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Abstract—Context has been recognized as an important factor
to consider in personalized recommender systems. Particularly
in location-based services (LBSs), a fundamental task is to
recommend to a mobile user where he/she could be interested
to visit next at the right time. Additionally, location-based
social networks (LBSNs) allow users to share location-embedded
information with friends who often co-occur in the same or
nearby points-of-interest (POIs) or share similar POI visiting
histories, due to the social homophily theory and Tobler’s first law
of geography. So, both the time information and LBSN friendship
relations should be utilized for POI recommendation.

Tensor completion has recently gained some attention in time-
aware recommender systems. The problem decomposes a user-
item-time tensor into low-rank embedding matrices of users,
items and times using its observed entries, so that the underlying
low-rank subspace structure can be tracked to fill the missing
entries for time-aware recommendation. However, these tensor
completion methods ignore the social-spatial context information
available in LBSNs, which is important for POI recommendation
since people tend to share their preferences with their friends, and
near things are more related than distant things. In this paper, we
utilize the side information of social networks and POI locations
to enhance the tensor completion model paradigm for more ef-
fective time-aware POI recommendation. Specifically, we propose
a regularization loss head based on a novel social Hausdorff
distance function to optimize the reconstructed tensor. We also
quantify the popularity of different POIs with location entropy
to prevent very popular POIs from being over-represented hence
suppressing the appearance of other more diverse POIs. To
address the sensitivity of negative sampling, we train the model
on the whole data by treating all unlabeled entries in the observed
tensor as negative, and rewriting the loss function in a smart way
to reduce the computational cost. Through extensive experiments
on real datasets, we demonstrate the superiority of our model
over state-of-the-art tensor completion methods.

Index Terms—POI, tensor completion, recommender system,
social-spatial

I. INTRODUCTION

Context has been recognized as an important factor to
consider in personalized recommender systems [28]. With the
prosperity of location-based social network (LBSN) services
such as Foursquare and Yelp, a large number of check-ins
have been collected by the LBSN companies and utilized for
POI recommendations. The time dimension has always been a
key context factor in such recommendations [32], since users’
visiting preferences are highly time sensitive. For example,
the season plays an important factor in where people visit;
hot pot restaurants are the most crowded in the winter season,
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Fig. 1. Low-Rank Tensor Completion with Time and Social-Spatial Context

while holiday hotspots can transition from aquatics centers in
summer to ski resorts in winter.

Since such time-awareness cannot be captured by a con-
ventional collaborative filtering approach such as low-rank
matrix completion over a low-rank user-item rating/purchase
matrix, we adopt a three-dimensional user-POI-time tensor to
effectively represent the check-in events. Figure 1(a) (resp.
Figure 1(b)) shows the check-ins by User A and User B (resp.
User C and User D) who are friends, in an order-3 user-
POI-time tensor. The check-ins are obtained from the Gowalla
dataset used in our experiments. We can observe that friends
tend to visit similar POIs, such as the two markers at (i1, j, k1)
and (i2, j, k2) which indicate that both A and B visited POI
j albeit at different time slots k1 and k2, respectively.

Tensor completion is a popular approach to fill the missing
entries of a partially observed tensor in recommender sys-
tems [42], based on the fact that tensors in real applications
often exhibit a low-rank property. The approach reconstructs



a partially observed tensor through multilinear multiplication
of latent factors, such as CP (CANDECOMP/PARAFAC) and
Tucker factorizations [30]. However, real-world tensors in
recommender systems often exhibit complex non-linear factor
interactions, so recent works CoSTCo [32] and NTM [10]
combine deep neural networks with tensor algebra in order
to capture the nonlinear interactions among the tensor factors.

While these works can utilize the time dimension as a factor,
they do not utilize the social-spatial information present in
LBSNs, which is a very important factor when users decide
where to visit. For example, we tend to turn to our friends for
recommendations of nice restaurants, shopping stores and/or
maintenance/repair services in our daily life, which aligns well
with he social homophily theory [36]. Moreover, people tend
to visit places that they are familiar with most of the time, so
the visited POIs tend to form localized clusters which aligns
well with Tobler’s first law of geography [43]. As a result of
these observations, we can conclude that two users tend to
check in the same or nearby places if they are friends.

We have verified this observation using real data and we
found it to be generally true and robust. As an illustration,
Figure 1(c) plots the check-in locations of the two pairs of
friends (A-B and C-D) on a map. We can see that the check-in
locations of Users A and B (blue markers and purple circles)
are highly overlapped, and so are the check-in locations of
Users C and D (green markers and red circles). This shows
that friends’ check-ins tend to colocate more than non-friends’
check-ins (e.g., those of Users A and C).

Social network information is proven to benefit the per-
formance of recommendation [35] and the locations informa-
tion can also improve the performance of POI recommenda-
tion [21]. In this paper, we aim to leverage the social-spatial
information in LBSN as the side information to improve neural
tensor completion based POI recommendation.

Our neural tensor completion model associates each user,
POI and time unit with an embedding vector to learn, so
that the value for each entry (i, j, t) in the tensor can be
recovered from the embedding vectors of User i, POI j and
time unit t. Most existing tensor completion models initialize
the embeddings randomly or with one-hot encoding, especially
when the content information of users and items (POI in our
case) is not available due to privacy reasons. However, careful
initialization is critical in various tensor problems, particularly
for neural tensor models where gradient descent could get
trapped in undesirable stationary points (e.g., a saddle point) if
it starts from an arbitrary point. We, therefore, adopt a spectral
method to obtain rough estimates of the initial user, POI and
time embeddings for embedding initialization.

Our neural tensor completion model is trained to minimize
the least-squares error between the reconstructed tensor and
the original tensor. Generally, only positive data (check-ins)
are observed in a POI recommender system. To train the model
additionally with negative data, existing deep learning methods
use the strategy of negative sampling to generate the negative
samples, the performance of which is highly sensitive to the
sampling strategy and the number of negative samples [8].

In particular, negative sampling is a biased approximation and
often does not converge to the same loss as computed from all
entries, making it difficult to converge to the optimal ranking
performance regardless of how many update steps have been
taken. Inspired by [9] which solves matrix completion without
negative sampling, we train our neural tensor model with the
whole data including all unlabeled data to combat the draw-
back of negative sampling; to address the high computational
cost of directly computing a least-squares loss over all the
tensor entries, we rewrite this loss function in a smart way to
allow more efficient calculation and learning.

A key contribution of our model design is a backpropa-
gatable formulation of the social Hausdorff distance function.
The Hausdorff distance metric measures how far two sets of
points are from each other. In our model design, we want to
minimize the Hausdorff distance between two sets of check-
in locations from each pair of friends to enforce the social
homophily theory, but several challenges exist. Firstly, the
inputs to the original Hausdorff distance metric are locations,
not the outputs of our neural tensor model (i.e., the probability
of each user-POI-time interaction). Secondly, even if we revise
our social Hausdorff distance function to admit user-POI-time
interaction probabilities, the minimization operator min(·)
in the original Hausdorff distance function is not a smooth
function with respect to its inputs, so it does not support
backpropagation. We, therefore, need to modify this operator
to support learning with backpropagation. The proposed social
Hausdorff distance function enables our model to integrate
both the social relations and POI locations to regularize the
tensor completion formulation. To boost the diversity of rec-
ommendation, we leverage location entropy [13] to allow those
less frequently visited POIs to be recommended, considering
that they often better reveal the real user social strength than
those places that everyone visits.

