
2021 IEEE International Conference on Big Data (Big Data)

636

Node-Polysemy Aware Recommendation by
Matrix Completion with Side Information

Bo Hui
Auburn University

bohui@auburn.edu

Da Yan
University of Alabama at Birmingham

yanda@uab.edu

Wei-Shinn Ku
Auburn University

weishinn@auburn.edu

Abstract—Matrix completion is a well-known approach for
recommender systems. It predicts the values of the missing entries
in a sparse user-item interaction matrix, based on the low-rank
structure of the rating matrix. However, existing matrix comple-
tion methods do not take node polysemy and side information of
social relationships into consideration, which can otherwise fur-
ther improve the performance. In this paper, we propose a novel
matrix completion method that employs both users’ friendships
and rating entries to predict the missing values in a user-item
matrix. Our approach adopts a graph-based modeling where
nodes are users and items, and two types of edges are considered:
user friendships and user-item interactions. Polysemy-aware node
features are extracted from this heterogeneous graph through
a graph convolution network by considering the multifaceted
factors for edge formation, which are then connected to a hybrid
loss function with two heads: (1) a social-homophily head to
address node polysemy, and (2) an error head for user-item
rating regression. The latter is formulated on all matrix entries to
combat the sensitivity of negative sampling of the vast majority of
missing entries during training, with a smart technique to reduce
the time complexity. Extensive experiments over real datasets
verify that our model outperforms the state-of-the-art matrix
completion methods by a significant margin.

Index Terms—Matrix Completion; Node Polysemy; Social
Networks; Recommender Systems; PU Learning

I. INTRODUCTION

With the increasing popularity of e-commerce and social
media platforms, recommender systems have drawn much
attention. At the core of recommendation is the user-item
rating matrix, where the items can be POIs, products, movies,
etc. As each user can only interact with a small subset of
items, the user-item matrix is generally sparse. Moreover, since
users expressing similar ratings on multiple items tend to have
similar interests for the new product, and items associated
with users sharing similar interests also tend to be similar, the
rating matrix exhibits a low-rank. Based on this idea, matrix
completion algorithms have achieved great success [6].

However, existing matrix completion methods have not
considered the node polysemy, which is an analogy to the
property possessed by words in natural language. Intuitively,
a user or item may belong to different factors representing
different communities or interest groups at the same time.
Figure 1(a) illustrates the user polysemy, where Bob and Tom
are football fans and are interested in products like football and
jersey, while Tom and Alice are both employees of a company
in need of buying suits and ties. Note that action (Tom, Suit)
is generated by factor Job, while (Tom, football) is generated
by factor Football, so we can give Tom a polysemy vector

Football Group

Job Group

La La Land

Fans of Romantic Movies

Fans of Musical Movies

Fans of Emma Stone

(a) User Factors

Tom

Bob

Alice

(b) Movie Factors

Fig. 1. Polysemy of Users and Items

(e.g., Job = 60%, Football = 40%). Likewise, Figure 1(b)
illustrates the item polysemy, where “La La Land” is a musical
movie that tells a romantic love story starring Emma Stone,
so three communities including fans of romantic movies, fans
of musical movies, and fans of Emma Stone will watch “La
La Land.” If the three communities are all the factors, then
“La La Land” has a polysemy vector (e.g., 1/3, 1/3, 1/3).
Intuitively, whether a user-item interaction happens or not can
be regarded as a mixture model of K factors, where one factor
will generate the interaction but with a certain probability. In
this paper, we design a social-homophily loss head to elicit
these factors and address the node-polysemy.

Modern content sharing services are often accompa-
nied with a social network where users can become
friends/followers and create/subscribe groups, giving rise to
the new term “social recommender systems” [36]. Exam-
ples include YouTube [3] (video sharing), Gowalla [1] and
Foursquare (check-ins), LibraryThing (book reviews) and
Epinions (consumer reviews) [2]. Compared with traditional
recommender systems, social relations provide an indepen-
dent source to improve recommendation beyond the ratings,
since a user’s preference is similar to or influenced by their
socially connected friends. The rationale behind this assump-
tion can be explained by social correlation theories such as
homophily [28] and social influence [27]. Existing works
on social recommender systems extend low-rank factorization
with social co-factorization [25], [34], social ensemble [24],
[35], or social regularization [19], [22], [26]. Following the
success of deep learning in CV and NLP, research on neural
recommender systems aim to apply neural building blocks to
model user-item interactions [43]. These works [37], [40] aim

 978-1-6654-3902-2/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-3

90
2-

2/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

25
89

.2
02

1.
96

72
00

0

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 11,2022 at 01:32:08 UTC from IEEE Xplore. Restrictions apply.

637

at an end-to-end training to avoid user feature engineering, by
directly learning the black-box user and item embeddings for
link prediction. However, they do not utilize the social network
as side information for recommendation.

