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This paper introduces a simple principle for robust statistical infer-
ence via appropriate shrinkage on the data. This widens the scope of high-
dimensional techniques, reducing the distributional conditions from subex-
ponential or sub-Gaussian to more relaxed bounded second or fourth mo-
ment. As an illustration of this principle, we focus on robust estimation of the
low-rank matrix �∗ from the trace regression model Y = Tr(�∗�X) + ε. It
encompasses four popular problems: sparse linear model, compressed sens-
ing, matrix completion and multitask learning. We propose to apply the pe-
nalized least-squares approach to the appropriately truncated or shrunk data.
Under only bounded 2 + δ moment condition on the response, the proposed
robust methodology yields an estimator that possesses the same statistical
error rates as previous literature with sub-Gaussian errors. For sparse linear
model and multitask regression, we further allow the design to have only
bounded fourth moment and obtain the same statistical rates. As a byproduct,
we give a robust covariance estimator with concentration inequality and opti-
mal rate of convergence in terms of the spectral norm, when the samples only
bear bounded fourth moment. This result is of its own interest and impor-
tance. We reveal that under high dimensions, the sample covariance matrix is
not optimal whereas our proposed robust covariance can achieve optimality.
Extensive simulations are carried out to support the theories.

1. Introduction. Heavy-tailed distribution is ubiquitous in modern statistical analysis
and machine learning problems. It is a stylized feature of high-dimensional data, which may
be caused by chance of extreme events or by the complex data generating process. It has been
widely known that financial returns and macroeconomic variables exhibit heavy tails for rare
events, and large-scale imaging datasets in biological studies are corrupted by heavy-tailed
noises due to limited measurement precision. Figure 1 provides some empirical evidence on
this which is pandemic to high-dimensional data. These phenomena contradict the popular
assumption of sub-Gaussian or subexponential noises in the theoretical analysis of standard
statistical procedures. They also have adverse impact on the popularly used methods. Simple
and effective principles are needed for dealing with heavy tailed data.

Recent years have witnessed increasing literature on the robust mean estimation when the
population distribution is heavy-tailed. Catoni (2012) proposed a novel approach through
minimizing a robust empirical loss, and more so after our initial submission of the paper in
2016. Unlike the traditional �2 loss, the robust loss function therein penalizes large devia-
tions, thereby making the correspondent M-estimator insensitive to extreme values. It turns
out that when the population has only finite second moment, the estimator has exponential
concentration around the true mean and enjoys the same rate of statistical consistency as the
sample average for sub-Gaussian distributions. Brownlees, Joly and Lugosi (2015) pursued
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FIG. 1. Distributions of kurtosis of macroeconomic variables and gene expressions. Red dashline marks vari-
ables with empirical kurtosis equals to that of t5-distribution. Left panel: For 131 macroeconomics variables in
Stock and Watson (2002). Right panel: For logarithm of expression profiles of 383 genes based on RNA-seq for
autism data (Gupta et al. (2014)), whose kurtosis is bigger than that of t5 among 19,122 genes.

the Catoni’s mean estimator further by applying it to empirical risk minimization. Fan, Li and
Wang (2017) utilized the Huber loss with diverging threshold, called robust approximation
to quadratic (RA-quadratic), in a sparse regression problem and showed that the derived M-
estimator can also achieve the minimax statistical error rate. Loh (2017) studied the statistical
consistency and asymptotic normality of a general robust M-estimator and provided a set of
sufficient conditions to achieve the minimax rate in the high-dimensional regression problem.

Another effective approach to handle heavy-tailed distribution is the so-called “median
of means” approach, which can be traced back to Nemirovsky and Yudin (1982). The main
idea is to first divide the whole samples into several parts and take the median of the means
from all pieces of subsamples as the final estimator. This “median of means” estimator also
enjoys exponential large deviation bound around the true mean. Hsu and Sabato (2016) and
Minsker (2015) generalized this idea to multivariate cases and applied it to robust PCA, high-
dimensional sparse regression and matrix regression, achieving minimax optimal rates up to
logarithmic factors.

In this paper, we propose a simple and effective principle: truncation of univariate data and
more generally shrinkage of multivariate data to achieve the robustness. We will illustrate our
ideas through a general model: the trace regression

Y = Tr
(
�∗�X

) + ε =: 〈
�∗,X

〉 + ε,

where for any two matrices A,B ∈ R
d1×d2 , 〈A,B〉 := Tr(A�B). This model embraces linear

regression, matrix or vector compressed sensing, matrix completion and multitask regression
as specific examples. The goal is to estimate the coefficient matrix �∗ ∈ R

d1×d2 , which is
assumed to have a nearly low-rank structure in the sense that its Schatten norm is constrained:∑min(d1,d2)

i=1 σi(�
∗)q ≤ ρ for 0 ≤ q < 1, where σi(�

∗) is the ith singular value of �∗, that is,
the square-root of the ith eigenvalue of �∗��∗. In other words, the singular values of �∗
decay fast enough so that �∗ can be well approximated by a low-rank matrix. We always
consider the high-dimensional setting where the sample size n � d1d2. As we shall see,
appropriate data shrinkage allows us to recover �∗ with only bounded second and fourth
moment conditions on noise and design, respectively.

As the most simple and important example of the low-rank trace regression, sparse linear
regression and compressed sensing have become a hot topic in statistics research in the past
two decades. See, for example, Tibshirani (1996), Chen, Donoho and Saunders (2001), Fan
and Li (2001), Donoho (2006), Candes and Tao (2006, 2007), Candes (2008), Figueiredo,
Nowak and Wright (2007), Fan and Lv (2008), Zou and Li (2008), Bickel, Ritov and Tsy-
bakov (2009), Zhang (2010), Negahban and Wainwright (2012), Donoho, Johnstone and
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Montanari (2013). These pioneering papers explore the sparsity to achieve accurate signal
recovery in high dimensions.

Recently significant progresses have been made on low-rank matrix recovery under high-
dimensional settings. One of the most well-studied approaches is the penalized least-squares
method. Negahban and Wainwright (2011) analyzed the nuclear norm penalization in esti-
mating nearly low-rank matrices under the trace regression model. Specifically, they derived
nonasymptotic estimation error bounds in terms of the Frobenius norm when the noise is
sub-Gaussian. Rohde and Tsybakov (2011) proposed to use a Schatten-p quasi-norm penalty
where p ≤ 1, and they derived nonasymptotic bounds on the prediction risk and Schatten-q
risk of the estimator, where q ∈ [p,2]. Another effective method is through nuclear norm
minimization under affine fitting constraint. Other important contributions include Recht,
Fazel and Parrilo (2010), Candes and Plan (2011), Cai and Zhang (2014, 2015), etc. When
the true low-rank matrix �∗ satisfies certain restricted isometry property (RIP) or similar
properties, this approach can exactly recover �∗ under the noiseless setting and enjoy sharp
statistical error rate with sub-Gaussian and subexponential noise.

There has also been great amount of work on matrix completion. Candes and Recht (2009)
considered matrix completion under noiseless settings and gave conditions under which ex-
act recovery is possible. Candes and Plan (2010) proposed to fill in the missing entries of the
matrix by nuclear-norm minimization subject to data constraints, and showed that rd log2 d

noisy samples suffice to recover a d × d rank-r matrix with error that is proportional to the
noise level. Recht (2011) improves the results of Candes and Recht (2009) on the number of
observed entries required to reconstruct an unknown low-rank matrix. Negahban and Wain-
wright (2012) instead used nuclear-norm penalized least squares to recover the matrix. They
derived the statistical error of the corresponding M-estimator and showed that it matched
the information-theoretic lower bound up to logarithmic factors. Additional results and ref-
erences can be found in the recent papers Chen et al. (2019, 2020) where the optimality and
statistical inferences of the nuclear-norm penalization method are developed.

Our work aims to handle the presence of heavy-tailed noises, possibly with asymmetrical
and heteroscedastic distributions, in the general trace regression. Based on the shrinkage prin-
ciple, we develop a new loss function called the robust quadratic loss, which is constructed by
plugging robust covariance estimators in the �2 risk function. Then we obtain the estimator
�̂ by minimizing this new robust quadratic loss plus nuclear-norm penalty. By tailoring the
analysis of Negahban et al. (2012) to this new loss, we can establish statistical rates in esti-
mating �∗ just as those in Negahban et al. (2012) for the sub-Gaussian distributions, while
relaxing the assumptions on the noise and design to allow heavy tails. This result is very
generic and applicable to all four specific aforementioned problems.

Our robust approach is particularly simple and intuitive: it truncates or shrinks the response
variables, depending on whether the responses are univariate or multivariate. Under the set-
ting of sub-Gaussian design, large responses are very likely to be due to the outliers of noises.
This explains why we need to truncate the responses when we have light-tailed covariates. If
the covariates are also heavy-tailed, we need to truncate the designs as well. It turns out that
appropriate truncation does not induce significant bias or hurt the restricted strong convexity
of the loss function. This data robustfication enables us to apply the penalized least-squares
method to recover sparse vectors or low-rank matrices. Under only bounded moment con-
ditions for either noise or covariates, our robust estimator achieves the same statistical error
rate as that under the case of the sub-Gaussian design and noise. The crucial component in
our analysis is to obtain the sharp spectral-norm convergence rate for the robust covariance
matrices based on the shrunk data. Note that other robust covariance estimation method, such
as the RA-covariance estimation in Fan, Li and Wang (2017), are also possible to enjoy sim-
ilar error rates, but this has not yet been fully studied for trace regression. So we only focus
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on the shrinkage method, as it is computationally efficient, straightforward to analyze and
always gives semipositive definite estimated covariance.

