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Abstract

This paper focuses on two-time-scale coupled stochastic functional differential equations (SFDEs). The
system under consideration has a slow component and a fast component. Both components depend on the
segment process (an infinite dimension process) of the slow component. To overcome the difficulty due to
the past dependence and the coupling of the segment process, such properties as the Holder continuity and
tightness on a space of continuous functions are investigated first for the segment process. In addition, it is
also shown that the solution of a fixed-x equation depends continuously on the parameters. Then using the
martingale problem formulation, an average principle is established by a direct averaging.
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1. Introduction and motivation

This work focuses on coupled stochastic functional differential equations (SFDEs) with two-
time scales. The system under consideration has a slow component and a fast component. Both
the slow and fast components depend on the segment process (to be specified) of the slow com-
ponent. Our effort is devoted to obtaining a limit process.

Uncertainty and time delays are ubiquitous and pervasive, which are often encountered in our
life. As a result, stochastic systems with delays have received much attention in systems and
control, physics, biomedical sciences, epidemic modeling, communication networks, population
dynamics, and related fields [5,9,10,18,21]. Taking random disturbances and delays into consid-
eration, much effort has been devoted to the study of stochastic delay or functional differential
equations (SDDEs or SFDEs for short) [21,23,24,35]. Because solutions of SDDEs and SFDEs
are non-Markovian due to the dependence of history, methods based on Markovian setup for the
solutions are no longer applicable; see for example, [2,24,37] and references therein.

From another perspective, many complex systems involve “fast” and “slow” motions. For
example, learning processes in the brain involve two-time scales, from fast neuronal activity
(a few milliseconds) to slow synaptic plasticity (minutes/hours) [8]. Combined with uncertainty,
these systems are often modeled as SDEs with fast and slow time scales; see [3,7,28,33,34,39,40]
and references therein. Assuming & > 0 to be a small parameter, in [14], Khasminskii and Yin
examined the following systems of stochastic differential equations with two-time scales

dX{(t) =h(X{@), X5()dt + c1(X[(@), X5(1))dwi (1),
e 1 e e 1 e . (1.1
dX5(t) = ghz(Xl(t), X5()dr + ﬁgz(xl(l), X5(1)dws (1),

in which the component X5(-) is rapidly varying and X§(-) is slowly changing. In [8], Galtier
and Wainrib studied a generic learning neural network model

B8 (1) = G(EE (1), vE (1)),

1 1 1.2
dvt(t) = g[f(Ee(t), Ve (1) +u(®)ldt + ﬁg(as(t), Ve (1)dw(t), (12

where v® € R” represents the fast activity of the individual elements in n neurons, E¢(¢t) € R"*"
is the connectivity matrix that varies slowly due to plasticity, and u represents the external input.
One of the main features is: The original systems are complex and difficult to deal with, but
the associated limit dynamic systems as ¢ — 0 are considerably simpler; see [3,7,12,14,13,15,
16,27,28,32,33,39,40] and references therein. Several methods are commonly used to treat the
corresponding asymptotic properties. One of them is based on analytic techniques [14,13,15]
by means of asymptotic expansions of the associated transition densities through Kolmogorov-
Fokker-Planck equations. For example, using the asymptotic expansion methods for (1.1), an
averaging principle was established in [14]; it was shown that as ¢ — 0, the fast component is
averaged out, and the slow component X{(-) converges weakly to a limit X (-) satisfying

dX (1) =hi (X @))dt + S1(X (1))dw(2), (1.3)

where
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) = [ mGnet@). o = [ e aui@n)
is an average with respect to ;1 (-) the invariant measure of the following fixed-x; equation

dX51(t) = ha(x1, X5 (0))dt + ¢2(x1, X5 (1)) dwa (0).

Another method is probabilistic (a stochastic averaging method), for example, Khasminskii [12],
Kushner [19,20], and Pardoux and Veretennikov [27]. Note that in the last reference above, partial
differential equations were also used as a bridge for the averaging, whereas in [12,19,20,30,31,
38] probabilistic method was used as a primary tool.

The two-time-scale systems mentioned above can be extended to systems involving delays.
When time delays have influence on two-time-scale diffusion systems, SDDEs and SFDEs with
two-time scales have to be considered. Due to the lack of the Markovian property, techniques in
the literature for treating Markov processes are not applicable. For example, the weak conver-
gence methods developed by Kushner in [19,20] cannot be applied directly. For instance, when
the perturbed test function method is used, it is necessary to consider the differential of the delay
term. This implies that delay or functional differential is needed. By extending the functional It6
formula initiated by Dupire [6], we established in [36] a stochastic averaging principle for the
two-time-scale functional diffusion system of the following form

dXe(t) =b(X;, Y (0))dt + (X2, Yo (1))dw (1),

1 1
dY®(t) = Eh(Ya(t))dt + ﬁqﬁ(Yg(t))dwz(t),

where x; := {x°(u At) : 0 <u < T} represents the delay from O to the current time 7. Note
that in the above, although the slow process depends on the fast process, the fast component
involves no delays. However, the analysis is already rather complex. This paper treats an even
more complex situation, where the fast process is also past dependent and involves an infinite-
dimensional process. When the fast component depends on the segment process of the slow
one, the slow component will appear in the stationary distribution of the corresponding fixed-x
equation, making it difficult to apply the functional It6 formula. Thus, when fully coupled SDDEs
or SFDEs with two-times scales are examined, different approaches need to be taken.

To substantially extend the results of [36], this paper examines coupled functional diffusion
processes with two-time scales given by the following SFDE

(1.4)

dx®(t) =b(x;, &5 (1))dt + ¥ (x;, £°(1))dw; (1), (1.5a)
1 1
d&* (1) = gh(xtg, E°5(1))dt + $¢(Xf, E5(1)dwa (1), (1.5b)

with initial data £(0) € R™ and xp € C([—7, 0]; R"). In the above, x; := {x®(t+0) : —1 <6 <0}
is termed a segment process or solution map process, b = (by, by, ..., b,) : C([—71,0]; R") x
R™ — R, ¥ = [¥ijluxy : C([—7,0; R") x R™ — R"™U h=(hi, ha, ..., hw) : C([—1,0];
R™) x R™ — R™, 7’ denotes the transpose of z, ¢ = [@ijlmxs, : C([—7,0]; R") x R" — Rmxl2
and w1 (f) and w;(¢) are two independent standard Brownian motions taking values in R and
R’2, respectively. Note that the fast and slow components are fully coupled through the segment
process x; .
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Since the functional term in C([—7, 0]; R") and coupled systems are considered, it is difficult
to use the perturbed test function method together with the functional 1t6 formula. This paper
aims to establish the averaging principle for system (1.5) by a direct averaging approach. Along
this line, it is also necessary to examine such properties as continuity and tightness on the space
C([0, T]; C([—t, 0]; R™)) of the segment process x°. In addition, we need to examine the fixed-x
equation (or frozen x equation) and establish the continuous dependence on the fixed parameter
x of the system.

The rest of the paper is arranged as follows. Section 2 provides notation, assumptions, and
some preliminary results. Section 3 establishes existence and uniqueness of the global solutions
for the coupled functional stochastic differential equations with two-time scales and the mo-
ment boundedness of the solutions. This section also presents continuity of the slow component
and the corresponding segment process. Section 4 examines the invariant measure and the ex-
ponential ergodicity of the fixed-x equation and proves continuous dependence of the solution
on the parameter x. These results are interesting in their own right. Section 5 establishes the
averaging principle by examining the weak convergence of the slow-varying process x°(-) as
& — 0. To establish this result, we prove the tightness of the segment process x on the space
C([—7,0]; C([—7, 0]; R™)). Treating two classes of SFDEs, Section 6 derives the averaging prin-
ciples of stochastic integro-differential equations (SIDEs) and SDDEs with two-time scales by
using weak convergence methods. Some final thoughts are presented at the end of the paper.