We hereby summarize our major contributions as follows:

• We present a backpropagatable formulation of the social
Hausdorff distance-based loss function which enables our
model to leverage both social graph and POI locations to
regularize the tensor completion formulation.

• We integrate the social-spatial loss head with location en-
tropy POI weights to improve recommendation diversity.

• We train our model with the whole data including all
unlabeded data to combat the drawback of negative sam-
pling in tensor completion, and rewrite the least-squares
loss smartly to reduce the time complexity.

• We carefully initialize the latent user/POI/time embed-
dings with a spectral method to avoid being trapped in
stationary points during training.

The rest of this paper is organized as follows. Section II
reviews the related works on tensor completion. In Section III,
we define our problem and overview our model framework.
Section IV describes our technical details. In Section V, we
present experiments that verify the superiority of our model.
Finally, we conclude our paper in Section VI.



II. RELATED WORKS

In this section, we review the formulations of tensor com-
pletion, and recent related works on neural tensor completion
models and POI recommendation methods.
Tensor Factorization and Completion. Tensor as a data
structure has been widely employed in the database and data
mining community to represent multi-dimensional objects.
In many application scenarios (e.g., recommender systems,
knowledge base completion, and temporal health data analy-
sis), only a sample of tensor entries are revealed to users, and
the goal is to infer the values of all missing entries. A common
prior knowledge leveraged for tensor completion is the low-
rank tensor structure [4], which assumes that the unknown
ground-truth tensor can be factorized into a few low-rank
embedding matrices. CP (CANDECOMP/PARAFAC) [17] and
Tucker decomposition [44] are two classical tensor factor-
ization models, which can be considered as higher order
generalizations of the matrix decomposition (e.g., singular
value decomposition, or SVD). Without loss of generality, we
consider 3D tensors. Formally, a rank-r CP model factorizes
an order-3 tensor X ∈ RI×J×K into three factor matrices:
U1 ∈ Rr×I , U2 ∈ Rr×J and U3 ∈ Rr×K , such that a tensor
entry can be predicted as:

X̂i,j,k =

r∑
t=1

U1
t,iU

2
t,jU

3
t,k. (1)

In contrast, Tucker decomposition factorizes a tensor X ∈
RI×J×K into a core tensor G ∈ Rr1×r2×r3 and three factor
matrices such that:

X̂i,j,k =

r1∑
t1=1

r2∑
t2=1

r3∑
t3=1

Gt1,t2,t3U1
t1,iU

2
t2,jU

3
t3,k. (2)

Based on CP and Tucker decomposition, many low-rank
tensor factorization algorithms were developed. INDSCAL [6]
is a special case of CP for three-way tensors that are symmetric
in two modes. PARAFAC2 [16] is a variant of CP that can be
applied to a collection of matrices. CANDELINC [7] is a CP
variant with linear constraints. PARATUCK2 [18] groups the
mode-1 objects and the mode-2 group into latent components.
Scalable Tensor Factorization and Completion. Among
recent works, P-TUCKER [37] is a scalable Tucker factor-
ization method for sparse tensors. SPALS [12] is a method
to sample intermediate steps of alternating minimization al-
gorithms for computing low-rank tensor CP decompositions.
MAST [42] tracks the subspace of general incremental tensors
for completion. GigaTensor [27] designs a scalable distributed
algorithm for large-scale tensor decomposition. D-Tucker [26]
compresses the tensor by computing randomized SVD.

To reconstruct a ground-truth tensor X based on a set, Ω, of
observed entries at hand, the strategy of most existing works
is to resort to the following least-squares formulation:

minimize f(U1,U2,U3) :=
∑

(i,j,k)∈Ω

(X̂i,j,k −Xi,j,k)2. (3)

Due to its highly nonconvex nature, however, solving this
optimization problem exactly is computationally intractable. A
line of polynomial-time approximation algorithms have been

proposed, such as convex relaxation [41], sum of squares
hierarchy [38], alternating minimization [25], vanilla gradient
descent [4], and structure-aware proximal iterations [50].

Nonlinear and Neural Tensor Completion. While the above-
mentioned works assume a multilinearity relationship between
latent factors, recent works favor nonlinear factorization mod-
els to consider complex interactions in real-world. For exam-
ple, in [19], the author introduces a kernel-based CP model to
capture nonlinear relationships, and in [15], a Gaussian radial
basis function is used for nonlinear tensor completion.

More recently, some works have proposed replacing the
multilinear operations in tensor completion with multi-layer
perceptrons (MLP), to utilize the non-linear activation layer of
neural network models. CoSTCo [32] leverages the power of
convolutional neural networks to model the interactions inside
tensors. NTF [28] combines generalized CP and tensorized
MLP to compute the tensor.

POI Recommendation. The problem of POI recommen-
dation aims to predict where a user will visit next. The
most common approach for recommendation is known as
collaborative filtering [48]. Matrix completion [39] is used
as a popular collaborative filter algorithm. These methods
decompose the uer-POI matrix into two smaller matrices to
discover the potential relationship between users and POIs.
While the majority of matrix completion models apply an inner
product on the latent factors, recent works tend to replace
it with more complicated operation, such as neural network
architecture [20]. Content-based filtering is another common
approach for recommendation. Content-based recommender
systems associate each user or POI with content information,
such as location contexts [31] and spatial topics [21]. However,
the performance of content-based methods relies on the quality
of user and item features, and the content information is
not always available due to privacy concerns. Graph neural
networks [22], [24], [29] has also been used for recommenda-
tion [23]. TenInt [49] also formulates the recommendation as
the tensor completion problem. There are several differences
between TenInt and our model. First, TenInt does not integrate
the spatial information (i.e., the distances between POIs) into
tensor completion. It solves the problem by minimizing the
squared loss regularized by the difference of user factors
between each pair of friends. Thus, spatial information is
not involved in their problem formulation. In contrast, our
solution is able to leverage the spatial information. Instead of
simply minimizing the difference of user factors between each
pair of friends, we minimize the Hausdorff distance between
check-ins of two users with friendship relations. Moreover,
TenInt simply employs CP decomposition, while our model
is a nonlinear factorization model that captures the complex
interactions in the real world.

As a separate line of research different from the tensor
completion formulation, many spatial-temporal models [52]
have been developed to leverage both the location information
and the temporal order of check-ins.
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III. PRELIMINARY

A. Problem Formulation

We use X ∈ RI×J×K to denote the check-in tensor of
an LBSN, where I , J and K refer to the number of users,
POIs, and time units (aka. intervals), respectively. The set Ω =
{(i, j, k) | ∀i ∈ {1, · · ·, I},∀j ∈ {1, · · ·, J},∀k ∈ {1, · · ·,K}}
contains indexes to all entries in X . If ith user checks in jth POI
at time interval k, then Xi,j,k = 1 (Xi,j,k is an observed entry),
otherwise Xi,j,k = 0 (unlabeled). Let Ω+ = {(i, j, k)|Xi,j,k =
1} and Ω− = {(i, j, k)|Xi,j,k = 0} be the set of positive
entries and unlabeled entries, respectively.

Given a social graph G = (V,E), each node vi corresponds
to an LBSN user. If two users vi and vi′ are friends, there will
be an edge ei,i′ between vi and vi′ . We use lj to denote the
location of jth POI, which is a tuple of longitude and latitude.
Then the problem is formulated as reconstructing tensor X as
X̂ with a social graph G = (V,E) and geolocations of POIs
{lj |∀j ∈ {1, · · ·, J}}. The goal is to estimate the values of the
unobserved entries X̂i,j,k as the scores among User i, POI j,
and time interval k to recommend high-score entries.