The successful application of the shrinkage sample covariance in multi-task regression
also inspires us to study its statistical error in covariance estimation. It turns out that as
long as the random samples {xi ∈ R

d}ni=1 have bounded fourth moment in the sense that
supv∈Sd−1 E(v�xi )

4 ≤ R, where Sd−1 is the d-dimensional unit sphere, our �4-norm shrink-
age sample covariance �̃n achieves the statistical error rate of order OP(

√
d logd/n) under

the spectral norm. This rate is optimal up to logarithmic term. In comparison, the naive sam-
ple covariance matrix �n only achieves rate of order OP(

√
d/n ∨ (d/n)) according to The-

orem 5.39 in Vershynin (2010) under sub-Gaussian data assumption. So sample covariance
matrix itself surprisingly does not achieve optimality when dimension is high (p � n) even
with Gaussian data. We will show in simulations that under the high-dimensional regime, �̃
indeed outperforms �n with sub-Gaussian samples. Therefore, shrinkage not only overcomes
heavy-tailed corruption, but also mitigates curse of dimensionality. In terms of the elemen-
twise max-norm, it is not hard to show that appropriate elementwise truncation of the data
delivers a truncated sample covariance with statistical error rate of order OP(

√
logd/n). This

estimator can further be regularized if the true covariance has sparsity or other specific struc-
ture. See, for example, Meinshausen and Bühlmann (2006), Bickel and Levina (2008), Lam
and Fan (2009), Cai and Liu (2011), Cai and Zhou (2012), Fan, Liao and Mincheva (2013),
among others.

The current paper is organized as follows. In Section 2, we introduce the trace regres-
sion model and its four well-known examples: the linear model, matrix compressed sensing,
matrix completion and multitask regression. Then we develop the generalized �2 loss, the
truncated and shrinkage sample covariance and corresponding M-estimators. In Section 3,
we present our main theoretical results. We first demonstrate through Theorem 1 the con-
ditions required on the robust covariance inputs to ensure the desired statistical error rates
of the M-estimator. Then we apply this theorem to all the specific aforementioned problems
and explicitly derive the specific error rates. Section 4 studies the convergence properties of
the shrinkage covariance estimator under the spectral norm. It should be of its own interest.
Finally, we present simulation analyses in Section 5, which demonstrate the advantage of
our robust estimators over the standard ones. The associated optimization algorithms are also
discussed. All the proofs are relegated to the Appendix in the Supplementary Material (Fan,
Wang and Zhu (2021)) for references.

Before presenting the detailed model and methodology, we first collect the general notation
used in the paper. We follow the common convention of using boldface letters for vectors and
matrices and using regular letters for scalars. For a vector x, define ‖x‖q to be its �q norm;
specifically, ‖x‖1 and ‖x‖2 denote the �1 norm and �2 norm of x, respectively. We use Rd1d2 to
denote the space of d1d2-dimensional real vectors, and use R

d1×d2 to denote the space of d1-
by-d2 real matrices. For a matrix X ∈ R

d1×d2 , define ‖X‖op, ‖X‖N , ‖X‖F and ‖X‖max to be
its operator norm, nuclear norm, Frobenius norm and elementwise max norm, respectively.
We use vec(X) to denote vectorized version of X, that is, vec(X) = (X�

1 ,X�
2 , . . . ,X�

d2
)�,

where Xj is the j th column of X. Conversely, for a vector x ∈ R
d1d2 , we use mat(x) to denote

the d1-by-d2 matrix constructed by x, where (x(j−1)d1+1, . . . , xjd1)
� is the j th column of

mat(x). For any two matrices A,B ∈ R
d1×d2 , define the inner product 〈A,B〉 := Tr(A�B)

where Tr is the trace operator. We denote diag(M1, . . . ,Mn) to be the block diagonal matrix
with the diagonal blocks as M1, . . . ,Mn. For two Hilbert spaces A and B, we write A ⊥ B
if A and B are orthogonal to each other. For two scalar series {an}∞n=1 and {bn}∞n=1, we say
an �C bn if there exist constants 0 < c1 < c2 such that c1an ≤ bn ≤ c2an for 1 ≤ n < ∞
where c1, c2 depend on C. For a random variable X, define its sub-Gaussian norm ‖X‖ψ2 :=
supp≥1(E |X|p)1/p/

√
p and its subexponential norm ‖X‖ψ1 := supp≥1(E |X|p)1/p/p. For a
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random vector x ∈ R
d , we define its sub-Gaussian norm ‖x‖ψ2 := supv∈Sd−1 ‖v�x‖ψ2 and

subexponential norm ‖x‖ψ1 := supv∈Sd−1 ‖v�x‖ψ1 . Given x, y ∈ R, denote max(x, y) and
min(x, y) by x ∨ y and x ∧ y, respectively. Let ej be the unit vector with the j th element 1
and 0 elsewhere.

2. Model and methodology.

2.1. Trace regression. In this paper, we consider the trace regression model. Suppose we
have N matrices {Xi ∈ R

d1×d2}Ni=1 and responses {Yi ∈ R}Ni=1. We say {(Yi,Xi)}Ni=1 follow
the trace regression model if

(2.1) Yi = 〈
Xi ,�

∗〉 + εi,

where �∗ ∈ R
d1×d2 is the true coefficient matrix, EXi = 0 and {εi}Ni=1 are independent noises

satisfying E(εi |Xi ) = 0. Note that here we do not require εi to be independent of Xi . Model
(2.1) includes the following specific cases:

• Linear regression: d1 = d2 = d , and {Xi}Ni=1 and �∗ are diagonal. Let xi and θ∗ denote the
vectors of diagonal elements of Xi and �∗, respectively, that is, Xi = diag(xi1, . . . , xid)

and �∗ = diag(θ∗
1 , . . . , θ∗

d ). Then, (2.1) reduces to familiar linear model: Yi = x�
i θ + εi .

Having a low-rank �∗ is then equivalent to having a sparse θ∗.
• Compressed sensing: For matrix compressed sensing, entries of Xi jointly follow the Gaus-

sian distribution or other ensembles. For vector compressed sensing, we can take Xi and
�∗ as diagonal matrices.

• Matrix completion: Xi is a singleton, that is, Xi = ej (i)e�
k(i) for 1 ≤ j (i) ≤ d1 and 1 ≤

k(i) ≤ d2. In other words, a random entry of the matrix � is observed along with noise for
each sample.

• Multitask learning: The multitask (reduced-rank) regression assumes

(2.2) yj = �∗�xj + εj , j = 1, . . . , n,

where xj ∈ R
d1 is the covariate vector, yj ∈ R

d2 is the response vector, �∗ ∈ R
d1×d2

is the coefficient matrix and εj ∈ R
d2 is the noise with each entry independent of each

other. See, for example, Kim and Xing (2012) and Reinsel and Velu (2013). Each sam-
ple (yj ,xj ) consists of d2 responses and is equivalent to d2 data points in (2.1), that is,

{(Y(j−1)d2+i = yji,X(j−1)d2+i = xj e�
i )}d2

i=1. Therefore, n samples in (2.2) correspond to
N = nd2 observations in (2.1).

In this paper, we impose rank constraint on the coefficient matrix �∗. Rank constraint
can be viewed as a generalized sparsity constraint for two-dimensional matrices. For linear
regression, rank constraint is equivalent to the sparsity constraint since �∗ is diagonal. The
rank constraint reduces the effective number of parameters in �∗ and arises frequently in
many applications. Consider the Netflix problem, for instance, where �∗

ij is the intrinsic score
of film j given by customer i and we would like to recover the entire �∗ with only partial
observations. Given that movies of similar types or qualities should receive similar scores
from viewers, columns of �∗ should share colinearity, thus delivering a low-rank structure
of �∗. The rationale of the model can also be understood from the celebrated factor model in
finance and economics (Fan and Yao (2015)), which assumes that several market risk factors
drive the returns of a large panel of stocks. Consider N × T matrix Y of N stock returns
(like movies) over T days (like viewers). These financial returns are driven by K factors F
(K × T matrix, representing K risk factors realized on T days or K attributes realized on T
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movies) with a loading matrix B (N × K matrix, reflecting individual’s preference on these
attritributes). The factor model admits the following form:

Y = BF + E,

where E is idiosyncratic noise. Since BF has a small rank K , BF can be regarded as the
low-rank matrix �∗ in the matrix completion problem. If all movies were rated by all view-
ers in the Netflix problem, the ratings should also be modeled as a low-rank matrix plus
noise, namely, there should be several latent factors that drive ratings of movies. The major
challenge of the matrix completion problem is that there are many missing entries.

Exact low-rank may be too stringent to model the real-world situations. Instead, we con-
sider near low-rank �∗ satisfying

(2.3) Bq

(
�∗) :=

d1∧d2∑
i=1

σi

(
�∗)q ≤ ρ,

where 0 ≤ q ≤ 1. Note that when q = 0, the constraint (2.3) is the exact rank constraint.
Restriction on Bq(�

∗) ensures that the singular values decay fast enough; it is more general
and natural than the exact low-rank assumption. In the analysis, we can allow ρ to grow with
dimensionality and sample size.

A popular method for estimating �∗ is the penalized empirical loss that solves �̂ ∈
argmin�∈S L(�) + λNP(�), where S is a convex set in R

d1×d2 , L(�) is the loss function,
λN is the tuning parameter and P(�) is a rank penalization function. Most of the previous
work, for example, Koltchinskii, Lounici and Tsybakov (2011) and Negahban and Wain-
wright (2011), chose L(�) = ∑

1≤i≤N(Yi − 〈�,Xi〉)2 and P(�) = ‖�‖N , and derived the
rate for ‖�̂ − �∗‖F under the assumption of sub-Gaussian or subexponential noise. How-
ever, the �2 loss is sensitive to outliers and is unable to handle the data with moderately heavy
or heavy tails.

2.2. Robustifying �2 loss. We aim to accommodate heavy-tailed noise and design for the
near low-rank matrix recovery by robustifying the traditional �2 loss. We first notice that the
�2 risk can be expressed as

(2.4)

R(�) = EL(�) = E
(
Yi − 〈�,Xi〉)2

= EY 2
i − 2〈�,EYiXi〉 + vec(�)�E

(
vec(Xi )vec(Xi )

�)
vec(�)

≡ EY 2
i − 2〈�,�YX〉 + vec(�)��XX vec(�).

