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Abstract

This paper focuses on two-time-scale coupled stochastic functional differential equations (SFDEs). The 
system under consideration has a slow component and a fast component. Both components depend on the 
segment process (an infinite dimension process) of the slow component. To overcome the difficulty due to 
the past dependence and the coupling of the segment process, such properties as the Hölder continuity and 
tightness on a space of continuous functions are investigated first for the segment process. In addition, it is 
also shown that the solution of a fixed-x equation depends continuously on the parameters. Then using the 
martingale problem formulation, an average principle is established by a direct averaging.
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1. Introduction and motivation

This work focuses on coupled stochastic functional differential equations (SFDEs) with two-
time scales. The system under consideration has a slow component and a fast component. Both 
the slow and fast components depend on the segment process (to be specified) of the slow com-
ponent. Our effort is devoted to obtaining a limit process.

Uncertainty and time delays are ubiquitous and pervasive, which are often encountered in our 
life. As a result, stochastic systems with delays have received much attention in systems and 
control, physics, biomedical sciences, epidemic modeling, communication networks, population 
dynamics, and related fields [5,9,10,18,21]. Taking random disturbances and delays into consid-
eration, much effort has been devoted to the study of stochastic delay or functional differential 
equations (SDDEs or SFDEs for short) [21,23,24,35]. Because solutions of SDDEs and SFDEs 
are non-Markovian due to the dependence of history, methods based on Markovian setup for the 
solutions are no longer applicable; see for example, [2,24,37] and references therein.

From another perspective, many complex systems involve “fast” and “slow” motions. For 
example, learning processes in the brain involve two-time scales, from fast neuronal activity 
(a few milliseconds) to slow synaptic plasticity (minutes/hours) [8]. Combined with uncertainty, 
these systems are often modeled as SDEs with fast and slow time scales; see [3,7,28,33,34,39,40]
and references therein. Assuming ε > 0 to be a small parameter, in [14], Khasminskii and Yin 
examined the following systems of stochastic differential equations with two-time scales

⎧⎨
⎩

dXε
1(t) = h1(X

ε
1(t),X

ε
2(t))dt + ς1(X

ε
1(t),X

ε
2(t))dw1(t),

dXε
2(t) = 1

ε
h2(X

ε
1(t),X

ε
2(t))dt + 1√

ε
ς2(X

ε
1(t),X

ε
2(t))dw2(t),

(1.1)

in which the component Xε
2(·) is rapidly varying and Xε

1(·) is slowly changing. In [8], Galtier 
and Wainrib studied a generic learning neural network model

⎧⎨
⎩

�̇ε(t) = G(�ε(t), vε(t)),

dvε(t) = 1

ε
[f (�ε(t), vε(t)) + u(t)]dt + 1√

ε
ς(�ε(t), vε(t))dw(t),

(1.2)

where vε ∈Rn represents the fast activity of the individual elements in n neurons, �ε(t) ∈ Rn×n

is the connectivity matrix that varies slowly due to plasticity, and u represents the external input. 
One of the main features is: The original systems are complex and difficult to deal with, but 
the associated limit dynamic systems as ε → 0 are considerably simpler; see [3,7,12,14,13,15,
16,27,28,32,33,39,40] and references therein. Several methods are commonly used to treat the 
corresponding asymptotic properties. One of them is based on analytic techniques [14,13,15]
by means of asymptotic expansions of the associated transition densities through Kolmogorov-
Fokker-Planck equations. For example, using the asymptotic expansion methods for (1.1), an 
averaging principle was established in [14]; it was shown that as ε → 0, the fast component is 
averaged out, and the slow component Xε

1(·) converges weakly to a limit X(·) satisfying

dX(t) = h̄1(X(t))dt + ς̄1(X(t))dw(t), (1.3)

where
2
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h̄1(x1) =
∫

h1(x1, x2)μ
x1(dx2), ς̄2

1 (x1) =
∫

ς2
1 (x1, x2)μ

x1(dx2)

is an average with respect to μx1(·) the invariant measure of the following fixed-x1 equation

dX
x1
2 (t) = h2(x1,X

x1
2 (t))dt + ς2(x1,X

x1
2 (t))dw2(t).

Another method is probabilistic (a stochastic averaging method), for example, Khasminskii [12], 
Kushner [19,20], and Pardoux and Veretennikov [27]. Note that in the last reference above, partial 
differential equations were also used as a bridge for the averaging, whereas in [12,19,20,30,31,
38] probabilistic method was used as a primary tool.

The two-time-scale systems mentioned above can be extended to systems involving delays. 
When time delays have influence on two-time-scale diffusion systems, SDDEs and SFDEs with 
two-time scales have to be considered. Due to the lack of the Markovian property, techniques in 
the literature for treating Markov processes are not applicable. For example, the weak conver-
gence methods developed by Kushner in [19,20] cannot be applied directly. For instance, when 
the perturbed test function method is used, it is necessary to consider the differential of the delay 
term. This implies that delay or functional differential is needed. By extending the functional Itô 
formula initiated by Dupire [6], we established in [36] a stochastic averaging principle for the 
two-time-scale functional diffusion system of the following form

⎧⎨
⎩

dXε(t) = b(Xε
t , Y

ε(t))dt + ψ(Xε
t , Y

ε(t))dw1(t),

dY ε(t) = 1

ε
h(Y ε(t))dt + 1√

ε
φ(Y ε(t))dw2(t),

(1.4)

where xε
t := {xε(u ∧ t) : 0 ≤ u ≤ T } represents the delay from 0 to the current time t . Note 

that in the above, although the slow process depends on the fast process, the fast component 
involves no delays. However, the analysis is already rather complex. This paper treats an even 
more complex situation, where the fast process is also past dependent and involves an infinite-
dimensional process. When the fast component depends on the segment process of the slow 
one, the slow component will appear in the stationary distribution of the corresponding fixed-x
equation, making it difficult to apply the functional Itô formula. Thus, when fully coupled SDDEs 
or SFDEs with two-times scales are examined, different approaches need to be taken.

To substantially extend the results of [36], this paper examines coupled functional diffusion 
processes with two-time scales given by the following SFDE

dxε(t) = b(xε
t , ξ

ε(t))dt + ψ(xε
t , ξ

ε(t))dw1(t), (1.5a)

dξε(t) = 1

ε
h(xε

t , ξ
ε(t))dt + 1√

ε
φ(xε

t , ξ
ε(t))dw2(t), (1.5b)

with initial data ξ(0) ∈Rm and x0 ∈ C([−τ, 0]; Rn). In the above, xε
t := {xε(t +θ) : −τ ≤ θ ≤ 0}

is termed a segment process or solution map process, b = (b1, b2, . . . , bn)
′ : C([−τ, 0]; Rn) ×

Rm → Rn, ψ = [ψij ]n×l1 : C([−τ, 0]; Rn) × Rm → Rn×l1 , h = (h1, h2, . . . , hm)′ : C([−τ, 0];
Rn) ×Rm → Rm, z′ denotes the transpose of z, φ = [φij ]m×l2 : C([−τ, 0]; Rn) ×Rm → Rm×l2 , 
and w1(t) and w2(t) are two independent standard Brownian motions taking values in Rl1 and 
Rl2 , respectively. Note that the fast and slow components are fully coupled through the segment 
process xε

t .
3
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Since the functional term in C([−τ, 0]; Rn) and coupled systems are considered, it is difficult 
to use the perturbed test function method together with the functional Itô formula. This paper 
aims to establish the averaging principle for system (1.5) by a direct averaging approach. Along 
this line, it is also necessary to examine such properties as continuity and tightness on the space 
C([0, T ]; C([−τ, 0]; Rn)) of the segment process xε· . In addition, we need to examine the fixed-x
equation (or frozen x equation) and establish the continuous dependence on the fixed parameter 
x of the system.

The rest of the paper is arranged as follows. Section 2 provides notation, assumptions, and 
some preliminary results. Section 3 establishes existence and uniqueness of the global solutions 
for the coupled functional stochastic differential equations with two-time scales and the mo-
ment boundedness of the solutions. This section also presents continuity of the slow component 
and the corresponding segment process. Section 4 examines the invariant measure and the ex-
ponential ergodicity of the fixed-x equation and proves continuous dependence of the solution 
on the parameter x. These results are interesting in their own right. Section 5 establishes the 
averaging principle by examining the weak convergence of the slow-varying process xε(·) as 
ε → 0. To establish this result, we prove the tightness of the segment process xε· on the space 
C([−τ, 0]; C([−τ, 0]; Rn)). Treating two classes of SFDEs, Section 6 derives the averaging prin-
ciples of stochastic integro-differential equations (SIDEs) and SDDEs with two-time scales by 
using weak convergence methods. Some final thoughts are presented at the end of the paper.

2. Notation, assumptions, and preliminaries

Let Rn denote the n-dimensional Euclidean space with the Euclidean norm | · |. For a vector or 
matrix 
, denote its transpose by 
′; for a matrix 
, denote its trace norm by |
| = √

Tr(
′
). 
For a set or event A, A represents its complement. For a, b ∈ Rn, 〈a, b〉 = a′b represents the inner 
product of a and b. Throughout the paper, K denotes a generic positive constant, whose value 
may change for different usage, so K + K = K and KK = K are understood in an appropriate 
sense. Similarly, Kα denotes a generic positive constant depending on parameter α. We use ε > 0
to represent a small parameter.

In this paper, if x(t) is a stochastic process, denote by Fx
t = σ {x(s) : s ≤ t} the filtration 

generated by {x(s) : s ≤ t}, and Ex
t the corresponding conditional expectation. For stochas-

tic processes ξε(·) and xε(·) depending on ε, we define Fε
t as the σ -algebra generated by 

{ξε(s), xε(s) : s ≤ t}, and Eε
t the conditional expectation on Fε

t .
For τ > 0, denote by C([−τ, 0]; Rn) the family of continuous functions ϕ(·) from [−τ, 0]

to Rn with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)| and C([0, T ]; Rn) be the family of continuous 
function x(·) from [0, T ] to Rn. For p > 0, Lp

Ft
(�, Rn) and Lp

Ft
(�, C([−τ, 0]; Rn)) represent 

the families of Rn and C([−τ, 0]; Rn)-valued Ft -measurable random variables with E| · |p < ∞
and E‖ · ‖p < ∞, respectively. Denote by C∞

0 (Rn; R) the family of C∞ functions on Rn with 
compact support. Also define C([0, T ]; C([−τ, 0]; Rn)) the family of continuous functions x·
from [0, T ] to C([−τ, 0]; Rn), which has the following property.

Lemma 2.1. The space C([0, T ]; C([−τ, 0]; Rn)) is complete and separable.