In this paper, we propose a new model called NP-MC
(Node-Polysemy Aware Matrix Completion) which models
both users’ friendships and rating entries as edge links in a
heterogeneous graph, to learn for each user or item, a K-
dimensional polysemy vector of “soft” involvement proba-
bilities to be in K latent social community factors. Specif-
ically, user and item embeddings are translated by a graph
convolution network (GCN) into their polysemy vectors. NP-
MC integrates the novel social-homophily loss head with a
rating regression loss head to train the model. The optimized
polysemy vectors are used to predict unseen user-item ratings.

Another challenge lies in the sparsity of the rating matrix,
where only a small fraction of user-item entries are filled with
observed positive data of interactions, while most entries are
unlabeled. Previous works rely on negative sampling over the
unlabeled entries to compute the rating regression loss for
training, but sampling is biased and previous studies [7], [38]
found that the performance of negative sampling is not robust,
and may not converge to the optimal ranking performance
regardless of how many update steps have been taken [39].
We, therefore, formulate another regression error head over
all the positive and unlabeled user-item entries, with a smart
technique to combat the high time complexity.

We also carefully initialize the initial user and item embed-
dings using a spectral method to achieve fast convergence and
avoid training from getting trapped in undesirable stationary
points. Our main contributions are summarized as follows:
• We extract polysemy vectors of users and items from a

heterogeneous graph considering both user-item interac-
tions and the side information of user friendships.

• We design a node-polysemy aware social-homophily loss
head by minimizing the number of cross-factor friend-
ship/interaction edges, to learn polysemy vectors.

• We bypass the weaknesses of negative sampling in a
sparse user-item matrix, by formulating the rating regres-
sion head over all user-item entries.

• We carefully initialize user and item embeddings using a
spectral method to improve training performance.

• We combine the two loss heads to train the model and
extensive experiments verified that NP-MC outperforms
existing methods by a significant margin.

II. MODEL DESIGN WITH NODE POLYSEMY

A. Problem Formulation
We consider a recommender system with n users and m

items, and we denote the set of users (resp. items) by U (resp.
V). Since each user can only afford to interact with a small
subset of all items, rating matrix R is highly sparse with many
missing values, as illustrated by the matrix shown at the lower
left corner of Figure 2. We also denote the adjacency matrix
of the social network by A where element Aui,uj = 1 if
friendship link (ui, uj) exists, and 0 otherwise.

Given the observed rating matrix R and the accompanied
social network with adjacency matrix A, our goal is to learn
a user (resp. item) embedding matrix U ∈ Rn×d (resp. V ∈
Rm×d) where each row ui (resp. vi) corresponds to the d-
dimensional embedding vector of User ui ∈ U (resp. Item
vi ∈ V). Once U and V are learned, for an unobserved entry
Rui,vj (e.g., Ru1,v4 in Figure 2), we can estimate the rating by
User ui over Item vj as the inner product R̂ui,vj

= 〈u̇i, v̇j〉
of the embedding vectors ui and vj .

B. Model Overview

Step 1 is polysemy vector extraction, which learns the
polysemy vectors for all users and items:

P = [u̇1, . . . , u̇n, v̇1, . . . , v̇m]T ∈ R(n+m)×K (1)

with u̇i ∈ RK (resp. v̇j ∈ RK) being the K-dimensional
polysemy vector of User ui (resp. Item vj). We learn P as a
probability matrix. Formally, the k-th value of user polysemy
vector u̇i, denoted by u̇i[k], is defined as the probability that
User ui interacts with an item because of Factor gk (e.g.,
a user community in Figure 1(a)). It is common to assume
independence of users and items in the user-item interactions
in the literature [8], [21], so

Pr(Rui,vj | gk) , Pr{Rui,vj | gk}
= Pr(Rui,v | gk)× Pr(Ru,vj

| gk)

= u̇i[k]× v̇j [k],

and by marginalizing out the variable gk assuming a uniform
prior probability over factors (i.e., Pr(gk) = const.), we have

Pr(Rui,vj) =

K∑
k=1

Pr(Rui,vj
| gk)× Pr(gk)

= const.×
K∑

k=1

(
u̇i[k]× v̇j [k]

)
∝ u̇T

i · v̇j , 〈u̇i, v̇j〉. (2)

Assume that Ru,v is an indicator variable that equals 1 if u
interacts with v, and 0 otherwise. Then, we have E(Ru,v) =
Pr(Ru,v) ∝ 〈u̇, v̇〉 according to Eq (2), justifying our design
of predicting the rating estimate R̂u,v as the inner product of
the polysemy vectors of User u and Item v, to find top-t item.
Step 2 is optimization, which takes the extracted polysemy
matrix P and computes a social-homophily loss Lhomo (to
be detailed in Section III) and a rating error loss Lrate =∑

u∈U
∑

v∈V (Ru,v − R̂u,v)2 (the actual Lrate is weighted
but we omit the weights in this section for simplicity). The
final loss objective is computed as L = Lrate + λ · Lhomo

to minimize both loss heads, where λ is a hyperparameter to
adjust the importance of Lhomo w.r.t. Lrate.

