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Abstract

This paper focuses on a class of stochastic functional differential equations with infinite delay
nd non-Lipschitz coefficients. Under one-sided super-linear growth and non-Lipschitz conditions, this
aper establishes the existence and uniqueness of strong solutions and strong Markov properties of
he segment processes. Under additional assumption on non-degeneracy of the diffusion coefficient,
xponential ergodicity for the segment process is derived by using asymptotic coupling method. In
ddition, the asymptotic log-Harnack inequality is established for the associated Markovian semigroup
y using coupling and change of measures, which implies the asymptotically strong Feller property.
inally, an example is given to demonstrate these results.
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. Introduction and motivation

Let (Ω ,F ,P, (Ft )t≥0) be a complete filtered probability space. For a given r > 0, define

Cr =

{
φ ∈ C((−∞, 0]; Rd ) : sup

−∞<θ≤0
erθ

|φ(θ )| < ∞

}
ith norm ∥φ∥r = sup−∞<θ≤0 erθ

|φ(θ )|, where C((−∞, 0]; Rd ) denotes the family of
ontinuous functions from (−∞, 0] to Rd . Then (Cr , ∥ · ∥r ) is a Polish space (see [16] for
ore details on this space and its properties). In this paper, choosing Cr as the phase space, we

onsider the following stochastic functional differential equations (SFDEs) with infinite delay

d X (t) = b(X t )dt + σ (X t )dW (t), X0 = ξ ∈ Cr , (1.1)

here b : Cr ↦→ Rd and σ : Cr ↦→ Rd×m are continuous functionals, W (t) is an m-dimensional
iener process on (Ω , (Ft )t≥0,F ,P) and X t (τ ) : (−∞, 0] ∋ τ ↦→ X (t + τ ) ∈ Rd denotes

he segment process. To emphasize the dependence of the solution X (t) on the initial data
X0 = ξ ∈ Cr , we also write the solution X (t) and the corresponding segment process X t as
X (t, ξ ) and X t (ξ ), respectively.

For a stochastic differential equation (SDE) to have a unique global solution with a
iven initial value, commonly used assumptions are the linear growth and the local Lipschitz
onditions. Under these conditions, various asymptotic behaviors of SDEs were also well
tudied; see for example, [17,19,28]. However, for many important stochastic models, the local
ipschitz condition is a rather restrictive assumption. For example, the diffusion coefficients

n the Feller branching diffusion and the Cox–Ingersoll–Ross model are only Hölder contin-
ous. Consequently, stochastic models with non-Lipschitz coefficients have received growing
ttention lately; see, for example, [9,13,35,36] and the references therein. In [13], Fang and
hang studied a class of SDEs with non-Lipschitz coefficients and examined the existence and
niqueness of solutions, the dependence with respect to the initial value, and the large deviation
rinciple. While SFDEs provide powerful mathematical tools in modeling and analyzing
omplex memory-dependent dynamical systems, the studies on SFDEs with non-Lipschitz
oefficients are relatively scarce. In this paper, our main aim is to take up these issues for SFDEs
ith infinite delay. It is well known that solutions of stochastic functional or delay differential

quations are non-Markov because of the dependence on the past history. Under non-Lipschitz
ondition, this paper examines the existence and uniqueness of the global solution X (t) for
FDE (1.1), and the strong Markovian property, ergodicity, asymptotic log-Harnack inequality,
nd asymptotic strong Feller property for the segment process X t .

The existence and uniqueness of invariant measures for SFDEs have been investigated in the
iterature under different settings. For example, by using the tightness criterion of probability
easures on a continuous function space (e.g., [18, Theorem 4.10]) and Krylov–Bogoliubov’s

heorem (e.g., [10, Theorem 3.1.1]), Es-Sarhir et al. investigated the existence of an invariant
easure for SFDEs with finite delay under the super-linear drift coefficient in [12]; but the

aper did not establish the uniqueness of an invariant measure. By using an asymptotic coupling
pproach, Hairer et al. [15] obtained uniqueness of the invariant measure for SFDEs with finite
elay. Recently, Butkovsky [6], Butkovsky and Scheutzow [8], and Butkovsky et al. [7] further
eveloped Hairer’s approach and provided sufficient conditions for existence and uniqueness
f invariant measures for SFDEs with finite delay. A crucial assumption in these papers is that
he diffusion coefficient is non-degenerate and its right inverse is uniformly bounded. Although
uch an assumption is removed in [4,5], the coefficients still need to satisfy certain dissipative

