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Abstract

This paper focuses on a class of stochastic functional differential equations with infinite delay
and non-Lipschitz coefficients. Under one-sided super-linear growth and non-Lipschitz conditions, this
paper establishes the existence and uniqueness of strong solutions and strong Markov properties of
the segment processes. Under additional assumption on non-degeneracy of the diffusion coefficient,
exponential ergodicity for the segment process is derived by using asymptotic coupling method. In
addition, the asymptotic log-Harnack inequality is established for the associated Markovian semigroup
by using coupling and change of measures, which implies the asymptotically strong Feller property.
Finally, an example is given to demonstrate these results.
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1. Introduction and motivation

Let (12, F, P, (F;)i>0) be a complete filtered probability space. For a given r > 0, define
G, ={# € C(=00, 0k R sup e”[p(®)] < oo}

—00<0<0
with norm [|¢|, = sup_, _y<o e"%1¢(8)|, where C((—oo,0]; R?) denotes the family of
continuous functions from (—oo, 0] to R¢. Then (C,, || - ||,) is a Polish space (see [16] for

more details on this space and its properties). In this paper, choosing C, as the phase space, we
consider the following stochastic functional differential equations (SFDEs) with infinite delay

dX(t) = b(X,)dt + o(X)dW(t), Xo=¢& €C,, (1.1)

where b : C. — R? and o : C, — R?™ are continuous functionals, W(¢) is an m-dimensional
Wiener process on ({2, (F;)i>0, F,P) and X,(t) : (—00,0] 5 7 —> X(t + 1) € R? denotes
the segment process. To emphasize the dependence of the solution X(7) on the initial data
Xo = & € C,, we also write the solution X(¢) and the corresponding segment process X, as
X(t, &) and X, (&), respectively.

For a stochastic differential equation (SDE) to have a unique global solution with a
given initial value, commonly used assumptions are the linear growth and the local Lipschitz
conditions. Under these conditions, various asymptotic behaviors of SDEs were also well
studied; see for example, [17,19,28]. However, for many important stochastic models, the local
Lipschitz condition is a rather restrictive assumption. For example, the diffusion coefficients
in the Feller branching diffusion and the Cox-Ingersoll-Ross model are only Holder contin-
uous. Consequently, stochastic models with non-Lipschitz coefficients have received growing
attention lately; see, for example, [9,13,35,36] and the references therein. In [13], Fang and
Zhang studied a class of SDEs with non-Lipschitz coefficients and examined the existence and
uniqueness of solutions, the dependence with respect to the initial value, and the large deviation
principle. While SFDEs provide powerful mathematical tools in modeling and analyzing
complex memory-dependent dynamical systems, the studies on SFDEs with non-Lipschitz
coefficients are relatively scarce. In this paper, our main aim is to take up these issues for SFDEs
with infinite delay. It is well known that solutions of stochastic functional or delay differential
equations are non-Markov because of the dependence on the past history. Under non-Lipschitz
condition, this paper examines the existence and uniqueness of the global solution X(¢) for
SFDE (1.1), and the strong Markovian property, ergodicity, asymptotic log-Harnack inequality,
and asymptotic strong Feller property for the segment process X;.

The existence and uniqueness of invariant measures for SFDEs have been investigated in the
literature under different settings. For example, by using the tightness criterion of probability
measures on a continuous function space (e.g., [18, Theorem 4.10]) and Krylov—Bogoliubov’s
theorem (e.g., [10, Theorem 3.1.1]), Es-Sarhir et al. investigated the existence of an invariant
measure for SFDEs with finite delay under the super-linear drift coefficient in [12]; but the
paper did not establish the uniqueness of an invariant measure. By using an asymptotic coupling
approach, Hairer et al. [15] obtained uniqueness of the invariant measure for SFDEs with finite
delay. Recently, Butkovsky [6], Butkovsky and Scheutzow [8], and Butkovsky et al. [7] further
developed Hairer’s approach and provided sufficient conditions for existence and uniqueness
of invariant measures for SFDEs with finite delay. A crucial assumption in these papers is that
the diffusion coefficient is non-degenerate and its right inverse is uniformly bounded. Although
such an assumption is removed in [4,5], the coefficients still need to satisfy certain dissipative
conditions.
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It is worth pointing out that the aforementioned papers only consider SFDEs with finite
delay and Lipschitz-type coefficients. Under the dissipative condition, by using the remote start
method, Wu et al. [33] obtained the ergodicity for SFDEs with infinite delay and Lipschitz-
type coefficients. By using an asymptotic coupling approach, Bao et al. [3] investigated
neutral type SFDEs with infinite delay and Lipschitz-type coefficients. Recently, Kulik and
Scheutzow [20] established weak ergodic rates for SFDEs with finite delay and Holder
continuous coefficients. Motivated by the aforementioned developments, this paper aims to
examine exponential ergodicity in the Wasserstein distance for SFDEs with infinite delay and
non-Lipschitz continuous coefficients. In contrast to SFDEs with only finite delay, it is much
more difficult to establish a support-type assertion (Lemma 3.4) for SFDEs with infinite delay.
This, in turn, leads to much difficulty and subtlety in the construction of a contracting distance-
like function satisfying the conditions of the weak Harris Theorem (Theorem 4.8 in [15]).
Not only does the support-type assertion for SFDEs with infinite delay depend on the initial
condition, but also on a reference number ¢. Consequently we have to present an explicit
dependence relationship among the parameters involved in the distance-like function and the
time variable .

Moreover, this paper examines the asymptotic log-Harnack inequality for SFDEs with
infinite delay and non-Lipschitz continuous coefficients. The dimension-free Harnack inequality
was first introduced by Wang [29] for diffusion semigroups on Riemannian manifolds. The
weaker version of Harnack inequality (log-Harnack inequality) was established in [25,30] for
elliptic diffusion processes. Further developments in the study of these inequalities can be
found in [11,27,31,32]. It is worth noting that these two Harnack-type inequalities imply some
regularity properties of the associated Markov semigroups such as strong Feller property. In
some cases where the stochastic system has no strong Feller property or the above Harnack-type
inequalities are unavailable, the modified/asymptotic log-Harnack inequality was introduced
in [34], which implies the asymptotic strong Feller property. Recently, by using the asymptotic
coupling method, the asymptotic log-Harnack inequality is established by Bao, Wang, and
Yuan [2] for several stochastic differential systems with infinite delay, including SFDEs with
infinite delay under Lipschitz-type coefficients. This paper aims to further this line of research
and derive an asymptotic log-Harnack inequality for SFDEs with infinite delay and non-
Lipschitz coefficients. To overcome the difficulties from the non-Lipschitz conditions, more
delicate computations and stronger condition (see Assumption 4.1) are needed.

The rest of the paper is organized as follows. Section 2 establishes the existence and
uniqueness of a global strong solution to (1.1) under weak non-Lipschitz conditions, and
proves that the corresponding segment process is a strong Markovian process. Exponential
ergodicity is investigated under the non-Lipschitz conditions in Section 3. Section 4 establishes
the asymptotic log-Harnack inequality, which leads to the asymptotic strong Feller property for
the segment process. Finally, an example is given in Section 5 to demonstrate our results.

To proceed, we introduce some notation and definitions that will be used in later sections.
Denote by R? the d-dimensional Euclidean space and | - | the Euclidean norm. If a,b € R,
(a, b) denotes the standard inner product on RY. If A is a vector or a matrix, its transpose
is denoted by AT. For a matrix A, denote its trace norm by ||A| = /trace(AT A). C*®°(R?)
denotes the family of infinitely differentiable functions f : RY — R. The indicator function of
the set G is denoted by 15. Denote by M, the set of probability measures on (—oo, 0]. For
any k > 0, let us further define My, the subset of M, by

0
e e o [

—00

e u(de) < oo} .

3
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Let (E, B(E), d) be a Polish space and denote by P(E) the family of probability measures on
(E, B(E), d). For u,v € P(E), C(u, v) denotes the collection of all couplings of u and v, that
is, probability measures on E x E with marginal distributions p and v. For the metric d on
E, the associated L'-Wasserstein distance between two probability measures u, v € P(E) is
defined as follows:

Wauo = int [ aemiae, an).

For probability measures u, v € P(E) satisfying u < v, the Kullback—Leibler divergence of
w from v is defined by

du du du
D = [ log—dpu = | — log—dv.
kLl v) /E og ——du /E 7, log ——dv

2. Existence and uniqueness of solution and Markov property

This section is devoted to the existence and uniqueness of a solution to SFDEs (1.1) and
Markov properties of the segment processes under non-Lipschitz conditions. Our approach can
be described as follows. First, we establish the existence of a weak solution to (2.2) (which
can be regarded as an approximation to (1.1)) and the pathwise uniqueness result. Therefore,
by the Yamada—Watanabe principle [35], Eq. (2.2) has a unique global strong solution. This
implies that (1.1) has a unique maximal local strong solution. Then we show that the maximal
local strong solution to (1.1) is non-explosive under Assumption 2.2. This leads to the desired
assertion that (1.1) has a unique global strong solution. Then we show the strong Markov and
Feller properties of the segment process X, to (1.1).

Existence and uniqueness of solution

To characterize the non-Lipschitz coefficients of (1.1), we introduce the following class of
functions:

ds .. .
U = U 0.00)—1,00): / = 00, § > su(s) is increasing and concave ¢ .
o+ su(s)

One can verify u(s) = log(e V s~') and u(s) = log((l +sHv e) € U. Noting that
limg_, o su(s) = 0 for u € U, we set Ou(0) = lim,_,osu(s) = 0 without loss of generality.
To ensure the existence and uniqueness of the solution, we make the following assumptions.

Assumption 2.1. b is continuous and bounded on bounded subset of C,. There exist a positive
constant § and a function u € U such that for all k > 0 and ¢, ¥ € C, with ||¢]|, V |V, <k
and [|¢ — ¥l <4,

2(p(0) — ¥(0), b(¢) — b(Y))4 + o (p) — o (WI* < Lillp — v ilPulllp —wl», Q.1

where L, is a positive constant depending on £ and ay := max{0, a} for any a € R.

Note that the non-Lipschitz condition (2.1) in Assumption 2.1 is only required to hold in a
small neighborhood of the diagonal line ¢ = ¢ in C, x C, with ||¢||, V ||¥ ], < k for all k > 0.
This is in stark contrast to the standard local Lipschitz condition, which significantly relaxes
the conditions used in the literature such as [2,33].

4
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Assumption 2.2. ¢ is bounded on bounded subset of C, and there exists a non-decreasing
function ¢(-) : [0, 00) — (0, c0) such that fooo 1/¢(x)dx = oo and for all ¢ € C,,

2((0), b(@)) + llo@)II* < ¢ U1}

Theorem 2.1. Under Assumption 2.1, (1.1) has a unique maximal local strong solution for
any initial data Xg = & € C,. Under Assumption 2.2, any maximal local strong solution to
(1.1) is non-explosive in any finite time almost surely.

Proof. We divide the proof into two steps. The first step shows that under Assumption 2.1,
Eq. (1.1) has a unique maximal local strong solution. The second step proves that any maximal
local solution to Eq. (1.1) is non-explosive in any finite time a.s. under Assumption 2.2.