C. Initialization of Embedding Matrices.
Carefully-designed initialization of the user and item em-

bedding vectors is important for achieving fast convergence
and avoiding getting trapped in undesirable stationary points
(e.g., saddle points). Motivated by prior approaches developed
for covariance estimation with missing data [23], [29], we

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 11,2022 at 01:32:08 UTC from IEEE Xplore. Restrictions apply.

638

Social Graph

? ?

? ? ?

? ? ?

? ?

Observed Rating Matrix !

? ?u1

u2

u3

u4

u5

v1 v2 v3 v4

u1

u1

u2

u3

u4

u5

u3

u2

u4

u5

v1

v2

v3

v4

User Embedding

Matrix U

Item Embedding

Matrix V

Initialization by Spectral Method

G
C

N

u1

u2

u3

u4

u5

u1

u2

u3

u4

u5

v1

v2

v3

v4

v1

v2

v3

v4

g1 g2 g3 g4 g5

Polysemy Matrix P

Social-Homophily Head

Rating Regression Head

Lhomo

Lrate

L = Lrate + λ ·Lhomo

PU Learning

Rating Prediction

u1

v4
u1

g1 g2 g3 g4 g5

v4

"!#$,&' .? inner product

Fig. 2. NP-MC Model Overview

propose to explore the principal subspace of RRT and RTR,
which can be considered as the covariance metrics of users
and items, respectively. However, the diagonal entries of RRT

and RTR bear too much influence on the principal directions,
so we follow [4] to zero out all diagonal components to
operate on two new matrices denoted by Poff-diag(RRT) and
Poff-diag(RTR). Specifically, we initialize U ∈ Rn×d as an
orthonormal matrix whose columns are the top-d eigenvectors
of Poff-diag(RRT) ∈ Rn×n, and we initialize V ∈ Rm×d as an
orthonormal matrix whose columns are the top-d eigenvectors
of Poff-diag(RTR) ∈ Rm×m.

D. Polysemy Vector Extraction by Heterogeneous GCN
We fuse the social graph and the user-item matrix into

a heterogenous graph G = (N , E), where N = U ∪ V is
the set of nodes representing users and items, and E consists
of all user friendship links (ui, uj) and observed user-item
interactions (ui, vj) (regarded as a bipartite graph). The initial
node features are the rows of U and V, i.e., the initial user and
item embeddings obtained by our spectral-based initialization.

We leverage the GCN model of [20] to extract node pol-
ysemy features (i.e., rows of P) from the above-mentioned
heterogenous graph G, where the input node features are node
embeddings given by the rows of U and V. Let us denote
the adjacency matrix of G by B, and denote the input feature
matrix H(0) = [U,V]T , i.e., the vertical stacking of U and
V. Then, we compute P as:

H(`+1) = σ(D̃−
1
2 B̃D̃−

1
2 H(`)W(`)), (3)

P = softmax(FC(H(L))) ∈ R(n+m)×K , (4)

where FC(.) is a fully-connected layer. Recall that each row
of P, is essentially a probability distribution of interaction
attribution over the K user communities, so softmax(.)
ensures that the probabilities in every row sum to 1.

III. THE SOCIAL-HOMOPHILY LOSS HEAD

Formally, given the heterogenous graph G = (N , E), let us
denote each node in N by ni, rather than by ui or vi since
the node can either be a user or an item. We also use ni ∈ gk
to denote the event that ni is in community gk.

We use I(e) to denote an indicator variable: I(e) = 1 if
event e occurs, and 0 otherwise. Let Nk be the number of
cross-factor edges that are adjacent to gk, we have:

E(Nk) = E

(∑
(ni,nj)∈E

I(ni ∈ gk, nj 6∈ gk)

)
=

∑
(ni,nj)∈E

E(I(ni ∈ gk, nj 6∈ gk))

=
∑

(ni,nj)∈E

Pr(ni ∈ gk, nj 6∈ gk)

=
∑

(ni,nj)∈E

Pi,k · (1−Pj,k) (5)

= reduce sum
(
(P:,k(1−P:,k)T)�B

)
, (6)

where (1) the outer product P:,k(1−P:,k)T ∈ R(n+m)×(n+m)

gives a matrix with entries Pi,k · (1 − Pj,k), (2) �B is an
element-wise product with the adjacency matrix B of the
heterogeneous graph G to zero out elements in the outer
product where (ni, nj) /∈ E , and (3) reduce sum(.) computes
the sum of all matrix elements, so it is not difficult to see that
Eq (6) equals Eq (5) but in the form of matrix algebra.

Note that the total number of cross-factor edges in G can be
computed as N = 1

2

∑K
k=1Nk where factor 1

2 is because each
edge (ni, nj) with ni ∈ gk1 and ni ∈ gk2 is counted twice,
once in Nk1

and once in Nk2
. Our objective is to minimize

E(N) = 1
2

∑K
k=1E(Nk), and by using Eq (6):

E(N) =
1

2
· reduce sum((P(1−P)T)�B), (7)

which be derived by observing that

P · (1−P)T

= [P:,1, . . . ,P:,K] · [(1−P:,1), . . . , (1−P:,K)]T

=

K∑
k=1

P:,k · (1−P:,k)T .