2. Notation, assumptions, and preliminaries

Let R” denote the n-dimensional Euclidean space with the Euclidean norm | - |. For a vector or
matrix W, denote its transpose by W'; for a matrix W, denote its trace norm by |¥| = /Tr(W'W).
Forasetorevent A, A represents its complement. For a, b € R", (a, b) = a’b represents the inner
product of a and b. Throughout the paper, K denotes a generic positive constant, whose value
may change for different usage, so K + K = K and K K = K are understood in an appropriate
sense. Similarly, K, denotes a generic positive constant depending on parameter . We use ¢ > 0
to represent a small parameter.

In this paper, if x(¢) is a stochastic process, denote by F;* = o {x(s) : s < ¢t} the filtration
generated by {x(s) : s < ¢}, and E} the corresponding conditional expectation. For stochas-
tic processes £°(-) and x°(-) depending on &, we define F; as the o-algebra generated by
{£°(s), x°(s) : s <t}, and E the conditional expectation on F;.

For t > 0, denote by C([—7, 0]; R") the family of continuous functions ¢(-) from [—t, 0]
to R" with the norm |l¢]| = sup_, g l¢(0)| and C([0, T]; R") be the family of continuous
function x(-) from [0, T] to R". For p > 0, L% (2, R™) and L% (2, C([—1, 0]; R™)) represent
the families of R" and C ([—t, 0]; R")-valued F;-measurable random variables with E| - |? < oo
and E| - ||” < oo, respectively. Denote by C3°(R"; R) the family of C* functions on R" with
compact support. Also define C ([0, T']; C([—t, 0]; R")) the family of continuous functions x.
from [0, T'] to C([—t, 0]; R™), which has the following property.

Lemma 2.1. The space C([0, T]; C([—7, 0]; R™)) is complete and separable.
Proof. Note that C([0, T'] x [—7, 0]; R") is complete and separable, and
C([0,T]; C([—7,0]; R")) = C([0, T] x [—7,0]; R"™).

4
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The desired result follows. O

Let M denote the set of real-valued progressively measurable functions that are nonzero only
on a bounded ¢-interval and

M = {f e M :supE|f(¢)] <ocoand f(t) is Ea—measurable]. 2.1
t

Using [19,22], let us recall the definitions of the p-lim and the infinitesimal operator L as fol-
lows.

Definition 2.1. Let f, % € M’ for each § > 0. We say f =p-lims f? if and only if

supE[ £°(1)] < o0,
1,8

(Sli’rr(l)IELf‘s(t) — £ =0 foreach 7.

This definition implies that p-lims f® =0 if £(-) =0 almost surely, where f% € M for each
8 >0.

Definition 2.2. We say that f(-) € D(ﬁg ), the domain of L€, and L¢ f=gif f,ge M and

Ej ft+8—f0
5

p-lim ( g(t)) —0.

840
Thus ££ is a type of infinitesimal operator. The following lemma was proved by Kurtz [22].

Lemma 2.2. If f € D(L), then

t
M) = f(t) — f £° f (w)du
0

is a martingale, and

t+s

IEff(t+s)—f(t)=]Ef/ﬁsf(u)du w.p.1.

t

We need the following assumptions.

(A1) (Lipschitz condition) For any integer R, there exists a positive constant L such that for
any @1, g2 € C([—7,0]; R") and &, & € R™ with [lg1[| V g2l V [&1] Vv [62] < R

\h(@1, &1) — h(g2, €)1 < Lr (o1 — 211> + 1€1 — £21%), 2.2)

and
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Ib(¢1, €1) — b2, EDIPV ¥ (91, &) — ¥ (92, £2) 1> < Lrllo1 — @ |I* + LIE — &2 (2.3)

In (2.3), &1, & € R™ and L is a positive constant.
(A2) (Dissipative condition) For any ¢, ¢ € C([—7, 0]; R"), there exist A1, A2, and L such that
for any &1, & € R™,

(&1 — &2, h(@1, &) — h(p2, £2)) < —A1l&1 — &7 + Lllg1 — @2l

and

16 (@1, £1) — (02, &) < Ma(1&1 — &2 + o1 — @2]1?).

(A3) (Linear growth condition) There exists a constant L > O such that

1b(p, 01> V [ (@, 0)* V [h(p, 0)]* < L(1 + [l9]l?), (2.4)

for any ¢ € C([—7, 0]; R").
(A4) The initial data £(0) € Lg__U(Q, R™) and xq € L;O(Q, C([—7,0]; R™)) for some p > 2, and
x(8) for 6 € [—t, 0] is Holder-continuous with exponent yp > 0.

3. Coupled functional diffusions with two-time scales

The following theorem establishes the existence and uniqueness of the strong solution for
Eq. (1.5) together with the moment bounds of the solution, as well as continuity of the slow-
varying component x°(-).

Theorem 3.1. Under Assumptions (A1)—(A4), for any ¢ > 0, SFDE (1.5) has a unique global
strong solution (x¢'(t), £¢'(t))". Moreover; if 2| > Ay, for any T > 0, there exist positive con-
stants p > 2 and K, 1 depending on p, T, and initial data xo and &(0) independent of ¢ such
that

]E[ sup Ixs(t)lp] <K,r (3.1
0<t<T
and
sup E|E°(D)I” < K., (3.2)
0<t<T
and
Elxé(t) —x*(s)|P <K, 1t —s)P?, forall0<s<t<T. (3.3)

Proof. We divide the proof into the following three steps.

6



F. Wu and G. Yin Journal of Differential Equations 323 (2022) 1-37

Step 1: Existence and uniqueness of the global solution. The SFDE (1.5) can be rewritten as
d('xs(t))_ lb(-vaée(t)) dt
£ty ) gh(xls,&‘s(t))

P (1), (1) 0
o L patm.e ) d(?g;)
Je ?

According to Assumptions (A1) and (A2), for any ¢1, ¢ € C([—1,0]; R") and &, & € R™ with
leill v ll2ll v 1§11V [&2] < R,

1b(<o1,sl> 1b(¢2,§2) ? lb(wl,sn—b(m,&) ?
zh(wl,él) Bl gh(wz,é'z) N g[h(fpl,él)—h(wz,&)]

1
=|b(g1, &) — b(pa, &)1 + Zlh(er. &) = higz, £)1?

(3.4)

1
= (1+ ) Le(llor = @2l + 1 = &21)

¥ (g1, €1) 1 0 ¥ (92, &) 1 0 2
0 ﬁfﬁ(%,él) B 0 ﬁfi’(%,&)

(I/f(</)1,$1)—1/f(¢2,$2) 0 ) 2

and

1
0 ﬁ[dmﬂl,él) — ¢ (92,621

1
=1V (0160 = ¥ (@2, )1 + - le (g1, 6) — o2, &)
A2 2 2
= (La+2) o1 = 2l + 1181 = &21P.
which shows that Eq. (3.4) (or Eq. (1.5)) satisfies the local Lipschitz condition. Since this
equation is autonomous, the local Lipschitz condition also implies that the local linear growth

condition, yielding that Eq. (3.4) (or Eq. (1.5)) has a local solution (see [23, Theorem 2.8, P154]).
By Assumptions (A1), (A2), and (A3),

1
¢ (0)b(p, &) < 5(|¢<0>|2 + 1b(p, &)%)

1 1
= 5|so(0)|2 +51b(6,8) = b(9,0) + b(e, 0)

l9(0)]> + 1b(9, &) — b(p, 0)|* + |b(p, 0)|?

| =

=<

7
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—

< =lel>+ LIEP+ LA+ el

-2
<KUel*+ &+ 1), (3.5)
£'h(p, &) < —MIE1* +Eh(p, 0)

2 2
h(p,0
< e +|<§| +| (<p2 )

, L
] A = T

<K(lol* + &>+ 1, (3.6)
[V (0. 61> =¥ (9.6) — ¥ (9, 0) + ¥ (e, 0)

<20 (9. €) — ¥ (9. 0 +2[¥ (0. 0)|?

<2LIE* +2L(1 + ol

<Kol + &7+ 1) 3.7)

and
6 (0, ) < 1§ (0, &) — $(0,0) + ¢(0,0)|?
<2/(¢(p, &) — $(0,0)]> + 2| (0, 0)|?