Step 1: Maximal local strong solution to (1.1). For any m > 1, we can find h, € C*(R)
with compact support contained in S,,+; such that &, |s, = 1, where S, := {x € R: [x| < m}.
Let

b (P) = b(Phm(IPlly),  om(P) = (D) (lIBll).

Since b and o are bounded on bounded subset of C,, b,, and o,, are uniformly bounded on C,
and satisfy Assumption 2.1 for any m > 1.
Fix m > 1 arbitrarily. We first consider the following equation

dX(t) = by(Xp)dt + 0, (X )dW(2). 2.2)

Noting that b,, and o,, are uniformly bounded on C,, there exist two sequences of uniformly
bounded local Lipschitz continuous (i.e., Lipschitz continuous on bounded subset of C.)
functions {b},},>1 and {o,;},>1 such that Assumption 2.1 holds for b},, o, uniformly in n (that

is, the constants do not depend on n). Moreover, b, and o,, converge to b,, and o,, as n — 00
uniformly on each compact subset of C,. Therefore for each n € N, the following equation

dX"(1) = b (X"dt + o (XdW (1), XI =&

has a unique global strong solution. Note that b
exists a constant C,, independent of n such that

b, @IV oy @)l < Cpn, Vo €C,.

Hence it is easy to see that for any 0 < s,t < T < 0o, we have

m» 0. are uniformly bounded, that is, there

t 4 t 4
supE|X"(t) — X))t < 8SUpE‘[ b (X0)dv| + 8supE‘/ o (X7)dW (v)
n>1 n>1 s n>1 K
< 8CH|t —s|* +8CpCplt —s)?
< 8Cy (It — s>+ Cp)lt — s/, (2.3)

where C, is the coefficient of the Burkholder-Davis—Gundy inequality. Since 7 > 0 is
arbitrary, according to [18, Problem 2.4.11], (2.3) implies that {IP"},>, the family of probability
law of X", is tight. Hence there exists a probability measure P> on C([0, c0); R%) such that
P" (up to a sub-sequence) converges weakly to P®. Let G, = o{w(s) : 0 < s <t},t >0,
w € C([0, 00); RY). Then the coordinate process

Z()(w) = w(t), t>0,wc C([0,00); R
5
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is G,-adapted. Note that
t
X"(t) — X"(0) — / by (X7)ds
0
is a martingale relative to (PP, F;) with cross-variation given by
m t
> / {omilom) ikl (XDds, 1 <i,j <d.
k=170
Since P” is the distribution of X" on C([0, co); R?),

M"(t) == Z(t) — Z(0) — f b (Z,)ds
0

is a martingale relative to (P, G,) with cross-variation
m t
ZENBIOEDY / {omilomu(Zods, 1<i.j<d,
k=10

where Z; denotes the corresponding segment process (by choosing Zy = Xj = &). Since b;,
is uniformly bounded, and as n — oo, b}, converges to b, uniformly on compact subsets of
C,, M"(t) converges to

M(t) = Z(t) — Z(0) — f bu(Zs)ds
0

on C([0, 00); RY) and the convergence is uniform on compact subsets of C,. Then for any given
s <tand A € G, by [18, Problem 2.4.12] and the martingale property of M"(z) relative to
(P, G)

EX14M(t) = lim E"1,M"(¢) = lim E"1,M"(s) = E*®14M(s),
n—00 n—o0
where [E” denotes the expectation operator with respect to the measure P* and likewise, [E*°
denotes the expectation with respect to P*°. This implies that M(¢) is a P*°-martingale. In

addition, noting that o, is uniformly bounded, and as n — oo, o, converges to o, uniformly
on each compact subset of C,, by a similar argument as before, we obtain

(M;. M)y = /0 (@it} (Z)ds, 1<i,j<d.
k=1

'[;hen it follows from [17, Theorem I1.7.1'] that there exists an m-dimensional Brownian motion
W on an extended probability space of (C([0, c0); R?), B(C([0, 00); R%)), {G;}, P*®) such that

t
M(t) = f 0, (Z)dW (s).
0
As a result, Z(t) = Z(0) + fol b (Zs)ds + fot a,n(Zs)dW(s) and hence Eq. (2.2) has a weak
solution.

Now we prove the pathwise uniqueness for Eq. (2.2). Suppose that X and Y satisfy
t

X(1) 25(0)+[ bm(Xs)dS"'/ on(X)dW(s),  Xo =&,
0 0

Y (1) = n(0) + / bu(Y,)ds + / om (Y)W (), Yo =1,
0 0

6
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for all > 0. Assume ||§ — 5], < §p < § and define the stopping time

S5, =inf{t > 0 : | X(¢) — Y ()| > do}.
For R > ||&]|» V |In|l,, define another stopping time

Tr =inf{t > 0:|X()| VvV |Y()| > R}.
Applying It6’s formula and using Assumption 2.1, we have

IX(t ATr A Ssy) — Yt ATg A Ssy)I

tATRA550
=1£(0) — n(O)* + / 2X () = Y() (0m(Xy) — 0w (Y,))dW (v)
0

t/\TR/\Sgo
+/0 (2<X(v) - Y(v)a bm(Xv) - bm(Yv)> + ||Gln(Xv) - Um(Yv)||2) dv

) ZATR/\S,SO ) )
=< [§(0) = n(0)] +/ LelIXy =Yyl 7ullXy = Yy l)dv
0

tATRAS,
+2/ ’ (X() = Y () (0n(Xy) — 0 (Y,)dW (V). 24
0

By the Burkholder-Davis—Gundy inequality, Assumption 2.1, and the Young inequality, we

have
x/\TR/\SgO
ZE[ sup f (X(@) = Y() (0m(X,) — %(Yv))dW(v)}
0

0<s<t
1
2

IA

tATRAS,
2v32E </ ? (X () = Y() T (o (X,) — Um(Yv))|2dU>
0

1
< EE[ sup |X(s ATr A Ss)) — Y(s ATg A S50)|2]

0<s<t

ZATR/\550
+64L gE / X5 — Yol 2u(ll Xy — Y| Pds. 2.5)
0
Noting that
X, — YlIZ < 1€ —nl? Vv sup |X(v) — Y(v)?

;
0<v<s
and that the function su(s) is nondecreasing, we get

I1Xs — Ysll2u(I X, — Y1)
< lE = nl2u(lE = nlH + sup |X(v) — Y()[u( sup [X(v) — Y (v)[?).

0<v<s 0<v<s

Denote A(t) = | X(t) — Y(t)|2. Combining this with (2.4) and (2.5), we arrive at

E|: sup A(S ANTr A S50):|

0<s<t

tATRA55O
<20 — )2 + 130LRE/ 16— nl2uClE — nl2ds
0

O0<v<s O<vs<s

I/\TR/\S(SO
+ 13OLREf sup A(v)u( sup A(v))ds
0

7
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<201 — > + 130Lg|IE — nll%u(|lE — nl|*)

t
+ 130LR]E/ sup A(w A Tg A Ss)u( sup A(v A Tg A Ss,))ds
0

0<v<s 0<v<s

< 201& = nll2 + 130LglIE — nlu(lE — nlHt

t
+ 130LR/ E[ sup A(w A Tg A 550)]M(E sup A(w A Tg A Ss))ds,
0

0<v<s 0<v<s

where we have used the concavity of su(s) and Jensen’s inequality to derive the last inequality.
Define ¢(7) = Esupy,., A(s A Tg A S5,). Then we have

0 < ¢(t) < 2[1& — nllZ + 130L&IIE — nllZu(lI& — nll2)t + 130Lg /0 s(®)u(s(s))ds =: u(t).

Define G(1) = [{ #(S)ds for 1 > 0. Since [, #(S)ds = 00, lim, 9 G(t) = —oo. In addition, G
is nondecreasing and satisfies G(¢) > —oo for ¢ > 0. Then we have

A

G(c() = GQu@) = G(t(O))+/O G'(u(s))du(s)

t _ 2 _ 2
= GQlE —nlH+ f 130L & — nlFu(li§ = nl}) + 130Les($)u(s(s)) |
0 t(s)u(u(s))
G(2lE — nll?) + 260z L, 26

where we used su(s) being nondecreasing to derive the last inequality. It is readily seen that
the right-hand side of (2.6) converges to —oo as ||§ — |, — 0, so does the left-hand side.
Therefore, we obtain

IA

¢c(t) = lim ]E|: sup A(s ATk A S(go)j|

i
g =nll,—0 le=nl-—~0 | g<s=r

—_— M _ 2
_slrﬂﬁlﬁoE[ sup - |X(s) Y(S)I]

OfsftATRA550
= 0. 2.7
In particular, if ||§ — 5|, = 0, we have IEI[supOSEtATRAS(SO IX(s) — Y(s)[*)] = 0. This,
together with Fatou’s lemma and the fact that limg_.o T = oo a.s., further leads to

E[Sup0§x§t/\S30 |X(s) — Y(s)|*] = 0. Note that on the event {Ss, < t}, we have | X(S5,) — Y (S5,
= &o. Thus we have §IP{S;, < t} < E[SUPOgsgms,go |X(s) — Y(s)*] = 0 and hence P{Ss, <
t} = 0. Then

E[ sup |X(s) — Y<s>|2] =E| sup |X(s) - Y(s)|21[t<sao,}

0<s<t LO0<s<t

+ E[ sup |X(s) — Y(S)|21{t>550}:|
O0<s=<t
SE sup |X(S)—Y(S)|2] +O:O’

[ 0<s<tASs,

the second summand above equals zero because E[sup,.,., [X(s) — Y (s)]*)] < oo thanks to
the uniform boundedness of b, and o,,. Therefore, it follows that P{supy.,, | X(s) = Y(s)| =
0} = 1 and hence the pathwise uniqueness for (2.2) holds. Consequently, according to the
Yamada—Watanabe principle, (2.2) has a unique global strong solution.

8
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Finally, by a standard argument (e.g., [33, Lemma 3.1]), (1.1) has a unique maximal local
strong solution.

Step 2: Non-explosion. Let X(¢) be the maximal local strong solution to (1.1) and t be its
explosion time or life time, that is, limsup,_,, |X(¢)| = oc. For any ¢ € [0, 7), by It6’s formula,
using Assumption 2.2 gives

X = 1X(©0)* + /0 2(X(s), b(X,)) + llo(Xs)||*ds + 2 fo X (s)o(X;)dW(s)

< [EO)P + /0 C(IXIP)ds + N,

where {N(f)};c[0,r) 1S a continuous local martingale with N(0) = 0. Note that ||XX||% <
€117 + SUPo<y<s |X(v)|* and ¢(-) is non-decreasing. We see that

€17+ 1X(0)* < 2llE]l, + /0 CUIENZ+ sup [X()[*)ds + N().

0<v<s

Then by the stochastic Gronwall lemma (see, e.g., [23, Lemma 5.1]), we have T = oo almost
surely. Hence the maximal local strong solution X(¢) is actually non-explosive in any finite
time under Assumption 2.2.

Combining the results of Steps 1 and 2 completes the proof of this theorem. [

Remark 2.2. We now give a specific construction of sequences {b},},>1 and {0, },>1. Take a
sequence of non-negative, twice continuously differentiable functions {p,},>1 such that

1
supp(p,) C {x eR": x| < —} and / pn(x)dx = 1.
n R?