Directly minimizing Eq (7) is problematic, since this factor
attribution scheme tends to generate a small factor gk that
is disconnected from the remaining part of G through a few

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 11,2022 at 01:32:08 UTC from IEEE Xplore. Restrictions apply.

639

low-degree boundary nodes ni. Specifically, such a factor gk
only contains a small number of nodes, with a few low-
degree boundary nodes ni ∈ gk so that the number of edges
(ni, nj) (nj 6∈ gk) would be small. Borrowing ideas from
the concept of normalized cut which is based on the graph
conductance [33], [44], we normalize Nk (i.e., the expected
number of nodes in gk) by the sum of the degrees of all nodes
in gk, denoted by:

Dk =
∑

ni∈gk

deg(ni), (8)

where we use deg(ni) to denote the degree of node ni (i.e.,
the number of edges adjacent to ni). In our problem setting,
due to the node polysemy, node involvement in the factors are
soft (or, probabilistic), so we minimize the objective below:

Lnorm =

K∑
k=1

E[Nk]

E[Dk]
. (9)

E(Dk) = E

(∑
ni∈N

(
Ii,k · deg(ni)

))
=

∑
ni∈N

(
Pi,k · deg(ni)

)
= PT

:,k ·∆ = 〈P:,k,∆〉, (10)

where ∆ = [deg(n1), . . . ,deg(n|N |)]
T is a column vector of

node degrees in G. Let us define:

Γ = PT∆ ∈ RK ,

where element Γk = PT
:,k · ∆ = E(Dk). Therefore, Γ =

[E(D1), . . . , E(DK)]T , so using Eq (6), we have:

Lnorm = reduce sum
((

(P� Γ)(1−P)T
)
�B

)
. (11)

Since there are |N | nodes in G, and there are K factors, we
would like each factor to impact around |N |/K nodes. Note
that the expected number of nodes in factor gk is given by∑|N |

i=1 Pi,k, so we add a factor-balancing regularization term

K∑
k=1

 |N |∑
i=1

Pi,k −
|N |
K

2

= reduce sum

(
1TP	 |N |

K

)
,

where 	 is element-wise subtraction, to Lnorm to obtain our
final loss function for the social-homophily head:

Lhomo = reduce sum
((

(P� Γ)(1−P)T
)
�B

)
+ reduce sum

(
1TP	 |N |

K

)
. (12)

IV. THE RATING ERROR LOSS HEAD FOR PU LEARNING

One key feature of the user-item matrix R is its sparsity,
where the number of unobserved entries is much larger than
that of the observed entry. Existing works mainly use negative
sampling to sample random unlabeled entries as negative
data [9], [15]. To avoid the bias caused by sampling, we
formulate our rating regression head over all user-item entries.
Specifically, to account for class imbalance, we define an entry
(aka. sample) weight as follows:

wu,v =

{
w+, if entry (u, v) ∈ R is positive
w−, if entry (u, v) ∈ R is unlabeled

Since there are many more unlabeled samples than positive
ones, we usually set w+ to be much larger than w− so that
a positive sample is as important as many unlabeled samples.
Formally, we adopt the weighted SSE loss function below:

Lrate =
∑
u∈U

∑
v∈V

(
wu,v · (Ru,v − R̂u,v)2

)
. (13)

Directly computing this loss function suffers from a high
time complexity of O(n × m × K). To reduce the cost, we
factorize (Ru,v − R̂u,v)2 and drop the constant term wu,v ·
R2

u,v , to rewrite the loss function as:

Lrate =
∑
u∈U

∑
v∈V

(
wu,v · R̂2

u,v − 2 · wu,v · R̂u,v ·Ru,v

)
=

∑
(u,v)∈Ω+

(
w+ · R̂2

u,v − 2 · w+ · R̂u,v ·Ru,v

)
+

∑
(u,v)∈Ω−

(
w− · R̂2

u,v − 2 · w− · R̂u,v · 0
)

=
∑

(u,v)∈Ω+

(
(w+ − w−)R̂2

u,v − 2w+R̂u,vRu,v

)
+ w− ·

∑
u∈U

∑
v∈V

R̂2
u,v, (14)

where Ω+ (resp. Ω−) is the set of all positive (resp. unlabeled)
entries in R. In Eq (14), the first term is computed over
the small number of positive entries and is thus efficient
to compute. The bottleneck lies in computing the second
term which is over all entries of R. By replacing R̂u,v ,∑

u∈U
∑

v∈V R̂2
u,v in the second term of Eq (14) can be

rewritten as follows:∑
u∈U

∑
v∈V

R̂2
u,v =

∑
u∈U

∑
v∈V

(
R̂u,v × R̂u,v

)
=

n∑
i=1

m∑
j=1

(
K∑

k1=1

(
u̇i,k1

× v̇j,k1

)
×

K∑
k2=1

(
u̇i,k2 × v̇j,k2

))

