’s (1955)
dilation theorem, which guarantees that every density operator p can be expressed as
Trg|W)(¥| for some Hg and some ¥ € Hs Q Hg.)

Note, too, that the symmetry theorem derives, rather than assumes, measurement
neutrality. As flagged in Sect. 2.2, Gleason tacitly assumes measurement neutrality
by assigning probability functions directly to the partial o-algebra, P(Hg). But in a
branching history algebra, we associate each full o -subalgebra of P(Hs) with a given
PVM for one S —so the same event occurring in different measurement contexts need
not have the same chance by default. Measures defined on different history algebras
need not agree where the algebras overlap. Rather, this agreement follows from the
fact that our symmetry-derived measures match the Born rule. Moreover, the context-
dependence of Bohmian properties is consistent with each of our four premises.'”
Indeed, the theorem gives one explanation for why the chances in the pilot-wave
theory do not depend on the context of measurement even while the specific outcomes
of measurements do.

I do think that there is a sense in which the symmetry theorem might be easier to
visualize when we assume the Hydra view rather than the Lewisian or the Bohmian
view. On the Hydra view, we can put all branches on equal ontic footing, and so we
are invited to view the dynamical symmetries of W in much the same way that we
envision the spatial symmetries of a die or a coin. But as shown above, W’s symmetries
ultimately have the same import for chance regardless of whether W is the totality of
ontology or merely a law governing particle motions—whether it is an “is” or a “tends
to.”

4 Discussion

On the one hand, this paper has been a work of criticism. I have argued that Wallace’s
(2012) claim that many-worlds theories are better off than single-world theories in
making sense of probability fails by his own lights. While Wallace argues that only a
many-worlds theorist can justify state supervenience, | have argued that the Lewisian
and the Bohmian do so equally well by appealing to decoherence.

On the other hand, the main takeaway of this paper ought to be positive. I hope to
have shown that the Deutsch-Wallace theorem should not be an item of niche interest, a
feather in the cap of the most philosophically adventurous physicists—on the contrary,

19 Wallace (2012) refers to measurement neutrality as “noncontextuality.” But since this usage is at odds
with the more prevalent notion of Kochen-Specker contextuality (1975), I will stick with the former term.
The pilot-wave theory is both measurement-neutral and (Kochen-Specker) contextual (because the values
of self-adjoint observables typically depend on the context of measurement).
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a whole host of approaches to quantum theory might appeal to it to explain the ascrip-
tion of particular chance values. Note that this explanation presupposes not just Hilbert
space structure but also decoherence-governed preparations and measurements. But [
do not wish to claim that the theorem gives the final word on quantum probability. I
merely wish to stress that it is one important step forward in our understanding, one
that might hold interest for theorists of many different philosophical stripes.

In this spirit, I would like to conclude with a brief sketch of how the symmetry
theorem interacts with other Bohmian approaches to the Born rule. For example,
many Bohmians are happy to simply postulate this rule as an additional axiom of the
theory (as flagged in Sect. 3.3). There are various reasons they might do so. On the one
hand, they might think that “chance” should be a primitive, in which case the symmetry
theorem holds no interest. On the other, they might simply be fine with granting axiom-
status to various principles with epistemic primitives (like “knowledge” or “belief™).
Then the symmetry argument shows how they are free to adopt a strictly weaker
epistemic principle—decoherence exclusivity—f{rom which the Born rule follows (in
conjunction with the plausible structural constraints sketched above). Insofar as it is
generally good to search for weaker axioms, the derivation is a boon for this sort
of Bohmian. For them, the fact that decoherence exclusivity provides a (partially)
dynamical explanation of chance values is just a bonus.

More speculatively, the symmetry theorem might be compatible with the approaches
of both Diirr, Goldstein, and Zanghi (1992) and Valentini (2020). As flagged in Sect.
2.1, these authors’ approaches to pilot-wave theory differ from mine in at least one
crucial way: they take a cosmological approach and assign a state (9, q) to the entire
universe. Very roughly, DGZ seek to derive g-ignorance (which they call “abso-
lute uncertainty”) as a consequence of one natural typicality measure over possible
Bohmian universes, thereby ensuring that all empirical subsystems obey Born-rule
statistics. Contrariwise, Valentini allows for the possibility of non-standard initial dis-
tributions over configurations of the universe. That means that some subsystems might
fail to yield Born-rule statistics. But his non-standard theory can still save the phe-
nomena, so long as it recovers the Born rule in suitable domains—which recovery
is precisely the aim of Valentini’s (2020) quantum H-theorem. Valentini criticizes
DGZ’s derivation on various grounds. But following Norsen (2018), one can read him
as seeking similar derivations, albeit for various typicality measures as opposed to
just one.