Ignoring EY 2
i , if we substitute �YX and �XX by their corresponding sample covariances, we

recover the empirical �2 loss. This inspires us to define a generalized �2 loss as

(2.5) L(�) := −〈�̂YX,�〉 + 1

2
vec(�)��̂XX vec(�),

where �̂YX and �̂XX are estimators of E(YiXi) and E{vec(Xi )vec(Xi )
�}, respectively.

Equation (2.5) suggests that one can first seek reliable covariance and cross-covariance esti-
mators �̂YX and �̂XX to construct an empirical �2 risk function L(�), and then recover the
parameter of interest �∗ by minimizing L(�). Previous works exploited similar ideas to ob-
tain sharp statistical results in high-dimensional linear models. For instance, under the matrix
completion setup, Koltchinskii, Lounici and Tsybakov (2011) incorporated the (known) co-
variance of Xi into the �2 risk, and showed that the resulting nuclear-norm penalized estima-
tor enjoys both a simple explicit form and minimax optimal rate. Another example is Bellec
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et al. (2018) who focus on the adaptations of the supervised lasso estimator to the semisu-
pervised learning and transductive learning settings. Therein both the labeled and unlabeled
features are employed to estimate the feature covariance matrix � in the loss function, for the
purpose of achieving sharper statistical accuracy than the lasso estimator based on only the
labeled data. Our work also replaces the population covariance in the �2 risk with the empiri-
cal estimates. The difference is that we use truncated or shrunk sample covariance in (2.5) to
guard against heavy-tailed corruptions. This explains the reason we allow bounded-moment
design and response, while Bellec et al. (2018), say, assume almost sure bounds on the data.

In this paper, we study the following M-estimator of �∗ with the generalized �2 loss:

(2.6) �̂ ∈ argmin
�∈S

−〈�̂YX,�〉 + 1

2
vec(�)��̂XX vec(�) + λN‖�‖N,

where S is a convex set in R
d1×d2 . To handle heavy-tailed noise and design, we need to

employ robust estimators �̂YX and �̂XX. For ease of presentation, we always first consider
the case where the design is sub-Gaussian and the response is heavy-tailed, and then further
allow the design to have heavy-tailed distribution if it is appropriate for the specific problem
setup.

We now introduce the robust covariance estimators to be plugged in (2.6) by the principle
of truncation, or more generally shrinkage. The intuition is that shrinkage reduces sensitivity
of the estimator to the heavy-tailed corruption. However, shrinkage induces bias. Our theories
revolve around finding appropriate shrinkage level so as to ensure the induced bias is not too
large and the final statistical error rate is sharp. Different problem setups have different forms
of �̂YX and �̂XX, but the principle of shrinkage of data is universal. For the linear regression,
matrix compressed sensing and matrix completion, in which the response is univariate, �̂YX
and �̂XX take the following forms:

(2.7) �̂YX = �̂Ỹ X̃ = 1

N

N∑
i=1

ỸiX̃i and �̂XX = �̂X̃X̃ = 1

N

N∑
i=1

vec(X̃i)vec(X̃i)
�,

where tilde notation means truncated versions of the random variables if they have heavy tails
and equals the original random variables (truncation threshold is infinite) if they have light
tails.

For the multitask regression, similar idea continues to apply. However, writing (2.2) in the
general form of (2.1) requires adaptation of more complicated notation. We choose

(2.8)

�̂YX = 1

N

n∑
i=1

d2∑
j=1

Ỹij x̃ie�
j = 1

d2
�̂ x̃̃y and

�̂XX = 1

N

n∑
i=1

d2∑
j=1

vec
(̃
xie�

j

)
vec

(̃
xie�

j

)� = 1

d2
diag(�̂ x̃̃x, . . . , �̂ x̃̃x︸ ︷︷ ︸

d2

),

where

�̂ x̃̃y = 1

n

n∑
i=1

x̃i ỹ�
i and �̂ x̃̃x = 1

n

n∑
i=1

x̃i x̃�
i

and ỹi and x̃i are again transformed versions of yi and xi . The tilde notation means shrinkage
for heavy-tailed variables and identity mapping (no shrinkage) for light-tailed variables. The
factor d−1

2 is due to the fact that n independent samples under model (2.2) are treated as
N = nd2 samples in (2.1). As we shall see, under only bounded moment assumptions of the
design and noise, the proposed truncated or shrinkage covariance enjoys desired convergence
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rate to its population counterpart. This leads to a sharp M-estimator �̂, whose statistical error
rates match those established in Negahban and Wainwright (2011, 2012) under the setting of
sub-Gaussian design and noise.

Note that using truncated or shrinkage covariance in the generalized �2 loss is equivalent
to evaluating the traditional �2 loss on the truncated or shrunk data. Nevertheless, instead of
directly analyzing the quadratic loss with shrunk data, we study the robust covariance first
and then derive the error rate of the corresponding M-estimator. This analytical framework is
modular and allows other potential robust covariance estimators to be plugged in, for instance,
those based on Kendall’s tau (Fan, Liu and Wang (2018)), median of means (Minsker (2015)),
etc. As long as the recruited �̂YX and �̂XX satisfy the set of sufficient conditions given by
Theorem 1, the corresponding �̂ achieves the desired convergence. One recent work Loh and
Tan (2018) took a similar strategy in estimating the high-dimensional precision matrix. The
authors proposed to plug in appropriately chosen robust covariance estimators into graphical
LASSO and CLIME and established sharp error bounds for the corresponding estimators of
the precision matrix.

Finally, we conjecture that minimizing Huber loss, Tukey’s biweight loss or other robust
but maybe nonconvex losses (Loh (2017), Fan, Li and Wang (2017)) with nuclear norm reg-
ularization can also achieve nearly minimax optimal rate. However, these papers typically
focus on high-dimensional sparse regression and so far we have not seen any statistical guar-
antee for these methods under the trace regression for the low-rank recovery. Moreover, our
method is simple to implement with guaranteed optimization efficiency, while the other meth-
ods lack reliable and fast algorithms with convergence guarantee. Since our method is equiva-
lent to applying the standard method to the truncated or shrunk data, the optimization is still a
least square problem with nuclear-norm penalization. This is amenable to efficient algorithms
such as the Peaceman–Rachford splitting method (PRSM) as described in Section 5.

3. Main results. In this section, we derive the statistical error rate of �̂ defined by (2.6).
We always assume d1, d2 ≥ 2 and ρ > 1 in (2.3). We first present the following general
theorem that gives the estimation errors ‖�̂ − �∗‖F and ‖�̂ − �∗‖N .

THEOREM 1. Define �̂ = �̂ − �∗, where �∗ satisfies Bq(�∗) ≤ ρ. Suppose
vec(�̂)��̂XX vec(�̂) ≥ κL‖�̂‖2

F , where κL is a positive constant that does not depend on �̂.
Choose λN ≥ 2‖�̂YX − mat(�̂XX vec(�∗))‖op. Then we have that

‖�̂‖2
F ≤ C1ρ

(
λN

κL

)2−q

and ‖�̂‖N ≤ C2ρ

(
λN

κL

)1−q

,

where C1 and C2 are two universal constants.

First of all, the above result is deterministic and nonasymptotic. As we can see from the
theorem above, the statistical performance of �̂ relies on the restricted eigenvalue (RE) prop-
erty of �̂XX, which was first studied by Bickel, Ritov and Tsybakov (2009). When the design
is sub-Gaussian, we choose �̂XX to be the traditional sample covariance, whose RE prop-
erty has been well established (e.g., Rudelson and Zhou (2013), Negahban and Wainwright
(2011, 2012)). We will specify these results when we need them in the sequel. When the
design only satisfies bounded moment conditions, we choose �̂XX = �̂X̃X̃ to be the sample
covariance of shrunk data. We show that with appropriate level of shrinkage, �̂X̃X̃ still retains
the RE property, thus satisfying the conditions of the theorem.

Second, the conclusion of the theorem says that ‖�̂‖2
F and ‖�̂‖N are proportional to λ

2−q
N

and λ
1−q
N , respectively, but we require λN ≥ ‖�̂YX −mat(�̂XX vec(�∗)‖op. This implies that
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‖�̂YX − mat(�̂XX vec(�∗)‖op is crucial to the statistical error of �̂. In the following subsec-
tions, we will derive the rate of ‖�̂YX −mat(�̂XX vec(�∗)‖op for all the aforementioned spe-
cific problems with only bounded moment conditions on the response, and in some cases also
on the design. Under such weak assumptions, we show that the proposed robust M-estimator
possesses the same rates as those presented in Negahban and Wainwright (2011, 2012) with
sub-Gaussian assumptions on the design and noise.

Finally, we emphasize one key technical contribution of our work: the bias-and-variance
tradeoff through tuning of the truncation level τ . As we explained above, ‖�̂YX −
mat(�̂XX vec(�∗)‖op is crucial to the estimation accuracy of �̂. In our analysis, we de-
compose �̂YX − mat(�̂XX vec(�∗) into the following three terms:

�̂YX − mat(�̂XX vec
(
�∗)

= �̂YX −E[�̂YX]︸ ︷︷ ︸
concentration term 1

+E[�̂YX] −E
[
mat(�̂XX vec

(
�∗)]︸ ︷︷ ︸

bias term

+E
[
mat(�̂XX vec

(
�∗)] − mat(�̂XX vec

(
�∗)︸ ︷︷ ︸

concentration term 2

.

Choosing �̂YX and �̂XX to be the truncated or shrinkage sample covariance, we will show
that the truncation level τ only contributes to high-order terms in both concentration terms
above. This allows us to strike a perfect balance between the bias term and the concentration
terms and establish the optimal rate for ‖�̂YX − mat(�̂XX vec(�∗))‖op. In contrast, if we
simply treat the truncated response as a sub-Gaussian random variable bounded by τ , τ will
contribute to the leading terms in the concentration bounds, which implies suboptimal results.
This observation also inspired us to construct the �4-norm shrinkage sample covariance and
establish its (near) minimax optimal rate in Section 4. This new robust covariance estimator
is employed in the multitasking regression with heavy-tailed data and leads to a minimax
optimal MLE of �∗.