Note that C, is isomorphic to C([—1,0]; R%) (see [33]). Then C, has the Schauder basis
{ei}2, € C, since C([—1,0]; R%) has the corresponding basis (see, e.g., [22]). Let Q, denote
the projection mapping from C, to {ey, es, . . ., €,}, that is, Q,(30, x;e;)) = >, xie;. Qn(9)
denotes the coordinate coefficients of the projection of ¢ € C, on {ey,ey,...,e,}, that is,

Qn(¢) = Qn(fﬁ)T(@l, €2, ..., en)T~ Define

o) = / pulx = Bu(@))b (Zx,e,)dx
6;(¢) = / Pn (X - Qn(¢) (Z xlel) dx.

It is readily verified that {b}} and {o,,} defined above satisfy the desired property.

Remark 2.3. By using a similar approach as in [33, Theorem 4.1], it is easy to verify that the
segment process X; is continuous and F;-adapted.

Markov property

Proposition 2.4. Let Assumptions 2.1 and 2.2 hold. Then the segment process X = (X;)i>0
to (1.1) is a strong Markov process.
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Proof. By using the standard technique (see, e.g., [8, Proposition 4.1]), it is easy to see from
the strong uniqueness or pathwise uniqueness that the segment process X, to (1.1) is Markov.
In addition, since X, has continuous trajectories, the strong Markov property follows from the
Feller property (see, e.g., [24, Theorem 3.3.1]).

For R > ||&]l V IInll,, define the stopping times

r(§) =inf{r = 0+ | X, (&), > R}, and  wx(p) =inf{r = 0: [ X, (], > R}.
In fact, Tg(§) = inf{r > 0: |X(¢; £)| > R} for R > ||&||,. Then the non-explosion implies that
for any ¢ > 0, n with ||§ — ]|, < &9, there exists an R > 0 large enough such that

P{ra(®) A Taln) <1} < 7. 28)
where the constant R does not depend on 7. In addition,

80P{Ss, =<t A TR(E) A TR(D))

< EIX(t A Tr(E) A Tr(0) A Ssy1 £) — X(t A Tr(E) A Tr(1) A Ssi M1

where Sj, = inf{t > 0 : |X(1; §) — X(1; n)| = 8} = inf{r > 0: | X,(§) — X, ()l > So}. Then,
for any ¢ > 0,

P{IIX,(5) = X:(), > ¢}
= P{IX:(§) = X: (D, > &, Tr(§) A Tr(]) < 1)
FP{IX:E) = X, > & Tr(E) ATR(D) = 1, S5 > 1)
HPUIX(E) — Xl > &, Tr(E) A Trl() = 1, S5y < 1)
< P(t&(€) A Tr(1) < 1} + PUX regernrgmnss, €) = Xenrgorneginnss, M > €}
+P{S5, <1 A TR(E) A TR(D)}

1
< P{zr(§) A Tr(N) <t} + _2]E”XMTR(E)/\TR('I)A§5O é)— Xt/\TR(E)/\TR('I)AESO (77)”3

1
82E|X($ t A TR(E) A TR(D) A S50) — X, t A TR(E) A TR(D) A Sao)l 2.9

Similar to (2.7), we have
lim E[ sup 1X(s: £) — X(s: n)|2] —0 (2.10)

In=8lr=0" Lo<s<intp@atrnnds,

Recall that | X, — Y, |? < ||& — r;||2 + supy,< |X(s) — Y(s)|> It follows from (2.8), (2.9), and
(2.10) that there exists a positive constant 8o < 8o such that for E —nll, < 8o, we have

P{IX: &) — Ximll, > €} < e. 2.1D

Since ¢ > 0 is arbitrary, || X,(§) — X;(n)||, converges to O in probability as ||€ — 7|, — 0. Thus
X (&) converges to X,(n) in distribution as & — 7 in the norm || - ||,. This implies further that
for any bounded continuous function F : C, — R, E[F(X,(§))] converges to E[F(X,(n))] as
& — n in the norm || - ||,. Therefore, X, is a Feller process. The proof is completed. [

3. Ergodicity

To prove the ergodicity we need to modify Assumptions 2.1 and 2.2 as follows:

10
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Assumption 3.1. b is continuous and bounded on bounded subset of C, and satisfies the
one-sided linear growth condition, that is, there exists a constant L > 0 such that for any
¢ 6 Cr’

(#(0), b(¢p)) < L(1 + 91>

And there exist a function u € U and positive constants K, § and g € (0, 1) such that for all
¢, ¥ €C, with [l¢ — |, <34,

2(p(0) — ¥(0), b(¢p) — b(¥)) 4 + llo(p) — o (W)
< K[(l¢ — vIPulig — 1D A llg — I ]. (3.1)

From Assumption 3.1, the diffusion coefficient o satisfies the following linear growth
condition: there exists a positive constant K such that for any ¢ € C,

lo@Il < KA+ llgll,).
In addition, to construct asymptotic couplings by change of measures, we need to impose the
following condition on the diffusion coefficient o.
Assumption 3.2. For any ¢ € C,, the matrix o (¢) admits a right inverse o ~'(¢) and
llo ™ oo == sup [lo~ (p)]| < o0.
$eCr
In this paper, we consider the following function on C, x C,: for &, n € C,

dyy(E.m)=NNIE=nlHALl, N=1, ye©§8.

Clearly, each dy , is a bounded metric on C, and is equivalent to the usual distance || - — - ||,
in the sense of topology. Therefore, its corresponding L'-Wasserstein distance is a metric on
P(C,), and convergence in this metric is equivalent to weak convergence in P(C,), where P(C,)
denotes the family of probability measures on C,. Denote

dyE.m)=diyE. ) =15 —nlf A1, &nel,.

In addition, it follows from Proposition 2.4 that the segment process (X,);>o of Eq. (1.1) is a
strong Markov process on (C,, B(C;)) with transition functions P;(§,-) = P(X,(§) € -). The
associated Markovian semigroup operators are given by

P f(&)=Ef(X,(§) = g SP (&, dn), t>0, feBy(C), & €C,.
and

(P p)(A) =/ P&, Audé), wnePC), AeBE).

Cr

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Assume also that there exist a continuous
Sfunctional V : C, — [0, 0o) with limg|, -0 V(§) = 00 and constants Cy, 0 > 0 such that

PV () = fc V()P dn) < Cye " V(E) + Cy (3.2

11
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holds for all £ € C, and t > 0. Then P, has a unique invariant probability measure 7, and for
any y € (0, B), there exist constants C, p > 0 such that

Wy (P(§, ), 7) < Ce” T+ VE), 120, (3.3)
where d) (£, 1) == /d, (&, m)(1 + V() + V().

We first present two crucial lemmas before proving the above theorem.

Lemma 3.2. Let Assumptions 3.1 and 3.2 hold. Then for any h > 0 and y € (0, B), there
exists an N(h, y) > 0 such that for any N > N(h,y) and all &, n € C, with dy ,,(§, 1) < 1,
Way, (P&, ), Pu(n, ) < 01dy., (€, ) 34

holds for some 0, € (0, 1). Moreover, there exists a constant 0, > 0 such that for all £, n € C,

Wy, (P&, ), Pi(n, ) < Ondn (€, m), V1 €[0,h]. (3.5

Proof. We adopt the idea in [20] to prove this lemma. The proof is divided into four steps.
In Step 1, we construct an asymptotic coupling and then give the deviation bound between the
asymptotic coupling processes X, Y in Step 2. An application of the triangle inequality gives
the desired result (3.4) in Step 3. Finally the estimation (3.5) is established in Step 4.

Fix &, n € C, arbitrarily and denote v = ||& — n||,. Assume without loss of generality that
v > 0. Consider the following equation

dY(t) = b(Y,)dt + o (Y)dW () + v’ (X(t) — Y)1y<nydt, Yo =n, (3.6)

where X(¢) denotes the solution to (1.1) with Xg =& and 7 = inf{r > 0: | X () — Y ()| > 2v}.
Clearly, Theorem 2.1 implies that under the assumptions of Lemma 3.2 the system of coupling
equations involving (1.1) and (3.6) has a unique strong solution (X, Y).

Step 1. Fix some arbitrary & > 0. We first prove that there exist positive constants 6, € (0, 1),
K1, k2, and U small enough such that for ||§ — 5], < O,

P{IXy — Vil = 6211€ — nll,} < Ci(WNE — nl&* exp{—Ca(W)|IE — nll;*2} (3.7

where C(h) and C,(h) denote some constants depending on &. Applying 1t6’s formula yields
that

1X(6) = YOI = £0) — n(0)* + /0 CAGss + /O D)W,
where

Als) = 2(X(s) — Y(5), B(X,) — (V) + l0(X,) — o (V) P=20" "1 [X(s) — Y ()P 1y,
and

2(s) = 20X(s) = Y(5) (@(X,) — 0 (¥,)).

Without loss of generality, we suppose § < 1 and 2v < §. Observing that | X; — Y|, < 2v
for s < 7, by Assumption 3.1, we have

A(s) < =207 X(s) — Y(5)P +4Kv'*F and |5(s)| < 8VKv> foralls < 7. (3.8)
12
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Let . =2v""!, A =4Kv'*# and B = 64Kv*"#. Then for any &, € (0, 1/2), we have
AN = 2K B ok P pl/23 o 23780\/EU2+%+80(17)/).

Since y < B, we have ﬂT_' +id-y)= ﬁ%’/ > 0. Recall 0 < v < 1. We can fix §y < 1/2
sufficiently close to 1/2 and then choose ¥ > 0 small enough such that

ALTD <2K0M . B2 < VKU
Then there exists a vy € (0, 1) such that for any v € (0, vy),
v > (1 +8log2)"/A(I'(80) + supx®e ™) (' 2% + v (I'(8p) + supxPe ™)),

x>0 x>0
where I'(-) is the Gamma function. Then applying Lemma A.2 in the Appendix gives that for
all v € (0, vp),

—26
P(H) < ¢ (h + 1) exp {—czv_z"(tho + 1)—2] , (3.9)

where ¢, ¢, > 0 depend only on §j, and

H = { sup 11X — YO —e 2" 1E0) — n(0)|2} > (2K + 8«/?)1)2*“} }

0<t<tAh

Recall that ¥ > 0 and the definition of the stopping time 7. Then on the set {t < oo}, the
inequality

1X(@) = Y@ = e 15(0) = nO)F = 2K + 8VK)v***
implies

40% — e TIEO0) — n0) = 2K + 8VE)VHH,
Furthermore, we can choose a constant v; small enough such that for any v € (0, v;)

402 — e TITE0) — nO)? = 407 — e 2T > 302 > (2K + 8VEK)UC. (3.10)
This implies that

{t <h} CH, forallve(,uv). (3.11)
Therefore, it follows from (3.9) and (3.11) that for v € (0, vy A v}),

P{ sup {1X() = YO =" 160 = n(O)} = K + 8ﬁ>u2+K}

0<t<h

= IP{ sup J1X(0) = YOI} — e 2" 11£0) — n(0)|2} > 2K + 8VK)vt, T < h}

0<t<h

+IP{ sup {1X() = YO =™ 180) = O} = @K +8VK w7 h}

0<t<h

<P{t <h}+P(H)

< 2P(H)
< 20, 0% (h + 1) exp {—czufzk(hﬂ + 1)*2} . (3.12)
On the other hand, the inequality
sup {|X(t) — YR — e 2" E0) — n(0)|2} < 2K + 8VEK)u*** (3.13)
<t<

13
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implies that
2rt _ 2 2r—v" Dy e 2 2rh 24«
sup e X)) —Y(@)|" < sup e lE —nll; + e 2K + 8V K)v ™.
0<t<h 0=r=h

These, together with the definition of norm | - ||,, yield that
X = Yall? < e ™€ —nll} ve ™" sup &|X(1) — Y(0)

- 0<t<h

672}’/‘1”5 _ n”% V. |:62rh Sup eZ(rfuy_l)[”g _ r)”’% + (2K + Sﬁ)U2+Ki|

0<t<h

= |:e_2’h v <e_2’h sup 2V 4 2K + sﬁ)uk)] e —nl%.