B. Model Framework

Figure 2 overviews the framework of our model. Specifi-
cally, we first associate each user, POI and time interval with
an embedding by a spectral initialization method. Then, the
value of each entry is learned from corresponding embeddings
by a neural network. The key novelty of our model is to use a
hybrid loss function with two heads: (1) a weighted Hausdorff
distance head to leverage the social-spatial information; and
(2) the mean-squared error between the original tensor and
reconstructed tensor on the whole data. We use the strategy of
joint training to optimize the reconstructed tensor.

IV. METHODOLOGY

A. Embedding Initialization

Tensor factorization models usually use gradient descent
(GD) as the optimization algorithm. However, GD could get
trapped in undesirable stationary points (e.g., saddle point) if
it starts from arbitrary points. Therefore, careful initialization
is important in tensor factorization, and often necessary in
order to achieve fast convergence [11]. In this paper, we use

a spectral method to obtain rough estimates of the initial user,
POI and time unit embeddings. Specifically, we first “unfold”
the tensor X into three subspace matrices: the mode-1, mode-
2 and mode-3 matricizations A ∈ RI×(JK),B ∈ RJ×(IK)

and C ∈ RK×(IJ), respectively, where Ai,(j−1)K+k = Xi,j,k,
Bj,(i−1)K+k = Xi,j,k, and Ck,(i−1)I+j = Xi,j,k. To estimate
the rank-r factors, a natural choice is to explore the principal
subspace of AAT , BBT and CCT . Specifically, we zero out
the diagonal entries of the three matrices, and then use the
top-r eigenvectors of all off-diagonal matrices as the estimated
factors in each subspace:

U1 = eigen((AAT )|off-diag, r) ∈ RI×r

U2 = eigen((BBT )|off-diag, r) ∈ RJ×r

U3 = eigen((CCT )|off-diag, r) ∈ RK×r,
(4)

where |off-diag extracts out the off-diagonal entries of a squared
matrix, and eigen(., r) extracts the top-r eigenvectors of the
input matrix as the r columns of the output matrix. We zero out
all diagonal entries because the diagonal entries bear too much
influence on the principal directions and should be down-
weighed [3]. Intuitively, we conduct PCA along one mode,
by treating the values in the other two modes as features.
The benefit of this initialization method is that the roughly
estimated tensor factors can result in fast convergence, and
we shall justify this in our experiments.

B. Tensor Factorization Formulation

We model the ternary interactions among users, POIs and
time intervals, by computing the value of each entry Xi,j,k
with the corresponding embedding vectors. Specifically, given
the embedding vectors U1

i , U2
j and U3

k for User i, POI j and
time interval k, we first compute a vector that equals their
element-wise product:

φ(U1
i ,U

2
j ,U

3
k) = U1

i �U2
j �U3

k, (5)

where � denotes the element-wise product of vectors. Note the
similarity between Eq (5) and the CP formulation in Eq (1). To
predict the value of Xi,j,k, we pass the vector φ(U1

i ,U
2
j ,U

3
k)

through a dense layer with parameter h ∈ Rr:

X̂i,j,k = hT (U1
i �U2

j �U3
k) =

r∑
t=1

htU
1
i,tU

2
j,tU

3
k,t, (6)



where ht corresponds to the importance weight of the tth factor
dimension. Semantically, we treat X̂i,j,k as the probability that
Xi,j,k = 1, i.e., User i visits POI j in time interval k.

We remark that the CP model is a special case of our
formulation. Specifically, assume that h is a vector filled with
all ones (i.e., h = [1, 1, ..., 1]T ∈ Rr). Then Eq (6) becomes∑r
t=1 U

1
t,iU

2
t,jU

3
t,k, which is exactly Eq (1). Compared

with CP, our model with learnable parameter h is more
expressive and can capture more complicated interactions of
multiple factors in recommender system.

To optimize the embeddings U1, U2, U3 and parameter h,
we may simply minimize the squared error (Xi,j,k − X̂i,j,k)2

for observed entries. However this error head alone does not
utilize the rich social-spatial information in an LBSN. We,
therefore, design a hybrid loss function with two loss heads:
one is the prediction error head computed over observed
entries, and the other is a novel social Hausdorff distance
function which measures how far friends’ subsets of POIs are
from each other, which we introduce next.

C. Social Hausdorff Distance

In our daily life, people frequently turn to their friends for
recommendations of nice restaurants and other places to visit.
According the social homophily theory, social networks tend
to form clusters of nodes with similar properties or interests.
In the meanwhile, Tobler’s first law of geography states that
near things are more related than distant things, implying that,
for example, a user is more likely to have dinner in a restaurant
visited and liked by his friends; moreover, if the user decides
to go shopping after the dinner, he/she is more likely to check
in at a nearby shopping mall.

Let us denote the ith user’s vertex in an LBSN by vi, and
we use i and vi interchangeably in the following discussion.
Formally, if a user vi′ is a friend of another user vi in an
LBSN, then the set of vi′ ’s check-ins tend to overlap with
or at least close to vi’s check-ins. Therefore, it is natural to
recommend a POI to a user if it is visited by his/her friends,
or close to a POI visited by his/her friends. We thus add
a regularization term to the loss function to enforce such a
social-spatial cluster structure in our reconstructed tensor.

Hausdorff distance is metric to measure how far two point
sets are from each other. Let us denote by S(vi) the potential
POIs that will be visited by a user vi, and denote by N (vi)
the set of POIs that were checked by vi’s friends:

S(vi) = {j | ∃k ∈ {1, · · ·K}, X̂i,j,k > 0}, (7)
N (vi) = {j | ∀(vi, vi′) ∈ E : ∃k ∈ {1, · · ·K},Xi′,j,k = 1} (8)

Then, the average Hausdorff distance [1] (AHD) between
S(vi) and N (vi) is formulated as:

dAH(S(vi),N (vi)) =
1

|S(vi)|
∑

j∈S(vi)

min
j′∈N (vi)

d(j, j′)

+
1

|N (vi)|
∑

j′∈N (vi)

min
j∈S(vi)

d(j, j′), (9)

where d(j, j′) denotes the distance between POIs j and j′.
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Fig. 3. Average Hausdorff Distance (Arrows Highlight Nearest Neighbors)

Intuitively, the AHD formulation above calibrates on aver-
age how far each point in S(vi) is to its closest point in N (vi),
and vice versa to make the distance measure symmetric.

Figure 3 illustrates AHD calculation. Specifically, the
dashed pink circles represent those potential POIs that user vi
may be interested in and the yellow circles are the ground-truth
POIs that are checked in by vi’s friends. For each dashed pink
node j ∈ S(vi), minj′∈N (vi) d(j, j′) is the distance between
j and its nearest neighbor in N (vi). The first term in Eq (9)
averages such distances for all j ∈ S(vi). Likewise, the second
term averages such minimum distances for all j′ ∈ N (vi).

To regularize our loss function with social homophily and
Tobler’s first law of geography, we want to minimize the AHD
between S(vi) and N (vi). However, there are two challenges.
First, recall from Eq (6) that our neural tensor model estimates
the probability of each user-POI-time interaction, not the loca-
tions of POIs. The function must be learnable with respect to
the output of the neural tensor model. The potential locations
of S(vi) could be as large as the entire set of POIs in an LBSN,
and we need to generalize the AHD definition to allow S(vi)
to be set of locations with occurrence probabilities. Second,
the minimization function min(·) is not a smooth function with
respect to its inputs, so it does not support backpropagation.