onditions.
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It is worth pointing out that the aforementioned papers only consider SFDEs with finite
elay and Lipschitz-type coefficients. Under the dissipative condition, by using the remote start
ethod, Wu et al. [33] obtained the ergodicity for SFDEs with infinite delay and Lipschitz-

ype coefficients. By using an asymptotic coupling approach, Bao et al. [3] investigated
eutral type SFDEs with infinite delay and Lipschitz-type coefficients. Recently, Kulik and
cheutzow [20] established weak ergodic rates for SFDEs with finite delay and Hölder
ontinuous coefficients. Motivated by the aforementioned developments, this paper aims to
xamine exponential ergodicity in the Wasserstein distance for SFDEs with infinite delay and
on-Lipschitz continuous coefficients. In contrast to SFDEs with only finite delay, it is much
ore difficult to establish a support-type assertion (Lemma 3.4) for SFDEs with infinite delay.
his, in turn, leads to much difficulty and subtlety in the construction of a contracting distance-

ike function satisfying the conditions of the weak Harris Theorem (Theorem 4.8 in [15]).
ot only does the support-type assertion for SFDEs with infinite delay depend on the initial

ondition, but also on a reference number ε. Consequently we have to present an explicit
ependence relationship among the parameters involved in the distance-like function and the
ime variable t .

Moreover, this paper examines the asymptotic log-Harnack inequality for SFDEs with
nfinite delay and non-Lipschitz continuous coefficients. The dimension-free Harnack inequality
as first introduced by Wang [29] for diffusion semigroups on Riemannian manifolds. The
eaker version of Harnack inequality (log-Harnack inequality) was established in [25,30] for

lliptic diffusion processes. Further developments in the study of these inequalities can be
ound in [11,27,31,32]. It is worth noting that these two Harnack-type inequalities imply some
egularity properties of the associated Markov semigroups such as strong Feller property. In
ome cases where the stochastic system has no strong Feller property or the above Harnack-type
nequalities are unavailable, the modified/asymptotic log-Harnack inequality was introduced
n [34], which implies the asymptotic strong Feller property. Recently, by using the asymptotic
oupling method, the asymptotic log-Harnack inequality is established by Bao, Wang, and
uan [2] for several stochastic differential systems with infinite delay, including SFDEs with

nfinite delay under Lipschitz-type coefficients. This paper aims to further this line of research
nd derive an asymptotic log-Harnack inequality for SFDEs with infinite delay and non-
ipschitz coefficients. To overcome the difficulties from the non-Lipschitz conditions, more
elicate computations and stronger condition (see Assumption 4.1) are needed.

The rest of the paper is organized as follows. Section 2 establishes the existence and
niqueness of a global strong solution to (1.1) under weak non-Lipschitz conditions, and
roves that the corresponding segment process is a strong Markovian process. Exponential
rgodicity is investigated under the non-Lipschitz conditions in Section 3. Section 4 establishes
he asymptotic log-Harnack inequality, which leads to the asymptotic strong Feller property for
he segment process. Finally, an example is given in Section 5 to demonstrate our results.

To proceed, we introduce some notation and definitions that will be used in later sections.
enote by Rd the d-dimensional Euclidean space and | · | the Euclidean norm. If a, b ∈ Rd ,

a, b⟩ denotes the standard inner product on Rd . If A is a vector or a matrix, its transpose
s denoted by A⊤. For a matrix A, denote its trace norm by ∥A∥ =

√
trace(A⊤ A). C∞(Rd )

enotes the family of infinitely differentiable functions f : Rd
→ R. The indicator function of

he set G is denoted by 1G . Denote by M0 the set of probability measures on (−∞, 0]. For
ny k > 0, let us further define Mk , the subset of M0, by

Mk :=

{
µ ∈ M0 : µ(k)

:=

∫ 0

e−kθµ(dθ) < ∞

}
.

−∞

3
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et (E,B(E), d) be a Polish space and denote by P(E) the family of probability measures on
E,B(E), d). For µ, ν ∈ P(E), C(µ, ν) denotes the collection of all couplings of µ and ν, that
s, probability measures on E × E with marginal distributions µ and ν. For the metric d on
E , the associated L1-Wasserstein distance between two probability measures µ, ν ∈ P(E) is
efined as follows:

Wd (µ, ν) = inf
Π∈C(µ,ν)

∫
E×E

d(ξ, η)Π (dξ, dη).