Proof. Note that C([0, T ] × [−τ, 0]; Rn) is complete and separable, and

C([0, T ];C([−τ,0];Rn)) = C([0, T ] × [−τ,0];Rn).
4
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The desired result follows. �
Let M denote the set of real-valued progressively measurable functions that are nonzero only 

on a bounded t -interval and

Mε =
{
f ∈ M : sup

t
E|f (t)| < ∞ and f (t) is Fε

t -measurable
}
. (2.1)

Using [19,22], let us recall the definitions of the p-lim and the infinitesimal operator L̂ε as fol-
lows.

Definition 2.1. Let f, f δ ∈Mε
for each δ > 0. We say f = p- limδ f δ if and only if

⎧⎨
⎩

sup
t,δ

E|f δ(t)| < ∞,

lim
δ→0

E|f δ(t) − f (t)| = 0 for each t.

This definition implies that p-limδ f δ = 0 if f (·) = 0 almost surely, where f δ ∈ Mε
for each 

δ > 0.

Definition 2.2. We say that f (·) ∈ D(L̂ε), the domain of L̂ε , and L̂εf = g if f, g ∈ Mε
and

p- lim
δ↓0

(Eε
t f (t + δ) − f (t)

δ
− g(t)

)
= 0.

Thus L̂ε is a type of infinitesimal operator. The following lemma was proved by Kurtz [22].

Lemma 2.2. If f ∈D(L̂ε), then

Mf (t) = f (t) −
t∫

0

L̂εf (u)du

is a martingale, and

Eε
t f (t + s) − f (t) =Eε

t

t+s∫
t

L̂εf (u)du w.p.1.

We need the following assumptions.

(A1) (Lipschitz condition) For any integer R, there exists a positive constant LR such that for 
any ϕ1, ϕ2 ∈ C([−τ, 0]; Rn) and ξ1, ξ2 ∈ Rm with ‖ϕ1‖ ∨ ‖ϕ2‖ ∨ |ξ1| ∨ |ξ2| ≤ R

|h(ϕ1, ξ1) − h(ϕ2, ξ2)|2 ≤ LR(‖ϕ1 − ϕ2‖2 + |ξ1 − ξ2|2), (2.2)

and
5
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|b(ϕ1, ξ1)−b(ϕ2, ξ2)|2 ∨|ψ(ϕ1, ξ1)−ψ(ϕ2, ξ2)|2 ≤ LR‖ϕ1 −ϕ2‖2 +L|ξ1 −ξ2|2. (2.3)

In (2.3), ξ1, ξ2 ∈Rm and L is a positive constant.
(A2) (Dissipative condition) For any ϕ1, ϕ2 ∈ C([−τ, 0]; Rn), there exist λ1, λ2, and L such that 

for any ξ1, ξ2 ∈Rm,

〈ξ1 − ξ2, h(ϕ1, ξ1) − h(ϕ2, ξ2)〉 ≤ −λ1|ξ1 − ξ2|2 + L‖ϕ1 − ϕ2‖2

and

|φ(ϕ1, ξ1) − φ(ϕ2, ξ2)|2 ≤ λ2(|ξ1 − ξ2|2 + ‖ϕ1 − ϕ2‖2).

(A3) (Linear growth condition) There exists a constant L > 0 such that

|b(ϕ,0)|2 ∨ |ψ(ϕ,0)|2 ∨ |h(ϕ,0)|2 ≤ L(1 + ‖ϕ‖2), (2.4)

for any ϕ ∈ C([−τ, 0]; Rn).
(A4) The initial data ξ(0) ∈ L

p

F0
(�, Rm) and x0 ∈ L

p

F0
(�, C([−τ, 0]; Rn)) for some p > 2, and 

x(θ) for θ ∈ [−τ, 0] is Hölder-continuous with exponent γ0 > 0.

3. Coupled functional diffusions with two-time scales

The following theorem establishes the existence and uniqueness of the strong solution for 
Eq. (1.5) together with the moment bounds of the solution, as well as continuity of the slow-
varying component xε(·).

Theorem 3.1. Under Assumptions (A1)–(A4), for any ε > 0, SFDE (1.5) has a unique global 
strong solution (xε ′(t), ξε ′(t))′. Moreover, if 2λ1 > λ2, for any T > 0, there exist positive con-
stants p > 2 and Kp,T depending on p, T , and initial data x0 and ξ(0) independent of ε such 
that

E
[

sup
0≤t≤T

|xε(t)|p
]

≤ Kp,T (3.1)

and

sup
0≤t≤T

E|ξε(t)|p ≤ Kp,T , (3.2)

and

E|xε(t) − xε(s)|p ≤ Kp,T (t − s)p/2, for all 0 ≤ s < t ≤ T . (3.3)

Proof. We divide the proof into the following three steps.
6
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Step 1: Existence and uniqueness of the global solution. The SFDE (1.5) can be rewritten as

d

(
xε(t)

ξ ε(t)

)
=

(
b(xε

t , ξ
ε(t))

1

ε
h(xε

t , ξ
ε(t))

)
dt

+
⎛
⎝ ψ(xε

t (t), ξ
ε(t)) 0

0
1√
ε
φ(xε

t (t), ξ
ε(t))

⎞
⎠d

(
w1(t)

w2(t)

)
.

(3.4)

According to Assumptions (A1) and (A2), for any ϕ1, ϕ2 ∈ C([−τ, 0]; Rn) and ξ1, ξ2 ∈ Rm with 
‖ϕ1‖ ∨ ‖ϕ2‖ ∨ |ξ1| ∨ |ξ2| ≤ R,

∣∣∣∣∣
(

b(ϕ1, ξ1)
1

ε
h(ϕ1, ξ1)

)
−

(
b(ϕ2, ξ2)

1

ε
h(ϕ2, ξ2)

)∣∣∣∣∣
2

=
∣∣∣∣∣
(

b(ϕ1, ξ1) − b(ϕ2, ξ2)
1

ε
[h(ϕ1, ξ1) − h(ϕ2, ξ2)]

)∣∣∣∣∣
2

= |b(ϕ1, ξ1) − b(ϕ2, ξ2)|2 + 1

ε2 |h(ϕ1, ξ1) − h(ϕ2, ξ2)|2

≤
(

1 + 1

ε2

)
LR(‖ϕ1 − ϕ2‖2 + ‖ξ1 − ξ2‖2)

and

∣∣∣∣∣∣
⎛
⎝ ψ(ϕ1, ξ1) 0

0
1√
ε
φ(ϕ1, ξ1)

⎞
⎠ −

⎛
⎝ ψ(ϕ2, ξ2) 0

0
1√
ε
φ(ϕ2, ξ2)

⎞
⎠

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
⎛
⎝ ψ(ϕ1, ξ1) − ψ(ϕ2, ξ2) 0

0
1√
ε
[φ(ϕ1, ξ1) − φ(ϕ2, ξ2)]

⎞
⎠

∣∣∣∣∣∣
2

= |ψ(ϕ1, ξ1) − ψ(ϕ2, ξ2)|2 + 1

ε
|φ(ϕ1, ξ1) − φ(ϕ2, ξ2)|2

≤
(
LR + λ2

ε

)
(‖ϕ1 − ϕ2‖2 + ‖ξ1 − ξ2‖2),

which shows that Eq. (3.4) (or Eq. (1.5)) satisfies the local Lipschitz condition. Since this 
equation is autonomous, the local Lipschitz condition also implies that the local linear growth 
condition, yielding that Eq. (3.4) (or Eq. (1.5)) has a local solution (see [23, Theorem 2.8, P154]).

By Assumptions (A1), (A2), and (A3),

ϕ′(0)b(ϕ, ξ) ≤ 1

2
(|ϕ(0)|2 + |b(ϕ, ξ)|2)

= 1

2
|ϕ(0)|2 + 1

2
|b(ϕ, ξ) − b(ϕ,0) + b(ϕ,0)|2

≤ 1 |ϕ(0)|2 + |b(ϕ, ξ) − b(ϕ,0)|2 + |b(ϕ,0)|2

2

7
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≤ 1

2
‖ϕ‖2 + L|ξ |2 + L(1 + ‖ϕ‖2)

≤ K(‖ϕ‖2 + |ξ |2 + 1), (3.5)

ξ ′h(ϕ, ξ) ≤ −λ1|ξ |2 + ξ ′h(ϕ,0)

≤ −λ1|ξ |2 + |ξ |2
2

+ |h(ϕ,0)|2
2

≤
(

− λ1 + 1

2

)
|ξ |2 + L

2
‖ϕ‖2 + L

2

≤ K(‖ϕ‖2 + |ξ |2 + 1), (3.6)

|ψ(ϕ, ξ)|2 = |ψ(ϕ, ξ) − ψ(ϕ,0) + ψ(ϕ,0)|2
≤ 2|ψ(ϕ, ξ) − ψ(ϕ,0)|2 + 2|ψ(ϕ,0)|2
≤ 2L|ξ |2 + 2L(1 + ‖ϕ‖2)

≤ K(‖ϕ‖2 + |ξ |2 + 1) (3.7)

and

|φ(ϕ, ξ)|2 ≤ |φ(ϕ, ξ) − φ(0,0) + φ(0,0)|2
≤ 2|(φ(ϕ, ξ) − φ(0,0)|2 + 2|φ(0,0)|2
≤ 2λ2(‖ϕ‖2 + |ξ |2) + 2|φ(0,0)|2
≤ K(‖ϕ‖2 + |ξ |2 + 1), (3.8)

where 0 ∈ C([−τ, 0]; Rn) represents zero segment process. These yield that for any ϕ ∈
C([−τ, 0]; Rn) and ξ ∈Rm, from (A3)

(ϕ′(0), ξ ′)
(

b(ϕ, ξ)
1

ε
h(ϕ, ξ)

)
+ 1

2

∣∣∣∣∣∣
⎛
⎝ ψ(ϕ, ξ) 0

0
1√
ε
φ(ϕ, ξ)

⎞
⎠

∣∣∣∣∣∣
2

≤ ϕ′(0)b(ϕ, ξ) + 1

ε
ξ ′h(ϕ, ξ) + 1

2

[
|ψ(ϕ, ξ)|2 + 1

ε
|φ(ϕ, ξ)|2

]

≤
(3

2
K + 3

2ε
K

)
(‖ϕ‖2 + |ξ |2 + 1)

=: Kε(‖ϕ‖2 + |ξ |2 + 1), (3.9)

which shows that the coefficients of Eq. (3.4) satisfy the monotone condition.
Choosing sufficiently large integer R satisfying |ξ(0)| ∨ |x(0)| < R, define the stopping time

τR = inf{t ≥ 0, |xε(t)| ∨ |ξε(t)| > R} ∧ T .