To address these two challenges, we devise a weighted
Hausdorff loss function counterpart based on the idea of AHD:

dWH(S(vi),N (vi)) =
1

|A+ ε|
∑

j∈S(vi)

pi,j min
j′∈N (vi)

d(j, j′)

+
1

|N (vi)|
∑

j′∈N(vi)

Mα
j∈S(vi)

[pi,jd(j, j′) + (1− pi,j)dmax],

(10)

where pi,j = 1 −
∏K
k=0(1 − X̂i,j,k) estimates the probability

that User vi will check in the jth POI (in any of the K
time intervals we consider). In the first term of Eq (10),
A =

∑
j∈S(vi)

pi,j is the normalization factor for taking
the weighted distance average (where weights are given by
probabilities pi,j), and the value of ε is set as 10−6 to avoid
division by zero. The second term of Eq (10) approximates
the second term of Eq (9), where minj∈S(vi) d(j, j′) is now
approximated by Mα

j∈S(vi)
[pi,jd(j, j′) + (1− pi,j)dmax] which

allows the loss to backpropagate through Mα[.] into pi,j to
tune the parameters in Eq (6), as we shall discuss in the next
paragraph. In contrast, we do not apply Mα[·] in the first term
since pi,j (and hence X̂i,j,k) is outside the min(.) function.



Here, Mα[x1, . . . , xn] = ( 1
n

∑n
i=1 x

α
i )

1
α is the generalized

mean, which equals min{x1, . . . , xn} when α→ −∞. How-
ever, the more negative α is, the less smooth Mα becomes,
and existing research found that α = −1 is already sufficient
to strike a good balance between its approximation quality to
min(.) and the smoothness for effective backpropagation [40].

With the first term of Eq (10), we multiply the distance by
pi,j to penalize the POI j with larger value of pi,j where there
is no nearby POI checked by friends. In other words, if POI
j is far from any of POIs that are checked by the friends of
user vi, pi,j tends to be 0.

Also in the second term of Eq (10), dmax corresponds to
the maximum distance between any two POIs and it varies in
different datasets. When we denote f(j) = pi,jd(j, j′) + (1−
pi,j)dmax, then we can see that the second term of Eq (10)
approximates minj∈S(vi) d(j, j′) with Mα

j∈S(vi)
[f(j)]. Note that

when pi,j → 1, f(j)→ d(j, j′) as desired; while when pi,j →
0, f(j)→ dmax so the “soft” minimum Mα[.] tends to ignore
j even if d(j, j′) is small, which makes sense since User vi
is unlikely to visit POI j. In other words, POIs with a low
visit-probability by vi near “friend” POIs j′ ∈ N (vi) will be
penalized. While f(.) is not the only function that enforces
f |pi,j=1 = d(j, j′) and f |pi,j=0 = dmax, this linear function
form is favored due to its numerical stability.

Note that in the deterministic scenario where pi,j is either 1
or 0, Eq (10) will become Eq (9) if we regard Mα[.] as min(.).
Therefore, our loss function can be interpreted as average
Hausdorff distance (AHD) extended with input uncertainty.

We remark that both terms in Eq (10) are necessary
or we will get extreme results. Specifically, if the first
term is removed, then pi,j = 1 will always optimize
dWH(S(vi),N (vi)) since d(j, j′) ≤ dmax. While if the
second term is removed, pi,j = 0 will always optimize
dWH(S(vi),N (vi)) to be 0.

Diversifying Recommendation by Location Entropy. Rec-
ommending popular POIs already known by most users does
not provide much additional information. Ideally, a user vi
would like to see recommended POIs that well match vi’s
current interest but are not already visited by many people
(but rather known by only a few who frequently pay visits).
We measure the popularity of a POI using the concept of
location entropy. Specifically, let Φi,j = {〈i, j, k〉 |Xi,j,k = 1}
be the set of all check-ins at POI j by a user i, and let
Φj = {〈i, j, k〉 |Xi,j,k = 1} be the set of check-ins at POI j
by all users. Then the location entropy is defined as:

Ej = −
∑

i:‖Φi,j |>0

|Φi,j |
|Φj |

log
|Φi,j |
|Φj |

. (11)

A high value of Ej implies that POI j is visited by different
users and thus known by many users, such as a local Costco
wholesale warehouse. In this case, POI j plays a less important
role in reflecting the social strength: two users who visit the
same Costco warehouse are mostly likely not mutual friends;
while in contrast, if two users show up in the same tennis court,
they are more likely to be friends sharing the same hobby.

We thus further adjust d(j, j′) in the first (resp. second) term
of Eq (9) by ej = exp(−Ej) (resp. ej′ = exp(−Ej′)). Note
that this weighting strategy naturally addresses the diversity
of recommendation: a new French restaurant tends to have a
higher weight in the learning process than Burger King, though
it occurs sparsely in the check-in tensor. Combining the above
location-entropy weighted distance with the input uncertainty,
our final social Hausdorff distance for User vi becomes:

dWH(S(vi),N (vi)) =
1

|A+ ε|
∑

j∈S(vi)

pi,jej min
j′∈N (vi)

d(j, j′)

+
1

|N (vi)|
∑

j′∈N(vi)

ej′ Mα
j∈S(vi)

[pi,jd(j, j′) + (1− pi,j)dmax],

(12)
Note that Eq (12) defines the social Hausdorff distance for

just one user vi. The final social Hausdorff loss function is
defined as the sum of social Hausdorff distance for all users:

L1 =
∑
vi∈V

dWH(S(vi),N (vi)). (13)

The next subsection describes how to combine this social-
spatial loss with the least-squares regression problem in Eq (3).

D. Learning with Whole Data

Most existing tensor completion models are formulated to
minimize the difference between the original data tensor X
and the reconstructed tensor X̂ . Since only the positive entries
(check-in records in LBSNs) are observed, negative sampling
is commonly used to generate negative entries for training.
However, the performance of negative sampling is highly
sensitive to the sampling strategy and the number of negative
samples [8], [46]. In this paper, we propose to train our model
on the whole data instead of by negative sampling. Then, the
task is to minimize the mean-squared error of all entries:

L2 =
I∑
i=1

J∑
j=1

K∑
k=1

wi,j,k(Xi,j,k − X̂i,j,k)2, (14)

where wi,j,k is the entry weight for class balancing:

wi,j,k =

{
w+, if entry (i, j, k) ∈ Ω is positive
w−, if entry (i, j, k) ∈ Ω is unlabeled

where we treat unlabeled entries simply as negative. Since the
number of unlabeled entries is much larger than that of the
positive entries, we set w+ to be much larger than w− so that
a positive sample is as important as many unlabeled ones.