0<t<h

IA

Noting that & > 0, y € (0, 1), and « > 0, there exist constants v, > 0 and 6, < 1 such that
for all v € (0, vy),

r<v’™' and " 4+ 2K 4+ 8VK )< < 62 < 1. (3.14)
Therefore, inequality (3.13) implies

1Xn = Yillr <0205 —nll,, VY veuv).
That is, for any v € (0, v,),

{ sup {1X(0) = YO = e 150) —nO)P | < K + Sﬁ)zﬂ“}

0<i<h
- {”Xh =Yl <628 — nllr}-
Take v3 = min{vy, v, v2}. Then for any v € (0, v3), we have
P{IX — Yullr = 6211€ — nll,}

< P{ sup {1X(t) = Y(1))> — e 11£(0) — n(0)|2} > (2K + 8«/E>v2+”}

0<t<h

5-24, 1-24
< 2¢ v (hTO + 1) exp {—czv_z"(hTo + l)_Z] ,

5-25, 1-25
=2e)llg =0l (h2" 4+ 1) exp {—calle =l + D72 (3.15)

which yields (3.7) as desired.
Step 2. Now we estimate the change of the law of the segment process caused by the
additional drift term, that is, we show that

[Law(Yy) — Pu(n, llrv < C3(WIIE —nll},

where C3(h) is a constant depending on /. Let
t
JO) =07 XV T X@D ~ YOy, WO =WO+ / J(s)ds.
0
and
t 1 t
R(t) = exp {—/ J()dW(s) — —f |J(s)|2ds} :
0 2 Jo
By Assumption 3.2, we obtain

T <20 oov? =2ll0 " lollE = nllY, V£ >0. (3.16)
14
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Then the Girsanov theorem reveals that {VT/(t) : 0 <t < h}is a Wiener process under the
probability measure Q" with dQ" = R(h)dP. Furthermore, we can rewrite (3.6) as:

dY(@t) = b(Y)dt + o(Y)dW (@), Yo =n.

Therefore, on the new probability space (2, F, Q™), Y solves (1.1) with W replaced by W up
to the time h. The weak uniqueness of (1.1) implies the law of Y, under Q" equals P,(n, -).
Combining with (3.16), this means that

[Law(Y;) — Py(n, )ty < P — Q™ |l7y

=3[ e (i)
<,/ —EElog R(h)

< Vhlo llE = nll?, (3.17)

where we used the Pinsker inequality (see, e.g., [7, Lemma A.1. (A.1)]) in the second inequality.
Step 3. We now estimate the bound of WdN’V(Ph(S, -), Py(n, -)). Noting that dy, < 1, by
using the triangle inequality we have

Way, (Pu(&, ). Pu(n, ) < Way  (Py(&, ), Law(Y,())) + Way , (Law(¥, (1)), Pu(n, -))
< Edy ., (Xn(§), Yu(n) + ILaw(Y,(n) — Pu(n, )iV
< Edy o, (Xn (&), Ya)L(1x,, )~ v 0l <0216 11l )
+ P{IX4(8) — Y, = 62116 — nll;}
+ [[Law(¥Y, () — Pu(n, liTv- (3.18)

When dy ,(§,n) < 1, we have
Edy , (Xn(), Ya) (1%, 6 -1, o0lly <alie—niy < NOYIE =l = 0] dy (&, n). (3.19)
Therefore, substituting (3.15), (3.17), and (3.19) into (3.18) yields
Wd}vyy (Ph(€7 ')a Ph(na ))
¥ sy (5 2% %
< Bldy € +20ilE — 0l (2" + 1) ep {-aalle =l 02 + 1))
+Vhlo lsllE = nll?
523 e 30,
2, (h 4 l)exp{—czﬂé X 4+ 1) }
<6+

< x5
N|& —nll7 ==

+¢E||a—'||oo
N

dy.y(&. 1)

dn, (&, 1) (3.20)

1-25)

-2

2K 2
provided that dy ,, (&, 1) < 1. Since lim,_.g 2c;v™ 7 T2%e=c2v = (h D77 =0, we have

1-25¢

-~ _ 26 T3 2
C = sup 2C1U V+2K80 cou”(h +1)” < 00.
ve(0,1)

15



Y. Wang, F. Wu, G. Yin et al. Stochastic Processes and their Applications 149 (2022) 1-38

Since 6, € (0, 1) and y > 0, we can further choose an N; such that

o~ 5-26
¢ (hTO n 1) + VAo oo
Ny

6; + <1

is satisfied. Taking N, = v; ", then
dy,y &, <1 & MlE—nl] <1=1§ -1l <wvs.
Then it follows from (3.20) that the desired assertion holds for N(#, y) := max{N;, N>} and
C (=" +1) + Vil
N(h,y)

6, = 6] + <1 (3.21)

Thus, proved (3.4).

Step 4. We now prove (3.5). Noting that WdN‘y(., -) < 1 which follows from the fact
dy,(-,-) < 1, it suffices to prove (3.5) for §&,n € C. with dy,(§,n7) < 1. Indeed, when
dyy(&,n) =1, WdN.y(; ) <1 =dy,, (&, n); thatis, (3.5) holds for 8, = 1. For any ¢ € [0, A],
using inequality (3.12) and the subsequent computations (with % replaced by ¢ in appropriate
places), we can find a 6, > 0 such that for all &,nelC withdy, (&, n) <1,

sup P{I1X, = Y.ll, = a1l — nll,}
0<t<h
—28 1-2,
2

5 3
< 2eiflg — I (h 2" + 1) exp{—calls —nl >0 7 + 172},
and

sup [Law(Y;) — P,(1, )ity < vVhlo lsllE — nll?.

0<t<h

Then (3.5) follows from similar calculations as those in (3.18)—(3.20). This proof is
completed. [

Remark 3.3. For any given h and y, by (3.10) and (3.14), for the above &y and «,
there exists a constant N(h, y) large enough such that we can find a 6, < 1 and for any
v=§=nl, < Nh,y)~7,

e 4 2K + 8VEK WK < 922 <1,

U™ > (14 81log2)"*(I'(8y) + supx®e ™) (h' 2% + v*(I'(8y) + supx¥e™)),

x>0 x>0

and

528 .

C(h="+1)+ Vhllo
N, y)

Since for any given N > N(h, y), dy., (&, m) < 1 implies v == ||§ — |, < N(h,y)~"/” and

~ / 5-25
& (h 04 1) + VAl oo
N(h.y)

Lemma 3.2 holds for the above N (h,y) and 0.
16

92)/—1— < 1.

912=92y+ <1,
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In addition, suppose there exist a constant N and a function f such that
FEy= 2 (W ) b @lo e <1 (5)
-, - - o < —\| = s
Tr N N - 2
and for v < N7, (2K + 8+/K)v“ < 1/8 and
v > (1 + 8log 2)‘/2(F(50) + supx%e—") [ FN) =20 4 (F(ao) + supxaoe_’“)].

x>0 x>0

Then in light of (3.14), we can choose 6, < 1/2 so that
~ 1 ~ ~ 5-28 1 ~
7, = wC<f(N)TO 4 1) + = FM)llo e + 6 < 1.
N N
Then it follows from the proof of Lemma 3.2, for any &, n € C, satisfying dﬁ,y(é, n) <1,
Wag (PR, ), Pr(n, ) < Bidy , (6, ),

where i = f(ﬁ).

Lemma 3.4. Under the conditions of Lemma 3.2, for any R, ¢ > 0, there exists a constant
tr.e > 0 satisfying e™"'Re R < & such that for any t > tg .

inf P{||X P < 0,
Anf {IX,®l, <e} >
where Bg :={§ € C, : ||&]l, < R}.
Proof. Fix R, & > 0 arbitrarily. Let |||, < R. Consider the following equation

dY(t) = b(Y))dt + o (Y,)dW(t) — MY ()dt, Yo =&, (3.22)

where )¢ is some positive constant to be determined later. Then for any 7,k > 0 and
8o € (0, 1/2), by [20, Lemma B.1], we obtain

Pl sup {|Y($)* — e 201E0)*} >
Ogsgmf,,{ } 200 A

2 AYA
L +n) 2\/2(1;;1 )K} By
0

(3.23)

where 7, := inf{s > 0 : | Y|, > n}, n > ||€||,, and the constants c3 and ¢4 > 0 depend only
on ¢ and §y. Note that the inequality

L(14+n% 2JLA +n?i
+ %
0

sup {|Y(s)]> — e E0)*) <
Ogsgt{ } 2A0 A

implies

L(1+n%» 2JL{1+n®i
872” sup leS|Y(S)|2 < ef2rt sup eZ(rf)Lo)sRZ_’_ ( )+ \/_( 5 )
0<s<t 0<s<t 2A0 )»00

)

which further means that

)

1Y, @) < e " |E|I> v (ezrz sup 200 g2
0

0<s<t 2A0 A
17
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Summarizing the above observations, we have

{ sy Latmy)  2VIQ +ng>k}
0<s<t

sup {|Y(s)* — e ?0'[£(0)*} < 2 0
== 0

C {ums)u% <e g2

L1 2 2 1 2
v, (let sup eZ(rf)»o)s R2 + ( 2;1_ n ) \/_( 8:_ n )K> } (324)
0<s<t 0 Ao

By Theorem 2.1, Eq. (3.22) has a unique global strong solution. Therefore for any fixed
t > tge, with 1z, > 0 satisfying e”""®¢ R < ¢, there exists a constant ny large enough such
that

1
P{z,, <t} < 7 (3.25)
Since e~ ¥®s R?2 < g2 and the constants ¢3 and ¢4 depend only on ¢ and &y, we can choose
Kk > 0 such that C3€_C4K2 < 1/4. Furthermore, there exists a Ao > r such that
L(1 +n0) 2VL(1 + nd)i 2

Sup eZ(r—AO)s R2 =3
0<s<tg., 2)»0 )»00

e_2rtRy£

Note that e~2#cR? < ¢2. Hence, by (3.24) with Ag = Ao, for the above 1 > 1z, fixed, we
have