For probability measures µ, ν ∈ P(E) satisfying µ ≪ ν, the Kullback–Leibler divergence of
µ from ν is defined by

DK L (µ ∥ ν) :=

∫
E

log
dµ
dν

dµ =

∫
E

dµ
dν

log
dµ
dν

dν.

. Existence and uniqueness of solution and Markov property

This section is devoted to the existence and uniqueness of a solution to SFDEs (1.1) and
arkov properties of the segment processes under non-Lipschitz conditions. Our approach can

e described as follows. First, we establish the existence of a weak solution to (2.2) (which
can be regarded as an approximation to (1.1)) and the pathwise uniqueness result. Therefore,
by the Yamada–Watanabe principle [35], Eq. (2.2) has a unique global strong solution. This
implies that (1.1) has a unique maximal local strong solution. Then we show that the maximal
local strong solution to (1.1) is non-explosive under Assumption 2.2. This leads to the desired
assertion that (1.1) has a unique global strong solution. Then we show the strong Markov and
Feller properties of the segment process X t to (1.1).

Existence and uniqueness of solution

To characterize the non-Lipschitz coefficients of (1.1), we introduce the following class of
functions:

U =

{
u |(0,∞)→[1,∞):

∫
0+

ds
su(s)

= ∞, s ↦→ su(s) is increasing and concave
}
.

ne can verify u(s) = log(e ∨ s−1) and u(s) = log
(
(1 + s−1) ∨ e

)
∈ U . Noting that

ims→0 su(s) = 0 for u ∈ U , we set 0u(0) = lims→0 su(s) = 0 without loss of generality.
o ensure the existence and uniqueness of the solution, we make the following assumptions.

ssumption 2.1. b is continuous and bounded on bounded subset of Cr . There exist a positive
constant δ and a function u ∈ U such that for all k > 0 and φ,ψ ∈ Cr with ∥φ∥r ∨ ∥ψ∥r ≤ k
and ∥φ − ψ∥r ≤ δ,

2⟨φ(0) − ψ(0), b(φ) − b(ψ)⟩+ + ∥σ (φ) − σ (ψ)∥2
≤ Lk∥φ − ψ∥

2
r u(∥φ − ψ∥

2
r ), (2.1)

where Lk is a positive constant depending on k and a+ := max{0, a} for any a ∈ R.

Note that the non-Lipschitz condition (2.1) in Assumption 2.1 is only required to hold in a
mall neighborhood of the diagonal line φ = ψ in Cr ×Cr with ∥φ∥r ∨∥ψ∥r ≤ k for all k > 0.
his is in stark contrast to the standard local Lipschitz condition, which significantly relaxes

he conditions used in the literature such as [2,33].
4
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ssumption 2.2. σ is bounded on bounded subset of Cr and there exists a non-decreasing
unction ζ (·) : [0,∞) ↦→ (0,∞) such that

∫
∞

0 1/ζ (x)dx = ∞ and for all φ ∈ Cr ,

2⟨φ(0), b(φ)⟩ + ∥σ (φ)∥2
≤ ζ (∥φ∥

2
r ).

Theorem 2.1. Under Assumption 2.1, (1.1) has a unique maximal local strong solution for
ny initial data X0 = ξ ∈ Cr . Under Assumption 2.2, any maximal local strong solution to
1.1) is non-explosive in any finite time almost surely.

roof. We divide the proof into two steps. The first step shows that under Assumption 2.1,
q. (1.1) has a unique maximal local strong solution. The second step proves that any maximal

ocal solution to Eq. (1.1) is non-explosive in any finite time a.s. under Assumption 2.2.

Step 1: Maximal local strong solution to (1.1). For any m ≥ 1, we can find hm ∈ C∞(R)
with compact support contained in Sm+1 such that hm |Sm = 1, where Sm := {x ∈ R : |x | ≤ m}.
Let

bm(φ) = b(φ)hm(∥φ∥r ), σm(φ) = σ (φ)hm(∥φ∥r ).

Since b and σ are bounded on bounded subset of Cr , bm and σm are uniformly bounded on Cr
and satisfy Assumption 2.1 for any m ≥ 1.