We remark that our method is a special case of negative
sampling where all negative samples are sampled exactly once.
Traditional negative sampling is a biased approximation and
often does not converge to the same loss as computed from
all entries [2], [47], making it difficult to converge to the
optimal ranking due to the sensitivity to the sampling strategy.
Our method is proposed to combat the drawback of negative
sampling. Also, computing our new loss formulation naı̈vely
as in the existing negative sampling scheme would lead to
a prohibitive computational cost due to the large number of
negative samples, and that is exactly what we address in this
subsection. The time complexity of calculating Eq (14) is



O(I × J × K). Considering that the numbers of users and
POIs (i.e., I and J) are large in recommender systems, this
time cost is intractable. We, therefore, rewrite this loss function
as follows to make its evaluation affordable:

L2 =
∑

(i,j,k)∈Ω+

((w+ − w−)X̂ 2
i,j,k − 2Xi,j,kX̂i,j,k)

+ w−

r∑
r1=1

r∑
r2=1

hr1hr2(
I∑
i=1

U1
i,r1U

1
i,r2)(

J∑
j=1

U2
j,r1U

2
j,r2)

(

K∑
k=1

U3
k,r1U

3
k,r2),

(15)

where Ω+ and Ω− are the set of positives and unobserved
entries in the train set, respectively. We next establish the
equivalence of Eq (15) to Eq (14), and then explain how
Eq (15) reduces the time cost.

Remark 1: Eq (15) is equivalent to Eq (14).

Proof: First, we factorize (Xi,j,k − X̂i,j,k)2 in Eq (14) and
eliminate the constant term

∑
(i,j,k)∈Ω X 2

i,j,k:

L2 =
∑

(i,j,k)∈Ω

wi,j,kX̂ 2
i,j,k−2

∑
(i,j,k)∈Ω

wi,j,kXi,j,kX̂i,j,k (16)

Note that the set of all entries Ω can be split into positive
set Ω+ and unlabeled set Ω−, and Xi,j,k is 0 for entries in
Ω− since we treat unlabeled entries as negative as in negative
sampling. Therefore, Xi,j,kX̂i,j,k can also be eliminated for
the unlabeled set Ω− which gives:

L2 =
∑

(i,j,k)∈Ω

wi,j,kX̂ 2
i,j,k − 2

∑
(i,j,k)∈Ω+

wi,j,kXi,j,kX̂i,j,k

(17)
Now we replace wi,j,k with w+ (resp. w−) for entries in Ω+

(resp. Ω−):

L2 =
∑

(i,j,k)∈Ω+

w+X̂ 2
i,j,k +

∑
(i,j,k)∈Ω−

w−X̂ 2
i,j,k

− 2
∑

(i,j,k)∈Ω+

w+Xi,j,kX̂i,j,k

=
∑

(i,j,k)∈Ω+

((w+ − w−)X̂ 2
i,j,k − 2w+Xi,j,kX̂i,j,k)

+
∑

(i,j,k)∈Ω+

w−X̂ 2
i,j,k +

∑
(i,j,k)∈Ω−

w−X̂ 2
i,j,k

=
∑

(i,j,k)∈Ω+

((w+ − w−)X̂ 2
i,j,k − 2w+Xi,j,kX̂i,j,k)

+ w−
∑

(i,j,k)∈Ω

X̂ 2
i,j,k (18)

In Eq (18), the first term and the second term can be regarded
as the loss of the positive data and the whole data, respectively.
Since the positive entries account for only a small portion of
the whole data, the time complexity of the second term is the
bottleneck of computation.

Recall from Eq (6) that X̂i,j,k =
∑r
t=1 htU

1
i,tU

2
j,tU

3
k,t, so

we rearrange
∑

(i,j,k)∈Ω

X̂ 2
i,j,k in the second term as:

I∑
i=1

J∑
j=1

K∑
k=1

(
(

r∑
r1=1

hr1U
1
i,r1U

2
j,r1U

3
k,r1)(

r∑
r2=1

hr2U
1
i,r2U

2
j,r2U

3
k,r2)

)
=

I∑
i=1

J∑
j=1

K∑
k=1

( r∑
r1=1

r∑
r2=1

(hr1U
1
i,r1U

2
j,r1U

3
k,r1hr2U

1
i,r2U

2
j,r2U

3
k,r2)

)
=

r∑
r1=1

r∑
r2=1

hr1hr2(

I∑
i=1

U1
i,r1U

1
i,r2)(

J∑
j=1

U2
j,r1U

2
j,r2)(

K∑
k=1

U3
k,r1U

3
k,r2).

(19)

This reduces the time cost of computing the second term from O(I×
J×K×r) in Eq (14) to O(r2(I+J+K)) here. Since I, J,K � r,
the time cost of computing L2 now becomes much more tractable.

By replacing it into the second term in Eq (18), we obtain Eq (15).
Note that this rewriting process is unique to our special case rather
than general negative sampling, since the last term of Eq (18) sums

over all entries in Ω, which translates to
I∑

i=1

J∑
j=1

K∑
k=1

as in Eq (19),

rather than a subset of sampled entries.

E. Loss Function
We combine the social-spatial loss head L1 and the least-squares

loss head L2 into the final loss function L to train the model:

L = λL1 + L2 (20)

where λ is a hyperparameter to adjust the importance of social Haus-
dorff distance loss. We use the strategy of joint training to optimize
the parameters in our neural network model by directly minimizing
the final loss L. Note that a conventional tensor completion method
only minimizes the difference between X̂ and X , so it is not utilizing
the social graph and POI locations.

V. EXPERIMENT

In this section, we report our comprehensive suite of experiments
that answer the following questions regarding our model, named as
TCSS (Tensor Completion with Social-Spatial regularization):

• Is it necessary to incorporate the time dimension for recommen-
dation instead of considering just a user-POI interaction matrix?

• Can TCSS outperform existing state-of-the-art tensor comple-
tion models for time-aware recommendation?

• How does the time granularity along the time dimension influ-
ence the performance of recommendation?

• Is the performance consistent on different categories of POIs?
• Ablation study: how does training performance of TCSS com-

pare with its counerparts using negative sampling and other
initialization methods?

• How do the model hyperparameters influence the result quality?

A. Dataset
Three datasets are introduced in the experiment:
• Gowalla1. Gowalla was a worldwide location-based social

network where users can check in at POIs. The dataset was
collected from November 2010 to May 2011, including in-
formation such as users’ friendship and check-in history. We
only consider those users with at least 15 POI check-ins and at
least one friend. We also filter out those POIs with fewer than
50 visitors. Locations in Gowalla are grouped into categories,
and our preprocessing results in 6,392 shopping POIs, 5,667
entertainment POIs, 3,824 restaurant POIs and 2,272 outdoor

1https://www.yongliu.org/datasets/



POIs. The final preprocessed dataset contains 18,737 users and
1,666,455 check-ins in total.

• Yelp2. The original Yelp dataset contains 8,635,403 reviews for
160,585 worldwide businesses. We only consider those users
that have at least 15 check-in records and 1 friendship relation.
We filtered out those POIs with fewer than 50 visitors. The pre-
processed data contains 718,214 check-ins from 17,534 users in
7,757 businesses.

• Foursquare3. This dataset includes global-scale check-in data
collected from Foursquare during April 2012 to January 2014
(22 months). As before, we filtered out those users with fewer
than 15 check-in POIs as well as those POIs with fewer than
50 visitors. The dataset also contains a user social network
and we only consider those users with a least one friend.
The preprocessed data contains 20,359 users, 5,777 POIs and
939,394 check-ins.

• GMU-5K4. This is a dense LBSN dataset generated by a
simulator that simulates patterns of life. There are 11,189,377
check-ins at 8,901 POIs from 5,000 users. The density of the
user-POI-time tensor is 3.21%.

B. Baselines
In order to verify the necessity of introducing the time dimen-

sion for POI recommendation, we implement two matrix-completion
baselines that predict user-POI interactions:

• MCCO5 [5]. This work recovers the low-rank matrix from
an incomplete set of entries. The matrix is recovered from
multiplicative factors, and semidefinite programming is used to
solve the convex relaxation of nuclear norm minimization.