< 2h(llel* + £1%) + 21¢(0,0)?
< K(lgl* + &7+ 1), (3.8)

where 0 € C([—7,0]; R") represents zero segment process. These yield that for any ¢ €
C([—7,0]; R™) and & € R™, from (A3)

(b( ,s>> 1 (w«o,s) o )2
(¢'(0). £ +51 o L
hp.6) ] 72 AR

< ¢/ Oblp. &)+ &b, &) + 5[ . P + 196, 5)P]

3 3 2 2
= (5K +52K) el +167 + 1)
= Ke(llpl® + 16 + 1), (3.9)

which shows that the coefficients of Eq. (3.4) satisfy the monotone condition.
Choosing sufficiently large integer R satisfying |£(0)| Vv |x(0)| < R, define the stopping time

tr=inf{r >0, |x*()| V |E°()| > R} AT.

Note that tg is increasing with respect to R. Define 7o = limg_,oo T and let z%(¢) =
(x2 ()Y, [E5()])). Since Eq. (1.5) holds a local solution, for any integer R > 0 and any

8
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t € [0, tr], z°(¢) is well-posed. By the monotone condition, applying the Itd formula to |z° ()|
yields that for any 7 € [0, T],

E[ swp 1@ =E[ s (x*@F+1E6P)]

0<s<tATR 0<s<tAtg
INTR

<E[|x(0)]* + |£(0)|*] + K:E / LIxE I + 185 ()| + 11du
0

N

+]E[ sup /Z[ZS(u)]/ES(u)dw(u)], (3.10)
0<s<tATR
where
R 0 y
3 _ _ 1(u)
= 0 L e | “’(“)‘(wz(u))'
NG

By (A3), (3.7), and (3.8), applying the Burkholder-Davis-Gundy inequality gives

s

E[ sup / 202 ()] 5 (wdw ) |

0<s<tAtp

INTR

172
<128| [ PRI @l
0

INTR

1
B[ sup 1P+ & [ [k s @l + oo 5w Jau

0<s<tATg
- 0

INTR

< 3E[ swp G AT)P |+ K. /[||x;||2+|s€(u)|2+1]du. (3.11)
0

0<s<t

=

| =

—_

Substituting (3.11) into (3.10) yields

E[ swp |@P]

0<s<tATR

INTR
<E[|x(0)]* + |£(0)|*] + K.E / LIxE 1% + 1£5 () [* + 11du

0

t

<E[|x(0)* + |£0)]*] + K /[1+]E||XO||2+]E[ sup |25 ()P1ldu.  (3.12)
0<v<uAtp
0
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The Gronwall inequality gives

E[ sup [7@F] < KEllol? + Q)P + 1157 := Ko .

0<s<tATR

Noting #’s arbitrariness and letting R — oo give

E[ swp [P ] < KEllwol® + 6O + 1157 =K.
0<s<T

Recalling the definition of tg, this implies that for any 7 > 0,
R*P(tg < T) < E[1x°(tr A T)PLizg<r) V 1E° (1R A T)PLizg<ry]
<E[lx*(tg A TP + 15 (g A TP ze=r)

<E[ sup ()] = Ker,
0<s<T

which implies that

KE,T
R2

Hence it follows that

ZP(‘[R <T)<o0.

R=1

The Borel-Cantelli lemma gives that for any T > 0,
P(teo <T)=0.

Due to the arbitrariness of 7', P (700 = 00) = 1, which shows that the local solution is actually
global. This gives the existence and uniqueness of the global solution of Eq. (1.5).

Step 2: Proof of (3.1) and (3.2). For p > 2 and A > 0, applying the It6 formula yields that for
any s > 0,

N

A P p A A P
eI+ 61T =1+ [EO)P]2 + ;/e?"[l +1€° ) *) 2 du
0

N

+5/ 1+ (85 @) 21T £ )] h(xE, £ (u))du

2£/ 1+ £ @21 1o (xeE. £ () 2du
0

10
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2 [ p=
+%/63”[1 185021 1155 (01 (x5 &5 1)) Pelu
0
+M°*(s)

24% A Ay 5 242
<[1+160)]°]2 +;/es [(1+16" )" ]12du

0
s

+§/e%“[l+Iés(u)lzlpT_z[Ss(u)]/h(XZ,ég(u))du

0

_ 1 p A p—
+% / UL 4 18 W) 2T 1 (x5, £ ) Pdlu
0

+M*(s), (3.13)
where M (s) is a local martingale with EM?(s) = 0. By Assumptions (A2), (A3), and the Young
inequality, for any ¢,

(€5 h(xE, £ ) < —A1|E°)I* + [£° )] h(xE, 0)
e 2 e 2
T N1 2 g LG U
2 281

€1 2 L ) L
<(=m+3)E = Sy 3.14
e R L QiR s (3.14)

By Assumption (A2) and the Young inequality, for any &>,
| (xE, &5 ()]
< (P (x, &5 () — ¢(0,0) +¢(0,0)?
< (x5, E5 ) — B (0,0)|* + |0, 0)|* 4+ 2(d (x5, &5 (u)) — ¢ (0, 0)) $ (0, 0)
1
< M (IXEI% + 15 @) 1?) + 16 (0,0)* + e2l(p (xE, £° (1)) — ¢ (0, 0)[* + 5190 02

1
Il 4+l WP + 220 + eI + (14 )@, 0P,

(3.15)
Substituting (3.14) and (3.15) into (3.13) yields

eSS [1+ |65 ()2
<[1+E0)12

s

)4

Ly 2) e 242
2 e[ -2m+ -+ + = o i +1gf @l
2¢ p

0

+

11
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L
o = D e 18 P I+ AL 0P du

+M°5(s), (3.16)

where
A= 4= 1)(1+ )¢(0 0P = =201+ (p = Dhall +e2) + = +e1]
is a constant. Applying the Young inequality yields that for any 3 such that

2 r
[+ 1E WP x5 < w[ +IES @17 +

ooy’ —— X 17,
£1€3) 2

which shows that

e[+ |55 ()17

s

<[1+15O + 2%/@{ — Bl +16° 1% + A1+ 16 1T

0
L 2 .
o 0= e | il + M), (3.17)
&1 p(e1e3) 2
where
2 —)Le 2
B=2)\—(p—Dr2(1+&)— " — & — (P . S pp (p— Dia(1+&r)ere3.

Noting that 211 > A, we can choose A, €1, &> and &3 sufficiently small, and p > 2 but sufficiently
close to 2 such that B > 0. This also implies that there exists a constant K such that

)
“Blz|f + Alz|"T <K

according to the boundedness of the polynomial function. It follows from this result that there
exists a constant K > 0 such that

e IES ()P < e[+ £ ()P
<[+ ORI+ L / UK + K IIXE 1P 1du + M*(s)
0

<0 +EOPE + 2514 sup gl Jie?s — 1+ o),

0<u<s
which shows that

12
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Blg 1 <E0 +EOP1E + 22 [14+8( sup 1x17)]

0<u<s

L+Elol” +E( sup [x*@)”)]

O0<u<s

<B4 0P + 2|

< K,(1+E[E0)]” +E|xoll”) + K,,E( sup |x€(u)|p) (3.18)

0<u<s

since

lE[ sup ||x§i||”]=1E[ sup  sup ng(u+9)|”]

O0<u<s O0<u<s —1<6<0

<E[ swp )]

—t<u<s

§E||xo||p+]E[ sup |x8(u)|1’]. (3.19)

0<u<s

For any p > 2, it is easy to observe that

N

/ b(x;, &% (u))du

'

/ v € du @) | (3:20)

]E[ sup |x8(s)|p] §3p_l{E|x(0)|p+]E[ sup

O=<s=<t 0<s<t

+E sup

0<s<t

Computation of (3.5) implies |b(¢, £)|> < K (l¢]|> + |€]*> + 1). Applying the Holder inequality
gives