3.1. Linear model. For the linear regression problem, �∗ and {Xi}Ni=1 are d ×d diagonal
matrices. We denote the diagonals of �∗ and {Xi}Ni=1 by θ∗ and {xi}Ni=1, respectively for ease
of presentation. The optimization problem in (2.6) reduces to

(3.1) θ̂ ∈ argmin
θ∈Rd

−�̂
�
Yxθ + 1

2
θ��̂xxθ + λN‖θ‖1,

where �̂Yx = �̂Ỹ x̃ = N−1 ∑N
i=1 Ỹi x̃i , �̂xx = �̂ x̃̃x = N−1 ∑N

i=1 x̃i x̃�
i . When the design is sub-

Gaussian, we only need to truncate the response. Therefore, we choose the Winsorization
Ỹi = Ỹi(τ ) = sgn(Yi)(|Yi | ∧ τ) and x̃i = xi , for some threshold τ . When the design is heavy-
tailed, we choose Ỹi(τ1) = sgn(Yi)(|Yi | ∧ τ1) and x̃ij = sgn(xij )(|xij | ∧ τ2), where τ1 and
τ2 are both predetermined threshold values. To avoid redundancy, we will not repeat stating
these choices in lemmas or theorems in this subsection.

To establish the statistical error rate of θ̂ in (3.1), in the following lemma, we derive the rate
of ‖�̂Yx − mat(�̂XX vec(�∗))‖op in (2.6) for the sub-Gaussian design and bounded-moment
(polynomial tail) design, respectively. Note here that∥∥�̂Yx − mat

(
�̂XX vec

(
�∗))∥∥

op = ∥∥�̂Yx − �̂xxθ
∗∥∥

max.

LEMMA 1. Uniform convergence of cross covariance.

(a) Sub-Gaussian design. Consider the following conditions:
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(C1) {xi}Ni=1 are i.i.d. sub-Gaussian vectors with ‖xi‖ψ2 ≤ κ0 < ∞, Exi = 0 and
λmin(Exix�

i ) ≥ κL > 0;
(C2) ∀i = 1, . . . ,N , E |Yi |2k ≤ M < ∞ for some k > 1.

Choose τ �k,κ0

√
M1/kN/ logd . There exists C > 0, depending only on k, κ0 and κL,

such that as long as logd < N , for any ξ > 1,

(3.2) P

(∥∥�̂Yx(τ ) − �̂xxθ
∗∥∥

max ≥ Cξ

√
M1/k logd

N

)
≤ 2d−(ξ−1).

(b) Bounded moment design. Consider instead the following set of conditions:

(C1′) ‖θ∗‖1 ≤ R < ∞;
(C2′) {xi}Ni=1 are i.i.d., and for any 1 ≤ j ≤ d , E |x1j |4 ≤ M < ∞;
(C3′) ∀i = 1, . . . ,N , E |Yi |4 ≤ M < ∞.

Choose τ1, τ2 �R (MN/ logd)
1
4 . For any ξ > 2, we have that

P

(∥∥�̂Yx(τ1, τ2) − �̂xx(τ2)θ
∗∥∥

max > C

√
Mξ logd

N

)
≤ 2d−(ξ−2),

where C only depends on R.

REMARK 1. If we choose �̂Yx and �̂xx to be the sample covariance, that is, �̂Yx =
�Yx = 1

N

∑N
i=1 Yixi and �̂xx = �xx = 1

N

∑N
i=1 xix�

i , Corollary 2 of Negahban et al. (2012)
showed that under the sub-Gaussian noise and design,

∥∥�Yx − �xxθ
∗∥∥

max = OP

(√
logd

N

)
.

This is the same rate as what we achieved under only the bounded moment conditions on
response and design. The assumption ‖θ∗‖1 < ∞ holds if the sparsity level ρ is finite. This
condition is used to bound |̃x′

iθ
∗| ≤ τ2‖θ∗‖1, and seems necessary for heavy-tailed design

which lacks the nice structure of sub-Gaussian design, where the ψ2 norm of x′
iθ

∗ is deter-
mined by ‖θ∗‖2.

Next, we establish the restricted strong convexity of the proposed robust �2 loss.

LEMMA 2. Restricted strong convexity.

(a) Sub-Gaussian design. Under Condition (C1) of Lemma 1, it holds for any ξ > 1 that

(3.3)

P

(
v��̂xxv ≥ 1

2
v��xxv − Cξ logd

N
‖v‖2

1,∀v ∈ R
d

)

≥ 1 − d−(ξ−1)

3
− 2d exp(−cN),

where C depends only on κ0 and κL, and c is a universal constant.
(b) Bounded moment design. Assume that xi satisfies Condition (C2′) of Lemma 1. Choos-

ing τ2 �R (MN/ logd)
1
4 , we have for any ξ > 2,

(3.4) P

(
v��̂xx(τ2)v ≥ v��xxv − C

√
Mξ logd

N
‖v‖2

1,∀v ∈R
d

)
≤ d−(ξ−2),

where C depends only on R.
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REMARK 2. Comparing the results we get for sub-Gaussian and heavy-tailed design,
we see that the coefficients before ‖v‖2

1 are different. Under the sub-Gaussian design, that
coefficient is of order logd/N , while under the heavy-tailed design, the coefficient is of
order

√
logd/N . This difference leads to different scaling requirements for N , d and ρ in

the sequel. As we shall see, the heavy-tailed design requires a stronger scaling condition to
retain the same statistical rate as the sub-Gaussian design.

Finally we derive the statistical error rate of θ̂ as defined in (3.1).

THEOREM 2. Assume
∑d

i=1 |θ∗
i |q ≤ ρ, where 0 ≤ q ≤ 1.

(a) Sub-Gaussian design. Suppose Conditions (C1) and (C2) in Lemma 1 hold and logd <

N . Choose τ �k,κ0

√
M1/kN/ logd . For any ξ > 1, let λN = 2Cξ

√
M1/k logd/N , where C

and ξ are the same as in part (a) of Lemma 1. There exists C1, depending only on κL and κ0,
such that as long as ρξ1−q(logd/N)1−(q/2)M−q/(2k) ≤ C1, we have

P

{∥∥θ̂(τ, λN) − θ∗∥∥2
2 > C2ρ

(
ξ2M1/k logd

N

)1−(q/2)}

≤ 7d−(ξ−1)

3
+ 2d exp(−cN)

and

P

{∥∥θ̂(τ, λN) − θ∗∥∥
1 > C3ρ

(
ξ2M1/k logd

N

)(1−q)/2}
≤ 3d−(ξ−1) + 2d exp(−cN),

where C2, C3 only depend on κ0 and κL.
(b) Bounded moment design. Choose τ1, τ2 �R (MN/ logd)1/4 and λN = 2C ×√
Mξ logd/N , where C and ξ are the same as in part (b) of Lemma 1. Under Condi-

tions (C1′), (C2′) and (C3′), there exists C1, depending only on R, such that whenever
ρ(Mξ logd/N)(1−q)/2 ≤ C1,

P

{∥∥θ̂(τ1, τ2, λN) − θ∗∥∥2
2 ≥ C2ρ

(
Mξ logd

N

)1−(q/2)}
≤ 3d−(ξ−2)

and

P

{∥∥θ̂(τ1, τ2, λN) − θ∗∥∥
1 ≥ C3ρ

(
Mξ logd

N

)(1−q)/2}
≤ 3d−(ξ−2),

where C2 and C3 only depend on R.

REMARK 3. Under both sub-Gaussian and heavy-tailed design, our proposed θ̂ achieves
the minimax optimal rate of �2 norm established by Raskutti, Wainwright and Yu (2011).
However, the difference lies in the scaling requirement on N , d and ρ. For sub-Gaussian
design, we require ρ(logd/N)1−(q/2) to be bounded, whereas for heavy-tailed design we
need ρ(logd/N)(1−q)/2 to be bounded. Under the typical high-dimensional regime that d �
N � logd , the former is weaker. Therefore, heavy-tailed design requires stronger scaling
than sub-Gaussian design to achieve the optimal statistical rates.
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3.2. Matrix compressed sensing. For the matrix compressed sensing problem, since the
design is chosen by users, we only consider the sub-Gaussian design. Hence, we keep the
original design matrix and only truncate the response. In (2.7), choose Ỹi = sgn(Yi)(|Yi | ∧ τ)

and X̃i = Xi , then we have

(3.5)

�̂YX = �̂Ỹ X̃(τ ) = 1

N

N∑
i=1

sgn(Yi)
(|Yi | ∧ τ

)
Xi and

�̂XX = 1

N

N∑
i=1

vec(Xi)vec(Xi )
�.

The following lemma explicitly derives the rate of ‖�̂YX − mat(�̂XX vec(�∗))‖op. Note that
here �̂YX − mat(�̂XX vec(�∗)) = �̂YX(τ ) − 1

N

∑N
i=1〈Xi ,�

∗〉Xi .

LEMMA 3. Consider the following conditions:

(C1) {vec(Xi )}Ni=1 are i.i.d. sub-Gaussian vectors with ‖vec(Xi )‖ψ2 ≤ κ0 < ∞, EXi = 0
and λmin(Evec(Xi )vec(Xi )

�) ≥ κL > 0.
(C2) ∀i = 1, . . . ,N , E |Yi |2k ≤ M < ∞ for some k > 1.

Choose τ �κ0,κL,k

√
M1/kN/(d1 + d2). There exists C > 0, depending only on κ0, κL and k,

such that whenever d1 + d2 < N , for any ξ > log 8,

(3.6)
P

(∥∥∥∥∥�̂YX(τ ) − 1

N

N∑
i=1

〈
Xi ,�

∗〉
Xi

∥∥∥∥∥
op

≥ C

√
M1/k(d1 + d2)ξ

N

)

≤ 4 exp
(
(d1 + d2)(log 8 − ξ)

)
,

where C only depends on κ0, κL and k.

REMARK 4. For the sample covariance �YX = 1
N

∑N
i=1 YiXi , Negahban and Wainwright

(2011) showed that when the noise and design are sub-Gaussian,∥∥∥∥∥�YX − 1

N

N∑
i=1

〈
Xi ,�

∗〉
Xi

∥∥∥∥∥
op

=
∥∥∥∥∥ 1

N

N∑
i=1

εiXi

∥∥∥∥∥
op

= OP

(√
(d1 + d2)/N

)
.