=

n∑
i=1

m∑
j=1

(
K∑

k1=1

K∑
k2=1

(
u̇i,k1

× u̇i,k2

)
×
(
v̇j,k1

× v̇j,k2

))

=

K∑
k1=1

K∑
k2=1

(
n∑

i=1

(
u̇i,k1

× u̇i,k2

)
×

m∑
j=1

(
v̇j,k1

× v̇j,k2

))
,

(15)

where u̇ik and v̇jk are entries of P.
This reduces the time cost of computing the second term

of Eq (14) from O(n×m×K) to O((n+m)×K2), since
computing

∑n
i=1(u̇ik1×u̇ik2) takes O(n) time and computing∑m

j=1(v̇jk1
× v̇jk2

) takes O(m) time. Since n,m � K, the
time cost of computing Lrate now becomes more tractable.

V. EXPERIMENTS

Experiment Setup. Three real-world recommendation sys-
tem datasets are used in our experiments: LibraryThing [2],
Epinions [2], Gowalla [1]. We compare NP-MC with the
following state-of-the-art: SVT [5], PureSVD [10], NCF [15],

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 11,2022 at 01:32:08 UTC from IEEE Xplore. Restrictions apply.

640

TABLE I
PERFORMANCE COMPARISON OF THE VARIOUS MODELS ON THE THREE DATASETS

Model LibraryThing Epinions Gowalla
Hit@10 MRR NDCG@10 Hit@10 MRR NDCG@10 Hit@10 MRR NDCG@10

SVT 0.2254 0.1100 0.1223 0.1875 0.0982 0.1050 0.3455 0.1961 0.2173
PureSVD 0.3495 0.1839 0.2066 0.1731 0.1023 0.1036 0.7655 0.4705 0.5354

NCF 0.2699 0.1272 0.1558 0.1576 0.0953 0.0874 0.7756 0.4003 0.4461
PinSage 0.3176 0.1329 0.1566 0.1762 0.0899 0.0949 0.5751 0.2272 0.2890

sRGCNN 0.2963 0.1559 0.1721 0.2044 0.1109 0.1162 0.7306 0.4644 0.4627
GC-MC 0.4402 0.2227 0.2576 0.2254 0.1249 0.1334 0.7717 0.4728 0.4981

Random-I 0.4742 0.2367 0.2777 0.1995 0.1056 0.1123 0.8851 0.4709 0.5647
One-Hot 0.4466 0.2354 0.2710 0.1509 0.0844 0.0849 0.8414 0.4153 0.5102

NS 0.4409 0.2195 0.2553 0.2231 0.1183 0.1292 0.8078 0.4129 0.5052
NP-MC 0.5245 0.2722 0.3174 0.2872 0.1495 0.1683 0.9086 0.4818 0.5801

PinSage [40], sRGCNN [30], GC-MC [37]. Note that graph-
based models including Pinsage, sRGCNN and GC-MC are
adopted to take the heterogeneous graph with social network
as input for fair comparison. Three commonly used metrics for
recommender systems are adopted: (1) hit ratio (HR), (2) mean
reciprocal rank (MRR) and (3) normalized discounted cumula-
tive gain (NDCG). In the experiments, we use the default value
λ = 0.1 in our loss L = Lrate + λ · Lhomo. We use d = 200
dimensions for user and item embeddings u and v, which
are initialized with the top-200 eigenvectors of Poff-diag(RRT)
and Poff-diag(RTR), respectively. Our GCN for computing
the polysemy matrix P has two graph convolution layers,
with the number of neural units in hidden layer and output
layer being 100 and 50, respectively. The default number of
factors (i.e., polysemy vector length) is K = 30. We set the
weight of positive (resp. negative) samples as w+ = 0.9 (resp.
w− = 0.1), respectively.
Model Performance Comparison. Table I compares the
performance of our NP-MC model with the selected repre-
sentative recommendation models. It is clear from Table I that
NP-MC achieves the best performance and outperforms the
second best (which is GC-MC) by a large margin in terms
of all performance metrics. This is because NP-MC is the
only method that considers node polysemy while utilizing the
social network information. It demonstrates the effectiveness
of introducing node polysemy to leverage the side information
of social relationships to solve the matrix completion problem
for recommendation. We also observe that the performance
tends to be better when the sparsity of user-item matrix is low.
For example, the sparsity of the matrix in Gowalla is 99.790%,
which is much lower than that in Librarything and Epinions
(99.996%), so we have higher Hit@10, MRR and NDCG@10
on Gowalla. It implies that with more entries being observed,
the recommendation performance can be further improved.
Ablation Study. (1) Initialization. To verify the effectiveness
of our spectral method for initializing U and V, we replace
it with (i) naı̈ve Random-I and (ii) One-Hot. In particular,
the naı̈ve Random-I associates each node with a random
vector; while the one-hot encoding indexes each node with
its corresponding position being 1 and others being 0, and
this high-dimensional encoding is then converted to 200-
dimensions using an embedding layer. As Table I shows,
replacing our spectral-based initialization with either of the