Note that τR is increasing with respect to R. Define τ∞ = limR→∞ τR and let zε(t) =
([xε(t)]′, [ξε(t)]′)′. Since Eq. (1.5) holds a local solution, for any integer R > 0 and any 
8
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t ∈ [0, τR], zε(t) is well-posed. By the monotone condition, applying the Itô formula to |zε(t)|2
yields that for any t ∈ [0, T ],

E
[

sup
0≤s≤t∧τR

|zε(s)|2
]

=E
[

sup
0≤s≤t∧τR

(|xε(s)|2 + |ξε(s)|2)
]

≤ E[|x(0)|2 + |ξ(0)|2] + KεE

t∧τR∫
0

[‖xε
u‖2 + |ξε(u)|2 + 1]du

+E
[

sup
0≤s≤t∧τR

s∫
0

2[zε(u)]′�ε(u)dw(u)
]
, (3.10)

where

�ε(u) =
⎛
⎝ ψ(xε

u, ξ
ε(u)) 0

0
1√
ε
φ(xε

u, ξ
ε(u))

⎞
⎠ and w(u) =

(
w1(u)

w2(u)

)
.

By (A3), (3.7), and (3.8), applying the Burkholder-Davis-Gundy inequality gives

E
[

sup
0≤s≤t∧τR

s∫
0

2[zε(u)]′�ε(u)dw(u)
]

≤ 12E
∣∣∣

t∧τR∫
0

|zε(u)|2|�ε(u)|2du

∣∣∣1/2

≤ 1

2
E

[
sup

0≤s≤t∧τR

|zε(s)|2
]
+ K

t∧τR∫
0

[
|ψ(xε

u, ξ
ε(u))|2 + 1

ε
|φ(xε

u, ξ
ε(u))|2

]
du

≤ 1

2
E

[
sup

0≤s≤t

|zε(s ∧ τR)|2
]
+ Kε

t∧τR∫
0

[‖xε
u‖2 + |ξε(u)|2 + 1]du. (3.11)

Substituting (3.11) into (3.10) yields

E
[

sup
0≤s≤t∧τR

|zε(s)|2
]

≤ E[|x(0)|2 + |ξ(0)|2] + KεE

t∧τR∫
0

[‖xε
u‖2 + |ξε(u)|2 + 1]du

≤ E[|x(0)|2 + |ξ(0)|2] + Kε

t∫
[1 +E‖x0‖2 +E[ sup

0≤v≤u∧τR

|zε(v)|2]]du. (3.12)
0

9
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The Gronwall inequality gives

E
[

sup
0≤s≤t∧τR

|zε(s)|2
]

≤ KεE[‖x0‖2 + |ξ(0)|2 + 1]eKεT := Kε,T .

Noting t ’s arbitrariness and letting R → ∞ give

E
[

sup
0≤s≤T

|zε(s)|2
]

≤ KεE[‖x0‖2 + |ξ(0)|2 + 1]eKεT = Kε,T .

Recalling the definition of τR , this implies that for any T > 0,

R2P (τR ≤ T ) ≤E[|xε(τR ∧ T )|21{τR≤T } ∨ |ξε(τR ∧ T )|21{τR≤T }]
≤E[|xε(τR ∧ T )|2 + |ξε(τR ∧ T )|2]1{τR≤T }

≤E
[

sup
0≤s≤T

|zε(s)|2
]

≤ Kε,T ,

which implies that

P (τR ≤ T ) ≤ Kε,T

R2 .

Hence it follows that

∞∑
R=1

P (τR ≤ T ) < ∞.

The Borel–Cantelli lemma gives that for any T > 0,

P (τ∞ ≤ T ) = 0.

Due to the arbitrariness of T , P (τ∞ = ∞) = 1, which shows that the local solution is actually 
global. This gives the existence and uniqueness of the global solution of Eq. (1.5).
Step 2: Proof of (3.1) and (3.2). For p > 2 and λ > 0, applying the Itô formula yields that for 
any s > 0,

e
λ
ε
s[1 + |ξε(s)|2] p

2 = [1 + |ξ(0)|2] p
2 + λ

ε

s∫
0

e
λ
ε
u[1 + |ξε(u)|2] p

2 du

+p

ε

s∫
0

e
λ
ε
u[1 + |ξε(u)|2] p−2

2 [ξε(u)]′h(xε
u, ξ

ε(u))du

+ p

2ε

s∫
e

λ
ε
u[1 + |ξε(u)|2] p−2

2 |φ(xε
u, ξ

ε(u))|2du
0

10
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+p(p − 2)

2ε

s∫
0

e
λ
ε
u[1 + |ξε(u)|2] p−4

2 |[ξε(u)]′φ(xε
u, ξ

ε(u))|2du

+Mε(s)

≤ [1 + |ξ(0)|2] p
2 + λ

ε

s∫
0

e
λ
ε
u[1 + |ξε(u)|2] p

2 du

+p

ε

s∫
0

e
λ
ε
u[1 + |ξε(u)|2] p−2

2 [ξε(u)]′h(xε
u, ξ

ε(u))du

+p(p − 1)

2ε

s∫
0

e
λ
ε
u[1 + |ξε(u)|2] p−2

2 |φ(xε
u, ξ

ε(u))|2du

+Mε(s), (3.13)

where Mε(s) is a local martingale with EMε(s) = 0. By Assumptions (A2), (A3), and the Young 
inequality, for any ε1,

[ξε(u)]′h(xε
u, ξ

ε(u)) ≤ −λ1|ξε(u)|2 + [ξε(u)]′h(xε
u,0)

≤ −λ1|ξε(u)|2 + ε1|ξε(u)|2
2

+ |h(xε
u,0)|2

2ε1

≤
(

− λ1 + ε1

2

)
|ξε(u)|2 + L

2ε1
‖xε

u‖2 + L

2ε1
. (3.14)

By Assumption (A2) and the Young inequality, for any ε2,

|φ(xε
u, ξ

ε(u))|2
≤ |(φ(xε

u, ξ
ε(u)) − φ(0,0) + φ(0,0)|2

≤ |(φ(xε
u, ξ

ε(u)) − φ(0,0)|2 + |φ(0,0)|2 + 2(φ(xε
u, ξ

ε(u)) − φ(0,0))′φ(0,0)

≤ λ2(‖xε
u‖2 + |ξε(u)|2) + |φ(0,0)|2 + ε2|(φ(xε

u, ξ
ε(u)) − φ(0,0)|2 + 1

ε2
|φ(0,0)|2

≤ λ2(1 + ε2)|ξε(u)|2 + λ2(1 + ε2)‖xε
u‖2 +

(
1 + 1

ε2

)
|φ(0,0)|2. (3.15)

Substituting (3.14) and (3.15) into (3.13) yields

e
λ
ε
s[1 + |ξε(s)|2] p

2

≤ [1 + |ξ(0)|2] p
2

+ p

2ε

s∫
e

λ
ε
u
{[

− 2λ1 + (p − 1)λ2(1 + ε2) + 2λ

p
+ ε1

]
[1 + |ξε(u)|2] p

2

0

11
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+
[ L

ε1
+ (p − 1)λ2(1 + ε2)

]
[1 + |ξε(u)|2] p−2

2 ‖xε
u‖2 + A[1 + |ξε(u)|2] p−2

2

}
du

+Mε(s), (3.16)

where

A = L

ε1
+ (p − 1)

(
1 + 1

ε2

)
φ(0,0)|2 −

[
− 2λ1 + (p − 2)λ2(1 + ε2) + 2λ

p
+ ε1

]

is a constant. Applying the Young inequality yields that for any ε3 such that

[1 + |ξε(u)|2] p−2
2 ‖xε

u‖2 ≤ (p − 2)ε1ε3

p
[1 + |ξε(u)|2] p

2 + 2

p(ε1ε3)
p−2

2

‖xε
u‖p,

which shows that

e
λ
ε
s[1 + |ξε(s)|2] p

2

≤ [1 + |ξ(0)|2] p
2 + p

2ε

s∫
0

e
λ
ε
u
{

− B[1 + |ξε(u)|2] p
2 + A[1 + |ξε(u)|2] p−2

2

+
[ L

ε1
+ (p − 1)λ2(1 + ε2)

] 2

p(ε1ε3)
p−2

2

‖xε
u‖p

}
du + Mε(s), (3.17)

where

B = 2λ1 − (p − 1)λ2(1 + ε2) − 2λ

p
− ε1 − (p − 2)Lε3

p
− p − 2

p
(p − 1)λ2(1 + ε2)ε1ε3.

Noting that 2λ1 > λ2, we can choose λ, ε1, ε2 and ε3 sufficiently small, and p > 2 but sufficiently 
close to 2 such that B > 0. This also implies that there exists a constant K such that

−B|z| p
2 + A|z| p−2

2 < K

according to the boundedness of the polynomial function. It follows from this result that there 
exists a constant K > 0 such that

e
λ
ε
s |ξε(s)|p ≤ e

λ
ε
s[1 + |ξε(s)|2] p

2

≤ [1 + |ξ(0)|2] p
2 + p

2ε

s∫
0

e
λ
ε
u[K + K‖xε

u‖p]du + Mε(s)

≤ [1 + |ξ(0)|2] p
2 + pK

2λ

[
1 + sup

0≤u≤s

‖xε
u‖p

]
[e λ

ε
s − 1] + Mε(s),

which shows that
12
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E|ξε(s)|p ≤E[1 + |ξ(0)|2] p
2 + pK

2λ

[
1 +E

(
sup

0≤u≤s

‖xε
u‖p

)]

≤E[1 + |ξ(0)|2] p
2 + pK

2λ

[
1 +E‖x0‖p +E

(
sup

0≤u≤s

|xε(u)|p
)]

≤ Kp(1 +E|ξ(0)|p +E‖x0‖p) + KpE
(

sup
0≤u≤s

|xε(u)|p
)

(3.18)

since

E
[

sup
0≤u≤s

‖xε
u‖p

]
=E

[
sup

0≤u≤s

sup
−τ≤θ≤0

|xε(u + θ)|p
]

≤ E
[

sup
−τ≤u≤s

|xε(u)|p
]

≤ E‖x0‖p +E
[

sup
0≤u≤s

|xε(u)|p
]
. (3.19)

For any p > 2, it is easy to observe that

E
[

sup
0≤s≤t

|xε(s)|p
]

≤ 3p−1
{
E|x(0)|p +E

[
sup

0≤s≤t

∣∣∣
s∫

0

b(xε
u, ξ

ε(u))du

∣∣∣p]

+E
[

sup
0≤s≤t

∣∣∣
s∫

0

ψ(xε
u, ξ

ε(u))dw1(u)

∣∣∣p]}
. (3.20)

Computation of (3.5) implies |b(ϕ, ξ)|2 ≤ K(‖ϕ‖2 + |ξ |2 + 1). Applying the Hölder inequality 
gives

E
[

sup
0≤s≤t

∣∣∣
s∫

0

b(xε
u, ξ

ε(u))du

∣∣∣p]
≤ tp−1

t∫
0

E|b(xε
u, ξ

ε(u))|pdu

≤ tp−1Kp

t∫
0

E(‖xε
u‖2 + |ξε(u)|2 + 1)

p
2 du

≤ Kp,t

t∫
0

[E‖xε
u‖p +E|ξε(u)|p + 1]du. (3.21)

By (3.7), applying the Burkholder-Davis-Gundy inequality and the Hölder inequality yield

E
[

sup
0≤s≤t

∣∣∣
s∫
ψ(xε

u, ξ
ε(u))dw1(u)

∣∣∣p]

0

13
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≤ KpE
∣∣∣

t∫
0

|ψ(xε
u, ξ

ε(u))|2du

∣∣∣ p
2

≤ Kpt
p−2

2

t∫
0

E|ψ(xε
u, ξ

ε(u))|pdu

≤ Kp,t

t∫
0

[E‖xε
u‖p +E|ξε(u)|p + 1]du. (3.22)

Substituting (3.20) and (3.21) into (3.22), together with (3.19), gives

E
[

sup
0≤s≤t

|xε(s)|p
]

≤ KpE|x(0)|p + Kp,t

t∫
0

[E‖xε
u‖p +E|ξε(u)|p + 1]du

≤ KpE|x(0)|p + Kp,t

t∫
0

[
E‖x0‖p +E

(
sup

0≤v≤u

|xε(v)|p
)

+Kp(1 +E|ξ(0)|p +E‖x0‖p) + KpE
(

sup
0≤v≤u

|xε(v)|p
)

+ 1
]
du

≤ KpE|x(0)|p + Kp,t

t∫
0

[
E‖x0‖p +E|ξ(0)|p +E

(
sup

0≤v≤u

|xε(v)|p
)

+ 1
]
du.