Lemma 3 shows that �̂YX(τ ) achieves the same rate for response with just bounded moments.

The following theorem gives the statistical error rate of �̂ in (2.6).

THEOREM 3. Suppose Conditions (C1) and (C2) in Lemma 3 hold and Bq(�∗) ≤ ρ.
We further assume that vec(Xi) is Gaussian. Choose τ �κ0,κL,k

√
N/(d1 + d2) and λN =

2C

√
M1/kξ(d1 + d2)/N , where C is the same universal constant as in Lemma 3. There exist

universal constants {Ci}3
i=1 such that once ρM−q/(2k)((d1 + d2)/N)1−(q/2) ≤ C1, we have

that for any ξ > log 8,

P

{∥∥�̂(τ, λN) − �∗∥∥2
F ≥ C2ρ

(
M1/k(d1 + d2)ξ

N

)1−(q/2)}
≤ 2 exp

(
− N

32

)
+ 4 exp

(
(d1 + d2)(log 8 − ξ)

)
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and

P

{∥∥�̂(τ, λN) − �∗∥∥
N ≥ C3ρ

(
M1/k(d1 + d2)ξ

N

)(1−q)/2}
≤ 2 exp

(
− N

32

)
+ 4 exp

(
(d1 + d2)(log 8 − ξ)

)
.

REMARK 5. The Frobenius norm rate here is identical to the rate established under sub-
Gaussian noise in Negahban and Wainwright (2011). When q = 0, ρ is the upper bound of
the rank of �∗ and the rate of convergence depends only on ρ(d1 + d2) � ρ(d1 ∨ d2), the
effective number of independent parameters in �∗, rather than the ambient dimension d1d2.

REMARK 6. The rate we derived in Theorem 3 is minimax optimal. Denote max(d1, d2)

by d and define


(N,d, r, ρ) := min
{
rd

N
,ρ

(
d

N

)1−(q/2)

, ρ2/q

}
.

Under the restricted isometry condition, Rohde and Tsybakov (2011) gives a minimax lower
bound on the statistical rate of recovering a low-rank matrix under trace regression:

inf
�̂

sup
�∗∈Bq (ρ),rank(�∗)≤r

P
(∥∥�̂ − �∗∥∥2

F ≥ C
(N,d, r, ρ)
) ≥ c > 0,

where C is a constant independent of N , d , ρ and c is a universal constant. When r is very
large or q = 0, ρ(d/N)1−q/2 becomes the dominant term in 
(N,d, r, ρ). This matches the
upper bound we derived in Theorem 3.

3.3. Matrix completion. In this section, we consider the matrix completion problem with
heavy-tailed noise. Under a conventional setting, Xi is a singleton, ‖�∗‖max = O(1) and
‖�∗‖F = O(

√
d1d2). If we rescale the original model as

Yi = 〈
Xi ,�

∗〉 + εi = 〈√
d1d2Xi ,�

∗/
√

d1d2
〉 + εi

and treat
√

d1d2Xi as the new design X̌i and �∗/
√

d1d2 as the new coefficient matrix
�̌

∗
, then ‖X̌i‖F = O(

√
d1d2) and ‖�̌∗‖F = O(1). Therefore, by rescaling, we can assume

without loss of generality that �∗ satisfies ‖�∗‖F ≤ 1 and Xi is uniformly sampled from
{√d1d2ej e�

k }1≤j≤d1,1≤k≤d2 .
In order to achieve consistent estimation of �∗, we require it not to be overly spiky, that is,

‖�∗‖max ≤ R‖�∗‖F /
√

d1d2 ≤ R/
√

d1d2. We put this constraint in seeking the M-estimator
of �∗:

(3.7) �̂ ∈ argmin
‖�‖max≤R/

√
d1d2

−〈
�̂YX(τ ),�

〉 + 1

2
vec(�)��̂XX vec(�) + λN‖�‖N.

This spikiness condition is proposed by Negahban and Wainwright (2012) and it is required
by the matrix completion problem per se instead of our robust estimation.

To derive robust estimation in matrix completion problem, we choose Ỹi = sgn(Yi)(|Yi | ∧
τ) and X̃i = Xi in (2.7). Then �̂YX and �̂XX are given by (3.5). Note that the design Xi

here takes the singleton form, which leads to different scaling and consistency rates from the
setting of matrix compressed sensing.

LEMMA 4. Assume the following conditions hold:

(C1) ‖�∗‖F ≤ 1 and ‖�∗‖max ≤ R/
√

d1d2;
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(C2) Xi is uniformly sampled from {√d1d2ej e�
k }1≤j≤d1,1≤k≤d2 ;

(C3) ∀i = 1, . . . ,N , E(E(ε2
i |Xi)

k) ≤ M < ∞, where k > 1;
(C4) There exists a universal constant γ > 0 such that N > γ (d1 ∨ d2).

Choose τ =
√

(R2 + M1/k)N/((d1 ∨ d2) log(d1 + d2)). There exists C > 0, depending only
on γ , such that for any ξ > 1,

(3.8)

P

(∥∥∥∥∥�̂YX(τ ) − 1

N

N∑
i=1

〈
Xi ,�

∗〉
Xi

∥∥∥∥∥
op

> Cξ

√
(R2 + M1/k)(d1 ∨ d2) log(d1 + d2)

N

)
≤ 4(d1 + d2)

1−ξ .

REMARK 7. Again, for �YX = 1
N

∑N
i=1 YiXi , Negahban and Wainwright (2012) proved

that ∥∥∥∥∥�YX − 1

N

N∑
i=1

〈
Xi ,�

∗〉
Xi

∥∥∥∥∥
op

= OP

(√
(d1 + d2) log(d1 + d2)/N

)
for subexponential noise. Compared with this result, Lemma 4 achieves the same rate of
convergence. By Jensen’s inequality, condition (C3) is implied by Eε2k

i ≤ M < ∞.

Now we present the theorem on the statistical error of �̂ defined in (3.7).

THEOREM 4. Suppose that the conditions of Lemma 4 hold. Consider Bq(�
∗) ≤ ρ with

‖�∗‖max/‖�∗‖F ≤ R/
√

d1d2. For any ξ > 0, choose

τ =
√

(R2 + M1/k)N

(d1 ∨ d2) log(d1 + d2)

and

λN = 2Cξ

√
(R2 + M1/k)(d1 ∨ d2) log(d1 + d2)

N
.

Under the same conditions as in Lemma 4, we have with probability at least 1 − 4(d1 +
d2)

1−ξ − C1 exp(−C2(d1 + d2)) that∥∥�̂(τ, λN) − �∗∥∥2
F

≤ C3 max
{
ρ

(
ξ(R2 + M1/k)(d1 ∨ d2) log(d1 + d2)

N

)1−(q/2)

,
R2

N

}
and ∥∥�̂(τ, λN) − �∗∥∥

N

≤ C4 max
{
ρ

(
ξ(R2 + M1/k)(d1 ∨ d2) log(d1 + d2)

N

) 1−q
2

,

(
ρR2−2q

N1−q

) 1
2−q

}
,

where {Ci}4
i=1 are universal constants.
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REMARK 8. We claim that the rate we derived in Theorem 4 is minimax optimal up to a
logarithmic factor and a trailing term. Theorem 3 in Negahban and Wainwright (2012) shows
that for matrix completion problems,

inf
�̂

sup
Bq(�)≤ρ

E
∥∥�̂ − �∗∥∥2

F ≥ c min
{
ρ

(
d

N

)1−q/2
,
d2

N

}
,

where c is some universal constant. As commented therein, as long as ρ = O((d/N)q/2d),
ρ(d/N)1−q/2 is the dominant term and this is what we established in Theorem 4 up to a
logarithmic factor and a small trailing term.

REMARK 9. The spikiness condition that ‖�∗‖max/‖�∗‖F ≤ R/
√

d1d2 is an essential
and nonremovable condition to obtain a sharp rate in matrix completion. Negahban and Wain-
wright (2012) have shown that when the true matrix is overly spiky, say a singleton, one needs
to pay high sample complexity to accurately recover the matrix. Other works on matrix com-
pletion impose morally similar conditions. For instance, Koltchinskii, Lounici and Tsybakov
(2011) and Minsker (2018) assume that ‖�∗‖max is bounded.

3.4. Multitask learning. Before presenting the theoretical results, we first simplify (2.6)
under the setting of multitask regression. According to (2.8), (2.6) can be reduced to be

(3.9) �̂ ∈ argmin
�∈S

1

d2

(
−〈�̂ x̃̃y,�〉 + 1

n

n∑
i=1

∥∥��x̃i

∥∥2
2

)
+ λN‖�‖N.

Recall here that n is the sample size in terms of (2.2) and N = d2n. We also have that �̂YX −
mat(�̂XX vec(�∗)) = (�̂ x̃̃y − �̂ x̃̃x�

∗)/d2.
Under the sub-Gaussian design, we only need to shrink the response vector yi . In (2.8),

we choose x̃i = xi and ỹi = (‖yi‖2 ∧ τ)yi/‖yi‖2, where τ is some threshold. In words, we
maintain the original design vectors, but shrink the Euclidean norm of the responses. Note that
when yi is one-dimensional, the shrinkage reduces to the truncation yi(τ ) = sgn(yi)(|yi |∧τ).
When the design has only bounded moments, we need to shrink both the design vector xi and
response vector yi by their �4 norm instead, that is, we choose x̃i = (‖xi‖4 ∧ τ1)xi/‖xi‖4

and ỹi = (‖yi‖4 ∧ τ2)yi/‖yi‖4, where τ1 and τ2 are two thresholds. Here, shrinking based
on the fourth moment is uncommon, but it is crucial; it accelerates the convergence rate of
the induced bias term so that it matches the desired statistical error rate. The details can be
found in the proofs. Again, we will omit stating these choices in the following lemmas and
theorems to ease presentation.

LEMMA 5. Convergence rate of gradient of the robustified quadratic loss.