N 1

/b(xj,éa(u))du‘p] sz‘I/JEIb(xj,EE(u))I”du

0

]E[ sup

0<s<t

t
srp—lK,,fJE(||x;||2+|sg<u)|2+1>%du
0

t
< Kp,z/[EIIXEIIPvLEISS(u)I” + 1ldu. (3.21)

By (3.7), applying the Burkholder-Davis-Gundy inequality and the Holder inequality yield

]

sup
0<s<t

f ¥ (g, &5 ) dwi (u)

13
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t
< K,E| [ 1w @]

0

t
< Kpr”T‘szW(x;,s%u))Wdu
0

t
<K, / [EllxS|1” + E[£° ()] + 11du. (3.22)
0

Substituting (3.20) and (3.21) into (3.22), together with (3.19), gives

E[ sup v (9)I”]

0<s<t
t
< K BRI + K [EIX17 + EIE @I + 1du
0

t

< K O + Ky [ [Ellxol” +E( sup [x(w)17)
0<v=<u

0

+K (1 + E|E(0)]7 +E||x0||P)+K,,E( sup |x8(v)|p) + l]du

0<v<u

t

< K EROI + Ko [ [Ebol? + EEOP +E( sup v @) +1]du

0<v<u
0

The Gronwall inequality gives that there exists a K, 7 such that

E[ swp 1*()1"] < Kpr,

0<s<T

which leads to the desired (3.1). This, together with (3.18) yields

sup E[&°(s)I” < Kp 7.

0<s<T

Thus (3.2) holds.
Step 3: Proof of (3.3). For p > 2 determined by Step 2, it is easy to observe that

E|x® (1) — x°(5)|” 52”I[E’/tb(x;,gg(u))du’p—HE’/tlp(x;,fg(u))dwl(u)‘p]. (3.23)

By the Holder inequality, (A3), (3.1), and (3.2),

14
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'

t
IE‘ / b(xt, £ (u))du

t

< ()P / Elb(x. £ (u))|”du

t
53P*‘(r—s)l’*‘/E[||x;||P+1E|é5(u>|P+1]du
t
=37 [ [Elxol? +B( sup b @l) + sup BIs @l + 1

O<u<T 0<u<T
N

<K,r(t—sPr. (3.24)
By (A3), (3.1), and (3.2), applying the same technique as [23, Theorem 7.1, P39] gives

P
2
<

P [p(pz— 1)]

t t
E| f Y (. 65 () dwi @) (t-9""E / W (. 6 @) P du

<K,r(t—s)7. (3.25)
Substituting (3.24) and (3.25) into (3.23) leads to
Elx* (1) = x* ()P < Kp 7t —9)7,
which is the desired assertion (3.3). This completes this proof. O

Remark 3.2. As mentioned before, the solution process (x¢'(z), £¢(¢))’ is not a Markov process.
We cannot express some convergence conditions in the sense of transition probability as in Kush-
ner [19]. Even if we consider the segment process x{ (noting that (xf’, £%'())’ is an F¢ -adapted
Markov process [2,24]), Kushner’s method still needs to be modified because convergence of the
pair (x®(¢), x;) needs to be considered altogether.

Remark 3.3. It is worth noting that the boundedness of pth moment and continuity are uni-
form w.r.t. ¢. This implies that x°(-) — x(-) with probability 1, since for any ¢ € [0, T],
E[supg<s<7 [x°(s)|P] < K 7. The Vitali convergence theorem shows E[supy, 7 [x*(#)|7] —
E[supg<s<7 [x()|P] < Kp 1 for any 7 € [0, T]. Similarly, E|x®(t) — x*(s)|? — E|x(?) —
x($)IP <K, 7t — s)g. This also shows that x(¢) is continuous in the sense of pth moment.

Applying [11, Theorem 2.8, p.53] gives the following corollary:

Corollary 3.4. Under the conditions of Theorem 3.1, the solution process x°(-) is locally Holder-
continuous with exponent y with probability 1 for any y € (0,1/2 — 1/p). That is,

15
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|x*(w, 1) = x*(w, 5)]
Plw: sup <k )=1,
5.1€l0,T1, |t —s|”
O<t—s<h(w)

where p is defined in Theorem 3.1, h(w) is an almost surely positive random variable, and k > 0
is an appropriate constant.

Remark 3.5. In fact, if x®(-) — x(-) with probability 1, Remark 3.3 and [11, Theorem 2.8,
p.53] also give that x (¢) is locally Holder-continuous with exponent y with probability 1 for any

y €(0,1/2—1/p).

By the above results, we can establish continuity of x; in the almost sure sense and the pth
moment.

Corollary 3.6. Under the conditions of Theorem 3.1, x¢ is locally Holder-continuous with expo-
nent y A yo with probability 1, and for p defined in Theorem 3.1 and y from Corollary 3.4,

lim ]E( sup |lx; — x§||p) =0. (3.26)
§—0 1.5€[0.T]
[t—s|<6

Proof. From Corollary 3.4, there exists a Q with IP’(fZ) =1 and h(w) > 0 for any w € Q such
that for any #,5s € [0, T] and 0 < |t — 5| < h(w),

X (@, 1) — x (@, )| <kt —s|” (3.27)

with probability 1, where y € (0, 1/2 — 1/p). This implies that for any 6 € [—7,0], if (t A s) +
6 >0,

x%(w,t +0) — x*(w,s +0)| <«|t —s]|V.
If (£ v s)+ 6 <0, (A4) yields that
|x8(w,t +0) — x°(w,s +0)| < K|t —5|".
If(tAs)+6<0and (rVvs)+6=>0,(A4)and (3.27) lead to
|x%(w,t+6) —x%(w,s +6)| < K|t — sV,
These three cases imply that for any ¢, s € [0, T] and 6 € [—7, 0],

sup |x%(w,t+6) —x°(w,5 +0)| < K|t — 5]V, (3.28)

—7<6<0

That is,
lxf (@) — x5 ()| < K|t — 5|77

16
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for any w € Q and |t —s| € (0, h(w)). This implies that

xE — x¢
Plw: sup uf[( =1, (3.29)
e, |t —S[YAY0
O<|t—s|<h(w)

which shows that x¢ is almost surely Holder-continuous with exponent y V yyp.
For p defined in Theorem 3.1, (3.29) also indicates that as 6 — 0,

sup |lxf — x| — 0, as.
t,s€[0,T1],
|[t—s|<é

Note that from (3.19), E[supy,<7 [Ix/ [|”] < E|lx[|” + K, 7. The Lebesgue dominated conver-
gence theorem gives

lim IE( sup |lxf —x§||1’> =0,
=0 1,5€[0,T1,
|t—s]|<8

as desired. O

Remark 3.7. According to [24, Chapter II, Lemma 2.1], continuity of the solution process x*(-)
on [—t, T] implies that the corresponding segment process x? is also continuous on [0, 7']. But
this result cannot give the Holder continuity.

4. Fast-varying process and fixed-x process

To obtain the weak convergence of the slow-varying x°(¢) as ¢ — 0, certain ergodicity is
crucial. In (1.5), £4(¢) is rapidly varying in contrast to x°(¢). Define £¢(¢) = £°(et). Then

dE° (1) = h(x5,, E°(1))dt + ¢ (x5, E° (1) d i (1), 4.1

where W (¢) = wo(et)/4/€ is a standard Brownian motion. Let us consider the following fixed-x
equation

d&¥(t) = h(x, &5 (1))dt + ¢ (x, & (1)d w2 (). (4.2)

Theorem 4.1. Let Assumptions (Al), (A2), and (A4) hold. Then the fixed-x equation (4.2) has
a unique strong global solution £*(t) for any t € [0, T1, which is F,-adapted and satisfies the
following properties:

(1) the solution is a homogeneous strong Markov process;
(i) E(sup,¢o.7] IEX(1)|%) < K., where K, 1 is a constant depending on x and T;
(iii) when 211 > Ay, there exists a unique invariant measure W (-), which is exponentially er-
godic;
(iv) for any x1,x € C([—7,0]; R™), sup,-o E|E* (1) — £%2(1)|*> < K ||lx1 — x2||, where K is a
constant. -

17
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Proof. Existence and uniqueness of the strong solution of (4.2) follows from the existing result
[23, Theorem 3.6, p. 58] by (2.2), (A2), and (3.6).