The Gronwall inequality gives that there exists a Kp,T such that

E
[

sup
0≤s≤T

|xε(s)|p
]

≤ Kp,T ,

which leads to the desired (3.1). This, together with (3.18) yields

sup
0≤s≤T

E|ξε(s)|p ≤ Kp,T .

Thus (3.2) holds.
Step 3: Proof of (3.3). For p > 2 determined by Step 2, it is easy to observe that

E|xε(t) − xε(s)|p ≤ 2p−1
[
E

∣∣∣
t∫

s

b(xε
u, ξ

ε(u))du

∣∣∣p +E
∣∣∣

t∫
s

ψ(xε
u, ξ

ε(u))dw1(u)

∣∣∣p]
. (3.23)

By the Hölder inequality, (A3), (3.1), and (3.2),
14
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E
∣∣∣

t∫
s

b(xε
u, ξ

ε(u))du

∣∣∣p

≤ (t − s)p−1

t∫
s

E|b(xε
u, ξ

ε(u))|pdu

≤ 3p−1(t − s)p−1

t∫
s

E[‖xε
u‖p +E|ξε(u)|p + 1]du

≤ 3p−1(t − s)p−1

t∫
s

[
E‖x0‖p +E

(
sup

0≤u≤T

|xε(u)|p
)

+ sup
0≤u≤T

E|ξε(u)|p + 1
]
du

≤ Kp,T (t − s)p. (3.24)

By (A3), (3.1), and (3.2), applying the same technique as [23, Theorem 7.1, P39] gives

E
∣∣∣

t∫
s

ψ(xε
u, ξ

ε(u))dw1(u)

∣∣∣p ≤
[p(p − 1)

2

] p
2
(t − s)

p−2
2 E

t∫
s

|ψ(xε
u, ξ

ε(u))|pdu

≤ Kp,T (t − s)
p
2 . (3.25)

Substituting (3.24) and (3.25) into (3.23) leads to

E|xε(t) − xε(s)|p ≤ Kp,T (t − s)
p
2 ,

which is the desired assertion (3.3). This completes this proof. �
Remark 3.2. As mentioned before, the solution process (xε′(t), ξε ′(t))′ is not a Markov process. 
We cannot express some convergence conditions in the sense of transition probability as in Kush-
ner [19]. Even if we consider the segment process xε

t (noting that (xε
t
′, ξε ′(t))′ is an Fε

t -adapted 
Markov process [2,24]), Kushner’s method still needs to be modified because convergence of the 
pair (xε(t), xε

t ) needs to be considered altogether.

Remark 3.3. It is worth noting that the boundedness of pth moment and continuity are uni-
form w.r.t. ε. This implies that xε(·) → x(·) with probability 1, since for any t ∈ [0, T ], 
E[sup0≤s≤T |xε(s)|p] ≤ Kp,T . The Vitali convergence theorem shows E[sup0≤s≤T |xε(t)|p] →
E[sup0≤s≤T |x(t)|p] ≤ Kp,T for any t ∈ [0, T ]. Similarly, E|xε(t) − xε(s)|p → E|x(t) −
x(s)|p ≤ Kp,T (t − s)

p
2 . This also shows that x(t) is continuous in the sense of pth moment.

Applying [11, Theorem 2.8, p.53] gives the following corollary:

Corollary 3.4. Under the conditions of Theorem 3.1, the solution process xε(·) is locally Hölder-
continuous with exponent γ with probability 1 for any γ ∈ (0, 1/2 − 1/p). That is,
15



F. Wu and G. Yin Journal of Differential Equations 323 (2022) 1–37
P

(
ω : sup

s,t∈[0,T ],
0<t−s<h(ω)

|xε(ω, t) − xε(ω, s)|
|t − s|γ < κ

)
= 1,

where p is defined in Theorem 3.1, h(ω) is an almost surely positive random variable, and κ > 0
is an appropriate constant.

Remark 3.5. In fact, if xε(·) → x(·) with probability 1, Remark 3.3 and [11, Theorem 2.8, 
p.53] also give that x(t) is locally Hölder-continuous with exponent γ with probability 1 for any 
γ ∈ (0, 1/2 − 1/p).

By the above results, we can establish continuity of xε
t in the almost sure sense and the pth 

moment.

Corollary 3.6. Under the conditions of Theorem 3.1, xε· is locally Hölder-continuous with expo-
nent γ ∧ γ0 with probability 1, and for p defined in Theorem 3.1 and γ from Corollary 3.4,

lim
δ→0

E

(
sup

t,s∈[0,T ]|t−s|≤δ

‖xε
t − xε

s ‖p

)
= 0. (3.26)

Proof. From Corollary 3.4, there exists a �̃ with P (�̃) = 1 and h(ω) > 0 for any ω ∈ �̃ such 
that for any t, s ∈ [0, T ] and 0 < |t − s| < h(ω),

|xε(ω, t) − xε(ω, s)| ≤ κ|t − s|γ (3.27)

with probability 1, where γ ∈ (0, 1/2 − 1/p). This implies that for any θ ∈ [−τ, 0], if (t ∧ s) +
θ ≥ 0,

|xε(ω, t + θ) − xε(ω, s + θ)| ≤ κ|t − s|γ .

If (t ∨ s) + θ ≤ 0, (A4) yields that

|xε(ω, t + θ) − xε(ω, s + θ)| ≤ K|t − s|γ0 .

If (t ∧ s) + θ ≤ 0 and (t ∨ s) + θ ≥ 0, (A4) and (3.27) lead to

|xε(ω, t + θ) − xε(ω, s + θ)| ≤ K|t − s|γ∧γ0 .

These three cases imply that for any t, s ∈ [0, T ] and θ ∈ [−τ, 0],

sup
−τ≤θ≤0

|xε(ω, t + θ) − xε(ω, s + θ)| ≤ K|t − s|γ∧γ0 . (3.28)

That is,

‖xε(ω) − xε(ω)‖ ≤ K|t − s|γ∧γ0

t s

16
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for any ω ∈ �̃ and |t − s| ∈ (0, h(ω)). This implies that

P

(
ω : sup

t,s∈[0,T ],
0<|t−s|<h(ω)

‖xε
t − xε

s ‖
|t − s|γ∧γ0

≤ K

)
= 1, (3.29)

which shows that xε· is almost surely Hölder-continuous with exponent γ ∨ γ0.
For p defined in Theorem 3.1, (3.29) also indicates that as δ → 0,

sup
t,s∈[0,T ],|t−s|<δ

‖xε
t − xε

s ‖p → 0, a.s.

Note that from (3.19), E[sup0≤t≤T ‖xε
t ‖p] ≤ E‖x0‖p + Kp,T . The Lebesgue dominated conver-

gence theorem gives

lim
δ→0

E

(
sup

t,s∈[0,T ],|t−s|<δ

‖xε
t − xε

s ‖p

)
= 0,

as desired. �
Remark 3.7. According to [24, Chapter II, Lemma 2.1], continuity of the solution process xε(·)
on [−τ, T ] implies that the corresponding segment process xε· is also continuous on [0, T ]. But 
this result cannot give the Hölder continuity.

4. Fast-varying process and fixed-x process

To obtain the weak convergence of the slow-varying xε(t) as ε → 0, certain ergodicity is 
crucial. In (1.5), ξε(t) is rapidly varying in contrast to xε(t). Define ξ̃ ε(t) = ξε(εt). Then

dξ̃ ε(t) = h(xε
εt , ξ̃

ε(t))dt + φ(xε
εt , ξ̃

ε(t))dw̃2(t), (4.1)

where w̃2(t) = w2(εt)/
√

ε is a standard Brownian motion. Let us consider the following fixed-x
equation

dξx(t) = h(x, ξx(t))dt + φ(x, ξx(t))dw̃2(t). (4.2)

Theorem 4.1. Let Assumptions (A1), (A2), and (A4) hold. Then the fixed-x equation (4.2) has 
a unique strong global solution ξx(t) for any t ∈ [0, T ], which is Fw2

εt -adapted and satisfies the 
following properties:

(i) the solution is a homogeneous strong Markov process;
(ii) E(supt∈[0,T ] |ξx(t)|2) ≤ Kx,T , where Kx,T is a constant depending on x and T ;

(iii) when 2λ1 > λ2, there exists a unique invariant measure μx(·), which is exponentially er-
godic;

(iv) for any x1, x2 ∈ C([−τ, 0]; Rn), supt≥0 E|ξx1(t) − ξx2(t)|2 ≤ K‖x1 − x2‖2, where K is a 
constant.
17
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Proof. Existence and uniqueness of the strong solution of (4.2) follows from the existing result 
[23, Theorem 3.6, p. 58] by (2.2), (A2), and (3.6).

(i) Since (4.2) is autonomous when x is fixed, by the same statement as [23, Theorem 9.5, 
p. 90] (we replace the uniform Lipschitz condition by the local Lipschitz condition and the Dis-
sipative condition (A2)), we can prove the solution of (4.2) is a homogeneous strong Markov 
process.