(a) Sub-Gaussian design. Assume the following conditions hold:

(C1) λmax(E(yiy�
i )) ≤ R < ∞;

(C2) {xi}ni=1 are i.i.d. sub-Gaussian vectors with ‖xi‖ψ2 ≤ κ0 < ∞, Exi = 0 and
λmin(Exix�

i ) ≥ κL > 0.
(C3) ∀i = 1, . . . , n, j1, j2 = 1, . . . , d2 and j1 �= j2, εij1 ⊥⊥ εij2 |xi , and ∀j = 1, . . . , d1,

E{E(ε2
ij |xi )

k} ≤ M < ∞, where k > 1.
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Choose τ �k,κ0

√
n(R + M1/k)/ log(d1 + d2). Whenever (d1 + d2) log(d1 + d2) < n, we

have that for any ξ > 1,

P

(∥∥∥∥∥�̂x̃y(τ ) − 1

n

n∑
j=1

�∗�xj x�
j

∥∥∥∥∥
op

≥ C1ξ

√
(R + M1/k)(d1 + d2) log(d1 + d2)

n

)
≤ 3(d1 + d2)

1−ξ ,

where C1 depends only on k, κ0 and κL.
(b) Bounded moment design. Consider the following conditions:

(C1′) ∀v ∈ Sd1−1, E(v�xi )
4 ≤ κ0 < ∞ and λmin(E(xix�

i )) ≥ κL > 0;
(C2′) ∀v ∈ Sd2−1, E(v�yi )

4 ≤ M < ∞.

Under Conditions (C1′) and (C2′), for any ξ > 1, we have that

P

(∥∥�̂ x̃̃y(τ1, τ2) − �̂ x̃̃x(τ1)�
∗∥∥

op

≥ C1M
1/4ξ

√
(d1 + d2) log(d1 + d2)

n

)
≤ 4(d1 + d2)

1−ξ ,

where τ1 � {nκ0/ log(d1 + d2)}1/4, τ2 � {nM/ log(d1 + d2)}1/4 and C1 only depends on
κ0 and κL.

REMARK 10. When the noise and design are sub-Gaussian, Negahban and Wainwright
(2011) used the covering argument to show that the regular sample covariance matrices �xy

and �xx satisfy that

∥∥�xy − �xx�
∗∥∥

op =
∥∥∥∥∥1

n

n∑
j=1

εj x�
j

∥∥∥∥∥
op

= OP

(√
(d1 + d2)/n

)
.

Lemma 5 shows that up to a logarithmic factor, the shrinkage sample covariance achieves
nearly the same rate of convergence for noise and design with only bounded moments.

Finally, we establish the statistical error for the low-rank multitask learning.

THEOREM 5. Assume Bq(�
∗) ≤ ρ.

(a) Sub-Gaussian design. Suppose that Conditions (C1), (C2) and (C3) in Lemma 5 hold.
For any ξ > 1, choose

τ �k,κ0

√
n
(
R + M1/k

)
/ log(d1 + d2),

and

λN = 2C1ξ

d2

√
(R + M1/k)(d1 + d2) log(d1 + d2)

n
,

where C1 is the same as in part (a) of Lemma 5. There exist C2, C3 and C4, depending only
on k, κ0, κL, such that if n ≥ C2d1, then we have with probability at least 1−3(d1 +d2)

1−ξ −
2 exp(−cd1) that

∥∥�̂(τ, λN) − �∗∥∥2
F ≤ C2ρ

{
ξ2(R + M1/k)(d1 + d2) log(d1 + d2)

n

}1−(q/2)
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and ∥∥�̂(τ, λN) − �∗∥∥
N ≤ C3ρ

{
ξ2(R + M1/k)(d1 + d2) log(d1 + d2)

n

}(1−q)/2
.

(b) Bounded moment design. Suppose instead that Conditions (C1′) and (C2′) in Lemma 5
hold. For any ξ > 1 and η > 0, choose

τ1 � {
nκ0/ log(d1 + d2)

}1/4
, τ2 � {

nM/ log(d1 + d2)
}1/4

and

λN = 2C1M
1/4ξ

d2

√
(d1 + d2) log(d1 + d2)

n
,

where C1 is the same as in part (b) of Lemma 5. There exists γ > 0, depending only on κL,
such that if ηκ0d1 logd1/n < γ , then with probability at least 1 − 3(d1 + d2)

1−ξ − d
1−Cη
1 ,

∥∥�̂(τ1, τ2, λN) − �∗∥∥2
F ≤ C3ρ

(
ξ2

√
M(d1 + d2) log(d1 + d2)

n

)1−q/2

and ∥∥�̂(τ1, τ2, λN) − �∗∥∥
N ≤ C4ρ

(
ξ2

√
M(d1 + d2) log(d1 + d2)

n

)(1−q)/2
,

where C3 and C4 are universal constants.

REMARK 11. According to (C.47) in Fan, Wang and Zhu (2021), the multitask regres-
sion model satisfies the lower bound part of the RI condition in Rohde and Tsybakov (2011)
with ν � √

d2. Substituting ν � √
d2, � = ρ1/q/ν, M = max(d1, d2) and N = nd2 into The-

orem 5 in Rohde and Tsybakov (2011) yields that


(n, r, d1, d2, ρ) = 1

d2
min

{
r max(d1, d2)

n
,ρ

(
max(d1, d2)

n

)1−q/2
, ρ2/q

}
.

Note that therein C(α, ν) � d2. Therefore, we have

inf
�̂

sup
�∗∈Bq (ρ),rank(�∗)≤r

P
(∥∥�̂ − �∗∥∥2

F ≥ Cd2
(n, r, d1, d2, ρ)
) ≥ c > 0,

where C and c are constants. Under regular scaling assumptions, the dominant term in the
minimax rate is ρ(max(d1, d2)/n)1−q/2, which matches our upper bound in Theorem 5 up to
a logarithmic factor.

4. Robust covariance estimation. In multitask regression, the error bound derivation
of ‖�̂ x̃̃y(τ1, τ2) − �̂ x̃̃x(τ1)�

∗‖op sheds light on applying the �4-norm shrinkage for robust
covariance estimation. This topic is of its own interest, so we emphasize this interesting
finding with a separate section. Here, we formulate the problem and the result, whose proof
is relegated to Appendix C in the Supplementary Material (Fan, Wang and Zhu (2021)).

Suppose we have n i.i.d. d-dimensional random vectors {xi}ni=1 with Exi = 0. Our goal
is to estimate the covariance matrix � = E(xix�

i ) when the distribution of {xi}ni=1 has only
bounded fourth moment. For any τ ∈ R

+, let x̃i := (‖xi‖4 ∧ τ)xi/‖xi‖4, where ‖ · ‖4 is the
�4-norm. We propose the following shrinkage sample covariance to estimate �:

(4.1) �̃n(τ ) = 1

n

n∑
i=1

x̃i x̃�
i .

The following theorem establishes the statistical error rate of �̃n(τ ) with exponential devia-
tion bound.
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THEOREM 6. Suppose E(v�xi )
4 ≤ R for any v ∈ Sd−1, then it holds that for any ξ > 0,

(4.2) P

(∥∥�̃n(τ ) − �
∥∥

op ≥
√

ξRd logd

n

)
≤ d1−Cξ ,

where τ � {nR/(ξ logd)}1/4 and C is a universal constant.

Below we also present a lower bound result, showing that our shrinkage sample covariance
is minimax optimal up to a logarithmic factor.

THEOREM 7. Define �v := vv� + I. Suppose {xi}ni=1 are n i.i.d. d-dimensional random
vectors with mean zero and covariance �v. When d ≥ 34, it holds that

inf
�̂

max
v:‖v‖2=1

P

(
‖�̂ − �v‖op ≥ 1

48

√
6d

n

)
≥ 1

3
.

We have several comments for the proposed shrinkage sample covariance. First of all, to
understand its behavior, we compare it with the sample covariance �n under the Gaussian
data setting. Suppose {xi}ni=1 are i.i.d. N (0, I). Then we have ‖xi‖4

4 = ∑d
j=1 x4

ij = OP(d).

On the other hand, supv∈Sd−1 E(v�xi )
4 = 3, and thus τ 4 � n/ logd . Therefore, depending

on whether n is greater or smaller than d logd , one expects either all the vectors or none
of them to be shrunk, and the shrinkage sample covariance to be either equal to the sample
covariance or close to a multiple of it, with scaling of order τ/d1/4. In other words, in the
low-dimensional regime, there is no need to shrink Gaussian random vectors for covariance
estimation, while in the high-dimensional regime, we need to shrink the sample covariance
matrix toward zero.

Note that �̃n(τ ) outperforms the sample covariance �n even with Gaussian samples when
tr(�) � d‖�‖op and d is large. According to Koltchinskii and Lounici (2017) or Vershynin
((2010), Theorem 5.39), when tr(�) � d‖�‖op,

‖�n − �‖op � ‖�‖op max
(√

d

n
,
d

n

)
.

When d/n is large, the d/n term will dominate
√

d/n, thus delivering statistical error of
order d/n for Gaussian sample covariance. However, our shrinkage sample covariance al-
ways attains the rate of

√
d logd/n regardless of relationship between the dimension and the

sample size. Theorem 7 shows that the minimax optimal rate of estimating the covariance
in terms of the operator norm is

√
d/n. Hence, the shrinkage sample covariance is minimax

optimal up to a logarithmic factor, whereas traditional sample covariance is not in high di-
mensions. Therefore, shrinkage overcomes not only heavy-tailed corruption, but also curse
of dimensionality. In Section 5.4, we conduct simulations to further illustrate this point.