(i) Since (4.2) is autonomous when x is fixed, by the same statement as [23, Theorem 9.5,
p- 90] (we replace the uniform Lipschitz condition by the local Lipschitz condition and the Dis-
sipative condition (A2)), we can prove the solution of (4.2) is a homogeneous strong Markov
process.

(i1) Applying the It6 formula gives that for any ¢ > 0,

E[ sup 167

s€[0,7]

<EEO)F +E| sup / ClE* OV h(x, £°(0) + 19 (x, &) P)du

se[Ot]
+2E sup /58('4)]/45()6,$g(u))d1712(u)]- 4.3)

SE[O t]

By (3.6) and (3.8),

SuP /(2[5 )] h(x, ) + 1o (x, & w)[*)ds

s€[0,7]
<KE f [lx ) + 1£5 @) * + 1du (4.4)

and by the Burkholder-Davis-Gundy inequality, the Young inequality and (3.8),

[ sup / £ (]9 (x, £ (W)dibow)]

s€[0,1]

t

1

< KE| [ 16 @1 (x. £ @) P
0

1
< SE[ sup 6P ]+ KE / 9(x. £ ) Pl
s€[0,7]
1 S
< B[ sup 15 6R]+ KE [ 1hxi? + 16 @ + 1d (4.5
s€[0,7] 0

Substituting (4.4) and (4.5) into (4.3) gives
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N

E[ sup |&€<s)|2]52E|s<0)|2+K/[||x||2+1E( sup [6°()I?) +1]du.

s€[0,7] o vel0,u]

The Gronwall inequality yields the desired assertion.
(iii) This result is from the existing result; see [2, Theorem 1.5, p. 5].
(iv) Applying the It6 formula gives

ePHTRNEN (1) — £ (1))

t
= (201 — 12) / MRS £ () — £72(5) 2 ds
0

t
+ f [ePM=2D5D (%1 (5) — E%2(s), h(x1, E1(5)) — h(x2, £72(5)))
0

+lp (x1, 5 () — ¢ (x2, £ (s)) |1

t

+2 / eFMTRISD(EX (5) — E%2(5), § (x1, ¥ (5)) — P (x2, E%2(5)))d D1 (5)

0
t
< QL+ / PRI gy — a2
0

t

+2 f ePMTRISD (X (5) — £%2(5), P (x1, £¥1(5)) — P (x2, £ (5)))d D1 (5).

0

By Assumption (A1), (2.2), and (A2), taking the expectation gives

t
E|E* (1) — £%2(1)|* < QL + A2) / e” @) gy — x|
0

- 2L + Xy

2
, 4.6
= AZIIXl x| (4.6)

This completes the proof. O

Remark 4.2. The conditions in Theorem 4.1 yield the exponential ergodicity of the invariant

measure 1* (-). It can also be seen that (iv) implies that as x| — xp, £¥1(t) — £¥2(1) g 0.

Using the invariant measure p*, define

B(x) = / b(x.£)* (d€) and E(x) = / W Cr, ) (. ) (dE)
]Rm ]Rm
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Let us introduce the following assumption.

(AS) The following equation

dx(t) = b(x;)dt + ¥ (x;)d B(1) 4.7)

has a solution that is unique in the weak sense (i.e., uniqueness in the sense of in distribu-
tion) on [0, T'] for the same i_nitia_l data xg € C([—7,0]; R") as Eq. (1.5a), where B(z) is a
standard Brownian motion, ¥ (:)¥'(-) = X(-).

Remark 4.3. In general, the existence and uniqueness of the solution for Eq. (4.7) cannot be
obtained by the conditions imposed on b and . If x(-) — x(-) as ¢ — 0, by Remark 3.3, we
know E[SUPOSZST |x(#)|”] < Kp 7. Hence (4.7) has a global solution if b and 1} satisfy the local
Lipschitz condition.

For any V € C§° (R%; R), applying the Itd formula to V (x(¢)) for Eq. (4.7) yields that

t

t
My (1) ==V (x(1)) — V(X(O))—/C(xs)V(X(S))dsZ/VX(X(S))Iﬁ(xs)dB(S) (4.8)
0

0

is a martingale, where

_ 1 < - -
Lxs)V(x(s)) = Vi (x(5)b(x5) + 3 Z Vi (X)W (x5) Vi (x(5)).
ij=1

It is well-known that the existence and uniqueness of the weak solution for Eq. (4.7) is equivalent
to the existence and uniqueness of solution for the martingale problem (4.8).

5. Weak convergence and asymptotic approximation

This section shows that the sequence {x°(-)}¢c(0,1] converges weakly to a stochastic process
that is the solution of an appropriate SFDE. In order to obtain the desired weak convergence, we
need to prove tightness of {x°(-)}se(0,1] and {x’},¢(0,17- In fact, for C([—7, 0]; R"), sup norm
is used, if {x%}sc(0,17 is tight, {x*(-)}sc(0,1] is naturally tight. Hence, we need only establish
tightness of the segment process x? € C([0, T]; C([—7, 0]; R™)). We state the following lemma.

Lemma 5.1. Let X° € C([0, T]; C([—7,0]; R™)) be a sequence of Ff-measurable C([—t,0];
R™)-valued processes satisfying that

(i) for any n > 0, there exists a constant M satisfying

sup ]P’( sup |Xf(0)|>M)§
£€(0,1] N0<r<T

(5.1

N3

20



F. Wu and G. Yin Journal of Differential Equations 323 (2022) 1-37

(ii) for any k € N and n > O, there exists a constant 8y satisfying

1 n
sup P| su max |X%(0)) — X5(6y)| > _> < (5.2

66(0?11 (te[opT] 91 Hp€l=7.0] = (6] k 2T +k+2 )

—02| <6k
(iii) for any k € N and n, there exists a constant 5y satisfying
sup P max X7 —X{|> 1) <0 (5.3)
ae(Opl] 1.5€[0,T] s k) — oT+k+2" .

' |r—s| <6k

Then Xt is tight in C([0, T]; C([—7, 0]; R™)).
Proof. Define

B = {a): sup | X6 (w,0)] < M},
0<t<T

1
ngz{a): sup  max |Xf(a),91)—Xf(a),92)|§—},
’ te[0,T] 01-62€1-7.0] k

|61 =62 <5k

1.5€[0,T]
[t—s]| <6k

1
B3k_{w max ||Xf(w)—X§(w)||§E},

and let

o o
=) Bsi Bi=()B5:i and Bf=B{NB5NB;.
k=1

By Lemma 2.1, C([0, T]; C([—7, 0]; R")) is separable and complete. This shows that a single
measure P is tightness [4, p.8, Theorem 1.3]. Note that for any ¢ € (0, 1] and any 5 > 0, by
conditions (5.1), there exists a M > 0 sufficiently large such that

P(B)) =P( sup [X;(O)>M) <>,
0<t<T 2
By (5.2),
— * n n
P(B;):]P’(U B;, ) ZP(B 22T+k+2 =579
k=1 k=1
By (5.3),

(0.¢]
-F Ui
P(B3) = P(U B§,k) ZP(BS W= Z 2T+k+2 =57+
k=1

These three estimates imply that for any 7' > 0,
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P(B?) =1— P(B?)
> 1 —P(Bf) — P(BS) — P(B})
>1—n.

Similarly, define

Af = HX? € C([0,T]; C([—7,01: R") : sup |X5(0)] sM],
0<t<T

1
AS = {X.E €eC([0,T]; C([~7,01; R")): sup max [X;(0)) — X;{(62)] < —},
T k

1
k= {X.s e C(0,T]; C([—7,0; R™)): ,I‘Q[%XT] I1X; — X5Il < ;},
It —s|<8

and let
o0 o
A5 =) A5, and A§= (") A5,
k=1 k=1
According to [25, Theorem 47.1 (Ascoli’s Theorem), p.290] or [29] with small modifications,
AP =ATNASNA]
is relatively compact.