(ii) Applying the Itô formula gives that for any t > 0,

E
[

sup
s∈[0,t]

|ξε(s)|2
]

≤ E|ξ(0)|2 +E
[

sup
s∈[0,t]

s∫
0

(2[ξε(u)]′h(x, ξε(u)) + |φ(x, ξε(u))|2)du
]

+2E
[

sup
s∈[0,t]

s∫
0

[ξε(u)]′φ(x, ξε(u))dw̃2(u)
]
. (4.3)

By (3.6) and (3.8),

E
[

sup
s∈[0,t]

s∫
0

(2[ξε(u)]′h(x, ξε(u)) + |φ(x, ξε(u))|2)ds

≤ KE

s∫
0

[‖x‖2 + |ξε(u)|2 + 1]du (4.4)

and by the Burkholder-Davis-Gundy inequality, the Young inequality and (3.8),

2E
[

sup
s∈[0,t]

s∫
0

ξε(u)]′φ(x, ξε(u))dw̃2(u)
]

≤ KE
∣∣∣

t∫
0

|ξε(u)]′φ(x, ξε(u))|2du

∣∣∣ 1
2

≤ 1

2
E

[
sup

s∈[0,t]
|ξε(s)|2

]
+ KE

t∫
0

|φ(x, ξε(u))|2du

≤ 1

2
E

[
sup

s∈[0,t]
|ξε(s)|2

]
+ KE

s∫
0

[‖x‖2 + |ξε(u)|2 + 1]du. (4.5)

Substituting (4.4) and (4.5) into (4.3) gives
18
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E
[

sup
s∈[0,t]

|ξε(s)|2
]

≤ 2E|ξ(0)|2 + K

s∫
0

[
‖x‖2 +E

(
sup

v∈[0,u]
|ξε(v)|2

)
+ 1

]
du.

The Gronwall inequality yields the desired assertion.
(iii) This result is from the existing result; see [2, Theorem 1.5, p. 5].
(iv) Applying the Itô formula gives

e(2λ1−λ2)t |ξx1(t) − ξx2(t)|2

= (2λ1 − λ2)

t∫
0

e(2λ1−λ2)s |ξx1(s) − ξx2(s)|2ds

+
t∫

0

[e(2λ1−λ2)s2〈ξx1(s) − ξx2(s), h(x1, ξ
x1(s)) − h(x2, ξ

x2(s))〉

+‖φ(x1, ξ
x1(s)) − φ(x2, ξ

x2(s))‖2]ds

+2

t∫
0

e(2λ1−λ2)s2〈ξx1(s) − ξx2(s),φ(x1, ξ
x1(s)) − φ(x2, ξ

x2(s))〉dw̃1(s)

≤ (2L + λ2)

t∫
0

e−(2λ1−λ2)(t−s)ds‖x1 − x2‖2

+2

t∫
0

e(2λ1−λ2)s2〈ξx1(s) − ξx2(s),φ(x1, ξ
x1(s)) − φ(x2, ξ

x2(s))〉dw̃1(s).

By Assumption (A1), (2.2), and (A2), taking the expectation gives

E|ξx1(t) − ξx2(t)|2 ≤ (2L + λ2)

t∫
0

e−(2λ1−λ2)(t−s)ds‖x1 − x2‖2

≤ 2L + λ2

2λ1 − λ2
‖x1 − x2‖2. (4.6)

This completes the proof. �
Remark 4.2. The conditions in Theorem 4.1 yield the exponential ergodicity of the invariant 

measure μx(·). It can also be seen that (iv) implies that as x1 → x2, ξx1(t) − ξx2(t) 
P−→ 0.

Using the invariant measure μx , define

b̄(x) =
∫
m

b(x, ξ)μx(dξ) and �̄(x) =
∫
m

ψ(x, ξ)ψ ′(x, ξ)μx(dξ)
R R
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Let us introduce the following assumption.

(A5) The following equation

dx(t) = b̄(xt )dt + ψ̄(xt )dB(t) (4.7)

has a solution that is unique in the weak sense (i.e., uniqueness in the sense of in distribu-
tion) on [0, T ] for the same initial data x0 ∈ C([−τ, 0]; Rn) as Eq. (1.5a), where B(t) is a 
standard Brownian motion, ψ̄(·)ψ̄ ′(·) = �̄(·).

Remark 4.3. In general, the existence and uniqueness of the solution for Eq. (4.7) cannot be 
obtained by the conditions imposed on b and ψ . If xε(·) → x(·) as ε → 0, by Remark 3.3, we 
know E[sup0≤t≤T |x(t)|p] ≤ Kp,T . Hence (4.7) has a global solution if b̄ and ψ̄ satisfy the local 
Lipschitz condition.

For any V ∈ C∞
0 (Rd ; R), applying the Itô formula to V (x(t)) for Eq. (4.7) yields that

MV (t) := V (x(t)) − V (x(0)) −
t∫

0

L(xs)V (x(s))ds =
t∫

0

Vx(x(s))ψ̄(xs)dB(s) (4.8)

is a martingale, where

L(xs)V (x(s)) = Vx(x(s))b̄(xs) + 1

2

n∑
i,j=1

ψ̄i(xs)ψ̄j (xs)Vxixj
(x(s)).

It is well-known that the existence and uniqueness of the weak solution for Eq. (4.7) is equivalent 
to the existence and uniqueness of solution for the martingale problem (4.8).

5. Weak convergence and asymptotic approximation

This section shows that the sequence {xε(·)}ε∈(0,1] converges weakly to a stochastic process 
that is the solution of an appropriate SFDE. In order to obtain the desired weak convergence, we 
need to prove tightness of {xε(·)}ε∈(0,1] and {xε· }ε∈(0,1]. In fact, for C([−τ, 0]; Rn), sup norm 
is used, if {xε· }ε∈(0,1] is tight, {xε(·)}ε∈(0,1] is naturally tight. Hence, we need only establish 
tightness of the segment process xε· ∈ C([0, T ]; C([−τ, 0]; Rn)). We state the following lemma.

Lemma 5.1. Let Xε· ∈ C([0, T ]; C([−τ, 0]; Rn)) be a sequence of Fε
t -measurable C([−τ, 0];

Rn)-valued processes satisfying that

(i) for any η > 0, there exists a constant M satisfying

sup P
(

sup |Xε
t (0)| > M

)
≤ η

2
; (5.1)
ε∈(0,1] 0≤t≤T
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(ii) for any k ∈ N and η > 0, there exists a constant δk satisfying

sup
ε∈(0,1]

P

(
sup

t∈[0,T ]
max

θ1,θ2∈[−τ,0]
|θ1−θ2|≤δk

|Xε
t (θ1) − Xε

t (θ2)| > 1

k

)
≤ η

2T +k+2 ; (5.2)

(iii) for any k ∈ N and η, there exists a constant δk satisfying

sup
ε∈(0,1]

P

(
max

t,s∈[0,T ]|t−s|≤δk

‖Xε
t − Xε

s ‖ >
1

k

)
≤ η

2T +k+2 . (5.3)

Then Xε· is tight in C([0, T ]; C([−τ, 0]; Rn)).

Proof. Define

Bε
1 =

{
ω : sup

0≤t≤T

|Xε
t (ω,0)| ≤ M

}
,

Bε
2,k =

{
ω : sup

t∈[0,T ]
max

θ1,θ2∈[−τ,0]
|θ1−θ2|≤δk

|Xε
t (ω, θ1) − Xε

t (ω, θ2)| ≤ 1

k

}
,

Bε
3,k =

{
ω : max

t,s∈[0,T ]|t−s|≤δk

‖Xε
t (ω) − Xε

s (ω)‖ ≤ 1

k

}
,

and let

Bε
2 =

∞⋂
k=1

Bε
2,k, Bε

3 =
∞⋂

k=1

Bε
3,k and Bε = Bε

1 ∩ Bε
2 ∩ Bε

3 .

By Lemma 2.1, C([0, T ]; C([−τ, 0]; Rn)) is separable and complete. This shows that a single 
measure P is tightness [4, p.8, Theorem 1.3]. Note that for any ε ∈ (0, 1] and any η > 0, by 
conditions (5.1), there exists a M > 0 sufficiently large such that

P (Bε
1) = P

(
sup

0≤t≤T

|Xε
t (0)| > M

)
≤ η

2
.

By (5.2),

P (Bε
2) = P

( ∞⋃
k=1

Bε
2,k

)
≤

∞∑
k=1

P (Bε
2,k) ≤

∞∑
k=1

η

2T +k+2 ≤ η

2T +2 .

By (5.3),

P (Bε
3) = P

( ∞⋃
k=1

Bε
3,k

)
≤

∞∑
k=1

P (Bε
3,k) ≤

∞∑
k=1

η

2T +k+2 ≤ η

2T +2 .

These three estimates imply that for any T > 0,
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P (Bε) = 1 − P (Bε)

≥ 1 − P (Bε
1) − P (Bε

2) − P (Bε
3)

> 1 − η.

Similarly, define

Aε
1 =

{
Xε· ∈ C([0, T ];C([−τ,0];Rn)) : sup

0≤t≤T

|Xε
t (0)| ≤ M

}
,

Aε
2,k =

{
Xε· ∈ C([0, T ];C([−τ,0];Rn)) : sup

t∈[0,T ]
max

θ1,θ2∈[−τ,0]
|θ1−θ2|≤δk

|Xε
t (θ1) − Xε

t (θ2)| ≤ 1

k

}
,

Aε
3,k =

{
Xε· ∈ C([0, T ];C([−τ,0];Rn)) : max

t,s∈[0,T ]|t−s|≤δk

‖Xε
t − Xε

s ‖ ≤ 1

k

}
,

and let

Aε
2 =

∞⋂
k=1

Aε
2,k and Aε

3 =
∞⋂

k=1

Aε
3,k.

According to [25, Theorem 47.1 (Ascoli’s Theorem), p.290] or [29] with small modifications,

Aε = Aε
1 ∩ Aε

2 ∩ Aε
3

is relatively compact.
Let PXε· (·) be the probability measure induced by Xε· ∈ C([0, T ]; C([−τ, 0]; Rn)). Then for 

any i = 1, 2, 3,

PXε· (A
ε
i ) = P (Bε

i ).

It follows that PXε· (A
ε) > 1 − η. This demonstrates that Xε· is tight. �

Following this lemma, we can examine the tightness of {xε· }0<ε≤1.

Theorem 5.2. Assuming (A1)-(A4), {xε· } for 0 < ε ≤ 1 is tight on C([0, T ]; C([−τ, 0]; Rn)).

Proof. To prove the tightness, let us verify (5.1)–(5.3) for {xε· }0<ε≤1. For any η > 0, from (3.1)
and the Chebyshev inequality, there exists M > (2Kp,T )1/p/η1/p such that

P
(

sup
0≤t≤T

|xε
t (0)| > M

)
≤

E
[

sup
0≤t≤T

|xε
t (0)|p

]
Mp

=
E

[
sup

0≤t≤T

|xε(t)|p
]

Mp
≤ Kp,T

Mp
<

η

2
. (5.4)

This shows that (5.1) holds.
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Note that (3.28) also shows that

P

(
lim
δ→0

sup
t,s∈[−τ,T ]|t−s|≤δ

|xε(t) − xε(s)| = 0

)
= 1,

which implies that for any k > 0,

lim
δ→0

P

(
sup

t,s∈[−τ,T ]|t−s|<δ

|xε(t) − xε(s)| > 1

k

)
= 0.

This further leads to that for any η > 0, there exists a δk such that

P

(
sup

t,s∈[−τ,T ]|t−s|<δk

|xε(t) − xε(s)| > 1

k

)
<

η

2T +k+2 .