L(1 2 1
sup {I¥)P — e o gop] < HLEM) YEL LR
O<s<t )"0 )V()O
s L(1+n?% 2L +n?R
CAIV@IN; <e g7 v e sup PP R> 4 Cading f(Af")K
0<s<t 2)\.() )\00

c {Iv®l, <e}.
Therefore, we can use (3.23) and (3.25) to obtain

PUY @Ol < ¢}

s L(l +n 3 2VLA +ndi
zP{ sup {12 = el < S T
0ss<t o Ag
5 L(1 24/ L(1
=1= ]P) Sup [lY(S)|2 _ e—2k0s|é(0)|2} > ( :"n()) \/_(A5+ nO)K" fno > 1
05551 2)\.0 )\,00
: L(1+nd) 2VL( +ndi
b sp [ - e T o) 2 LI | VEAERDE o
0<s<t 2A0 )\00
; L(1+nd) 2VL(+ndi
2 1B swp IroP - e o] 2 B YL E ik
0=5<t ATy 20 )»00
P{f <t}
1 1 1
e i (3.26)
4 4 2

18
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Recall that b and o satisfy the one-sided linear growth and linear growth condition, respectively.
Therefore a standard argument yields that for the ¢ given above, we have

a = sup E sup 1Y (s))* < oo. (3.27)
EeBp  s€[0,¢]

Let
R(s) := exp{/s(ioa_l(Ys)Y(s), dW(s)) — %/S ig|o_1(YS)Y(s)|2ds}, s > 0.
0 0

Next we show that

sup ER(s)log R(s) < 0o. (3.28)
0<s<t
To this end, we define a sequence of stopping time 7, := inf{s > 0 : [Y(s)| > n} for n € N.
Then R(- A 7,) is a nonnegative martingale for each n € N. Let Q,(A) := E[R(t A 1,)14]
for A € F, and n € N, which is a consistent family of probability measures. In addition, the
process

W (s) == W(s) —/ Ao L (Y)Y ()dv, 0<s<tAt,
0

is a Q, Brownian motion and Y satisfies the SFDEs

Yo =§,

under Q,. Using a similar argument as that for (3.27), we can show that Eq, [Supy<;< .-,
|Y(s)[*)] < L < oo, where the positive constant L = L(z, ||€||,) is independent of n € N.
Therefore, for any s € [0, #] and n € N, we have from Assumption 3.2 that

{dY(s) — b(Y)ds + o(Y)dW ™ (s), 0<s<iAT,,

_ B _ 1 SATh |
E[R(s A 7,)log R(s A 7,)] = Eg, [log R(s A 7,)] = EE@n U A%|01(YM)Y(M)|2du]
0

1,\ s
< zxéna—‘um/ Egr|Y( A w)l2du < CE, 1) < 0.
0

Therefore, passing to the limit and utilizing Fatou’s lemma lead to (3.28), which further
implies that {R(s),s € [0,1]} is a uniformly integrable martingale and hence {R(s),s €
[0, ¢]} is a nonnegative martingale with E[R@®)] = 1. Then, by the Girsanov Theorem,
W(s) = Wis) — [, Ao (Y)Y (v)dv, s € [0,7] is a Brownian motion under Q, where
Q(A) = E[R(t)14], A € F,. Moreover, we can rewrite (3.22) as

dY(s) = b(Y,)ds +o(Y)dW(s), 0<s<t,Y,=E¢.

In other word, Y solves (1.1) up to time ¢ under Q. In view of the pathwise uniqueness for
(1.1), it follows from the Yamada—Watanabe Theorem (see, e.g., [ 18, Proposition 5.3.20] or [18,
Corollary 5.3.23]) that for any £ € C,, there exists a measurable mapping @ : C([0, t]; RY) —
C([0,r]; Rd) such that

Xlo1 = P=Wlo.)s Yo = P(Wlio.0)),

where X and Y denote the solutions to Egs. (1.1) and (3.22) with initial data &, respectively.
By [7, Theorem A.2] and (3.27), we have
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sup Dy (Law(Wljo, || Law(Wio.11)))

§eBpg
< %%JE /0 o (¥ ()ds < @na*‘né = Gy, (3:29)
Denote
D, = {x € C([0,t]; RY) : Sup eS| e (x)(s)| < g}.
<s<t
Recall e 2 'r¢R? < £2,t > tg, and the definition of the norm | - ||,. It follows from (3.26),

(3.29), and [7, Lemma A.1] that for any M > 1 and & € By, we have
PlIX/®)ll, < e} = P{ sup e"“7|X(s)| < ¢}
0<s<t

= P{ sup ¢’ De(Wlj0.))(5)| < &}

0<s<t
= Law(W|j0,1)(D;)
- Law(W|jo,,)(D;) _ Dx1 (Law(W 0,11 | Law(W1j0,4)))) + log 2
- M MlogM
- L B 62 +log2
- 2M MlogM
Taking M = exp{462 + 4log?2}, we have
inf P{IX,@)l, < e} = ——— -0
£eBp 4exp{4C, + 4log2}
This is the desired assertion. []

Remark 3.5. It is worth noting that Lemma 3.4 holds only for ¢ > 7z . depending on the initial
data and ¢. This is the essential difference between SFDEs with infinite delay and finite delay.
Consequently we have to obtain the explicit dependence between N and 4 in Lemma 3.2 (see
Remark 3.3) to prove Theorem 3.1.

Now we present the proof of Theorem 3.1.

Proof of Theorem 3.1. Since limg, -0 V(§) = oo, there exists a constant R > 0 such that
{6 €C : V() <4Cy} C Bg. Let
_log(RV 1)+2+y 'log2N)

" .

By Lemma 3.2 and Remark 3.3, there exist constant N > 0 large enough and 6; € (0, 1) such
that

h

Way, (Pu(€, ), Pu(n, ) < 61dy., (&, 1) (3.30)

provided dy , (§, n) < 1, that is, dy ,, is contractive for P,. Let ¢ = (2N)~Y7. Then we have
1 1
e "R < e‘z(—>y < e.
2N

Therefore, for the above R, h and ¢, it follows from Lemma 3.4 that

o = inf ]P’{||Xh(§)||, < 8} > 0. 3.31)

£eBg
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Fix & and n € By arbitrarily, and construct independent C,-valued random variable ¢y, ¢, such
that

Law(g1) = Py(§,) and Law(gy) = Pu(n, -).
Then by (3.31), dy, <1 and y € (0, 1), we get

WdN,y (Ph(gv ')7 Ph(nt '))
< Edy (51, 52)
= Edn .y (51, ) ig ¢ or lsallr>e) + Bdny (615 62 gyl <e.lsallr<e)
<P{llsill, > e or [[all, > e} + NQ2e)'Pllisill- <&, lIs2ll- < &}
<l-0*+21?=1-(1-2""Ne* < 1.
This implies that By is dy, ,-small for IP,, which further implies that {§ € C, : V(§) < 4Cvy}
is dy,,-small for P,.
Since dy , is a metric and is equivalent to || - — - ||, P(C,) is complete under the metric

Wy, , and P, is also Feller under dy ,. Therefore it follows from [15, Theorem 4.8] that P,
has a unique invariant probability measure . Moreover, there exists a #, > 0 such that

1
de’y (P,*M, P,*v) < EW‘%W ([,L, v) (3.32)

for all p, v € P(C,). In addition, In light 0~f (3.2) and (3.5), using the Holder inequality gives
that for ¢ € [0, t.], there exists a constant C > 0 such that

Wy (P ). P(.)

1
= inf d , 1+V +V 2[1(dx,d
et /c (e Ve + V) T,

1

n 2
inf d X, 1 d)c7 d
ITeC(P:(§,), Pr(n,) (/;rxc,- N’y( y) ( y)>

X (/ A+Vx)+Vi)nildx, dy)>2
CrxCyr

IA

(W (PAE. . Pi(n. D) (14 Cre " (VE) + V) +2C)*
1 1 1
<07 (dyy 6. )} (1+ Cye ™™ (V(E) + V(n) +2Cy)?
< Cdy (5. 1), (3.33)

where C(P;(&, -), P,(n, -)) denotes the family of couplings of P;(&, -) and P,(7, -). Note that the
Wasserstein distance Wd% (-, ) is convex. Then by using the semigroup property of P, and

IA

Jensen’s inequality, it follows from (3.32) and (3.33) that for any ¢t > 0 and § € C,,
de,y (Pz(“;"’ ), 7T) = de’y (Pr(év ), Pzﬂ')

= de y (P[t/z*]t* P66, )5 Py, Pt—[t/t*]t*”)

1
= WW"%.V (Pt—[t/t*]t*(& ), Pt—[t/t*]t*ﬂ)

1
m /Cr Wd[‘\;,y (Pl—[l‘/l*]l*(gv Vs Pr—oye, (1, '))JT(drl)
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~ 1 v
CM/C, dy., (&, mm(dn)

< 6%,/1 + V(E) +m(V). (3.34)

In addition, it is easy to see from (3.2) that w(V) < oo. Therefore, (3.34) implies that there
exist constants C and p > 0 such that

Wd[‘v/ (Pl($5 ')’ 7T) S Ceipt\/ 1 + V(é)a t 2 0
sV
Since d;’ &, n < dqu(f, n), (3.3) follows and the proof is completed. [

Remark 3.6. Similar to (3.34), it is easy to observe from (3.32) that for any u,v € P(C,)
with (u x v)(d,‘\;,y(-, -)) < oo, there exists some ¢ > 0 such that

WdX,V(P’“’ Pv) < ce‘ﬂfwdxvy(u, v), t>0.

4. Asymptotic log-Harnack inequality

To establish the asymptotic log-Harnack inequality for Eq. (1.1), we need to impose the
following stronger conditions on the coefficients b and o.

Assumption 4.1. b is continuous and bounded on bounded subset of C,. In addition, there
exist a positive constant K, a decreasing continuous function # € U/ and a probability measure
u € My, such that for any &, 5 € C,,

2(p(0) — ¥ (0), b(¢p) — b(Y))+ + lo (@) — o (Y)|1?
0
<K, f 19(0) — V() *u(lp©) — ¥ (0)*)u(dh).

Moreover, the function s > su(s?) is increasing and there exist constants K, > 0 and
0 < o < 1 such that the function u € U satisfies the following inequality

su*(s) < Kz((su(s))"‘ +su(s)), Vs > 0. 4.1)

It is easy to observe that the function u(s) = log(e2 vsHhelis decreasing and satisfies
(4.1), and su(s?) is increasing.

Assumption 4.2. The functional o satisfies ||0 [l = supycc, [lo ()|l < oo and for any ¢ € C,
o (¢) admits a right inverse o~ '(¢) and [0 ™" || := supycc, o (D)l < oo.

For convenience, we first present some notation and definitions to be used in this section.
Let (E, d) be a Polish space. For a function f : £ — R and any x € E, denote

|Df(x)| = lim sup M
dxy—0  d(x,y)

We further denote ||Df|loc = sup,cz |Df(x)|. An increasing sequence (d,),>; of bounded,
continuous pseudo-metrics on (E, d) is called fotally separating if for every x # y, it holds
that lim,,_, o d,,(x, y) = 1.
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Definition 4.1 ([/4, Definition 3.8]). A Markov semigroup (P;);>o satisfies the asymptotic
strong Feller property if it is Feller and there exist a sequence of positive real numbers (#,),>1
and a totally separating sequence (d,),>; of pseudo-metrics such that for every x € E,

inf limsup sup W,, (Pt,,(x, ), P, (y, ')) =0,

UeUr p—oo yeU
where U, :=={U C E : x € U and U is an open set}.