Let Px:(-) be the probability measure induced by X? € C([0, T']; C([—z, 0]; R"™)). Then for
anyi=1,2,3,

Px:(A]) =P (B;).
It follows that Py: (A®) > 1 — n. This demonstrates that X? is tight. O
Following this lemma, we can examine the tightness of {x®}o<s<1.
Theorem 5.2. Assuming (A1)-(A4), {x} for 0 < e < 1is tight on C([0,T]; C([—7,0]; R™)).

Proof. To prove the tightness, let us verify (5.1)-(5.3) for {x®}0<¢<1. For any n > 0, from (3.1)
and the Chebyshev inequality, there exists M > (2K p,T)l/ P /n'/P such that

IEJ[ sup |xf(0)|1’] ]E[ sup |x€(t)|p]

0<t<T 0<t<T n

P( £ M) < = < . —-. 5.4
Oz?ngxf()|> = MP MP =S =3 OY

This shows that (5.1) holds.
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Note that (3.28) also shows that

IP’(lim sup [|x%(t) — x%(s)| =0> =1,
304 ser—2.11
[t—s]|<d

which implies that for any £ > 0,
limP( sup [x%(r) —x°(s)| > ! =0
§—0 k '

t,s€[—1,T]
|t—s|<§

This further leads to that for any 1 > 0, there exists a &; such that

1 n
P( sup |x8(t)—x8(s)|>—> < .
<t,se[—t,T] k 2T+k+2
|t—s]|<dk

This, together with x; (6) = x°(¢ 4+ ) for any 6 € [—1, 0], yields

1
]P’( sup  max |xf(0)) —x; (62)| > _)
te[0,T] 1-02€[=7.01 k
|61 —02| <3k

1
:P( sup max |x8(t+91)—x5(t+02)|>_>
t€[0,T7] 1-02€1-7.0] k
|01 —02| <8k

<P () =X (5)] > 2 ) < =
< sup |x x&(s >k <2T+k+2,

t,se[—1,T]
[1—s|<dk

which indicates that (5.2) holds.
Eq. (3.29) shows that

]P’<lim sup  [lx; — x5l =0) =1,
=0 4 seo.1),
0<|t—s|<b

which implies that for any & > 0,
lim P sup ||xf —x¢| > ! =0
§—0 Tk '

t,5€(0,T],
O<|t—s|<d

This further implies that for any n > 0, there exists 6 > 0 such that
1 n
P max [xf—xi|>-)<—+.
( 1,5€[0,T] I sl k)~ 2T+k+2
[t—s]| <6k
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Hence (5.3) follows. Then the tightness of x® in C([0, T]; C([—7,0]; R")) follows from
Lemma 5.1 as desired. O

To proceed, let us state the main theorem of this paper.

Theorem 5.3. Under Assumptions (A1)-(A4), x(-) converges weakly to x(-) that is the solution
of (4.7).

To prove this theorem, let us introduce the following the truncated SFDE. For each N > 0,
define b (¢, &) = b(p. £)g" (0(0)), ¥V (¢, §) = ¥ (9, §)g" (¢(0)), and

1, when y € Sy,
"y =10, when y e R" — Sy,
smooth, otherwise,

Sy ={y:|y| < N}. For sufficiently large such that |x(0)| < N, let us consider
dx*N () = bV (N g N @)de + 9N Y gV (@) dw (), (5.5)

where xf’N ={x5N(t 4+6): —t <6 <0} and £5(¢) is the solution of Eq. (1.5b) when xf is
replaced by x; ‘N Tt can be observed that x&V (t) = x%(t) up until the first exit from Sy . Then

x%V (1) is said to be an N-truncation of x¢(z). According to the definition of x;, it is easily seen
that x;"™ € C([0, T1; Sy1) if N (1) € Sy since lxf™ || = sup_, g x>V (1 +0)| < N+ 1.

Let ]-"f‘N = o {5V (s), x>V (s) : s <t}. We can likewise define the corresponding /WS’N and
L8N accordingly.

Remark 5.4. Note that bV (-) and ¥V (-) have better properties. Because [xV| < N + 1, in
(A1), bV (-) and ¥V (-) are, in fact, globally Lipschitz continuous. The x®" (¢) and the corre-
sponding segment process x; N inherit all properties of x°(¢) and x;, for example, Theorem 3.1
holds and xf‘N e C([0,T]; C([—7,0]; SN+1)) is tight and continuous.

Proof of Theorem 5.3. Let us first prove x®% (-) converges weakly to x™V (-), where x"V () is the
solution of Eq. (4.7) with truncated coefficients

dxN (@) =b"N (xNydt + 9N (xN)dB(r) (5.6)
and b™ () = b(9)g" (¢(0)) and Y () = ¥ (9)g"™ (¢(0)). Let us give the definitions of TV () =
YN OYN ()Y and

LYV N () = Ve )bV () + % S NN M) Vi, N ().
ij=1

Since {x®"} is tight, by the Prohorov theorem, it is sequentially compact. There exist
xN e (o, T]; C(~t,0]; Snv+1)) and a subsequence {&,},>1 with &, — 0 as n — oo such

that x»N = xV_ Since the distribution of xV(r) is the marginal distribution of x*"
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xeN (1) = xf "’N(O) = xtN ) = xN (). By the Skorohod representation theorem, we may as-
sume that x*V converges to xN in the sense of w.p.1. Because of xf’N € C([—7,0]; Sy+1) with
the uniform norm || - ||, x® () also converges to x"V(-) with probability 1.

We proceed to characterize the limit process xV (-) by use of the martingale problem formu-
lation. For any V € C3°(R"; R), applying the Itd formula to V (xN (1)) for Eq. (1.52) yields

t
MM @) = VN @) - Vx(0) — / LN N g N () V (x N (s))ds
0

t
_ / Ve N )y e £ () dwa (s) 5.7)
0

is a martingale, where

LN (xen N genN (gy) v (xfn-N (s))
= Ve (x N (s))bN (xEn N g5V ()

1 n
3 SN g N )y N N g N (5) Vi (N (s)).
i,j=1
This is equivalent to that

EfnGen Vs, j = Ve @) = Ve )

t

_f Lo (N g5oN @) v (N || =0

N

(5.8)

for arbitrary k, t and s with s; <s2 <--- < sx < s < t, and any bounded and continuous function
h(-). Since xN () converges to P O) w.p.1 as n — oo, by the Lebesgue dominated conver-
gence theorem,

E[h(xN(s;), j <)V &N ()] — E[h(xN (s)), j <)V (N (5))] (5.9)

for all 0 < s <t. Then let us consider convergence of

t
Elh(x™ " (), j <k) / £ N e, g9 N @)V N w)dul.