Fix m ≥ 1 arbitrarily. We first consider the following equation

d X (t) = bm(X t )dt + σm(X t )dW (t). (2.2)

Noting that bm and σm are uniformly bounded on Cr , there exist two sequences of uniformly
bounded local Lipschitz continuous (i.e., Lipschitz continuous on bounded subset of Cr )
functions {bn

m}n≥1 and {σ n
m}n≥1 such that Assumption 2.1 holds for bn

m , σ n
m uniformly in n (that

is, the constants do not depend on n). Moreover, bn
m and σ n

m converge to bm and σm as n → ∞

uniformly on each compact subset of Cr . Therefore for each n ∈ N, the following equation

d Xn(t) = bn
m(Xn

t )dt + σ n
m(Xn

t )dW (t), Xn
0 = ξ

has a unique global strong solution. Note that bn
m, σ

n
m are uniformly bounded, that is, there

exists a constant Cm independent of n such that

|bn
m(φ)| ∨ ∥σ n

m(φ)∥ ≤ Cm, ∀φ ∈ Cr .

Hence it is easy to see that for any 0 ≤ s, t ≤ T < ∞, we have

sup
n≥1

E|Xn(t) − Xn(s)|4 ≤ 8 sup
n≥1

E
⏐⏐⏐⏐ ∫ t

s
bn

m(Xn
v )dv

⏐⏐⏐⏐4 + 8 sup
n≥1

E
⏐⏐⏐⏐ ∫ t

s
σ n

m(Xn
v )dW (v)

⏐⏐⏐⏐4
≤ 8C4

m |t − s|4 + 8CPCm |t − s|2

≤ 8C4
m(|t − s|2 + CP )|t − s|2, (2.3)

where C p is the coefficient of the Burkholder–Davis–Gundy inequality. Since T > 0 is
arbitrary, according to [18, Problem 2.4.11], (2.3) implies that {Pn

}n≥1, the family of probability
law of Xn , is tight. Hence there exists a probability measure P∞ on C([0,∞); Rd ) such that
Pn (up to a sub-sequence) converges weakly to P∞. Let Gt = σ {ω(s) : 0 ≤ s ≤ t}, t ≥ 0,
ω ∈ C([0,∞); Rd ). Then the coordinate process

d
Z (t)(ω) := ω(t), t > 0, ω ∈ C([0,∞); R )

5



Y. Wang, F. Wu, G. Yin et al. Stochastic Processes and their Applications 149 (2022) 1–38

i

i

S

i

w
i
C

o
s
(

w
d
a
o

T

A
s

s Gt -adapted. Note that

Xn(t) − Xn(0) −

∫ t

0
bn

m(Xn
s )ds

s a martingale relative to (P,Ft ) with cross-variation given by
m∑

k=1

∫ t

0
{(σ n

m)ik(σ n
m) jk}(Xn

s )ds, 1 ≤ i, j ≤ d.

ince Pn is the distribution of Xn on C([0,∞); Rd ),

Mn(t) := Z (t) − Z (0) −

∫ t

0
bn

m(Zs)ds

s a martingale relative to (Pn,Gt ) with cross-variation

⟨Mn
i ,Mn

j ⟩(t) =

m∑
k=1

∫ t

0
{(σ n

m)ik(σ n
m) jk}(Zs)ds, 1 ≤ i, j ≤ d,

here Zs denotes the corresponding segment process (by choosing Z0 = Xn
0 = ξ ). Since bn

m
s uniformly bounded, and as n → ∞, bn

m converges to bm uniformly on compact subsets of
r , Mn(t) converges to

M(t) := Z (t) − Z (0) −

∫ t

0
bm(Zs)ds

n C([0,∞); Rd ) and the convergence is uniform on compact subsets of Cr . Then for any given
< t and A ∈ Gs , by [18, Problem 2.4.12] and the martingale property of Mn(t) relative to
Pn,Gt )

E∞1A M(t) = lim
n→∞

En1A Mn(t) = lim
n→∞

En1A Mn(s) = E∞1A M(s),

here En denotes the expectation operator with respect to the measure Pn and likewise, E∞

enotes the expectation with respect to P∞. This implies that M(t) is a P∞-martingale. In
ddition, noting that σ n

m is uniformly bounded, and as n → ∞, σ n
m converges to σm uniformly

n each compact subset of Cr , by a similar argument as before, we obtain

⟨Mi ,M j ⟩(t) =

m∑
k=1

∫ t

0
{(σm)ik(σm) jk}(Zs)ds, 1 ≤ i, j ≤ d.

hen it follows from [17, Theorem II.7.1′] that there exists an m-dimensional Brownian motion
W̃ on an extended probability space of (C([0,∞); Rd ),B(C([0,∞); Rd )), {Gt },P∞) such that

M(t) =

∫ t

0
σm(Zs)dW̃ (s).

s a result, Z (t) = Z (0) +
∫ t

0 bm(Zs)ds +
∫ t

0 σm(Zs)dW̃ (s) and hence Eq. (2.2) has a weak
olution.