This, together with xε
t (θ) = xε(t + θ) for any θ ∈ [−τ, 0], yields

P

(
sup

t∈[0,T ]
max

θ1,θ2∈[−τ,0]
|θ1−θ2|≤δk

|xε
t (θ1) − xε

t (θ2)| > 1

k

)

= P

(
sup

t∈[0,T ]
max

θ1,θ2∈[−τ,0]
|θ1−θ2|≤δk

|xε(t + θ1) − xε(t + θ2)| > 1

k

)

≤ P

(
sup

t,s∈[−τ,T ]|t−s|≤δk

|xε(t) − xε(s)| > 1

k

)
<

η

2T +k+2 ,

which indicates that (5.2) holds.
Eq. (3.29) shows that

P

(
lim
δ→0

sup
t,s∈[0,T ],

0<|t−s|<δ

‖xε
t − xε

s ‖ = 0

)
= 1,

which implies that for any k > 0,

lim
δ→0

P

(
sup

t,s∈[0,T ],
0<|t−s|<δ

‖xε
t − xε

s ‖ >
1

k

)
= 0.

This further implies that for any η > 0, there exists δk > 0 such that

P

(
max

t,s∈[0,T ]
‖xε

t − xε
s ‖ >

1

k

)
≤ η

2T +k+2 .
|t−s|≤δk
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Hence (5.3) follows. Then the tightness of xε· in C([0, T ]; C([−τ, 0]; Rn)) follows from 
Lemma 5.1 as desired. �

To proceed, let us state the main theorem of this paper.

Theorem 5.3. Under Assumptions (A1)-(A4), xε(·) converges weakly to x(·) that is the solution 
of (4.7).

To prove this theorem, let us introduce the following the truncated SFDE. For each N > 0, 
define bN(ϕ, ξ) = b(ϕ, ξ)qN(ϕ(0)), ψN(ϕ, ξ) = ψ(ϕ, ξ)qN(ϕ(0)), and

qN(y) =
⎧⎨
⎩

1, when y ∈ SN,

0, when y ∈ Rn − SN+1,

smooth, otherwise,

SN = {y : |y| ≤ N}. For sufficiently large such that |x(0)| ≤ N , let us consider

dxε,N (t) = bN(x
ε,N
t , ξ ε,N (t))dt + ψN(x

ε,N
t , ξ ε,N (t))dw1(t), (5.5)

where xε,N
t = {xε,N (t + θ) : −τ ≤ θ ≤ 0} and ξε,N (t) is the solution of Eq. (1.5b) when xε

t is 
replaced by xε,N

t . It can be observed that xε,N(t) = xε(t) up until the first exit from SN . Then 
xε,N (t) is said to be an N -truncation of xε(t). According to the definition of xt , it is easily seen 
that xε,N

t ∈ C([0, T ]; SN+1) if xε,N (t) ∈ SN+1 since ‖xε,N
t ‖ = sup−τ≤θ≤0 |xε,N (t +θ)| ≤ N +1. 

Let Fε,N
t = σ {ξε,N (s), xε,N (s) : s ≤ t}. We can likewise define the corresponding Mε,N

and 
L̂ε,N accordingly.

Remark 5.4. Note that bN(·) and ψN(·) have better properties. Because ‖xε,N
t ‖ ≤ N + 1, in 

(A1), bN(·) and ψN(·) are, in fact, globally Lipschitz continuous. The xε,N(t) and the corre-
sponding segment process xε,N

t inherit all properties of xε(t) and xε
t , for example, Theorem 3.1

holds and xε,N
t ∈ C([0, T ]; C([−τ, 0]; SN+1)) is tight and continuous.

Proof of Theorem 5.3. Let us first prove xε,N (·) converges weakly to xN(·), where xN(·) is the 
solution of Eq. (4.7) with truncated coefficients

dxN(t) = b̄N (xN
t )dt + ψ̄N(xN

t )dB(t) (5.6)

and b̄N (ϕ) = b̄(ϕ)qN(ϕ(0)) and ψ̄N(ϕ) = ψ̄(ϕ)qN(ϕ(0)). Let us give the definitions of �̄N(·) =
ψ̄N(·)[ψ̄N (·)]′ and

LN(xN
s )V (xN(s)) = Vx(x

N(s))bN(xN
s ) + 1

2

n∑
i,j=1

ψN
i (xN

s )ψN
j (xN

s )Vxixj
(xN(s)).

Since {xε,N· } is tight, by the Prohorov theorem, it is sequentially compact. There exist 
xN ∈ C([0, T ]; C([−τ, 0]; SN+1)) and a subsequence {εn}n≥1 with εn → 0 as n → ∞ such 
that xεn,N ⇒ xN . Since the distribution of xεn,N (t) is the marginal distribution of x

εn,N
t , 
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xεn,N (t) = x
εn,N
t (0) ⇒ xN

t (0) = xN(t). By the Skorohod representation theorem, we may as-
sume that xεn,N· converges to xN· in the sense of w.p.1. Because of xε,N

t ∈ C([−τ, 0]; SN+1) with 
the uniform norm ‖ · ‖, xεn,N (·) also converges to xN(·) with probability 1.

We proceed to characterize the limit process xN(·) by use of the martingale problem formu-
lation. For any V ∈ C∞

0 (Rn; R), applying the Itô formula to V (xεn,N (t)) for Eq. (1.5a) yields

M
εn,N
V (t) := V (xεn,N (t)) − V (x(0)) −

t∫
0

Lεn,N (xεn,N
s , ξ εn,N (s))V (xεn,N (s))ds

=
t∫

0

Vx(x
εn,N (s))ψN(xεn,N

s , ξ εn,N (s))dw2(s) (5.7)

is a martingale, where

Lεn,N (xεn,N
s , ξ εn,N (s))V (xεn,N (s))

= Vx(x
εn,N (s))bN(xεn,N

s , ξ εn,N (s))

+1

2

n∑
i,j=1

ψN
i (xεn,N

s , ξ εn,N (s))ψN
j (xεn,N

s , ξ εn,N (s))Vxixj
(xεn,N (s)).

This is equivalent to that

E
{
h(xεn,N (sj ), j ≤ k)

[
V (xεn,N (t)) − V (xεn,N (s))

−
t∫

s

Lεn,N (xεn,N
u , ξεn,N (u))V (xεn,N (u))du

]}
= 0

(5.8)

for arbitrary k, t and s with s1 < s2 < · · · < sk < s < t , and any bounded and continuous function 
h(·). Since xεn,N (·) converges to xN(·) w.p.1 as n → ∞, by the Lebesgue dominated conver-
gence theorem,

E[h(xεn,N (sj ), j ≤ k)V (xεn,N (s))] → E[h(xN(sj ), j ≤ k)V (xN(s))] (5.9)

for all 0 < s ≤ t . Then let us consider convergence of

E[h(xεn,N (uj ), j ≤ k)

t∫
s

Lεn,N (xεn,N
u , ξεn,N (u))V (xεn,N (u))du].

Choose � sufficiently small. Then
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E
[
h(xεn,N (sj ), j ≤ k)

t∫
s

Lεn,N (xεn,N
u , ξεn,N (u))V (xεn,N (u))du

]

=E
[
h(xεn,N (sj ), j ≤ k)

×
t∑

l�=s

(l+1)�∫
l�

Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u))V (xεn,N (l�))du

]

+E
[
h(xεn,N (sj ), j ≤ k)

t∑
l�=s

(l+1)�∫
l�

Lεn,N (xεn,N
u , ξεn,N (u))V (xεn,N (u))

−Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u))V (xεn,N (l�))du

]
=: I εn,N

1 + I
εn,N
2 , (5.10)

where

ξεn,N,x
εn,N
l� (u) = ξεn,N (l�) + 1

εn

u∫
l�

h(x
εn,N
l� , ξεn,N,x

εn,N
l� (v))dv

+ 1√
εn

u∫
l�

φ(x
εn,N
l� , ξεn,N,x

εn,N
l� (v))dw2(v).

(5.11)

Note that xεn,N
l� in (5.11) is at the beginning of the interval so it is a fixed constant. Making 

change of variable u to εnu gives

ξεn,N,x
εn,N
l� (εnu) = ξεn,N (l�) + 1

εn

εnu∫
l�

h(x
εn,N
l� , ξεn,N,x

εn,N
l� (v))dv

+ 1√
εn

εnu∫
l�

φ(x
εn,N
l� , ξεn,N,x

εn,N
l� (v))dw2(v)

= ξεn,N (l�) +
u∫

l�
εn

h(x
εn,N
l� , ξεn,N,x

εn,N
l� (εnv))dv

+
u∫

l�
εn

φ(x
εn,N
l� , ξεn,N,x

εn,N
l� (εnv))dw̃2(v). (5.12)

Compared with Eq. (4.2), it is obvious that for any u ∈ [l�, (l + 1)�],
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ξεn,N,x
εn,N
l� (u) = ξx

εn,N
l�

( u

εn

)
, (5.13)

where ξx
εn,N
l� (·) is solution the fixed-x equation (4.2) with x = x

εn,N
l� . According to expression of 

Lεn,N (·)V (·),
(l+1)�∫
l�

Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u))V (xεn,N (l�))du

=
(l+1)�∫
l�

[
Vx(x

εn,N (l�))bN(x
εn,N
l� , ξεn,N,x

εn,N
l� (u))

+1

2

n∑
i,j=1

ψN
i (x

εn,N
l� , ξεn,N,x

εn,N
l� (u))ψN

j (x
εn,N
l� , ξεn,N,x

εn,N
l� (u))Vxixj

(xεn,N (l�))
]
du

= Vx(x
εn,N (l�))I

εn,N
11 + 1

2

n∑
i,j=1

I
εn,N
12ij Vxixj

(xεn,N (l�)), (5.14)

where

I
εn,N
11 =

(l+1)�∫
l�

bN(x
εn,N
l� , ξεn,N,x

εn,N
l� (u))du

and

I
εn,N
12ij =

(l+1)�∫
l�

ψN
i (x

εn,N
l� , ξεn,N,x

εn,N
l� (u))ψN

j (x
εn,N
l� , ξεn,N,x

εn,N
l� (u))du.

Making change of variable u to εnu and using (5.13) yield that

I
εn,N
11 = εn

(l+1)�
εn∫

l�
εn

bN(x
εn,N
l� , ξx

εn,N
l� (u))du

= εn

(l+1)�
εn∫

l�
εn

bN(xN
l�, ξxN

l�(u))du

+εn

(l+1)�
εn∫

l�

[bN(x
εn,N
l� , ξx

εn,N
l� (u)) − bN(xN

l�, ξxN
l�(u))]du
εn
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=: I εn,N
11,1 + I

εn,N
11,2 .