For any A > r, consider the following SFDEs with infinite delay

dX(t) =b(X)dt + o(X,)dW(z), 42)
dY (1) = {b(Y;) + ro (Yo " {X)T (X (1), Y(£)}dt + o (Y,)dW(1), '
with the initial data Xo = & and Yy, = n, where
X'(1) — Y @Ou(X'0) - Y' )
X2 _ Y2 X2 _ Y2 2
FX@. Y (1)) = (X=() (t))u('l ) ) 43)

. 2
X0 = Y Ou( X0 — YOI
Under Assumption 4.1, it is easy to see that b and o satisfy Assumptions 2.1 and 2.2. Since

the first equation of (4.2) does not depend on Y, it has a unique solution. To show the existence
and uniqueness of solution to the second equation of (4.2), it suffices to verify that

b(@) = ra(¢)o ' (E)(E©0), p(0), ¢ €C,

as a drift satisfies Assumptions 2.1 and 2.2 for any fixed & € C,. This, however, follows directly
from Assumptions 4.1 and 4.2; see Proposition A.3. Therefore we can apply Theorem 2.1 again
to conclude that the second equation of (4.2) has a unique strong solution. Summarizing the
above observation yields that (4.2) has a unique strong solution (X, Y). Let

h(t) = 1o " (X)I(X(1), Y (1)), B@t)= W(t)+f h(s)ds,
0
and define
R(t):exp{—/ (h(s), dW(s)) — lf |h(s)|2ds}.
0 2 Jo

Further, define the stopping time
o =inf{t = 0 [ X, v Yill, = n}, nelN.

Recalling that Ou(0) = O and u is continuous, (4.1) implies that for any fixed n > 1,
{R(t A Ty)}i>0 is a martingale. Thus it follows from Girsanov’s theorem that for any fixed
T > 0, {B(t A Ty)}tefo.1] 1s a d-dimensional Wiener process under the probability measure
dQr., = R(T A t,)dP. For t < T A 1, rewrite (4.2) as

dX(t)={b(X;) —AI'(X(), Y(t)}dt + o(X,)dB(t), Xo=§, @.4)

dY(t) = b(Y,)dt + o (Y)dB(), Yo=n. '
Since X(#) and Y(¢) depend on the whole history, it is impossible to construct a successful
coupling for X; and Y;. Thus, we aim to establish the asymptotic result. In order to establish
the asymptotic log-Harnack inequality for SFDEs with infinite delay, we have to verify that
{B(f)}ie10,00) 18 @ Wiener process on some probability space. We now present the following
result.
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Lemma 4.1. Let Assumptions 4.1 and 4.2 hold. Then for all » > r + K\u*”/2 4+ 1/2, we

have

supE [R(t) log(R(t))] < 00. 4.5)

t>0

Consequently, there exists a unique probability measure Q on ({2, Foo) such that

dQ|
|, = k0. viz0 (4.6)

Moreover, {B(t), F;; 0 <t < 00} is a d-dimensional Wiener process on ({2, Foo, Q).

Proof. Let Z(¢) = X(¢) — Y (¢). By Assumption 4.2 and (4.1), we have
E[R(t A T2) log(R(t A T))] = Eq,, 10g(R(t A T,,))

= Eq,, (— f "<h<s),d3(s)>+l / "|h(s)|2ds>
0 2 0

d ATy
Eﬂno—‘ 12 Eq,., / |Z(s)Pu*(1Z(s)|P)ds
0

IA

dK> 5 _i2 i 2 20\
< T/\ lo ™ I Eq,., (1Z)Pu(1Z(s)1?) ds
0

dKs 5 1 i 2 2
+T)» llo™ oo, [Z($)|"u(|Z(s)|Dds,  (4.7)
0

where [Eq, , denotes the expectation operator with respect to the probability measure Q; ,,. For
some positive constant ry < r, applying the Itd6 formula and using Assumption 4.1 give

AT, d
iy T ros i 2 i 2
N Z(t A )P = [5(0) — n(O)]* — 2A/ &0 Y 1Z ) u(ZH () )ds
0 i=1

* / " 20 2o Z() + 2Z(s), b(X,) — b(Y,)
0
+lo(Xy) — o (Y,)|*)ds
+2 / " Z() (0(Xy) — o (Y, )dB(s)
0

ATy d A _
< 11§ = nlI2 + 20 — 3) / 0 Y 1 ZI ) (1 Zi () )ds
0

i=1

AT, 0
+ K / / e | Z(s + 0)*u(| Z(s + 0)[*)u(d6)dss
0 —00

+2 f ’ e Z(s) (a(X,) — a(Y,)dB(s). (4.8)
0

By the Tonelli theorem and a substitution technique, we have
ATy 0
f / N Z(s + O)Pu(| Z(s + 0)*)u(d6)ds
0 —00

N f ’ fﬁs e\ Z(s + 0)*u(1Z(s + 6))(db)ds
0 —00
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AT, 0
+/ / 2% Z(s + 0)2u(|Z(s + 0))*)u(d)ds
0 _
AT, p—S ’
S / f leosefzr(s+9) (62r(5+9)|z(s + 9)|2u(62r(3+9)|z(s + 9)|2))u(d9)ds
0 —00
0 AT,
+ f f 020N Z()Pu(1Z(9)P)ds u(dO)
—o0 JO
AT, p—S
< e = nludie —nid) [ [ e s
0 —00

AT,
+u / e | Z()Pu(|Z(s)H)ds
0

M(2r) AT,
< ——— & —nlfulE — nll?) + u>" / e | Z(s)Pu(| Z(s))dss
2r — 2ry 0
M(Zr) AT, d . 2 . 2
< sl = nlZudls = nl}) + u®” / 0N 1ZH ) u( 2N ()| ds,  (4.9)
2r — 2ry 0

i=1

where the first inequality follows from the fact that asu(s) < asu(as) for a € [0, 1] and the
last inequality follows from the fact that (s + f)u(s + ) < su(s) + tu(t) for s, ¢t > 0, which
follows from the fact that u(-) is decreasing. Substituting (4.9) into (4.8) yields that

K

1Z(t AT = (14 55—
r — 2rg

Y 1g = nliZudle =0l
ATy d o, o,
+n+ K =2 [ e 3 12z e s
0 i

+2 / " V2 (0(X,) — o (Y)dB(s). (4.10)
0

Note that o < 7 and A > r + K;u®”/2 4 1/2. Thus we have

AT,

AT, d
/ 0| Z)Pu(lZ(s)P)ds < / e Y 1ZN ) u(1 Z ) ds
0 0 i=1

Kl (2r) _ 2 _ 2
< (14 5,250 e = niZudlE = i)
+2 / " 2(5) (0(X,) — o (Y )BG).

0

Taking expectation with respect to Eq,, on both sides of the above inequality, we obtain

IAT,
n o Kl .
Eq. f 12(5)Pu(Z()Pds = (14 5—5—n® ) 1§ = nlZuCls = nlD. @11)
0 r —2rg

By virtue of Holder’s inequality and (4.11), we have
tATy N
Eq,, / (1Z©)Pu(Z(s)P)" ds
0

AT,
=Eq,, / 209 (2051 Z()Pu(1 Z(5)1P))” ds
0
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AT —2rgas 1o ATy s ) ) o
= {EQt,n/ e 1 ds} {EQM/ e Z()"u(| Z(s)] )dS}
0 0

1— a l—«
< A%, 4.12)
( 2roo )

where A == (1 + 2r1_<—'2r0/¢(2’))||$ — nllfu(”& — n||f). Substituting (4.11) and (4.12) into (4.7)
gives that

dKz 20 —112 1 —a\l-«
sup E[R(t A ) log(R( A T,)] = 2220 ”°°[<m) A+ Al @3

t>0,n>1

By Fatou’s lemma, it follows from (4.13) that

sup E[R(1) log(R(1))] < &AZIIGAHCZ,O[(]_—“)] " A + A] < 00.
>0 2 2roo
This establishes (4.5).

We now prove (4.6). We first show that {R(z), F;; 0 <t < oo} is a uniformly integrable
martingale. The uniform integrability follows from (4.5) directly. Therefore we only need to
prove that R(¢) is a martingale. By the Dominated Convergence Theorem and the martingale
property of R(t A t,), for any ¢t > s, we have

E[R(1)|F,] = E[ lim R(t A 7,)|F;] = lim E[R(t A 1,)|F] = lim R(s A 1) = R(s),

which implies {R(?), F;; 0 <t < oo} is a martingale.

Since {R(#)};>0 is a uniformly integrable martingale, it follows from the Submartingale
Convergence Theorem (see, e.g., [18, Theorem 3.15]) that the limit R(co) := lim;— . R(?)
exists for almost all w € {2 and R(c0) is an integrable random variable. Moreover, {R(¢), F; :
0 <t < oo} is a martingale (see, e.g., [18, Problem 3.20]). Define a probability measure on
Fxo as follows

Q(A) =E[14R(c0)] for A € Fu.

Because {R(f), F; : 0 <t < oo} is a martingale, Q(A) = E[14R(?)] for A € F;, t > 0.
Hence (4.6) holds. Additionally, in light of Girsanov’s theorem, for each fixed 7 > 0
{B(t), F;;0 <t < T} is a d-dimensional Wiener process on ({2, F7, Q7), where Qr(A) :
E[14R(T)] = Q(A), VA € Fr. As a result, {B(t), F;; 0 <t < oo} is a d-dimensional Wiener
process on ({2, Foo, Q). This proof is completed. [J

Lemma 4.2. Ler Assumptions 4.1 and 4.2 hold. Then for any ry € (0,r), there exists a
constant Cy; > 0 such that the asymptotic coupling (X,, Y,) satisfies

EollX, — Y117 < CillE — nl2u(lE — nl2)e " (4.14)

Proof. Since {B(t), F;; 0 <t < oo} is a d-dimensional Wiener process, inequality (4.11) is
still valid for the probability measure Q in place of Eq, ,. In addition, noting that the solution
X(¢) to (1.1) is non-explosive, by (4.11) and Fatou’s lemma, we have

_K @r) 2 2
- - . 4.15
3 b IE = e D). @19)

26
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By the Burkholder-Davis—Gundy inequality, and using Assumption 4.1 and the Cauchy—
Schwarz inequality, we have

2Eq sup / ' e Z() (0(X,) — o (Y,))dB(v)

0<s<t JO

1
< 8v2Eq ( f "1 Z(9) o (Xy) — a(m||2ds)
0

IA

1 t 0
EEQ sup e?%°|Z(s)|* + 64K Eq f / ¥ Z(s + 0)*u(| Z(s + 0)))u(dO)ds
0 —00

0<s<t

1
EEQ sup e¥05| Z(s)|* + !

64K
< ———uNE = llZulE —nl})
0<s<t 2r — 2ry
t
+64K, 1" Eqg / 2% Z()|Pu(| Z(s))*)ds. (4.16)
0

It follows from (4.10), (4.15), and (4.16) that

Eg sup e¥0|Z(s)]* < Cill€ — nllfudlE —nl),

O<s<t

where C) = 2+ 128K11" + (65 + 64K 1) K12 Recall the definition of the norm || - .
Noting that 0 < ry < r, we obtain

I1Z: 117 = supe”?| Z(t + 0)|?
6<0

< sup ST Z($)P < e V& — I} + e 70" sup 0| Z(s)|%.
s<t O<s<t

Thus, we have
Egll Z I? < (C1 + DIIE — nllfudlig — nll7)e>o".
Hence (4.14) holds for C; = C; + 1. This proof is completed. [J
Theorem 4.3. Let Assumptions 4.1 and 4.2 hold. Then for any ro € (0, r), there exists a
constant C, > 0 such that for t > 0, the asymptotic log-Harnack inequality
P,log f(n) < log P f(§) + Co(ll§ = nll;udl§ — nl})" + CallE = nl7udlE — nl?)
+ Cze_"”IIDlnglloo\/llé —nll7ullE —nl?) (4.17)

holds for any &, 1 € C, and f € B} (C,) with f > 1 and |D1og f|le < 00. Consequently, the
Markov semigroup P, is asymptotically strong Feller.