Now we prove the pathwise uniqueness for Eq. (2.2). Suppose that X and Y satisfy

X (t) = ξ (0) +

∫ t

0
bm(Xs)ds +

∫ t

0
σm(Xs)dW (s), X0 = ξ,

Y (t) = η(0) +

∫ t

0
bm(Ys)ds +

∫ t

0
σm(Ys)dW (s), Y0 = η,
6



Y. Wang, F. Wu, G. Yin et al. Stochastic Processes and their Applications 149 (2022) 1–38

f

A

B
h

N

a

D

or all t ≥ 0. Assume ∥ξ − η∥r < δ0 ≤ δ and define the stopping time

Sδ0 = inf{t ≥ 0 : |X (t) − Y (t)| > δ0}.

For R > ∥ξ∥r ∨ ∥η∥r , define another stopping time

TR = inf{t ≥ 0 : |X (t)| ∨ |Y (t)| > R}.

pplying Itô’s formula and using Assumption 2.1, we have

|X (t ∧ TR ∧ Sδ0 ) − Y (t ∧ TR ∧ Sδ0 )|2

= |ξ (0) − η(0)|2 +

∫ t∧TR∧Sδ0

0
2(X (v) − Y (v))⊤(σm(Xv) − σm(Yv))dW (v)

+

∫ t∧TR∧Sδ0

0

(
2⟨X (v) − Y (v), bm(Xv) − bm(Yv)⟩ + ∥σm(Xv) − σm(Yv)∥2) dv

≤ |ξ (0) − η(0)|2 +

∫ t∧TR∧Sδ0

0
L R∥Xv − Yv∥2

r u(∥Xv − Yv∥2
r )dv

+2
∫ t∧TR∧Sδ0

0
(X (v) − Y (v))⊤(σm(Xv) − σm(Yv))dW (v). (2.4)

y the Burkholder–Davis–Gundy inequality, Assumption 2.1, and the Young inequality, we
ave

2E
[

sup
0≤s≤t

∫ s∧TR∧Sδ0

0
(X (v) − Y (v))⊤(σm(Xv) − σm(Yv))dW (v)

]

≤ 2
√

32E
(∫ t∧TR∧Sδ0

0
|(X (v) − Y (v))⊤(σm(Xv) − σm(Yv))|

2
dv
) 1

2

≤
1
2
E
[

sup
0≤s≤t

|X (s ∧ TR ∧ Sδ0 ) − Y (s ∧ TR ∧ Sδ0 )|2
]

+64L RE
∫ t∧TR∧Sδ0

0
∥Xs − Ys∥

2
r u(∥Xs − Ys∥

2
r )ds. (2.5)

oting that

∥Xs − Ys∥
2
r ≤ ∥ξ − η∥2

r ∨ sup
0≤v≤s

|X (v) − Y (v)|2

nd that the function su(s) is nondecreasing, we get

∥Xs − Ys∥
2
r u(∥Xs − Ys∥

2
r )

≤ ∥ξ − η∥2
r u(∥ξ − η∥2

r ) + sup
0≤v≤s

|X (v) − Y (v)|2u( sup
0≤v≤s

|X (v) − Y (v)|2).

enote ∆(t) = |X (t) − Y (t)|2. Combining this with (2.4) and (2.5), we arrive at

E
[

sup
0≤s≤t

∆(s ∧ TR ∧ Sδ0 )
]