Choose A sufficiently small. Then
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t
E[h(cV(s)), j <K / Lo G 5N @)V (e ) du |

:]E[h(xs”’N(s]'),j <k)

; +ha

en,N
xS [ eV e N @y oY aaydul
IA=s /A

,  @+ha

FE[hGm Y5, =0 Y [ LV e g )V N )
IA=s A

LN G gV )Y N )
=N N, (5.10)

where

u
én, 1 en,N
g N8 () = g7 N 18) +— f RO g N AT )
n
1’A " (5.11)
en,N
+_~/—/ PG, g NHAT () dws (v).
&
nlA

Note that xlgg’N in (5.11) is at the beginning of the interval so it is a fixed constant. Making

change of variable u to ,u gives

el

en,N 1 en.N
i_—Sn’vizA (epu) = Sg’l’N(lA) + = / h(xl‘aZ,N, éan,N,xm (v)dv
n
IA

ent
1 / en,N N xmN

= d g, ETT A (v)dwa(v)
/_SHZA IA

u

— Sé‘n,N(lA) + / h(xng!N, %—En,N,x;ZYN(Snv))dU

A
€n

+f pGein g N KA (6, 0))d i (v). (5.12)
1A

&n

Compared with Eq. (4.2), it is obvious that for any u € [[A, (I + 1)A],
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gV ) =g (2), (5.13)

8’1

where & A (+) is solution the fixed-x equation (4.2) with x = xlsg’N. According to expression of
LNV (),

(+nHA
en, N
£V e N g e NwaT () v (N (LA))du

A
I+DHA
en, N
= [ [ra N aans g g i )
IA
1 " en,N en,N
3 DR A& G S N (7)) A € A S (u))vx,.x_,(x%*”(m»]du
i,j=1
1 n
=Vt NaanriN + 5 > Ifgl:jN Vir, N (I A)), (5.14)
i,j=1
where
(+hHA
en,N
it = / PV (A g5 N AT (u))du
IA
and
(+1HA
en,N en,N
i = / w g™ g N oy g, g5 N AT u))du.
IA

Making change of variable u to ¢,u and using (5.13) yield that

d+DHA
&n

en, N
N =g, f BN N £ (u))du

LA

€n

(+hHA

— e / B (e %5 u))du

IA
€n

(+DHA
&n

e f Y e e ) — oY (el £ () du
A
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Ens

I +1112

According to ergodicity of £*(-) and the definition of bV, as n — oo,

[(ERYN
1 _
N = A / bN (X, &8 (u))du — BV (<) A, as. (5.15)
, o
1A

&n

Recall that fo’N — x{X with probability 1 as n — oco. Applying (iv) of Theorem 4.1 gives that

£58" (u) — £ (u) > 0.
By the integral mean value theorem and the local Lipschitz condition, since bV satisfies the
global Lipschitz condition, there exists a u* € R such that
en,N
53 1 = 16N G 698 @) — b (), €48 )| A

en,N P
< KN AN — N+ 8987 (%) — £ (u*))]) —> 0. (5.16)

Note that xl X N_ xl A With probability 1. Combining (5.15) with (5.16) gives

- P
Ve N aanto N — v N aanbN o)A — 0, as.. (5.17)
Let us estimate / 151 . By making change of variable u to eu gives that

(l+1>A

121, = / AN CH xlA'N(u))wjv(xfg’N,gfo’N(u))du

1A

&n

d+DHA
&n

=&y / YN G 60 @) Oy 05 (w))du
IA

(l+l)A

/ i Gy e N o 8 )

N

-y (xfi, £ @)y (oY, £95 () 1du

= 1f51]1+1121j2 (5.18)
Similar to (5.15), the ergodicity of £*(-) and the definition of £¥ yield that as n — oo,
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(+DHA
&n
en,N _
i = A—A/sn
IA
&n

wiN(xlIX,leNA(u))llf;v(xlIX,ExlA(u))du—> ENGA, as. (5.19)

Note that for any ¢ € C([—7, 0]; Sny+1), WiN (p, &) is bounded and satisfies the global Lipschitz
condition. This implies that for any u,

N e e oy N e £ ) — v . T )y Y (g £ )|

< Ky (Y — x| 418587 ) — £55 ).

Similar to the estimate of / f i’ 5> in(5.16), as n — oo,

N P

15— 0.

12ij.2

This, together with (5.19) and x®" (IA) — x™ (IA) with probability 1, gives

Z 112” e, (0N (IA)) — = Z =N (A Vi, «Naana L5 o. (5.20)
l] 1 l] 1

By the Lebesgue dominated convergence theorem, (5.17) and (5.20) give

t
. IR D S N NN 5-21)
[A=s

&
Now let us consider 1,"

such that

. By the integral mean value theorem, there exists u* € [IA, (I + 1)A]

t
15N =B s, g = Y0 [em N e g N @y N W)

[A=s

—em N G g M @y v eV aay Al (5.22)

Note that for u € [[A, (I + 1)A],

u

1
£V ) =gV U8) 4+ — f BN 65N (5))ds

IA

eV gen N (5))dw (s),

en,N
and that £5N-%a" () satisfies Eq. (5.11). It follows that
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en,N
g N () — £ NI ()

T /[h(xg” LN (5)) — h(x)y Vg Nk (5))ds

1 r en,N
Qa / [p e N go0N (5)) — p(xfn ™ g5 NAAT (5))Jdwy (s).
IA

Applying the It6 formula gives

) en,N
e e g () — gF N ()2
1 u
201 —A en,N
=@ —2)— / e T g N (5) — gEn VR (5] 2ds

n
IA

2)»17 N
L / sV (s) — g Nk (),

BN g () — he N g N (o)

Hlp N g (5)) — p(xinN  gon NR ()12 1ds

u

2 f 2y —hy N N gV N N

t—— [ 2N 5) — g VT (), g (g 6V ()
&

nlA

—p N g N (5))ydw (s).

By Assumption (A1) and (A2), taking the expectation on both sides gives

en,N
ElgeN (u) — g N2a" (u)|?
1 u
_2)»17)»2 _
5(2L+}\2)—fe o IR N — xi N2 ds

En
IA

2L + Xy [
S e,
201 — A2 sel

sup  EfxirN — xinN ||2]. (5.23)
LA, (+1)A]

Let tp = supse[lA)(l+1)A]IE||xf"’N — xfg’NHz. (3.26) shows Ao — 0 as A — 0. Note that V €

Cy° (R?: R). This, combined with (A1), implies that £V (-, -)V (-) satisfies the global Lipschitz
condition, that is, there exists constant K > 0 such that

e N e g N @) v N )
—onN et g NS oy v e N ) P
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< Kyl — x4 oV @) — xeeN a2

N ) — g VT @) ) (5.24)
By (3.3), (3.28), and (5.23), taking expectation yields

LN (o 6N @)V e )

en,N
=N gV NS @)V N AP

< Kn[E[xY — oV )2 4 Bt N @) — xV (i a))?

en,N
+E &N (u*) — g5 NNaT )]
K2(2L + 1)
201 — A2

< Knita+ KP,N,TAZ(VAVO)M.

<KNCA+KpnTA+ A2 A1)

This implies that

t
E| 3 [N e g N v N oy

[A=s

oV iV gV v eV ay ||

t
< YOV e Y v e W)
[A=s

en,N
—eomN Y g VT W) N gy A

< KnCa+Kpnr(t —s) AV ONZ,

Noting that & is bounded, we therefore obtain

t
12571,N ZEI:h(xgmN(Sj),j < k) Z I:EEn,N(xli:,N’Ssn,N(u*))V(_xsn,N(u*))
IA=s

—genN (N gen Ny (u*))V(xg”’N(lA))]A

=Knia+Kpn 1t —s)AVION2,

Substituting 7" and 15" into (5.10) yields

t
E[nG V(5. sk)fﬁ"’N<x:i"’N,sgn’Nm))wxe"’N(u))du]
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t
— E[n 5.5 =0 3 LNV AN aa)A]+ Kyea + 0aT ),
[A=s

which, together with (5.9) gives

0= ]E{h(xs"’N(s]-),j < k)[V(x%N(t)) — V(N (s))

t
_/ o eV N ) e ) ||

t
— E{nGN (5, <R[V @) - V) - Py cNepvaraanal]l

+KNCA + O(ATNONZ),

Letting A — 0 gives
t
E{h(xN(sj),j < k)[V(xN(t)) —vN) — / ﬁN(x{,V)V(xN(u))du]} —0.

This shows that x®>" (-) converges weakly to x (-), where x” (-) solves the martingale problem
with operator £V . This also shows that x"V (-) is the weak solution of Eq. (5.6).