Proof. In light of Lemma 4.1 and the weak uniqueness of solution to (1.1), Y; also has the
Markov semigroup P; under the probability measure Q, i.e., P; f(n) = Eq f(Y;) for any t > 0
and f € By(C,). Therefore, for any f € B with f > 1 and |Dlog fllc < 00, by the
definition of || D log f|« and the Young inequality (see e.g., [1, Lemma 2.4]), we obtain

Prlog f(n) = Eqlog f(Y;) = Eqlog f(X,) + Eq(log f(Y:) — log f(X))
< ER(t)log f(X,) + | D1og fllocEqll X; — Yi1|

< ER(1)log R(t) +log P, f(§) + [ D1og f oo (ol X: — Yi1I7)? . (4.18)
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Recall that

dKs 0 112 1—a\'™ o
E[R(®)log R(t)] < —A*llo "I, A+ A, 4.19)
2 2roc

where A = (1 + er—‘%u(m)né — nl?u(||€ — n||?). Substituting (4.14) and (4.19) into (4.18)
yields

1

dK Y l—o
Plog f(n) < log P f(&) + TZAZHa—1 1% ((2—) A + A)
rot

+e | Dlog fIIOC\/Cl & —nlZuClE —nld).
Therefore (4.17) holds for

K

(2r)
2r — 2r0M ),

dK 1l -«
C, = max {\/Cl, —2x2||a*1||§0(7)1*“(1 +
0

2
dKz ) 1,2 Kl 2
—A 14+ ———u@hi.
3 W0 R+ =)

Finally, in view of [34, Theorem 1.4], (4.17) implies that the Markov semigroup P, is
asymptotically strong Feller. This completes this proof. [

Remark 4.4. When the diffusion term depends on the history of the solution, the SFDEs might
have a reconstruction property (see, e.g., [26]), which causes the laws of segment processes
with different initial data to be mutually singular. This indicates that the strong Feller property
and the ergodicity under the total variational distance are invalid. This is the reason why this
paper only shows the asymptotic log-Harnack inequality and the exponential ergodicity under
Wasserstein distance.

5. Example
In this section we study a concrete example to illustrate the main results of the paper.
Example 5.1. Consider the following 1-dimensional stochastic functional differential equation

with infinite delay
0

dX@) = {—yIX(t)+/ @(X(t+9)).u(d9)}dt
0
e / LA B+ 0)a(d0) | d W), 5.1)

where y; > 0, u € My, and W(¢) is a 1-dimensional Wiener process. @(x) is a continuous
function satisfying
Di(x), x € (—00,—3]
D(x) = 1 Br(x), x €[-3, 3]
B3(x), x €[1,00),

where @;, @5 are Lipschitz continuous in that

1
1) = B < Bilx =y xoye (oo —3] B >0,
28
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1
|236) = B0 < alx =y x.y € [5.00). B> 0,

and &, is Holder-Dini continuous and satisfies

e? 11
(9200 = B = fal =P log 5. wye[-5.5] =0 5:2)

If 29, > 14+ 6(B; + B2 + B3)u'?”, then the assertions of Theorems 2.1, 3.1, and 4.3 hold.

Proof. Clearly, the diffusion coefficient satisfies Assumption 4.2. Now we first verify (5.1)
satisfies Assumption 4.1 with the function u(s) = log(s~'e? v e?),s > 0. Set Ou(0) =
lim,_, o su(s) = 0 and it is easy to verify that u(s) = log(s~'e? V €?) € U is decreasing and
satisfies (4.1), and su(s?) is increasing . Since s log(s~'e? V €?) is increasing and log(s~'e? v

€%) > 1, we see that for any x,y € R

2
| ®(x) — S()|* < 3(B1 + B2 + B3)lx — y|* log (|x i N v 62)

_. 2 e’ 2
= A|lx — y|“log s Ve ). 5.3)
lx =yl

Since s log(s~'e? v e?) < 1 + 2s for s > 0, (5.3) implies
[P =201+ e)Arlx? + (1 +2)A1 + (1 + §>|q5<0>|2 =21+ e)Ailx + A2 (54)
By the Cauchy inequality and the Holder inequality, for any ¢, ¥ € C, we have
2$(0) = Y(0), (@) — b))+ + (@) — o)
=2(p(0) - ¥ -6 - w0y + [ RLGE DY O)1(d0))

—00
2

0
+ ‘ / (LA [B(@ON) — (1 A B (0)))ie(dd)
< (—2yl|¢<0) — YO + 1lp0) — Y (0

1 0
+;/ | 2(#(9)) — ¢(¢(9))|2M(d9)>

+

0
+/ |2($(0)) — (W (0))1*11(dO)

1 0
- (; + 1) / | B©)) — PO (o)

1 0 e’
<A |[—+1 9) — w(®))*1 (— 2) do). 5.5
< 1<y1 )f_oow() O tog (1o v € i) (5.5)

This implies Assumption 4.1 holds for u(s) = log(s 'e? Ve?),s > 0and K; = A; (1/y; + 1).
Therefore, (5.1) has a unique global strong solution and the asymptotic log-Harnack inequality
(4.17) in Theorem 4.3 holds. In addition, since lim,_s'~# log(ez/sz) = 0 for any given
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B € (0, 1), we have
2 2 2
2 A R - e 1— e 1+
s” log (—2> =s!*h <s Flog <—2>> < sup (s Flog <—2 siTP
s s 5€(0,1] N
= Kgs't? fors e (0, 1],

where Ky is a constant depending only on 8. Since s log(s~'e? Vv €?) is concave on [0, 1] and
nondecreasing and vanishes at 0, it follows from (5.5) that for ||¢(8) — ¥ (O)|, < 1

2(3(0) = ¥(0), b(¢) — b(¥))+ + o (p) — s (W)II?
e

1
(2r) - _ 2 2
=HTA ()/1 + 1) 1=yl log(n«z)(e) —vor "’ )

1
< Ksu® A, (7 + 1) g —yl*P,
1

2

which implies Assumption 3.1 holds for K = Kgu®’A; (1/y1 + 1) and § = 1. Hence, we
only need to verify (3.2) to prove Theorem 3.1. By Itd’s formula, for some ry € (0, 2r) and
any initial data X, = &, we have

VX)) = 1§ +2 / e X(s)o(X,)dW(t)
0

t
+ / e (rol X ()I* 4+ 2(X (), b(X,)) + llo (X,)II?)ds. (5.6)
0
By using the Cauchy inequality and (5.4), we obtain

2(X(5), b(X,)) + o (X)II?
0

< 231X (s)* + 2/ | X (s)D(X(s + 0))|u(db)

—00

0 2
+‘1+/ 1A BX( + 0))](d)

0
< =2n1X®F + X)) + f | B(X (s + 0))[*1u(dO) + 4

—00

0
< =211 X()I* + 1 X()* 4+ 2(1 + £)A, f 1X(s +0)*n(dd) + As + 4. (5.7)

Substituting (5.7) into (5.6) yields

1 t
NXOP < &2+ — (4> + 4)e"" +2 f e X ()0 (X)dW (s)
0 0
t
+(ro+1—2y) / | X (s)*ds
0

t p0
+2(1+e)A, / / €| X (s + 0)*u(do)ds. (5.8)
0 J—o0

Applying the Tonelli theorem and a substitution technique gives

t 0
f f €1 X (s + 0)>u(dO)ds
0 —00
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t —s t 0
< / / %X (s + 0))*u(d6)ds + / / %X (s + 0)*1u(d6)ds
0 J—oo 0 J—s

A

t —s 0 t
< |Ig|? / / e e 260 L (dB)ds + / f €% X (s + 0))*dsu(do)
0 —00 —t J—0

IA

1 O e
—u@’)nsn%+f f ¢"CO1X ()P ds (dO)
—o0 JO

2r —ry

A

1 t
S e (] e / e’ X (5)|%ds. (5.9)
r —ry 0

By the Burkholder-Davis—Gundy inequality, we have
2E sup / X (s)o(X)dW(s)
0

O<u<t
1

2 2
ds)

1 256
< —E sup €°°|X(s)|> + ——¢"". (5.10)
2 0<s<t ro

0
X1+ [ 18100 + 0)tde)

—00

t
< 24/32E ( / 20’
0

1

t 2
< 24/32E ( sup €’ X (s)[? / 4e’0Sds)
0

0<s<t

Noting that 2y, > 14 6(B8; + B2 + B3)u?”, we can find constants &, ry > 0 small enough such
that

ro+1 =2y +2(14+&)Au" <o0.
Then substituting (5.9) and (5.10) into (5.8) yields that

2(1 + &)A ) 520 +2A
(1 + &) ||§||f + r—zerof.
0

- .11

E sup €| X(s)> <2

0<s<t

Recall that for ro < 2r,

EIX, |7 < e ' €]I2 + e 'E sup ™| X(s)|*.

O<s<t
Then by (5.8), we have

414+ e)A n®\
+= 2rim )e IEN7 +

This shows (3.2) holds for V(&) = ||€||?. Therefore Theorem 3.1 holds for (5.1). O

520+ 2A
EIX | < (3 S
;

Remark 5.2. In fact, by a slight modification of the above proof, one can prove (3.2) still
holds for o(¢p) = 1 + fi)oo | D(¢(0))|u(d) when y; > 14 6(B; + B + B3)u?"). In general, it
is not easy to verify the Lyapunov condition (3.2) for SFDEs (see, e.g., [3,8]).

Remark 5.3. We now show that there is Holder-Dini continuous function &, such that (5.2)
holds. Let
2
flx)=x'" 1og)7, x€(0,1],a € (0, 1).
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We compute
/ . _ —da _ _ a
£ =2(1 — a)x ( log x 1—a>'
Then f’(x) > 0 for x € (0,exp[—a/(1 —a)]) and f'(x) < O for x € [exp[—a/(1 —a)], 1].
Noting that lim,_,¢ f(x) = 0 and f(1) = 2, there exists a unique constant xy € (0, exp
[—a/(1 — a)]) such that f(xg) = 2. Then define

o) — {\/f(x), x € (0, x0)

V2, x € [xg, 00).
Clearly, ¢(x) is increasing and ¢(x) < 4/ f(x) for x € (0, 1]. Moreover, it is easy to verify that

1 X0 W 1./ %0 |log <
/ (0(x)dx :/ x2 dx—i—/ £dx < _\/Elogxo—Ff 1 X2 dx < oo
0 X o X o X 0 xlta

where in the last step we have used the fact lim,_, 5P log(e2 /sz) = 0 for any given g8 € (0, 1).
This implies the function ¢(x) is a Dini function. Hence, we can choose the function &,
satisfying the following inequality

14a
[P2(x) = (W =[x = y[2 o(lx —yD), |x—yl=1,

which indicates &, is Holder-Dini continuous. This, together with ¢(x) < 4/ f(x) for x € (0, 1],
means that such Holder-Dini continuous function &, satisfies (5.2).
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Appendix

This section includes two auxiliary tail-estimates. The first one is to establish the Fernique-
type inequality for Wiener processes, which is a direct consequence of the [21, Lemma 3.1].
The second one is a slight modification of [20, Lemma B.1].