If we are concerned with an error bound in the elementwise max norm, we need to nat-
urally apply elementwise truncation rather than the �4-norm shrinkage. Define x̌i such that
x̌ij = sgn(xij )(|xij | ∧ τ) for 1 ≤ j ≤ d1 and �̌n(τ ) = n−1 ∑n

i=1 x̌i x̌�
i . It is not hard to de-

rive that with τ � (n/ logd)
1
4 , ‖�̌n(τ ) − �‖max = OP(

√
logd/n) as in Fan, Li and Wang

(2017). Note that the elementwise-truncated sample covariance is not necessarily positive
semidefinite. Besides, with this choice of τ , �̌n(τ ) will equal to �n with high probability
when data are Gaussian. To see this, again suppose x1, . . . ,xn are i.i.d. N (0, I). The max-
imum of |xij | would be sharply concentrated around a term of order

√
log(nd). Therefore,

if n ≥ log2(nd) log(d), with high probability the threshold would not be reached. Hence,
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x̌i = xi for all i and �̌n = �n. Further regularization can be applied to �̌n if the true co-
variance is sparse. See, for example, Meinshausen and Bühlmann (2006), Bickel and Lev-
ina (2008), Lam and Fan (2009), Cai and Liu (2011), Cai and Zhou (2012), Fan, Liao and
Mincheva (2013), among others.

Our method is designed to robustify tail behavior rather than ε-contamination in the ad-
versarial learning, where an ε-contamination model allows an adversary to arbitrarily corrupt
ε-fraction of the observations. To illustrate the difference between these two perspectives of
robustness, below we compare our setup and results with those of Diakonikolas et al. (2016)
and Loh and Tan (2018); both of them consider robust estimation of high-dimensional co-
variance matrices under an ε-contamination model.

• Model setup: Neither Loh and Tan (2018) or Diakonikolas et al. (2016) imposes assump-
tions on the distribution of contamination. Therefore, under the ε-contamination model,
our bounded moment conditions are not satisfied, and the truncation or shrinkage approach
might be sub-optimal. On the other hand, both Diakonikolas et al. (2016) and Loh and Tan
(2018) assume the original uncorrupted data to be Gaussian to ensure the required concen-
tration results, which will not hold if these data are heavy-tailed as in our Theorem 6.

• Methodology: To obtain robust estimation of the covariance matrix, Loh and Tan (2018)
use the median absolute deviation (MAD) to estimate the standard deviation, and use
Kendall’s tau and Spearman’s rho to estimate the correlation. Note that the consistency
of these estimators relies on the Gaussian assumption of the original uncorrupted data.
Without Gaussianity, the desired statistical rate as shown in (11a), (11b), (12a) and (12b)
of Loh and Tan (2018) might not be achieved. Diakonikolas et al. (2016) develop an ap-
proximated separation oracle for the set of the covariance estimates that satisfy a desired
error guarantee, and propose to use the ellipsoid method to find an element of this set.
Such a separation oracle incurs higher computational cost than the simple truncation or
shrinkage, and it is well known that the ellipsoid method converges slowly in practice.

• Error guarantee: Both Diakonikolas et al. (2016) and Loh and Tan (2018) are particularly
concerned with the dependence of the statistical error on the proportion of the corrupted
data ε. Their error guarantees scale (nearly) linearly with ε. In contrast, our goal is to
achieve the minimax rate that was established under the light-tail setup for heavy-tailed
data. Besides, in terms of covariance estimation, Diakonikolas et al. (2016) and Loh and
Tan (2018) study the Frobenius and max-norm error respectively, while we focus on the
operator norm.

Finally, we notice a recent independent work by Minsker (2018) that studies the mean of
random matrices with bounded moments. There, the proposed estimator admits sub-Gaussian
or subexponential concentration around the unknown mean in terms of the operator norm. Ap-
plying their general results to the covariance estimation setting achieves the same statistical
error rate as we obtain here under bounded fourth-moment conditions of xi ’s.

5. Simulation study. In this section, we mainly compare the numerical performance of
our shrinkage procedure with that of the standard procedure under various problem setups.
In linear regression, we also investigate two alternative robust approaches: the �1-regularized
Huber approach and the median of means approach, whose details are given in the sequel.
We do not investigate the nuclear-norm regularized Huber approach for the matrix estima-
tion setups, because so far we are not aware of any algorithm that solves the corresponding
optimization problem with rigorous convergence guarantee.

As for the data distribution, in each of the three matrix problems, we investigate three
noise settings: log-normal noise, Cauchy noise and Gaussian noise. They represent heavy-
tailed asymmetric distributions, extremely heavy-tailed symmetric distributions and light-
tailed symmetric distributions respectively. We set the design to be sub-Gaussian in matrix
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compressed sensing and multitask regression. In linear regression, we investigate both light-
tailed and heavy-tailed designs, while we only investigate heavy-tailed noise there for con-
ciseness.

Now we elucidate the tuning procedure in our simulations. We set λ = Cλf (N,d) and
τ = Cτg(N,d), where Cλ and Cτ are constants that do not depend on N and d , and where f

and g follow the rates we derived for each problem setup. We exhaustively tune Cτ and Cλ in
the setup of the minimal sample size for best estimation error, and maintain these constants
as N and d increase. Through this, we can validate the established rates of λ and τ . This
tuning procedure is feasible in the linear regression setup, given that the computational cost
is relatively cheap. However, similar exhaustive search is computationally intimidating in the
matrix setups. To address this, we propose the robust cross-validation (RCV) procedure as
described below:

1. Tune λ with K-fold robust CV using the original data (τ = ∞). Here, in order to guard
against heavy-tailed corruption in CV, we truncate the original response by its η-quantile
when calculating the CV score on a validation set. Note that η is only applied to the validation
set and should be chosen a priori and independently with τ . In all of our simulations, we
choose η = 0.95 and K = 5.

2. Choose λ by the famous one-standard-error rule to improve sparsity. We calculate the
standard error (SE) of the K CV scores for each λ. We pick the λ corresponding to the
minimal mean CV score, and then increase λ until the mean CV score hits the minimal mean
CV score plus its corresponding standard error.

3. Tune τ with K-fold robust cross-validation with the chosen λ. The robust CV scores as
above are calculated for each validation set and for each τ .

4. Choose τ by the one-standard-error rule but this time to improve robustness. We first
find the τ with the minimal mean CV score, and then decrease τ until the mean CV score hits
the minimal mean CV score plus its corresponding one standard error.

In a nutshell, RCV first tunes λ with τ = ∞ and then tunes τ with the fixed λ, thus avoiding
heavy computation in the exhaustive grid tuning. It is also robust in the sense that we clip an
a priori percentage of data in the validation set to ensure that the CV scores are insensitive to
extreme values. We show in the subsequent sections that RCV yields satisfactory numerical
results in all of our matrix problem setups.

The main message is that with appropriate truncation or shrinkage, our robust procedure
outperforms the standard one under the setting with heavy-tailed noise, and it performs
equally well as the standard procedure under the Gaussian noise. In other words, our pro-
cedure is adaptive to the tail of noise. The simulations are based on 100 independent Monte
Carlo experiments. Besides presenting the numerical results, we also elaborate the optimiza-
tion algorithms we exploited, which might be of interest to readers concerned with imple-
mentation.

Last but not least, we compare the numerical performance of the regular sample covariance
and the shrinkage sample covariance as proposed in (4.1) in estimating the true covariance.
Simulation results show superiority of the shrinkage sample covariance over the regular sam-
ple covariance under both Gaussian noise and t3 noise. Therefore, the shrinkage not only
overcomes the heavy-tailed corruption, but also mitigates the curse of high dimensionality.

5.1. Linear model. In this section, we focus on a high-dimensional sparse linear model:

(5.1) Y = x�θ∗ + ε,

where x is valued in R
100 (d = 100) and has i.i.d. entries, where θ∗ = (1,1,1,0, . . . ,0)�,

and where ε is independent of x. We investigate two designs: a light-tailed design, where
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xj ∼i.i.d. N (0,0.25) for j = 1, . . . ,100, and a heavy-tailed design, where xj ∼i.i.d. t2.1/
√

21.
We assume that ε ∼ t2.1. Besides comparing the performance of LASSO on original data and
truncated data, we also assess the performance of �1-regularized Huber loss minimization
and the median-of-means approach. In the following, we elucidate how we implement these
four methods and choose the tuning parameters.

1. LASSO with truncated data: We solve

θ̂ = argmin
θ∈Rd

1

N

N∑
i=1

(
Ỹi − x̃�

i θ
)2 + λ‖θ‖1,

where the definition of Ỹi and x̃i follow Section 3.1. The rate of the thresholds in terms of N

and d follow Lemma 1.
2. Huber loss minimization with �1-regularization: Define the Huber loss

hτ (x) :=

⎧⎪⎪⎨⎪⎪⎩
−τ(x + τ) + τ 2/2, x < −τ,

x2/2, |x| ≤ τ,

τ (x − τ) + τ 2/2, x > τ.

We solve the following optimization problem:

θ̂ = argmin
θ∈Rd

1

N

N∑
i=1

hτ

(
Yi − θ�xi

) + λ‖θ‖1,

where τ � √
N/ logd and λ � √

logd/N , as established in Sun, Zhou and Fan ((2020),
Theorem 3). One recent work Wang et al. (2018) proposed a principle for tuning-free Hu-
ber regression. Nevertheless, to be fair in assessing the approaches, here we stick with the
exhaustive search for tuning λ and τ .

3. Median of means: Randomly and evenly divide the whole dataset into K subsets

{Dk}Kk=1 and calculate a standard LASSO estimator θ̂
(k)

on each subdataset Dk . Then we

take the geometric median of {̂θ (k)}Kk=1 as the final estimator, which is mathematically de-
fined as

θ̂ := argmin
θ∈Rd

K∑
k=1

∥∥θ − θ̂
(k)∥∥

2.

K is chosen to be of order logN .
4. Standard LASSO:

θ̂ := argmin
θ∈Rd

1

N

N∑
i=1

(
Yi − x�

i θ
)2 + λ‖θ‖1,

where λ � √
logd/N .

We let N grow geometrically from 100 to 1000 and compare log(‖θ̂ − θ∗‖2) using four
different approaches based on 500 independent Monte Carlo simulations. The constants be-
fore the rates of the tuning parameters are tuned for optimal performance.