According to ergodicity of ξx(·) and the definition of b̄N , as n → ∞,

I
εn,N
11,1 = �

1

�/εn

(l+1)�
εn∫

l�
εn

bN(xN
l�, ξxN

l�(u))du → b̄N (xN
l�)�, a.s. (5.15)

Recall that xεn,N
l� → xN

l� with probability 1 as n → ∞. Applying (iv) of Theorem 4.1 gives that

ξx
εn,N
l� (u) − ξxN

l�(u)
P−→ 0.

By the integral mean value theorem and the local Lipschitz condition, since bN satisfies the 
global Lipschitz condition, there exists a u∗ ∈R such that

|I εn,N
11,2 | = |bN(x

εn,N
l� , ξx

εn,N
l� (u∗)) − bN(xN

l�, ξxN
l�(u∗))|�

≤ KN�(‖xεn,N
l� − xN

l�‖ + |ξx
εn,N
l� (u∗) − ξxN

l�(u∗))|) P−→ 0. (5.16)

Note that xεn,N
l� → xN

l� with probability 1. Combining (5.15) with (5.16) gives

Vx(x
εn,N (l�))I

εn,N
11 − Vx(x

N(l�))b̄N (xN
l�)�

P−→ 0, a.s.. (5.17)

Let us estimate I εn,N
12ij . By making change of variable u to εu gives that

I
εn,N
12ij = εn

(l+1)�
εn∫

l�
εn

ψN
i (x

εn,N
l� , ξx

εn,N
l� (u))ψN

j (x
εn,N
l� , ξx

εn,N
l� (u))du

= εn

(l+1)�
εn∫

l�
εn

ψN
i (xN

l�, ξxN
l�(u))ψN

j (xN
l�, ξxN

l�(u))du

+εn

(l+1)�
εn∫

l�
εn

[ψN
i (x

εn,N
l� , ξx

εn,N
l� (u))ψN

j (x
εn,N
l� , ξx

εn,N
l� (u))

−ψN
i (xN

l�, ξxN
l�(u))ψN

j (xN
l�, ξxN

l�(u))]du

=: I εn,N
12ij,1 + I

εn,N
12ij,2. (5.18)

Similar to (5.15), the ergodicity of ξx(·) and the definition of �̄N yield that as n → ∞,
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I
εn,N
12ij,1 = �

1

�/εn

(l+1)�
εn∫

l�
εn

ψN
i (xN

l�, ξxN
l�(u))ψN

j (xN
l�, ξxN

l�(u))du → �̄N
ij (xN

l�)�, a.s. (5.19)

Note that for any ϕ ∈ C([−τ, 0]; SN+1), ψN
i (ϕ, ξ) is bounded and satisfies the global Lipschitz 

condition. This implies that for any u,

|ψN
i (x

εn,N
l� , ξx

εn,N
l� (u))ψN

j (x
εn,N
l� , ξx

εn,N
l� (u)) − ψN

i (xN
l�, ξxN

l�(u))ψN
j (xN

l�, ξxN
l�(u))|

≤ KN(|xεn,N
l� − xN

l�| + |ξx
εn,N
l� (u) − ξxN

l�(u))|).

Similar to the estimate of I εn,N
11,2 in (5.16), as n → ∞,

I
εn,N
12ij,2

P−→ 0.

This, together with (5.19) and xεn,N (l�) → xN(l�) with probability 1, gives

1

2

n∑
i,j=1

I
εn,N
12ij Vxixj

(xεn,N (l�)) − 1

2

n∑
i,j=1

�̄N
ij (xN

l�)Vxixj
(xN(l�))�

P−→ 0. (5.20)

By the Lebesgue dominated convergence theorem, (5.17) and (5.20) give

I
εn,N
1 → E

[
h(xN(sj ), j ≤ k)

t∑
l�=s

LN(xN
l�)V (xN(l�))�

]
. (5.21)

Now let us consider I εn,N
2 . By the integral mean value theorem, there exists u∗ ∈ [l�, (l + 1)�]

such that

I
εn,N
2 =E

{
h(xεn,N (sj ), j ≤ k)

t∑
l�=s

[
Lεn,N (x

εn,N
u∗ , ξ εn,N (u∗))V (xεn,N (u∗))

−Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u∗))V (xεn,N (l�))

]
�

}
. (5.22)

Note that for u ∈ [l�, (l + 1)�],

ξεn,N (u) = ξεn,N (l�) + 1

εn

u∫
l�

h(xεn,N
s , ξ εn,N (s))ds

+ 1√
εn

u∫
l�

φ(xεn,N
s , ξ εn,N (s))dw1(s),

and that ξεn,N,x
εn,N
l� (u) satisfies Eq. (5.11). It follows that
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ξεn,N (u) − ξεn,N,x
εn,N
l� (u)

= 1

εn

u∫
l�

[h(xεn,N
s , ξ εn,N (s)) − h(x

εn,N
l� , ξεn,N,x

εn,N
l� (s))]ds

+ 1√
εn

u∫
l�

[φ(xεn,N
s , ξ εn,N (s)) − φ(x

εn,N
l� , ξεn,N,x

εn,N
l� (s))]dw1(s).

Applying the Itô formula gives

e
2λ1−λ2

εn
u|ξεn,N (u) − ξεn,N,x

εn,N
l� (u)|2

= (2λ1 − λ2)
1

εn

u∫
l�

e
2λ1−λ2

ε
s |ξεn,N (s) − ξεn,N,x

εn,N
l� (s)|2ds

+ 1

εn

u∫
l�

e
2λ1−λ2

εn
s[2〈ξεn,N (s) − ξεn,N,x

εn,N
l� (s),

h(xεn,N
s , ξ εn,N (s)) − h(x

εn,N
l� , ξεn,N,x

εn,N
l� (s))〉

+‖φ(xεn,N
s , ξ εn,N (s)) − φ(x

εn,N
l� , ξεn,N,x

εn,N
l� (s))‖2]ds

+ 2√
εn

u∫
l�

e
2λ1−λ2

εn
s2〈ξεn,N (s) − ξεn,N,x

εn,N
l� (s),φ(xεn,N

s , ξ εn,N (s))

−φ(x
εn,N
l� , ξεn,N,x

εn,N
l� (s))〉dw1(s).

By Assumption (A1) and (A2), taking the expectation on both sides gives

E|ξεn,N (u) − ξεn,N,x
εn,N
l� (u)|2

≤ (2L + λ2)
1

εn

u∫
l�

e
− 2λ1−λ2

εn
(u−s)E‖xεn,N

s − x
εn,N
l� ‖2ds

≤ 2L + λ2

2λ1 − λ2

[
sup

s∈[l�,(l+1)�]
E‖xεn,N

s − x
εn,N
l� ‖2

]
. (5.23)

Let ζ� = sups∈[l�,(l+1)�] E‖xεn,N
s − x

εn,N
l� ‖2. (3.26) shows ζ� → 0 as � → 0. Note that V ∈

C∞
0 (Rd ; R). This, combined with (A1), implies that Lεn,N (·, ·)V (·) satisfies the global Lipschitz 

condition, that is, there exists constant KN > 0 such that

|Lεn,N (x
εn,N
u∗ , ξ εn,N (u∗))V (xεn,N (u∗))

−Lεn,N (x
εn,N

, ξεn,N,x
εn,N
l� (u∗))V (xεn,N (l�))|2
l�
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≤ KN [‖xεn,N
u∗ − x

εn,N
l� ‖2 + |xεn,N (u∗) − xεn,N (l�)|2

+|ξεn,N (u∗) − ξεn,N,x
εn,N
l� (u∗)|2]. (5.24)

By (3.3), (3.28), and (5.23), taking expectation yields

E|Lεn,N (x
εn,N
u∗ , ξ εn,N (u∗))V (xεn,N (u∗))

−Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u∗))V (xεn,N (l�))|2

≤ KN [E‖xεn,N
u∗ − x

εn,N
l� ‖2 +E|xεn,N (u∗) − xεn,N (l�)|2

+E|ξεn,N (u∗) − ξεn,N,x
εn,N
l� (u∗)|2]

≤ KNζ� + Kp,N,T � + κ2(2L + λ2)

2λ1 − λ2
�2(γ∧γ0)

≤ KNζ� + Kp,N,T �2(γ∧γ0)∧1.

This implies that

E
∣∣∣ t∑
l�=s

[
Lεn,N (x

εn,N
u∗ , ξ εn,N (u∗))V (xεn,N (u∗))

−Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u∗))V (xεn,N (l�))

]
�

∣∣∣
≤

t∑
l�=s

E
∣∣∣Lεn,N (x

εn,N
u∗ , ξ εn,N (u∗))V (xεn,N (u∗))

−Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u∗))V (xεn,N (l�))

∣∣∣�
≤ KNζ� + Kp,N,T (t − s)�(γ∧γ0)∧1/2.

Noting that h is bounded, we therefore obtain

I
εn,N
2 =E

[
h(xεn,N (sj ), j ≤ k)

t∑
l�=s

[
Lεn,N (x

εn,N
u∗ , ξ εn,N (u∗))V (xεn,N (u∗))

−Lεn,N (x
εn,N
l� , ξεn,N,x

εn,N
l� (u∗))V (xεn,N (l�))

]
�

= KNζ� + Kp,N,T (t − s)�(γ∧γ0)∧1/2.

Substituting I εn,N
1 and I εn,N

2 into (5.10) yields

E
[
h(xεn,N (sj ), j ≤ k)

t∫
Lεn,N (xεn,N

u , ξεn,N (u))V (xεn,N (u))du
]

s
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→ E
[
h(xN(sj ), j ≤ k)

t∑
l�=s

LN(xN
l�)V (xN(l�))�

]
+ KNζ� + O(�(γ∧γ0)∧1/2),

which, together with (5.9) gives

0 =E
{
h(xεn,N (sj ), j ≤ k)

[
V (xεn,N (t)) − V (xεn,N (s))

−
t∫

s

Lεn,N (xεn,N
u , ξεn,N (u))V (xεn,N (u))du

]}

→ E
{
h(xN(sj ), j ≤ k)

[
V (xN(t)) − V (xN(s)) −

t∑
l�=s

LN(xN
l�)V (xN(l�))�

]]}

+KNζ� + O(�(γ∧γ0)∧1/2).

Letting � → 0 gives

E
{
h(xN(sj ), j ≤ k)

[
V (xN(t)) − V (xN(s)) −

t∫
s

LN(xN
u )V (xN(u))du

]}
= 0.

This shows that xεn,N (·) converges weakly to xN(·), where xN(·) solves the martingale problem 
with operator LN . This also shows that xN(·) is the weak solution of Eq. (5.6).