On Norsen’s conciliatory approach, the symmetry theorem might be a valuable tool
for cosmological Bohmians. To wit: decoherence exclusivity might serve as a principle
for identifying suitable subsystems for the target of a Valentini-style derivation. That
is, we might stipulate that NRQM is valid in precisely the domains where decoherence
exclusivity applies. Then the symmetry theorem imposes the Born rule as a sort of
consistency constraint. It restricts the possibility space of admissible typicality mea-
sures over universal configurations—where a measure is “admissible” just as long as
it recovers the Born rule in the domains that satisfy decoherence exclusivity. One can
view the results of DGZ and Valentini as probing this space of admissible typicality
measures.

One clear virtue of this approach is that it does not stipulate any measure of typicality
or chance: it derives all measures for suitable subsystems from state-space symmetries,
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and admissible measures on the universe follow from a consistency constraint. But
this approach assuredly requires more work. For one thing, it invokes commitments
that many Bohmians might find objectionable. DGZ might have a frequentist view
of probability on which all facts about agents’ ignorance must reduce to facts about
(actual) frequencies. Their typicality argument might be compatible with this view,
but the symmetry theorem might not be. The operational definition of chance central
to the latter invokes agents’ credences directly, so (at the very least) this definition
would require a suitable frequentist justification. I do not take this brief discussion
to present a definitive resolution of the debate between DGZ and Valentini. I only
want to highlight how the symmetry approach is distinct from both DGZ’s typicality
argument and Valentini’s H -theorem—as well as to point the way towards future work
that might reconcile all three approaches.

The aim of the present work has been to highlight the flexibility and fecundity of
the symmetry theorem as a conceptual resource, not to rock any particular Bohmian’s
boat. I have sketched an alternative to the approaches of DGZ and Valentini, but their
proponents are free to ignore my sketch if they wish. My point is just that Wallace’s
attempts to reserve a symmetry-based strategy for Everettians do not succeed. Of
course, applications of the symmetry theorem to various other single-world interpre-
tations of NRQM are bound to involve idiosyncrasies that I have not treated here. To
that, I can only say that I hope the above discussion provides a few important heuristics
for future attempts to use the theorem more broadly.
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A Proof of the symmetry theorem

Before proving the symmetry theorem, we prove as a lemma an important condition
that follows from the structural links assumption.

Branching link. When {S'} is strictly W-branching and 7 (a;, 8 i) # 0 for
L <tj,

chy (B
chw,ay) (Bj) = #((af)) (€2
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Proof of the branching link. First, we show that chances respect branching, i.e.,
chy (y) = 0 whenever y contains «;, 8; such that 7 («;, 8;) = 0. Explicitly,

AVACARY =ai})

chy () = chy (\/1y 17 = Bj A vi = o)) = chy (\/{y v = B)

(32)
= Ch(\li,a,-)<\/{y lyj = /3,'}> (33)
= ch(w,o) (B;) (34)
=0, 35)

where (32) follows from additivity and the definition of conditional probability,
(33) follows from temporal link, i.e., (29), (34) follows from the definition (28) in
the probability assumption, and (35) follows from normalization link, the rules of
probability, and the fact that 7 («;, B;) = 0. The rules of probability then imply that
chy (y) =0. _

Now suppose that {S'} is strictly W-branching and 7 («;, 8;) # Ofort; < t;. Note
that

chow,o) (B)

chqy g (\/{y lyj = ﬂj}) (36)

dwOﬂﬂw=m}VWm:mQ (37)

_cho(Viyly =8 ryvi=ail)

38
chy (V{y lyi = ai}) %)
chy (\V{y lv; = B;})
= 39
chy (\V{y lvi = ai}) 59
_ ch () “0)
chy(a;)’

where (36) follows from probability, (37) follows from temporal link, (38) follows
from the definition of conditional probability (and a bit of algebra), (39) follows from
chy respecting branching and additivity (and our supposition), and (40) follows from
(28). O

With branching link in hand, we can quickly prove the symmetry theorem.