two methods degrades the performance of recommendation.
(4) Learning on Whole Data. Instead of learning on the whole
user-item matrix (including all unlabeled entries), we follow
the strategy of negative sampling in [15] to randomly sample
some negative entries, where the number of negative samples
equals to that of the observed positive entries. We then redefine
the rating error loss function over all the observed entries
and sampled negative entries. This variant is marked as “NS”.
Note that our PU-learning strategy on the whole data clearly
outperforms negative sampling.

We also compare the training time of our model to two
variants: (i) negative sampling and (ii) computing L2 directly
by Eq (13), the time complexity of which is O(n ×m ×K)
which is expensive. Note that our rearrangement method
reduces the complexity to O((n+m)×K2). Table II shows
a comparison of training time. We observe many orders of
magnitude speedup in the training of our method over the
baseline that directly computes Eq (13). Table II also shows
that our training time is only around 65% of that of negative
sampling, while being more accurate as Table I has indicated.
Hyperparameter Sensitivity. In this set of experiments, we
tune the value of λ (in L = Lrate+λ ·Lhomo) and the number
of polysemy factors K to investigate their performance effects.
(1) Varying λ. Figure 3 shows the effect of the weight λ for
social-homophily loss head on the overall recommendation
performance. We can see that as λ increases till 0.1, the model
performance improves in all metrics; but the performance de-
grades as λ increases further to 1. This shows that there exists
a tradeoff in weighing the social-homophily regularization loss
head over the regular rating error loss.
(2) Varying K. Lastly, we report the effect of factor number
parameter K. Figure 4 shows the performance of our model
as K varies. For all our three datasets, we see that the optimal
K is around 30 to 40. We find that when K > 40, the
performance of our model starts to degrade. This shows that
the number of latent polysemy factors is around 30 to 40 in
real applications, where our model has the least inductive bias.

VI. RELATED WORK

Matrix completion has been extensively studied in the
context of recommender systems. With partial observations,
the desired low-rank matrix can be recovered by solving a rank
minimization problem. Since the rank minimization problem

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 11,2022 at 01:32:08 UTC from IEEE Xplore. Restrictions apply.

641

TABLE II
TRAINING TIME (FOR ONE EPOCH)

Methods LibraryThing Epinions Gowalla
Computing L2 Directly by Eq (13) 41,902.10 ms 30,095.61 ms 37,625.27 ms

Negative Sampling 40.18 ms 11.76 ms 255.79 ms
Our Method by Eq (14) and Eq (15) 23.68 ms 7.84 ms 172.84 ms

 0.1

 0.3

 0.5

 0.7

 0.9

0 0.001 0.01 0.1 1

H
it
@

1
0

λ

LibraryThing
Enipions
Gowalla

(a) Hit@10

 0

 0.2

 0.4

 0.6

0 0.001 0.01 0.1 1

M
R

R

λ

LibraryThing
Enipions
Gowalla

(b) MRR

 0

 0.2

 0.4

 0.6

0 0.001 0.01 0.1 1

N
D

C
G
@

1
0

λ

LibraryThing
Enipions
Gowalla

(c) NDCG@10

Fig. 3. Varying λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

H
it
@

1
0

K

LibraryThing
Epinions
Gowalla

(a) Hit@10

 0

 0.2

 0.4

 0.6

 10 20 30 40 50

M
R

R

K

LibraryThing
Epinions
Gowalla

(b) MRR

 0

 0.2

 0.4

 0.6

 10 20 30 40 50

N
D

C
G
@

1
0

K

LibraryThing
Epinions
Gowalla

(c) NDCG@10

Fig. 4. Varying K

is NP-hard [32] and hence intractable when the dimensions are
large, a common trick is to replace the non-convex objective
function with its convex surrogate, allowing efficient convex
optimization. For example, the nuclear norm is a convex
surrogate widely used in various methods such as SVT [5].
See [31] for a comprehension survey of these methods.

In recommender systems, a common approach to model the
interaction between a user-item pair (u, v) is to compute the
inner product of their latent features vectors [16]. To capture
the complicated correlations between user and item that can be
non-linear, recent works learn such interactions with a neural
network such as in NCF [15]. The recent popularity of Graph
neural networks [20], [41] has been widely used in various
tasks [17], [18] It has also been considered to operate on the
user-item interaction graph. Examples include PinSage [40],
sRGCNN [30] and GC-MC [37] that we have reviewed and
compared in Section V, among a few others [14], [42], [46].