≤ 2∥ξ − η∥2
r + 130L RE

∫ t∧TR∧Sδ0

0
∥ξ − η∥2

r u(∥ξ − η∥2
r )ds

+ 130L RE
∫ t∧TR∧Sδ0

sup ∆(v)u( sup ∆(v))ds

0 0≤v≤s 0≤v≤s

7



Y. Wang, F. Wu, G. Yin et al. Stochastic Processes and their Applications 149 (2022) 1–38

w
D

D

T

I
t
E
=

t

t
t
0
Y

≤ 2∥ξ − η∥2
r + 130L R∥ξ − η∥2

r u(∥ξ − η∥2
r )t

+ 130L RE
∫ t

0
sup

0≤v≤s
∆(v ∧ TR ∧ Sδ0 )u( sup

0≤v≤s
∆(v ∧ TR ∧ Sδ0 ))ds

≤ 2∥ξ − η∥2
r + 130L R∥ξ − η∥2

r u(∥ξ − η∥2
r )t

+ 130L R

∫ t

0
E
[

sup
0≤v≤s

∆(v ∧ TR ∧ Sδ0 )
]

u(E sup
0≤v≤s

∆(v ∧ TR ∧ Sδ0 ))ds,

here we have used the concavity of su(s) and Jensen’s inequality to derive the last inequality.
efine ς (t) = E sup0≤s≤t ∆(s ∧ TR ∧ Sδ0 ). Then we have

0 ≤ ς (t) ≤ 2∥ξ − η∥2
r + 130L R∥ξ − η∥2

r u(∥ξ − η∥2
r )t + 130L R

∫ t

0
ς (s)u(ς (s))ds =: ι(t).

efine G(t) =
∫ t

1
1

su(s) ds for t > 0. Since
∫

0+
1

su(s) ds = ∞, limt↓0 G(t) = −∞. In addition, G
is nondecreasing and satisfies G(t) > −∞ for t > 0. Then we have

G(ς (t)) ≤ G(ι(t)) = G(ι(0)) +

∫ t

0
G ′(ι(s))dι(s)

= G(2∥ξ − η∥2
r ) +

∫ t

0

130L R∥ξ − η∥2
r u(∥ξ − η∥2

r ) + 130L Rς (s)u(ς (s))
ι(s)u(ι(s))

ds

≤ G(2∥ξ − η∥2
r ) + 260t L R, (2.6)

where we used su(s) being nondecreasing to derive the last inequality. It is readily seen that
the right-hand side of (2.6) converges to −∞ as ∥ξ − η∥r → 0, so does the left-hand side.

herefore, we obtain

lim
∥ξ−η∥r →0

ς (t) = lim
∥ξ−η∥r →0

E
[

sup
0≤s≤t

∆(s ∧ TR ∧ Sδ0 )
]

= lim
∥ξ−η∥r →0

E
[

sup
0≤s≤t∧TR∧Sδ0

|X (s) − Y (s)|2
]

= 0. (2.7)

n particular, if ∥ξ − η∥r = 0, we have E[sup0≤s≤t∧TR∧Sδ0
|X (s) − Y (s)|2] = 0. This,

ogether with Fatou’s lemma and the fact that limR→∞ TR = ∞ a.s., further leads to
[sup0≤s≤t∧Sδ0

|X (s) − Y (s)|2] = 0. Note that on the event {Sδ0 ≤ t}, we have |X (Sδ0 ) − Y (Sδ0 )|
δ0. Thus we have δ0P{Sδ0 ≤ t} ≤ E[sup0≤s≤t∧Sδ0

|X (s) − Y (s)|2] = 0 and hence P{Sδ0 ≤

} = 0. Then

E
[

sup
0≤s≤t

|X (s) − Y (s)|2
]

= E
[

sup
0≤s≤t

|X (s) − Y (s)|21{t≤Sδ0 }

]
+ E

[
sup

0≤s≤t
|X (s) − Y (s)|21{t>Sδ0 }

]
≤ E

[
sup

0≤s≤t∧Sδ0

|X (s) − Y (s)|2
]

+ 0 = 0;

he second summand above equals zero because E[sup0≤s≤t |X (s) − Y (s)|2] < ∞ thanks to
he uniform boundedness of bm and σm . Therefore, it follows that P{sup0≤s≤t |X (s) − Y (s)| =

} = 1 and hence the pathwise uniqueness for (2.2) holds. Consequently, according to the

amada–Watanabe principle, (2.2) has a unique global strong solution.