Lemma A.1. Let W(t) be a I-dimensional Wiener process. For any given T > 0, § € (0, 1/2),
and for all x > 0 satisfying x > (1 + 8log2)!/>(T'=2 4 x~1),

[W(t1) — W(n)|
P sup ——————— > X
1.12€[0,T] |t — 1]
2
12 2 1 (pl-25 -1 X
<C(Tx 2 +1)x (T"% +x )exp{_—Z(T12‘3+x1)2}’

where C > 0 depends only on é.

Proof. Since W(t) is a Wiener process, for any ¢, € [0, T],
W) — W)

1-25
PRETAL ~NQO, |t =] 7).
1 —h
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Then we claim that

200 -
yo(e) = sup (A.1)
t;,5;€[0,T]
Is; —t;|<e,i=1,2

2
o <W(f1) - Wa(lz) _ Wis) - W(S(Sz)) <51
[t — 12 ls1 — 82|

We will prove (A.1) momentarily. As a consequence of (A.l), we obtain
o0
0h) = @+ 2) f Y (2 )dy
1

V52 ++2) / 272 dyn 3 = Q(h).
1

IA

Note that
07! = 07'(x) = Cia 7B,
where O~!(x) := sup{y : Q(y) < x}, and C; depends only on §. In addition,

W) — W(h))2 _ i

2
o° = sup ]E( 3
Ity — 12

t1,1€[0,T]
Hence the desired result follows from [21, Lemma 3.1].
We now prove the claim (A.1). First, we write y%(s) = SUD,, 5. €[0,T1,Isi—1; | <e,i=1,2
H(sy, 52,11, 1), where

W(n) = W) Wis)— W(S2)>2
Iti — 1° ls1 — s2/°
s 2E[W@) = W) [Ws) = Wisy)]
Ity — &)’ Is1 — s2/°

H(sy, 52,1, 1) = IE<

+ |51 — 82|

We next derive an upper bound for H(sy, sz, t1, #2) in different cases. Without loss of generality,
we can assume #; < t,. When s; < s5, there are five cases to consider.
Casell: sy <sa <tfi<hort) <t <s1 <5

1-25 1-25 1-25 1-25
H(sy, 82,11, 1) = |t — 1] + |51 — 52 < lIs2 — 1] + s —nl 7
Case I12: 51 <1t; <50 <1r.
2(s2 — 1)
1-25 1-25
H(sy, 52,01, 0) = [ — 0| " + |51 — 52| 77 — 5 5
[t1 — 1]°|s1 — s3]
2(s2 — 1)
1-28
=20 =6l Visi—s) " - 5
(It — &2 V Is1 — 52])
Then if |t} — 1] < |51 — 52|, we have
2050 —t1) _ 2ty —s1)
H(sy, 52,11, 1) < 251 — /'™ — < <2/ — 5",

Isi — 2% 7 Isp — 520 T

Similarly, when |#; — 1| > |s; — s3], we have H(sy, 2, 11, 1) < 2|t — sz|1’2‘3.
Case I3: 51 <t) <th <s5.
2ty — 11)
B 5
[t — 122]°[s1 — 52|

1-25 1-25
H(s1, 82,11, 1) = |t — 1o + |51 — 52| -

1-28 2(t2 - tl)
2
sy — s2/%

33
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- 2(t1 — s1) +2(s2 — 1)
- s — 52/%

<2 —si|"F 425 — 1

Case I4: t; < s; < 55 < t,. Similar to Case 13, we have
2(s2 — 51)
It — 6’ Is1 — 5]

1-25 1-25
H(sy, 82,11, 1) = |t — 1o + |51 — 52| -

<2l —sl"F 4201 — 5y
Case I5: 1} <51 <t < s5. Similar to Case 12, we obtain

1-28 2(t; — s1)
It — 6’ Is1 — 2]

1-28

H(sy, 82,11, 1) = |t — 1o + |51 — 52|

< 2ls; —t|"F 4 2l5p — 1],

When s; > 5,, we also have five cases as follows.
Case IIl: s, <s1 <t <thort; <t <sp <sy. Similar to Case 11, we have

1-26 1-25
H(sy, 82,11, 1) < |52 — 1] + st —ul 7.
Case I12: s, <t; <51 < 1,
2(t1 — s1)
1-28 1-26
H(s1, 82,01, 0) = |th — 0|~ + |51 — 52| 77 = 5 5
[t1 — 1]°|s1 — s3]
_ 2(s1 — 1)
<2 -+ . .
[t — £2]°[s1 — s2]
<2l — 5P 20t — 51|

Case II3: s, <t; <t <s7.

2(t — 1)
It — 6251 — s21°
1-26 2(t2 - tl)

+ |t — 51 +
It — 1]*

1-25 1-25
H(s, 82,11, 1) = |t — 1o + |51 — 52| -

< 2lty — 5|7

1-25 1-25
< 4|t — 55| + It — s 7.
Case I14: t; < s, <51 < t,. Similar to Case II3, we arrive at

|1,25 . 2(s2 — 51)
It — 6’151 — s21°

1-25
1|

H(s1, 82,1, 1) = |t — + [s1 — 52

1-26 1-26

IA

A4ty — 52| 77 + |11 — 1l
Case II5: #) < 5 <1, < ;. Similar to Case 112, we get
2(s2 — 1)

It — 6’ Is1 — s2]°

1-25 1-25
H(sy, 82,11, 1) = |t — 1 + |51 — 52| -

IA

1-26 1-268
2|t — s1] + 2|t — 52| 7.

Summarizing the above observations, we have
2 1-28
y(e) = sup H(s1, 82,11, 1) < 5e .
1,5 €0, TN, Is; —t; | <e,i=1,2

The claim (A.1) is established as desired. [
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Lemma A.2. Let Y(t) > 0 be an It6 process with
dY(t) =U@)dt +dM (1),

where M is a continuous local martingale with quadratic variation

(M)(t) =/ m(s)ds, t>0.
0

If there exist constants A > 0, B > 0, A > 0, T > 0 and random variable t € [0, T] such that
Uty -2Y®)+A, m(t)<B, whenever t <T.
Then for any § € (0, 1/2), there exist constants C1, C, > 0, which depend only on &, such that
for any R > 1 satisfying
R > (1+81og2)"/*(I'(8) + supx’e™)(T""% + R™N(I'(8) + supx’e™)),

x>0 x>0

P {sup(Y(t) —e MY (0)) = AX' + BI/ZMR}

t<t

- CR?
<C(T°T + DR P exp | -————— 1.
2T 72 + 1)

Proof. This result follows directly from Lemma A.l and the same argument as that in the
proof of [20, Lemma B.1]. [

Proposition A.3. Under Assumptions 4.1 and 4.2, 15(4)) = Ao (p)o "1 (E)(£(0), $(0)), ¢ € C,
as a drift satisfies Assumptions 2.1 and 2.2 for any fixed & € C,, where I'(-, -) is given by (4.3).

Proof. Since su(s) is increasing, according to the definition of I'(-, -), we need only to verify
b satisfies Assumptions 2.1 and 2.2 for each component. Hence without any loss of generality,
we can assume d = 1 in what follows and hence b takes the following form:

b(¢) = Ao ()0~ E)EO0) — p0)u(IE0) — 0>, ¢ €C,.
In light of Assumptions 4.1 and 4.2, it is easy to see that b satisfies the linear growth condition,
which implies that b satisfies Assumption 2.2 and is bounded on bounded subset of C,. Now it
remains to show that b satisfies (2.1). For any ¢, ¥ € C, and fixed & € C, with ||¢|, V¥, <k
for some k > 0, we compute
(@(0) — ¥(0), b(¢) — b(¥))
< Mo ool @(0) — (0| [lo (@) — o (Y)IE0) — (0)|u(|E(0) — (0)[*)
+ Mo llscllo ™ lool¢0) — w(0)
X [(5(0) — p(0)u(1§(0) — $(0)[*) — (£(0) — Y (0)u(&(0) — ¥ (0))]
= Mo oo T1(, ¥) + Allolloollo ™ oo Ta(e, ).

Noting that su(s) is increasing and concave, by Assumption 4.1, we obtain

A

0
lo(p) —o(W)II* < K, / e 20| p(0) — Y (O)Fule e |p(0) — Y () )u(do)

o0

IA

0
K, / e g — Y l7ute Il — Y I)udo)

o0
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IA

0
K, / e Nlp — ¥ 1Fulp©®) — Y (@)Hm(do)

o0

Kin® ¢ — ¢ lIZullp@) — v @)lD).

IA

Recalling that u(-) > 1 and su(s?) is increasing, then we arrive at

Ti(¢, ¥) < VK @k + 1IEll)utk + 1E1DNS — w17ulp®) — @)

We now estimate 15(¢, ) and assume ¢(0) < ¥(0) without any loss of generality.
Case (i): ¢(0) < £(0) < 9¥(0). In this case, we have |£(0) — ¢(0)| Vv [E(0) — ¥ (0)] <
|$(0) — ¥ (0)]. Since su(s?) is increasing, we obtain

Ta(¢, ¥) < 216(0) — Y (0)*u(p(0) — Y (O)).

Case (ii): £(0) < ¢(0) < ¥ (0). Since u is decreasing and su(s?) is increasing, we have

0 < (5(0) — p0)u(E(©0) — $(O)I*) — (£(0) — Y(ON)u(£(0) — ¥(O)*)
= (§(0) = p(0)(E(0) — $(O)I*) — u(|§(0) — ¥ (0)*))
+W(0) — Y(0)u(E©) — Y (0)*)
< (¥(0) — Y (O0)u(IE0) — Y(O)*) < (W(0) — Y (0)u(|p(0) — ¥ (O)),

which implies 72(¢, ¥) < [(0) — ¥ (0)[*u(|p(0) — ¥ (0)[*).
Case (iii): ¢(0) < ¢¥(0) < £(0). We compute

0 < (£(0) — ¢(0)u(IE(0) — F(0)*) — (£(0) — Y (0)u(|&(0) — ¥(0)*)
< (¥(0) — pO)u(|£(0) — P(0)|*) < (Y(0) — p(O)u(|¥(0) — p(0)[?),

which implies 75(¢, ¥) < ¢(0) — ¥ (0)*u(|$(0) — ¥ (0)).

Summarizing the above estimations and noting that su(s) is increasing, we have

(#(0) — ¥(0), b(p) — b(¥)) < Ao ooV K1pu@(k + (|1l ulk + €1 — W
x u(l|¢®) — ¥ O}
+ Ao llosllo ™ floolp(0) — ¥ (0)*u(|(0) — ¥ (0)|)
< Lillg — vll7udle — v

for some L; > 0. Hence, b satisfies Assumptions 2.1 and 2.2 under Assumptions 4.1 and

4.2.

O
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