Social network information is proven to benefit the per-
formance of item recommendation [26], especially the social
media is widely used in people’s daily life. Conventional
matrix completion methods either co-factorize the user-item
matrix and user-user social relation matrix or add regulariza-
tion terms to force a user’s preference to be closer to his/her
friends. See [36] for a comprehensive survey of these methods.
GraphRec [12] encodes both user-item interactions and social
relations with a graph neural network framework for social
recommendations. However, it fails to integrate user-item
interactions and social relations as a heterogeneous graph and

ignores the polysemy nature of nodes. A following work [13]
further considers an item-item graph and proposes an attention
mechanism to enhance the recommendation. Among other
works, TASRec predicts the next item that is most likely to
be clicked by an anonymous user, based on the historical
clicking sequence. STGN [45] uses a long-short term memory
network to capture the spatio-temporal relationships between
successive checkins for POI recommendation.

Besides collaborative filtering by matrix factorization,
content-based filtering is another common approach for rec-
ommendation. Content-based recommender systems associate
each user or item with real-valued attributes, such as text
and image features, and user profiles. Item-based k-nearest-
neighbor method [11] is the most representative approach to
measure the similarity of two items. However, the performance
of content-based methods relies on the quality of user and item
features, and the content information is not always available.

VII. CONCLUSION

We proposed a neural recommendation model called NP-
MC to explore social homophily with node polysemy. NP-
MC utilizes social graph as side information and uses graph
convolutional network to generate multi-faceted polysemy
feature vectors for users and items, which are used to compute
two loss heads: a social-homephily loss head and a rating
regression loss head. Extensive experiments verified that NP-
MC outperforms existing matrix completion methods by a
large margin on various datasets.

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 11,2022 at 01:32:08 UTC from IEEE Xplore. Restrictions apply.

642

REFERENCES

[1] Location-Based Social Network Data. http://www.yongliu.org/datasets/.
[2] Social Recommendation Data. https://cseweb.ucsd.edu/∼jmcauley/

datasets.html#social data.
[3] YouTube Social Network. https://snap.stanford.edu/data/com-Youtube.

html.
[4] C. Cai, G. Li, H. V. Poor, and Y. Chen. Nonconvex low-rank symmetric

tensor completion from noisy data. CoRR, abs/1911.04436, 2019.
[5] J. Cai, E. J. Candès, and Z. Shen. A singular value thresholding

algorithm for matrix completion. SIAM J. Optim., 20(4):1956–1982,
2010.

[6] E. J. Candès and B. Recht. Exact matrix completion via convex
optimization. Commun. ACM, 55(6):111–119, 2012.

[7] C. Chen, M. Zhang, C. Wang, W. Ma, M. Li, Y. Liu, and S. Ma. An effi-
cient adaptive transfer neural network for social-aware recommendation.
In SIGIR, pages 225–234. ACM, 2019.

[8] C. Chen, M. Zhang, Y. Zhang, W. Ma, Y. Liu, and S. Ma. Efficient
heterogeneous collaborative filtering without negative sampling for rec-
ommendation. In AAAI, pages 19–26. AAAI Press, 2020.

[9] H. Chen and J. Li. Neural tensor model for learning multi-aspect factors
in recommender systems. In IJCAI, pages 2449–2455. ijcai.org, 2020.

[10] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender
algorithms on top-n recommendation tasks. In X. Amatriain, M. Torrens,
P. Resnick, and M. Zanker, editors, RecSys, pages 39–46. ACM, 2010.

[11] M. Deshpande and G. Karypis. Item-based top-N recommendation
algorithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.

[12] W. Fan, Y. Ma, Q. Li, Y. He, Y. E. Zhao, J. Tang, and D. Yin. Graph
neural networks for social recommendation. In L. Liu, R. W. White,
A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates, and L. Zia,
editors, The World Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019, pages 417–426. ACM, 2019.

[13] W. Fan, Y. Ma, Q. Li, J. Wang, G. Cai, J. Tang, and D. Yin. A
graph neural network framework for social recommendations. IEEE
Transactions on Knowledge and Data Engineering, pages 1–1, 2020.

[14] J. S. Hartford, D. R. Graham, K. Leyton-Brown, and S. Ravanbakhsh.
Deep models of interactions across sets. In J. G. Dy and A. Krause, ed-
itors, ICML, volume 80 of Proceedings of Machine Learning Research,
pages 1914–1923. PMLR, 2018.

[15] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural
collaborative filtering. In WWW, pages 173–182. ACM, 2017.

[16] X. He, H. Zhang, M. Kan, and T. Chua. Fast matrix factorization
for online recommendation with implicit feedback. In R. Perego,
F. Sebastiani, J. A. Aslam, I. Ruthven, and J. Zobel, editors, SIGIR,
pages 549–558. ACM, 2016.

[17] B. Hui, H. Chen, D. Yan, and W. Ku. EDGE: entity-diffusion gaussian
ensemble for interpretable tweet geolocation prediction. In 37th IEEE
International Conference on Data Engineering, ICDE 2021, Chania,
Greece, April 19-22, 2021, pages 1092–1103. IEEE, 2021.