• PureSVD6 [14]. The method treats all missing values as zeros,
and performs conventional single value decomposition (SVD)
to factorize a sparse user-item matrix as the product of a user
orthonormal matrix, a diagonal matrix of singular values, and
an item orthonormal matrix.

We further introduce 10 baselines, including 6 tensor completion
methods, 3 spatiotemporal POI recommendation models that predict
the user-POI-time interactions, and an algorithm that predicts user-
POI interactions. We feed the historical check-ins as input to these
baseline methods.

• CP & Tucker7 [30]. Eq (1) and Eq (2) define the tensor com-
pletion method of CP and Tucker decomposition, respectively.
CP decomposes an order-3 tensor as a sum of three rank-one
tensors, while the Tucker model factorizes an order-3 tensor into
one core tensor along with three factor matrices.

• NTM [10]. Nonlinear Tensor Machine also learns multi-aspect
factors in recommender systems. It combines deep neural
networks and tensor algebra to capture nonlinear interactions
among multi-aspect factors.

• NCF8 [20]. Neural Collaborative Filtering is a neural network
model that uses a multi-layer perceptron learn the nonlinear
interaction relationship between the latent features. We follow
NTM to feed the element-wise product of three MF vectors
(user, POI, time) as the input of GMF Layer and concatenate
three MLP vectors as the input of MLP Layer.

• P-Tucker9 [37] is a scalable Tucker factorization method for
sparse tensors. It performs alternating least squares with a row-
wise update rule in a fully parallel way, which significantly
reduces memory requirements for updating factor matrices.

2https://www.yelp.com/dataset
3https://sites.google.com/site/yangdingqi/home/foursquare-dataset
4https://osf.io/e24th/wiki/home/
5https://github.com/JoonyoungYi/MCCO-numpy
6https://github.com/yoongi0428/RecSys PyTorch
7http://tensorly.org/stable/user guide/tensor decomposition.html
8https://github.com/yihong-chen/neural-collaborative-filtering
9https://github.com/sejoonoh/P-Tucker

• CoSTCo10 [32]. This work proposes a novel convolutional
neural network (CNN) for tensor completion. It leverages the
expressive power of CNN to model the complex interactions
inside tensors and its parameter sharing scheme to preserve the
desired low-rank structure.

• STRNN [33]. This work extends recurrent neural networks
(RNN) and proposes a Spatial Temporal RNN to model local
temporal and spatial contexts for POI recommendation.

• STAN [34]. This work proposes the Spatio-Temporal Attention
Network (STAN) to exploit spatiotemporal information of all
the checkins with self-attention layers along the trajectory.

• STGN [52] This work proposes the Spatio-Temporal Gated Net-
work (STGN) by enhancing long-short term memory network,
where spatio-temporal gates are introduced to capture the spatio-
temporal relationships between successive checkins.

• LFBCA [45] This work proposes the location-friendship
bookmark-coloring algorithm (LFBCA) to reconcile social in-
teraction and location similarity in POI recommendation.

C. Performance Metrics
We adopt two widely used performance metrics that are designed

to evaluate recommender systems: (1) hit ratio (Hit) [51] and (2) mean
reciprocal rank (MRR) [51]. Given each entry (i, j, k) in the test set,
we sample 100 random POIs j1, . . ., j100 and predict the values of
these entries (i, js, k), s = 1, . . . , 100. We then sort the 100 values
{X̂i,js,k} plus X̂i,j,k (i.e., 101 values in total) in non-increasing order.

Hit@10 counts the proportion of observed interactions (i, j, k) in
the test set such that X̂i,j,k is within top-10 of the previous sorted list
of length 101; while MRR averages the reciprocal ranks of X̂i,j,k in
the sorted list over all interactions (i, j, k) in the test set, where the
rank corresponds to the position of X̂i,j,k in the sorted list. We first
average the reciprocal ranks of each user i along time dimension k,
and then report their average over all users in the test set. On each
dataset, we use 80% of check-ins as the observed tensor entries in
X for training, and the remaining check-ins are used as the test set.

D. Model Configuration
In our experiments, we configure TCSS with the following default

hyperparameters which were extensively tested and found to work
consistently well. We set the weights w+ and w− as 0.99 and 0.01,
respectively, by default. We use the default value λ = 0.1 as the
weight of L1 in the loss computation. The length of embedding
vectors is set as 10 by default, so we extract top-10 eigenvectors as
the initialized embedding factors. For the time dimension, we set the
granularity as month in a year (i.e., k = 0, 1, · · · , 11). For example, if
a check-in occurs in February, then k = 1. Recall Eq (12), where we
set the default smoothing parameter α of the soft minimum function
as −1, and set ε = 10−6 to avoid zero division. We use the Haversine
formula11 to calculate the distance between POIs considering that the
POIs are distributed in a large area. All the parameters of baseline
models are configured as described in the corresponding paper. We
train our models using an Adam optimizer with a learning rate of
0.001 and a weight decay of 0.1. Our experiments were run on
a machine equipped with a 2.20 GHz CPU, 26 GB RAM, and an
NVIDIA Tesla P100 GPU. The source code of our model has been
released at https://github.com/codingAndBS/tc-ss.git.

E. Model Comparison
Table I shows the performance comparison of our TCSS model

with the selected representative baseline models. Note that we include
not only various tensor completion approaches but also matrix com-
pletion methods. For matrix completion, we omit the time dimension
and calculate Hit@10 and MRR based on the rank of entry (i, j) in

10https://github.com/USC-Melady/KDD19-CoSTCo
11https://pypi.org/project/haversine/



TABLE I
RESULTS COMPARISON

Model Gowalla Yelp Foursquare GMU-5K
Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR

Matrix completion MCCO 0.3309 0.1804 0.3951 0.1847 0.2880 0.1367 0.3321 0.2192
PureSVD 0.3779 0.2107 0.4307 0.2087 0.5584 0.2856 0.6651 0.3772

POI recommendation

STRNN 0.3203 0.1908 0.3294 0.1363 0.2586 0.1288 0.4847 0.3481
STAN 0.5239 0.3311 0.5112 0.3345 0.4723 0.3215 0.6328 0.2667
STGN 0.5230 0.4127 0.4880 0.2485 0.5101 0.3185 0.4646 0.2810

LFBCA 0.3513 0.2470 0.3945 0.1575 0.3541 0.1909 0.3828 0.1963

Tensor completion

CP 0.4544 0.2683 0.5522 0.2479 0.5156 0.2955 0.7072 0.4917
Tucker 0.3742 0.2168 0.5902 0.2701 0.5585 0.3188 0.6989 0.4864

P-Tucker 0.8162 0.3793 0.6255 0.2627 0.7843 0.3401 0.7473 0.3981
NCF 0.7891 0.3453 0.6574 0.3057 0.8079 0.4279 0.8077 0.4629
NTM 0.6181 0.3074 0.1719 0.0839 0.7699 0.3886 0.7897 0.3493

CoSTCo 0.7571 0.2806 0.5565 0.2106 0.8336 0.3252 0.7465 0.4420
TCSS 0.9177 0.6206 0.7276 0.3408 0.9298 0.6133 0.9598 0.6376

TABLE II
ABLATION STUDY

Model Variants Gowalla Yelp Foursquare GMU-5K
Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR

Random initialization 0.8833 0.6107 0.6892 0.3275 0.9163 0.6095 0.9045 0.5196
One-hot initialization 0.8688 0.6036 0.6704 0.3061 0.8851 0.5613 0.8968 0.4926
Remove L1 (λ = 0) 0.8442 0.5763 0.6308 0.2896 0.8670 0.5115 0.8421 0.4854

Negative samping 0.8549 0.4098 0.5637 0.2218 0.8917 0.4348 0.9231 0.5550
Self-Hausdorff 0.8614 0.5858 0.6478 0.3029 0.8783 0.5354 0.8654 0.5071

Zero-out 0.8574 0.5571 0.6538 0.3064 0.8321 0.5248 0.8047 0.5012
Full-Fledged TCSS 0.9177 0.6206 0.7276 0.3408 0.9298 0.6133 0.9598 0.6376
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the test set. It is clear from Table I that tensor completion methods
outperform matrix completion. The reason is that recommendation is
time-sensitive, and most POIs have a peak period of visits in a year.
For example, one may prefer to go to an aquatics center in summer
instead of winter. It demonstrates the necessity of introducing the
time dimension to conduct tensor completion for recommendation.

Our model achieves the best performance at around 92% Hit@10
and 0.62 MRR on Gowalla and Foursquare, outperforming the best-
performing baseline, P-Tucker, by 0.1–0.2 in Hit@10 and doubles
MRR. On Yelp, the performance drops since the sparsity of the
data tensor in Yelp is lower than that in Gowalla and Foursquare. It
implies that with more entries being observed, the recommendation
performance can be further improved. We also observe that neural
tensor networks perform much better than CP and Tucker decom-
position. It verifies the effectiveness of using neural networks to
solve the tensor completion problem. Compared with these tensor
completion approaches, our model is able to utilize side information
and whole data for model training. The improvements verify the
effectiveness of our design. Also, those predictive baselines based on
spatial-temporal neural networks (STRNN, STAN, STGN) or social
networks (LFBCA) do not show advantage over the tensor completion
formulation as adopted by us. Note that TCSS is able to model
the spatial-temporal factors and simultaneously leverage the social

relations. TCSS achieves the best performance on all datasets, which
verifies the effectiveness of our social Hausdorff distance and PU
learning strategy for recommendation.

F. Ablation Study
We also conduct ablation study to consider several variants of

TCSS to validate the effectiveness of our techniques in model design.
Social Hausdorff distance. To verify the effectiveness of the pro-
posed Social Hausdorff distance, we introduce two variants of our
model: Self-Hausdorff and Zero-out. Specifically, (i) Self-Hausdorff
replaces N (vi) in Eq(13) with the set of POIs already visited by
User vi, to remove the social influence from the loss; (ii) Zero-out is
trained with L2 only, and it disregards any POI that has a distance
greater than a threshold σ to its nearest POI of User vi, where σ is
configured as 1% of the maximum distance between any two POIs.

In both the variants, those POIs that are far from the POIs checked
by User vi before are unlikely to be recommended to vi. However,
in a real scenario, vi may turn to friends for POI recommendations,
and some recommended POIs could be far from those POIs already
visited by vi. This scenario cannot be captured by these two variants,
but is well captured by our social Hausdorff distance loss head L1.
As shown in Table II, replacing our Social Hausdorff distance module
with Self-Hausdorff or Zero-out leads to a performance degrade.
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To further verify the effectiveness of our social Hausdorff distance
loss head L1, we introduce another variant that only minimizes
the least-squares error head (i.e., λ = 0). This method is marked
by “Removing L1 (λ = 0)” in Table II, and we can see that
the performance of this variant degrades significantly on all three
datasets. This further verifies that our social Hausdorff loss head is
important to improve the performance of timely recommendation.

Initialization. To verify the effectiveness of our spectral method for
initializing latent factors, we introduce two variants which replace our
initialization method with (i) naı̈ve random initialization and (ii) one-
hot encoding. In particular, the naı̈ve random initialization associates
U1

i , U2
j and U3

k with a random vector, which is also the initialization
strategy of CP and Tucker. The variant of one-hot encoding uses the
method of NCF [20], which indexes each user i (resp. POI j or
time k) with its corresponding position being 1 and others being 0.
This high-dimensional vector is then converted to embeddings using
a learnable embedding layer. We use the same value for tensor rank
in both model variants that adopt the baseline initialization methods.
As Table II shows, neither of the two variants outperforms TCSS
on any of the 3 datasets. Note that our spectral initializing method
additionally enjoys fast convergence, which we will demonstrate later.

Learning on Whole Data. Different from existing approaches,
we train TCSS with all entries (including all unlabeled entries)
instead of sampling a subset of unlabeled entries as negative entries.
Alternatively, we introduce a variant which adopts the strategy of
negative sampling in [20] to randomly sample some negative entries,

the number of which equals that of the observed entries. During
training, we minimize the squared error between the original tensor
and reconstructed tensor over all the observed entries and the sampled
negative entries. Note that the loss head based on social Hausdorff
distance remains in this variant and we only replace L1. This variant
is marked as “Negative Sampling” in Table II. We observe that our
training strategy on the whole data achieves better performance than
negative sampling in terms of both metrics on all three datasets.

G. Analysis on POI Types and Time Granularity
Effect of POI Category. The Gowalla dataset assigns each POI
a category, which provides us an opportunity to investigate how
recommendation performance may vary depending on different types
of POIs. Figures 4 and 5 show the results of TCSS and other baselines
on four different POI categories: shopping, entertainment, food and
outdoor. Note that we only consider one category in the training and
test process, i.e., each tensor only involves one specific category of
POIs. We observe that our model consistently outperforms all the
baselines by a largin margin on all categories. Also interestingly,
the performance on outdoor POIs is stronger than others. Intuitively,
this is because outdoor POIs exhibit more seasonal characteristics
(e.g., few people go to swimming in winter, so it is less likely to
recommend an aquatics center to a user with a high score). Also
surprisingly, the performance on the food category is relatively weak.
There are two possible reasons. First, food POIs are less seasonal:
people can go to a restaurant at anytime of the year. Second, people
taste different types of food on a daily basis. Therefore, it is difficult
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Fig. 8. Effect of Different Weight Combinations (Gowalla)

TABLE III
PERFORMANCE WITH DIFFERENT (w+ , w−)

(w+, w−) RMSE Hit@10 MRRPositive Negtive
(0.9, 0.1) 0.4254 0.1627 0.9061 0.5875

(0.95, 0.05) 0.4197 0.1601 0.9077 0.6008
(0.99, 0.01) 0.4148 0.1577 0.9177 0.6206

(0.995, 0.005) 0.4163 0.1593 0.9198 0.6198
(0.999, 0.001) 0.4171 0.1602 0.9184 0.6039

to infer the potential check-in. In all four POI categories, TCSS
outperforms the baselines by a large margin thanks to its leverage
of social homophily that is naturally present in LBSNs.
Effect of Time Granularity. In both Figures 4 and 5, we also
show the model performance when the granularity of time is varying.
Specifically, for “month”, the length of the time dimension is 12 since
there are 12 months in a year. For example, if a check-in occurs in
August, the entry has k = 7 (k starts from 0). Likewise, “week”
indicates during which week in a year a check-in occurs. Since there
are 53 weeks in year, the length of time dimension is 53. Different
from “month” and “week” using the index inside a year, “hour” uses
the index of hour in a day. For example, if a user visits a bar at
22:00, the time index will be 21. Generally, few users will visit a
bar during the daytime, so a recommender system would be able to
utilize this time-unit specific knowledge when a proper time unit is
chosen to build the data tensor. From Figures 4 and 5, we observe that
recommendation in the granularity of “month” maintains a stronger
predictive accuracy than “week”, which justifies that our month-based
time granularity in the previous subsections is a fair setting. Again,
we see that TCSS significantly outperforms the baseline approaches
in all the three granularity units being considered.