Next, we move from the weak convergence of the truncated process to that of untruncated
processes. The argument is similar to that of [19, p.46]. For any continuous initial value xo €
C([—t,0]; R") independent of ¢, let P(-) and PV (-) denote the probabilities induced by x(-)
and x% (-), respectively, on the Borel sets of C ([0, T]; R"). By (A5), the martingale problem has
a unique solution for each xg, so P(-) is unique. For each T < oo, the uniqueness implies that
PP(-) determined by Eq. (4.7) agrees with PV (-) determined by Eq. (5.6) on all Borel sets of the
set of paths in C([0, T']; Sy) for each 1 < T. However, P{sup,.7 |x(#)| < N} - 1 as N — oo.
This together with the weak convergence of x®*"V () implies that x* (-) = x(-). Moreover, the
uniqueness implies that the limit does not depend on the chosen subsequences. This completes
this proof. O

6. SIDEs and SDDEs with two-time scales

As a class of special SFDEs, SIDEs arise widely in biology, ecology, medicine and physics
(see [1,17,26,35]). Let us consider the following two-time-scale SIDE:

0 0
dxt (1) =B(/xs(t+9)u(d9),és(t))dt—|—\If(/x£(t+9)u(d9),58(t))dw1(t), (6.1)
e 1 ;
dEE(1) = EH(/xs(t+8)u(d0),§8(t))dt+$<I>(/xe(t+0)u(d9),Sg(t))dw2(t), (6.1b)
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with initial data £(0) € R™ and xo € C([—7,0]; R"), where u is a probability measure on
[-7,0], B:R" x R™ — R", ¢ :R" x R™ S R™e2 H: R"xR"™ - R™, & :R" x R" —
R™*!1 Let us impose the following assumptions on these coefficients.

(A1) (Lipschitz condition) For any integer R, there exists positive constant L g such that for any
X1, X2 € R", &1, 6 € R™ with | X1| v [X2] V1|V [&2] < R,

|H(X1,£) — H(X2,8)> < Lr(1X1 — X2I* + &1 — &1, (6.2)

and

|B(X1, &) — B(X2,E)* V [W(X1, &) — (X2, &) < Lr|X1 — Xo + LI& — &,
(6.3)
where L is some constant. In (6.3), &, & € R™ are arbitrary.
(AZ) (Dissipative condition) For any X, X, € R", there exist A1, A and L such that for any &,
& eR™,

(81 — &2, H(X1,&1) — H(X2,£)) < —Mé — & + LX) — Xa|?
and

|D(X1, &) — D@2, £2)> < Aa(lE1 — &2 + |X1 — Xaf?).

(A3) (Linear growth condition) There exists a constant L > 0 such that

IBX.OP v W(X. 0P v [H(X.0” < L(L+XP). (6:4)
for any X € R".
Let us define
0 0
big. &)= 8( [ o@mao).&). vio.s)=v( [o@ o)),
0 0
no. &)= H( [0@u@n.s). sw.5=o( [oona.s).

Note that ||¢|| < R for any ¢ € C([—7, 0]; R") implies |¢(#)| < R for any 6 € [—t, 0], and
0 0
| [@nas)| < [ 1o = 1ol
T -7
According to (A1), for any @1, 2 € C([—7,0]; R") and &1, & € R™ with ||o1]| V |2l V |&1] V

|&] < R,
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0 0

ingr. 60— o2, &P = | ( [ or@naor.e) -1 ( [ oo &)
_To 0 - ,
= La(| [ 0@ i) - [ p@uas)| + i - &)

0
< La(] [ 1610) = 20 Puian)| + 161 - 2P

< Lr(lg1 — @2lI* + |&1 — &17).

Similarly, for any &1, &, € R™ and ¢, ¢ € C([—7, 0]; R"?) with ||¢1] V [le2]l < R,

0 0
bior. 50— b2 &0 =[8( [ i@ niao). ) - 5( [ 0o o)

< Lgllg1 — o2l* + LI&) — &
and

[V (@1, &1) — ¥ (2, £2)> < Lrllo1 — g2l® + LI& — &)

These imply Assumption (A1) holds. Likewise, Assumptions (A2) and (A3) hold.
Let £X be the solution of the fixed-X equation

d&(t) = H(X,&E@))dt + O(X, &(t))dwa(2). (6.5)

Theorem 4.1 shows that this equation has a unique invariant measure X . Let us define

B(x) = / B(X, )X (@) and E(X) = / WX OV (X OpX @), (66)
]Rm Rm

Assume that there exists a unique weak solution for SIDE

0 0
dx (1) :B(/x(t+9)u(d9))dt+\I/(/x(t+9)u(de))d3(t), (6.7)

with the initial data xo € C([—t, 0]; R"), where W(-)¥'(-) = Z(-). Then we have the following
theorem.

Theorem 6.1. Under Assumptions (A1)-(A3) and (A4), Eq. (6.1) has a unique global solution
(x5, (£5(2)))). Moreover, if 211 > Ao, x%(-) converges weakly to x(-), the solution of (6.7).
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As an example, let us consider the following special 2-dimensional linear SIDEs with two-
time scales:

t

dx® (1) = [al /xs(s)ds —+—,3§8(t)]dt + &S (Ddw (0), (6.82)
1—1
t t
dE° (1) = 1[0[2 / X (s5)ds —)LEE(I)]dt+ £ f X8 (s)dsdwa (1) (6.8b)
¢ t—T \/517‘[

with initial data £(0) € R and xg € C([—7, 0]; R), where A > 0, o, a2, B, x, p € R. Choose
1 (+) to be the uniform distribution on [—7, 0], i.e., ©(d8) = d0 /7. Then it can be observed that

t 0 0

/xg(s)ds:/xg(t—i—H)d@=I/x£(t+9)u(d9).

t—T -7 -7

This shows that Eq. (6.8) satisfies Assumptions (Al)-(A3) and holds a unique global solution
(x%(1), £%(r))’. Let us consider the following fixed- X equation

dE(t) = (2 X — AE(D))dt + pXdwa(t).

This equation describes the mean reverting Ornstein—Uhlenbeck process with stationary normal
distribution MX being N(ax X /A, (pX )2 /(21)), which is exponentially ergodic (see [23, p.306]).
It is easy to observe that

X 2 2+)\‘ 2
E,x& =fs;ﬁ‘(ds> =22, Eux€2=/ézﬂx(d5> ==
R R

Let us define

t t
dx(t):(ozl—i-%)fx(s)dsdt—l—%,/Za%—i—)»pz‘ /x(s)ds‘dB(t), (6.9)
-1 -1

where B(t) is a scalar Brownian motion. Since A > 0, if Eq. (6.9) has a unique global solution
and Egs. (6.9) and (6.82) have the same initial data satisfying (A4), by Theorem 6.1, x°(-) = x(-)
determined by Eq. (6.9).

Choosing u being the Dirac measure at —7, we have

0

/¢(9)M(d9) =¢(-1).

T
Then Eq. (6.1) may be rewritten as the following SDDE
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dx®(t) = B(x*(t — 1), £°(1))dr + W(x° (t — 1), E°(1))dw (¢), (6.10a)
dgs(r) = lH(x‘g(t —1),E°(t))dr + L<I>(x‘9(1‘ — 1), 5(0))dwa(t). (6.10b)
€ Ve

According to Theorem 6.1, under Assumptions (Al)—(A3) and (A4), Eq. (6.10) has a unique
global solution ((x*(¢))’, (§2(r))"). Moreover, if 241 > Ay, x°(-) converges weakly to x(-) deter-
mined by the following stochastic pure delay differential equation

dx(t) = B(x(t — 1))dt + W(x°(t — 1)dB(1),

where B and W' = ¥ are determined by (6.6). There always exists a global solution for this
stochastic pure delay differential equation (see [23, p.157]).

Remark 6.2. (Final remarks). Let us recapture the main advances of this paper. Considering
two-time-scale stochastic functional differential equations, we treat coupled systems, which are
more versatile but are far more difficult to deal with. To overcome the difficulty due to the past
dependence and the coupled systems, the Holder continuity and the tightness of certain processes
are obtained together with continuous dependence of the parameters. Then a direct averaging is
performed to obtain the desired limit stochastic functional equations. An immediate question is:
Can we handle systems in which not only does the fast component depend on the segment process
of the slow component, but also depends on the segment process of the fast-varying component?
At this point, it seems that the current techniques cannot be used to treat the corresponding
systems. More sophisticated methods are needed, which deserves further in depth investigation.
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