[18] B. Hui, D. Yan, W. Ku, and W. Wang. Predicting economic growth
by region embedding: A multigraph convolutional network approach.
In M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux,
editors, CIKM ’20: The 29th ACM International Conference on Infor-
mation and Knowledge Management, Virtual Event, Ireland, October
19-23, 2020, pages 555–564. ACM, 2020.

[19] M. Jamali and M. Ester. A matrix factorization technique with trust
propagation for recommendation in social networks. In RecSys, pages
135–142. ACM, 2010.

[20] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In ICLR (Poster). OpenReview.net, 2017.

[21] D. Liang, L. Charlin, J. McInerney, and D. M. Blei. Modeling user
exposure in recommendation. In WWW, pages 951–961. ACM, 2016.

[22] T. Lin, C. Gao, and Y. Li. Recommender systems with characterized
social regularization. In CIKM, pages 1767–1770. ACM, 2018.

[23] K. Lounici et al. High-dimensional covariance matrix estimation with
missing observations. Bernoulli, 20(3):1029–1058, 2014.

[24] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social
trust ensemble. In SIGIR, pages 203–210. ACM, 2009.

[25] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation
using probabilistic matrix factorization. In CIKM, pages 931–940. ACM,
2008.

[26] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems
with social regularization. In WSDM, pages 287–296. ACM, 2011.

[27] P. V. Marsden and N. E. Friedkin. Network studies of social influence.
Sociological Methods & Research, 22(1):127–151, 1993.

[28] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather:
Homophily in social networks. Annual review of sociology, 27(1):415–
444, 2001.

[29] A. Montanari and N. Sun. Spectral algorithms for tensor completion.
Communications on Pure and Applied Mathematics, 71(11):2381–2425,
2018.

[30] F. Monti, M. M. Bronstein, and X. Bresson. Geometric matrix comple-
tion with recurrent multi-graph neural networks. In I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, editors, NIPS, pages 3697–3707, 2017.

[31] L. T. Nguyen, J. Kim, and B. Shim. Low-rank matrix completion: A
contemporary survey. IEEE Access, 7:94215–94237, 2019.

[32] B. Recht, W. Xu, and B. Hassibi. Necessary and sufficient conditions for
success of the nuclear norm heuristic for rank minimization. In CDC,
pages 3065–3070. IEEE, 2008.

[33] J. Shi and J. Malik. Normalized cuts and image segmentation. In CVPR,
pages 731–737. IEEE Computer Society, 1997.

[34] J. Tang, H. Gao, X. Hu, and H. Liu. Exploiting homophily effect for
trust prediction. In WSDM, pages 53–62. ACM, 2013.

[35] J. Tang, H. Gao, and H. Liu. mtrust: discerning multi-faceted trust in a
connected world. In WSDM, pages 93–102. ACM, 2012.

[36] J. Tang, X. Hu, and H. Liu. Social recommendation: a review. Soc.
Netw. Anal. Min., 3(4):1113–1133, 2013.

[37] R. van den Berg, T. N. Kipf, and M. Welling. Graph convolutional
matrix completion. CoRR, abs/1706.02263, 2017.

[38] M. Wang, M. Gong, X. Zheng, and K. Zhang. Modeling dynamic
missingness of implicit feedback for recommendation. In NeurIPS, pages
6670–6679, 2018.

[39] X. Xin, F. Yuan, X. He, and J. M. Jose. Batch IS NOT heavy: Learning
word representations from all samples. In ACL (1), pages 1853–1862.
Association for Computational Linguistics, 2018.

[40] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec. Graph convolutional neural networks for web-scale rec-
ommender systems. In KDD, pages 974–983. ACM, 2018.

[41] J. Zhang, B. Hui, P. Harn, M. Sun, and W. Ku. smgc: A complex-valued
graph convolutional network via magnetic laplacian for directed graphs.
CoRR, abs/2110.07570, 2021.

[42] M. Zhang and Y. Chen. Inductive matrix completion based on graph
neural networks. In ICLR. OpenReview.net, 2020.

[43] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender
system: A survey and new perspectives. ACM Comput. Surv., 52(1):5:1–
5:38, 2019.

[44] Y. Zhang and K. Rohe. Understanding regularized spectral clustering
via graph conductance. In NeurIPS, pages 10654–10663, 2018.

[45] P. Zhao, H. Zhu, Y. Liu, J. Xu, Z. Li, F. Zhuang, V. S. Sheng, and
X. Zhou. Where to go next: A spatio-temporal gated network for
next POI recommendation. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
5877–5884. AAAI Press, 2019.

[46] L. Zheng, C. Lu, F. Jiang, J. Zhang, and P. S. Yu. Spectral collaborative
filtering. In S. Pera, M. D. Ekstrand, X. Amatriain, and J. O’Donovan,
editors, RecSys, pages 311–319. ACM, 2018.

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 11,2022 at 01:32:08 UTC from IEEE Xplore. Restrictions apply.