From Figure 2, one can see that (i) under the light-tailed design, our approach and the
Huber approach perform similarly, and they significantly outperform the other two; (ii) under
the heavy-tailed design, our approach achieves the best performance among the four methods,
in particular when the sample size is large. Note that the median of means and standard
method have exactly the same performance because the optimal number of sample splits K

turns out to be always one in the simulation.
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FIG. 2. The logarithm of Euclidean statistical errors with standard error bars. The left panel corresponds to
the light-tailed design, while the right panel corresponds to the heavy-tailed design. Two ends of the error bar
correspond to log(MEAN(‖θ̂ − θ∗‖2) − SE(‖θ̂ − θ∗‖2)) and log(MEAN(‖θ̂ − θ∗‖2) + SE(‖θ̂ − θ∗‖2)).

An interesting setup that was suggested by one referee is the case where the design is
heavy-tailed, but the noise is light-tailed. Intuitively, clipping large values of design there
should induce bias and worsen the estimation. This intuition is further confirmed by our
simulation. We still assume (5.1), but this time we set xj ∼i.i.d. t2.1 and ε ∼ N(0,4). Let
N = 1000. We use RCV to tune λ and the truncation level τ for the design. Given that the
noise is sub-Gaussian, there is no need to clip the response; we thus set η = 1 in RCV. It turns
out that in all the 500 independent Monte Carlo experiments, RCV chooses not to truncate
any value on the design. This implies that truncation on the design is unnecessary in this
setup, and that RCV is adaptive to the tail of the design.

Finally, we compare our truncation method and the standard method when the design
has collinearity. The take-away message is that truncation of the response still dramatically
improves the statistical performance when the condition number of the population covariance
is large. To save the space, we relegate the details to Appendix A in the Supplementary
Material (Fan, Wang and Zhu (2021)).

5.2. Compressed sensing. We first specify the parameters in the true model: Yi =
〈Xi ,�

∗〉 + εi . In the simulation, we set d1 = d2 = d and construct �∗ to be
∑5

i=1 viv�
i ,

where vi is the ith top eigenvector of the sample covariance of 100 i.i.d. centered isotropic
Gaussian vectors, so that rank(�∗) = 5 and ‖�∗‖F ≈ √

5. The design matrix Xi has i.i.d.
standard Gaussian entries. The noise distributions are characterized as follows:

• Log-normal: εi
d= (Z −EZ)/1000, where lnZ ∼N (0, σ 2) and σ 2 = 9;

• Cauchy: εi
d= Z/64, where Z follows Cauchy distribution;

• Gaussian: εi ∼ N(0, σ 2), where σ 2 = 0.25.

The constants above are chosen to ensure appropriate signal-to-noise ratio for better presen-
tation. We let N grow from 300 to 1800 and choose d = 20,40,60. We present the numerical
results in Figure 3. As we can observe from the plots, the robust estimator has much smaller
statistical error than the standard estimator under the heavy-tailed log-normal and Cauchy
noises. Also, robust procedures deliver sharper estimation as the sample size increases, while
the standard procedure does not necessarily do so under the heavy-tailed noise. Under Gaus-
sian noise, the robust estimator has nearly the same statistical performance as the standard
one, so it does not hurt to apply the truncation under the light-tailed noise setting. The details
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FIG. 3. Statistical errors of ln‖�̂−�∗‖F v.s. logarithmic sample size lnN for different dimensions d in matrix
compressed sensing.

of our implementation algorithm can be found in Appendix B the Supplementary Material
(Fan, Wang and Zhu (2021)).

5.3. Matrix completion. We again set d1 = d2 = d and construct �∗ as
∑5

i=1 viv�
i /

√
5,

where vi is the ith top eigenvector of the sample covariance of 100 i.i.d. centered Gaussian
random vectors with identity covariance. Each design matrix Xi takes the singleton form,
which is uniformly sampled from {ej e�

k }1≤j,k≤d . The three noise distributions considered
are identical to those in the previous section.

We let N grow from 2000 to 12,000 and choose d = 50,100,150. Again, we used the
robust cross-validation for tuning and only tune for the minimal sample size N = 2000. The
numerical results are presented in Figure 4. Analogous to the matrix compressed sensing, we
can observe from the figure that compared with the standard procedure, the robust procedure
has significantly smaller statistical error in estimating �∗ under the log-normal and Cauchy
noise and nearly the same performance under the Gaussian noise. The implementation al-
gorithm is again given in Appendix B in the Supplementary Material (Fan, Wang and Zhu
(2021)).

5.4. Multitask regression. We choose d1 = d2 = d and construct �∗ as in Section 5.2.
The design vectors {xi}ni=1 are i.i.d. N (0, Id). The noise distributions are characterized as
follows:

FIG. 4. Statistical errors of ln‖�̂−�∗‖F v.s. logarithmic sample size lnN for different dimensions d in matrix
completion.
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FIG. 5. Statistical errors of ln‖�̂ − �∗‖F versus logarithmic sample size lnN for different dimensions d in
multitask regression. For the robust method, the solid lines correspond to τ = τRCV, the dashed lines correspond
to τ = 0.8τRCV and the dotted lines correspond to τ = 1.2τRCV.

• Log-normal: εi
d= (Z −EZ)/500, where lnZ ∼N (0, σ 2) and σ 2 = 7.84;

• Cauchy: εi
d= Z/128, where Z follows Cauchy distribution;

• Gaussian: εi ∼ N(0, σ 2), where σ 2 = 0.25.

In this simulation, we choose n from 500 to 4000 and d = 50,100,150. We present the nu-
merical performance of our robust method and the standard method in Figure 5. Similar to the
two examples before, the robust procedure tuned by RCV yields sharper accuracy in estimat-
ing �∗ under the two heavy-tailed noises, while maintaining competitive under the Gaussian
noise. In addition, we show the statistical error of our robust approach with τ = 0.8τRCV and
τ = 1.2τRCV. As one can observe, even if the shrinkage threshold is perturbed by 20%, the
statistical performance of the robust method remains nearly the same, which demonstrates
that our method is not sensitive to the shrinkage threshold. Please refer to Appendix B in the
Supplementary Material (Fan, Wang and Zhu (2021)) for the detailed algorithm for solving
multitask learning.

5.5. Covariance estimation. In this subsection, we investigate the statistical error of the
shrinkage sample covariance �̃n(τ ) proposed in Section 4, compared with the regular sample
covariance �n. We consider two common distributions: Gaussian and Student’s t3 random
samples. The dimension is set to be proportional to sample size, that is, d/n = α with α

being 0.2, 0.5, 1. The sample size n will range from 100 to 500 for each case. Regardless
of how large the dimension d is, the true covariance � is always set to be a diagonal matrix
with the first diagonal element equal to 4 and all the other diagonal elements equal to 1. The
statistical errors are measured in terms of the operator norm, and our simulation is based on
100 independent Monte Carlo replications.

Unlike the supervised learning problems discussed above, covariance estimation does not
involve response. Therefore, RCV is not applicable here. In the following, we investigate the
statistical performance of the proposed �4-norm shrinkage sample covariance under different
levels of shrinkage. We define the “shrinkage ratio” η as follows:

η := 1 − 1

n

n∑
i=1

1 ∧ (
τ/‖xi‖4

)
.

One can see that a smaller η implies less shrinkage, and that η = 0 implies no shrinkage at
all. For n = 100 and α = 1, we choose C in τ = C(n/ logd)1/4 such that η = 0.2, and use
the same C for other combinations of n and α. The results are presented in Figure 6. We
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FIG. 6. ‖�̂ −�‖op v.s. n with different dimensions d in covariance estimation. For the robust methods, the solid
lines correspond to the shrinkage ratio η = 0.2, while we also report results for η = 0.3 (dotted lines) and η = 0.1
(dot–dashed lines) for sensitivity assessment.

also plot the results for η = 0.3 (dotted lines) and η = 0.1 (dash–dotted lines) for sensitivity
assessment.

As we can see, for Gaussian samples, as long as we fix d/n, the statistical error of both �n

and �̃n(τ ) does not change, which is consistent with Theorem 5.39 in Vershynin (2010) and
Theorem 6 in our paper. Also, the higher the dimension is, the more significant the superiority
of �̃n(τ ) is over �n. This validates our remark after Theorem 6 that the shrinkage ameliorates
the curse of dimensionality. Even for Gaussian data, shrinkage is meaningful and provides
significant improvement.

For t3 distribution, since it is heavy-tailed, the regular sample covariance does not main-
tain constant statistical error for a fixed d/n; instead the error increases as the sample size
increases. In contrast, our shrinkage sample covariance still retains consistent performance
and enjoys much higher accuracy. This strongly supports the sharp statistical error rate we
derived for �̃n(τ ) in Theorem 6. In addition, the performance of the shrinkage sample co-
variance is not sensitive to the choice of the tuning parameter.

6. Discussion. In this paper, we proposed a general shrinkage principle for trace regres-
sion with heavy-tailed data. We show that in low-rank matrix recovery, truncating properly
your heavy-tailed data before solving empirical risk minimization works as if you have sub-
Gaussian data to start with. We investigated four setups: linear regression, matrix compressed
sensing, matrix completion and multitask learning, where we may apply elementwise, �2-
norm or �4-norm truncation depending on whether design or noise is heavy-tailed or not.
This shrinkage principle is modular and does not require any algorithmic adaptation, and the
resulting estimator is shown to achieve the (nearly) optimal statistical rate.

Note that different problem setups have different requirements for the shrinkage principle
to take effect. One interesting observation is that the heavy-tailed design typically requires
stronger assumptions than the sub-Gaussian design. Specifically, in linear regression, we re-
quired bounded ‖θ∗‖1 and a stronger scaling condition under heavy-tailed design. It could be
interesting to see if those conditions can be further relaxed.

We hypothesized that other robust approaches as investigated in Section 5.1 may be able to
achieve the same statistical rate as our proposed method. Nevertheless, our shrinkage method
is clearly among the most computationally feasible approaches. As for tuning of truncation
parameters, we proposed the RCV procedure, which performed well in our simulation stud-
ies. Although the results demonstrated the great potential of our method, we would like to
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remind our readers that in real data analysis, truncation and shrinkage should be combined
with prior knowledge, useful data transformation, and proper normalization to handle hetero-
geneity across different features.
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