Proof of the symmetry theorem. Following (Wallace 2012, Ch. 4), we aim to prove
that chy (o;) = (W (#;), o; W(#;)) in four steps. First (i), we generalize the intuitive re-
labeling argument to show that projections with equal Born weights must have equal
chances—i.e., we show that chy must be a function of Born weights. Second (ii), we
invoke some of our environmental degrees of freedom to show that this function is
increasing. Third (iii), we invoke N environmental degrees of freedom to show that
function must equal the Born weight when it is rational. Fourth (iv), we use a simple
limiting argument (and the second and third steps) to obtain agreement for arbitrary
Born weights.
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(1) Suppose (W (1), ;W (1)) = (W (1), BV (1)).

First, suppose that both sides equal zero. Then W (z;) lies in the range of both —¢;
and —g;, and so by normalization link, chy(—«;) = chy(—p;) = 1. Thus, by
probability, chy («;) = chy (B;) = 0.

Now suppose otherwise. By the above reasoning, we get that chy (¢;) # 0 and
chy (B;) # 0. Next, we run the analog of the intuitive re-labelling argument. By
decoherence availability, we can consider two different strictly branching history
algebras for the next step of decoherence: one that gives a projection «; 1 weight
from «; and one that gives it weight from g;. To distinguish these, let ¥ evolve
with the first dynamics, and let @ evolve with the second dynamics. Now define
D(tj)) = V() for j <iandlet ¥(ti41) = XW(%) and ®(f; 1) = YV () for
the unitary operators

X:i=Vo% +W'(l—a) Y:=VPg+WP(1-8) (41)

where V¢ and V# share the range of o1 and W® and W# share the range of
some mutually orthogonal projection §;1. By construction, W(#;41) = ®(tj41).

Note, too, that Xo; W (¢;) and Y 8; WV (¢;) both lie in the range of ;1. So by branch-
ing link, we have

chy (1)
h . i =— =1, 42
CN(Y, ;) (otjy1) che () (42)
and similarly
cho(ait1)
chiop) (@) = D) 43)
A e (B)

By state supervenience, che(®jt+1) = chy(ai+1), and so chy (o ) = che(Bi)-
Applying state supervenience once more, we get

chy () = chy (). (44)

(Note that, again by state supervenience, this last equality holds even if our original
history algebra was not strictly branching.)
(i) Suppose (W (1), i V(1)) > (W (1), fi WV (#i)).

By decoherence availability, we may assume that the i + 1 step of decoherence
is given by a unitary Y such that, for y;+; and w; 41 two mutually orthogonal
projections, we have

YIW@), (i1 Vo )Y W) = (W(6), e V(1))

: (45)
W@,y YW@) = (W), Biv @)
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where Y maps vectors in the range of «; to the range of y;4+1 V w;41. Then, by
step (1),

chy (Vit1 V wit1) = chy (i),  chy(yit1) = chw(B). (46)
By probability,
chy (Yit1 vV @it1) = chy (Yiq1) (47)
and so
chy () = chy (Bi). (48)

(iii) Suppose (W(#), o; W (¢;)) is rational, i.e. equal to % for some positive integers
M, N.

By decoherence availability, we may pick some Hgg-spanning sequence of

orthogonal projections !, ..., y™, ..., ¥ that generate a o -algebra containing
«; such that, for some ® such that ®(z;) = W (¢;),
1

(@), y" () = N (49)

for all m. By (i), che(y™) must be independent of m. Thus, by probability,
my _ 1
cho(y™) = -

Now let @ := \/,;, ¥'. We have that (¥ (1), ;¥ (5;)) = (P (1), 0P (1)) =

(W(1;), W (1)), so by step (i), chy(e;) = chy(w). By probability, chy(w) =
S chy(y™) =M and so we get that

M
chy(a;) = T (50)

(iv) Suppose (W (t;), a; WV (t;)) = r € [0, 1], where r may not be rational.
By (i), ch is a function of Born-rule weights, i.e.

chy (i) = fFW (@), a; V(1)) (D

for some f : [0,1] — [0, 1]. By step (ii), f is increasing; by step (iii),
f(M/N)=M/N.

So let {a;} and {b;} be, respectively, increasing and decreasing sequences of
rational numbers in [0, 1] converging to r. Since f(b;) = b; forall i, f(r) <r.
And since f(a;) = q; forall i, f(r) > r—thus, f(r) = r, and so

chy (o) = (W (1), i Y (1)). (52)

O
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