Next, we move from the weak convergence of the truncated process to that of untruncated 
processes. The argument is similar to that of [19, p.46]. For any continuous initial value x0 ∈
C([−τ, 0]; Rn) independent of ε, let P (·) and PN(·) denote the probabilities induced by x(·)
and xN(·), respectively, on the Borel sets of C([0, T ]; Rn). By (A5), the martingale problem has 
a unique solution for each x0, so P (·) is unique. For each T < ∞, the uniqueness implies that 
P (·) determined by Eq. (4.7) agrees with PN(·) determined by Eq. (5.6) on all Borel sets of the 
set of paths in C([0, T ]; SN) for each t ≤ T . However, P {supt≤T |x(t)| ≤ N} → 1 as N → ∞. 
This together with the weak convergence of xεn,N (·) implies that xεn(·) ⇒ x(·). Moreover, the 
uniqueness implies that the limit does not depend on the chosen subsequences. This completes 
this proof. �
6. SIDEs and SDDEs with two-time scales

As a class of special SFDEs, SIDEs arise widely in biology, ecology, medicine and physics 
(see [1,17,26,35]). Let us consider the following two-time-scale SIDE:

dxε(t) = B
( 0∫
−τ

xε(t + θ)μ(dθ), ξε(t)
)
dt + 


( 0∫
−τ

xε(t + θ)μ(dθ), ξε(t)
)
dw1(t), (6.1a)

dξε(t) = 1

ε
H

( 0∫
xε(t + θ)μ(dθ), ξε(t)

)
dt + 1√

ε
�

( 0∫
xε(t + θ)μ(dθ), ξε(t)

)
dw2(t), (6.1b)
−τ −τ
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with initial data ξ(0) ∈ Rm and x0 ∈ C([−τ, 0]; Rn), where μ is a probability measure on 
[−τ, 0], B : Rn × Rm → Rn, 
 : Rn × Rm → Rn×l2 , H : Rn × Rm → Rm, � : Rn × Rm →
Rm×l1 . Let us impose the following assumptions on these coefficients.

(Â1) (Lipschitz condition) For any integer R, there exists positive constant LR such that for any 
X1, X2 ∈ Rn, ξ1, ξ2 ∈ Rm with |X1| ∨ |X2| ∨ |ξ1| ∨ |ξ2| ≤ R,

|H(X1, ξ1) − H(X2, ξ2)|2 ≤ LR(|X1 − X2|2 + |ξ1 − ξ2|2), (6.2)

and

|B(X1, ξ1) − B(X2, ξ2)|2 ∨ |
(X1, ξ1) − 
(X2, ξ2)|2 ≤ LR|X1 − X2|2 + L|ξ1 − ξ2|2,
(6.3)

where L is some constant. In (6.3), ξ1, ξ2 ∈ Rm are arbitrary.
(Â2) (Dissipative condition) For any X1, X2 ∈Rn, there exist λ1, λ2 and L such that for any ξ1, 

ξ2 ∈Rm,

〈ξ1 − ξ2,H(X1, ξ1) − H(X2, ξ2)〉 ≤ −λ1|ξ1 − ξ2|2 + L|X1 − X2|2

and

|�(X1, ξ1) − �(ϕ2, ξ2)|2 ≤ λ2(|ξ1 − ξ2|2 + |X1 − X2|2).
(Â3) (Linear growth condition) There exists a constant L > 0 such that

|B(X,0)|2 ∨ |
(X,0)|2 ∨ |H(X,0)|2 ≤ L(1 + |X|2), (6.4)

for any X ∈Rn.

Let us define

b(ϕ, ξ) = B
( 0∫
−τ

ϕ(θ)μ(dθ), ξ
)
, ψ(ϕ, ξ) = 


( 0∫
−τ

ϕ(θ)μ(dθ), ξ
)
,

h(ϕ, ξ) = H
( 0∫
−τ

ϕ(θ)μ(dθ), ξ
)
, φ(ϕ, ξ) = �

( 0∫
−τ

ϕ(θ)μ(dθ), ξ
)
.

Note that ‖ϕ‖ ≤ R for any ϕ ∈ C([−τ, 0]; Rn) implies |ϕ(θ)| ≤ R for any θ ∈ [−τ, 0], and

∣∣∣
0∫

−τ

ϕ(θ)μ(dθ)

∣∣∣ ≤
0∫

−τ

‖ϕ‖μ(dθ) = ‖ϕ‖.

According to (Â1), for any ϕ1, ϕ2 ∈ C([−τ, 0]; Rn) and ξ1, ξ2 ∈ Rm with ‖ϕ1‖ ∨ ‖ϕ2‖ ∨ |ξ1| ∨
|ξ2| ≤ R,
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|h(ϕ1, ξ1) − h(ϕ2, ξ2)|2 =
∣∣∣H( 0∫

−τ

ϕ1(θ)μ(dθ), ξ1

)
− H

( 0∫
−τ

ϕ2(θ)μ(dθ), ξ2

)∣∣∣2

≤ LR

(∣∣∣
0∫

−τ

ϕ1(θ)μ(dθ) −
0∫

−τ

ϕ2(θ)μ(dθ)

∣∣∣2 + |ξ1 − ξ2|2
)

≤ LR

(∣∣∣
0∫

−τ

|ϕ1(θ) − ϕ2(θ)|2μ(dθ)

∣∣∣ + |ξ1 − ξ2|2
)

≤ LR(‖ϕ1 − ϕ2‖2 + |ξ1 − ξ2|2).

Similarly, for any ξ1, ξ2 ∈Rm and ϕ1, ϕ2 ∈ C([−τ, 0]; Rn) with ‖ϕ1‖ ∨ ‖ϕ2‖ ≤ R,

|b(ϕ1, ξ1) − b(ϕ2, ξ2)|2 =
∣∣∣B( 0∫

−τ

ϕ1(θ)μ(dθ), ξ1

)
− B

( 0∫
−τ

ϕ2(θ)μ(dθ), ξ2

)∣∣∣2

≤ LR‖ϕ1 − ϕ2‖2 + L|ξ1 − ξ2|2

and

|ψ(ϕ1, ξ1) − ψ(ϕ2, ξ2)|2 ≤ LR‖ϕ1 − ϕ2‖2 + L|ξ1 − ξ2|2.

These imply Assumption (A1) holds. Likewise, Assumptions (A2) and (A3) hold.
Let ξX be the solution of the fixed-X equation

dξ(t) = H(X, ξ(t))dt + �(X,ξ(t))dw̃2(t). (6.5)

Theorem 4.1 shows that this equation has a unique invariant measure μX. Let us define

B̄(X) =
∫
Rm

B(X, ξ)μX(dξ) and �̄(X) =
∫
Rm


(X, ξ)
′(X, ξ)μX(dξ). (6.6)

Assume that there exists a unique weak solution for SIDE

dx(t) = B̄
( 0∫
−τ

x(t + θ)μ(dθ)
)
dt + 
̄

( 0∫
−τ

x(t + θ)μ(dθ)
)
dB(t), (6.7)

with the initial data x0 ∈ C([−τ, 0]; Rn), where 
̄(·)
̄′(·) = �̄(·). Then we have the following 
theorem.

Theorem 6.1. Under Assumptions (Â1)-(Â3) and (A4), Eq. (6.1) has a unique global solution 
((xε(t))′, (ξε(t))′)′. Moreover, if 2λ1 > λ2, xε(·) converges weakly to x(·), the solution of (6.7).
34



F. Wu and G. Yin Journal of Differential Equations 323 (2022) 1–37
As an example, let us consider the following special 2-dimensional linear SIDEs with two-
time scales:

dxε(t) =
[
α1

t∫
t−τ

xε(s)ds + βξε(t)
]
dt + χξε(t)dw1(t), (6.8a)

dξε(t) = 1

ε

[
α2

t∫
t−τ

xε(s)ds − λξε(t)
]
dt + ρ√

ε

t∫
t−τ

xε(s)dsdw2(t) (6.8b)

with initial data ξ(0) ∈ R and x0 ∈ C([−τ, 0]; R), where λ > 0, α1, α2, β , χ , ρ ∈ R. Choose 
μ(·) to be the uniform distribution on [−τ, 0], i.e., μ(dθ) = dθ/τ . Then it can be observed that

t∫
t−τ

xε(s)ds =
0∫

−τ

xε(t + θ)dθ = τ

0∫
−τ

xε(t + θ)μ(dθ).

This shows that Eq. (6.8) satisfies Assumptions (Â1)-(Â3) and holds a unique global solution 
(xε(t), ξε(t))′. Let us consider the following fixed-X equation

dξ(t) = (α2X − λξ(t))dt + ρXdw2(t).

This equation describes the mean reverting Ornstein–Uhlenbeck process with stationary normal 
distribution μX being N(α2X/λ, (ρX)2/(2λ)), which is exponentially ergodic (see [23, p.306]). 
It is easy to observe that

EμXξ =
∫
R

ξμX(dξ) = α2X

λ
, EμXξ2 =

∫
R

ξ2μX(dξ) = 2α2
2 + λρ2

2λ2 X2.

Let us define

dx(t) =
(
α1 + βα2

λ

) t∫
t−τ

x(s)dsdt + |χ |√
2λ

√
2α2

2 + λρ2
∣∣∣

t∫
t−τ

x(s)ds

∣∣∣dB(t), (6.9)

where B(t) is a scalar Brownian motion. Since λ > 0, if Eq. (6.9) has a unique global solution 
and Eqs. (6.9) and (6.8a) have the same initial data satisfying (A4), by Theorem 6.1, xε(·) ⇒ x(·)
determined by Eq. (6.9).

Choosing μ being the Dirac measure at −τ , we have

0∫
−τ

ϕ(θ)μ(dθ) = ϕ(−τ).

Then Eq. (6.1) may be rewritten as the following SDDE
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dxε(t) = B(xε(t − τ), ξε(t))dt + 
(xε(t − τ), ξε(t))dw1(t), (6.10a)

dξε(t) = 1

ε
H(xε(t − τ), ξε(t))dt + 1√

ε
�(xε(t − τ), ξε(t))dw2(t). (6.10b)

According to Theorem 6.1, under Assumptions (Â1)-(Â3) and (A4), Eq. (6.10) has a unique 
global solution ((xε(t))′, (ξε(t))′)′. Moreover, if 2λ1 > λ2, xε(·) converges weakly to x(·) deter-
mined by the following stochastic pure delay differential equation

dx(t) = B̄(x(t − τ))dt + 
̄(xε(t − τ)dB(t),

where B̄ and 
̄
̄′ = �̄ are determined by (6.6). There always exists a global solution for this 
stochastic pure delay differential equation (see [23, p.157]).

Remark 6.2. (Final remarks). Let us recapture the main advances of this paper. Considering 
two-time-scale stochastic functional differential equations, we treat coupled systems, which are 
more versatile but are far more difficult to deal with. To overcome the difficulty due to the past 
dependence and the coupled systems, the Hölder continuity and the tightness of certain processes 
are obtained together with continuous dependence of the parameters. Then a direct averaging is 
performed to obtain the desired limit stochastic functional equations. An immediate question is: 
Can we handle systems in which not only does the fast component depend on the segment process 
of the slow component, but also depends on the segment process of the fast-varying component? 
At this point, it seems that the current techniques cannot be used to treat the corresponding 
systems. More sophisticated methods are needed, which deserves further in depth investigation.
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