To further investigate the correlation of time units when using
different time granularity, we calculate the cosine similarity between
the latent factors (columns of U3) of two months, weeks and hours,
respectively, the heatmaps of which are shown in Figure 6 where
a darker color means that the factors of two time units are more
similar (cosine similarity closer to 1). In Figure 6(a), we highlight
two dark blocks in the heat map using red boxes, which suggest
that the learned monthly temporal factors capture seasonal changes
for recommendation. For example, one dark block in Figure 6(a)
indicates that March, April, May and June are similar to each other.
We also observe some blocks in Figures 6(b) and 6(c), but the
seasonal changes revealed by weekly and hourly factors are weaker,
partially explaining why their recommendation performance is not as
good as the model using the “month” granularity in Figures 4 and 5.

Note that Figure 6 only shows the cosine similarity of different
time units for the shopping POI category. Figure 7 further shows
the cosine similarity between months for different POI categories,
where we see that dark block patterns vary with the POI categories.
Compared to other categories, there are fewer dark blocks on heatmap
of “food”, which further explains the poorer recommendation perfor-
mance on the “food” category. To sum up, the more seasonality that
is present in the time units adopted to re-construct the data tensor,
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TABLE IV
TRAINING TIME (ONE EPOCH )

Methods Gowalla Yelp Foursquare
Original Loss: Eq (14) 2.29× 105 s 2.49× 105 s 4.51× 105 s

Negative Sampling 30.12 s 11.03 s 30.61 s
Rewritten Loss: Eq (15) 0.13 s 0.11 s 0.17 s

the better TCSS prediction performance would be.

H. Setting of weights
Since the number of negative entries is much larger than that of

positive entries, we give more weight to positive entries to balance
their importance during training. We have carefully tuned the setting
of w+ and w− to obtain good default values. As shown in Figure 8,
given a fixed w−, the MRR will increase and the RMSE will decrease
as w+ increases. It verifies that setting the positive weight w+ to be
much larger than the negative weight w− can improve the overall
performance. Note that the weight scale matters. For example, w+ =
w− = 0.1 is not equivalent to w+ = w− = 0.9, because only L2

in Eq (15) contains the weights so its relative importance w.r.t. L1

changes with weight scaling.
We also fine-tune (w+, w−) beyond (0.9, 0.1). As Table III

shows, as the ratio w+/w− increases, the performance improves till
(w+, w−) = (0.995, 0.005), beyond which the performance drops.
Our default (w+, w−) = (0.99, 0.01) achieves the highest Hits@10.

I. Training Efficiency
We next report the experiments to verify the training efficiency of

our initialization method and the rewritten loss function. Recall that
we introduced two TCSS variants that utilize different initialization
methods: (i) random and (ii) one-hot. We compare the training
process of our model to these two variants. Figure 9 shows the change
of Hit@10 and MRR in the training process. Compared with random
and one-hot vector initialization, our method can lead to a much faster
convergence rate and a slight performance gain in both metrics. This
is because our method initializes the factors with eigenvectors which
are the estimation of the genuine factors. However, random or one-hot
vector initialization may get trapped in undesirable stationary points
when we use gradient descent to learn the factors.

We also compare our training time of each epoch with two other
variants: (i) negative sampling and (ii) learning on the whole data
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directly by Eq (14) without rewriting. Note that we follow [20] to
generate the negative samples. Since the number of samples is large,
if we put all samples in a single batch, it will crash due to memory
limit. Therefore, we fill each batch with 8096 samples instead of using
a single large batch. Recall that the original loss function based on
the whole data has a time complexity of O(I×J×K×r), while our
rearrangement method reduces the complexity to O((I+J+K)×r2).

Table IV shows a comparison of training time. Considering that the
values of I and J are large in recommender systems (e.g., I = 20,359
in “Foursquare”), our rearranged loss can save a lot of computational
resources. We observe in Table IV many orders of magnitude speedup
in the training time of our method over the variant that directly
computes Eq (14). While learning on the whole data combats the
sensitivity of negative sampling, our rewritten loss function makes it
truly practical to learn on large real-world data. Note that our training
time is only around 1% of that of negative sampling (8096 entries
per batch), while being more accurate as Table II has indicated.
J. Parameter Sensitivity

The value of tensor rank r (i.e., the length of embeddings) plays a
vital role in tensor completion. In Figure 10, we plot the performance
of our model when the value of rank r varies. On all our three
datasets, we see that a large value of r leads to significant gains in
performance. Note that r is limited by the number of units along the
time dimension (12 when month is used), K, which is much smaller
than I and J . Due to the limitation of eigenvectors computation
process, the maximum of r is 10 (less than K − 1). We can see
that r = 10 gives the better performance than smaller values, since
it allows TCSS to capture more factors.

The value of λ indicates the weight of the social Hausdorff distance
in the loss function L = λL1 + L2. Figure 11 shows the effect of
the regularization weight λ of the social-homophily loss head on the
overall recommendation performance. We can see that as λ increases
towards 0.01, the model performance improves in terms of all metrics
on all three datasets; but the performance degrades as λ increases
further to 1. It indicates that there exists a tradeoff in weighing the
social Hausdorff distance loss head with the least-squares error.
K. A Case Study

We next conduct a study case to investigate the recommendation
scores from TCSS. Figure 12 shows the locations of all POIs in green.
For a randomly selected user i, we sort his/her recommendation
scores at a specific time k. The red points in Figure 12(a) highlight
the top-100 scored POIs, and we can see that the POIs are clustered
in small areas, which verifies the presence of Tobler’s first law of
geography in recommendation. As shown in Figure 12(b), the top-
200 POIs are distributed in a much larger area, meaning that we can
find a diverse set of recommended POIs as we move down the list.

Top-100 POIs

All other POIs

(a) Top 100

(b) Top 200

Fig. 12. POIs with High Scores
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We also investigate how the scores vary along the time dimension
for different methods. As shown in Figure 13(a), for a randomly
selected observed entry (i, j, k), we fix User i and POI j and compute
the scores along the time dimension. Compared with baselines, our
model leads higher scores though the score values vary over time. For
a randomly selected negative (i.e., unobserved) entry, Figure 13(b)
shows that the scores predicted by TCSS are near 0 as expected.
In summary, our model associates a possible check-in with a higher
score than baselines and assigns a negative entry with a low score in
the meanwhile, which verifies its recommendation accuracy.

VI. CONCLUSION

In this paper, we studied the tensor completion problem for
timely POI recommendation in an LBSN. We proposed a tensor
completion model called TCSS to take advantage of the social-spatial
side information to enforce social homophily and Tobler’s first law
of geography. TCSS adopts many techniques to improve recom-
mendation quality, including a spectral based factor initialization, a
novel social Hausdorff distance head to encode the social-spatial side
information, and a smart way to reduce the computational cost of
least-squares error over the whole data, the latter of which improves
model stability compared with negative sampling. The effectiveness
of these techniques has been empirically verified.
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