8
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Finally, by a standard argument (e.g., [33, Lemma 3.1]), (1.1) has a unique maximal local
trong solution.

tep 2: Non-explosion. Let X (t) be the maximal local strong solution to (1.1) and τ be its
xplosion time or life time, that is, lim supt→τ |X (t)| = ∞. For any t ∈ [0, τ ), by Itô’s formula,
sing Assumption 2.2 gives

|X (t)|2 = |X (0)|2 +

∫ t

0
2⟨X (s), b(Xs)⟩ + ∥σ (Xs)∥2ds + 2

∫ t

0
X⊤(s)σ (Xs)dW (s)

≤ |ξ (0)|2 +

∫ t

0
ζ (∥Xs∥

2
r )ds + N (t),

where {N (t)}t∈[0,τ ) is a continuous local martingale with N (0) = 0. Note that ∥Xs∥
2
r ≤

∥ξ∥2
r + sup0≤v≤s |X (v)|2 and ζ (·) is non-decreasing. We see that

∥ξ∥2
r + |X (t)|2 ≤ 2∥ξ∥r +

∫ t

0
ζ (∥ξ∥2

r + sup
0≤v≤s

|X (v)|2)ds + N (t).

Then by the stochastic Gronwall lemma (see, e.g., [23, Lemma 5.1]), we have τ = ∞ almost
surely. Hence the maximal local strong solution X (t) is actually non-explosive in any finite
time under Assumption 2.2.

Combining the results of Steps 1 and 2 completes the proof of this theorem. □

Remark 2.2. We now give a specific construction of sequences {bn
m}n≥1 and {σ n

m}n≥1. Take a
sequence of non-negative, twice continuously differentiable functions {ρn}n≥1 such that

supp(ρn) ⊂

{
x ∈ Rn

: |x | ≤
1
n

}
and

∫
Rn
ρn(x)dx = 1.

ote that Cr is isomorphic to C([−1, 0]; Rd ) (see [33]). Then Cr has the Schauder basis
ei }

∞

i=1 ∈ Cr since C([−1, 0]; Rd ) has the corresponding basis (see, e.g., [22]). Let Qn denote
he projection mapping from Cr to {e1, e2, . . . , en}, that is, Qn(

∑
∞

i=1 xi ei ) =
∑n

i=1 xi ei . Q̄n(φ)
enotes the coordinate coefficients of the projection of φ ∈ Cr on {e1, e2, . . . , en}, that is,

Qn(φ) = Q̄n(φ)⊤(e1, e2, . . . , en)⊤. Define

bn
m(φ) =

∫
Rn
ρn
(
x − Q̄n(φ)

)
bm

(
n∑

i=1

xi ei

)
dx,

σ n
m(φ) =

∫
Rn
ρn
(
x − Q̄n(φ)

)
σm

(
n∑

i=1

xi ei

)
dx .

It is readily verified that {bn
m} and {σ n

m} defined above satisfy the desired property.

Remark 2.3. By using a similar approach as in [33, Theorem 4.1], it is easy to verify that the
segment process X t is continuous and Ft -adapted.

Markov property

Proposition 2.4. Let Assumptions 2.1 and 2.2 hold. Then the segment process X = (X t )t≥0
to (1.1) is a strong Markov process.
9
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roof. By using the standard technique (see, e.g., [8, Proposition 4.1]), it is easy to see from
he strong uniqueness or pathwise uniqueness that the segment process X t to (1.1) is Markov.
n addition, since X t has continuous trajectories, the strong Markov property follows from the
eller property (see, e.g., [24, Theorem 3.3.1]).

For R > ∥ξ∥r ∨ ∥η∥r , define the stopping times

τR(ξ ) = inf{t ≥ 0 : ∥X t (ξ )∥r > R}, and τR(η) = inf{t ≥ 0 : ∥X t (η)∥r > R}.

n fact, τR(ξ ) = inf{t ≥ 0 : |X (t; ξ )| > R} for R > ∥ξ∥r . Then the non-explosion implies that
or any ε > 0, η with ∥ξ − η∥r < δ0, there exists an R > 0 large enough such that

P{τR(ξ ) ∧ τR(η) < t} <
ε

4
, (2.8)

here the constant R does not depend on η. In addition,

δ2
0P{S̄δ0 ≤ t ∧ τR(ξ ) ∧ τR(η)}

≤ E|X (t ∧ τR(ξ ) ∧ τR(η) ∧ S̄δ0; ξ ) − X (t ∧ τR(ξ ) ∧ τR(η) ∧ S̄δ0; η)|
2
,

here S̄δ0 := inf{t ≥ 0 : |X (t; ξ ) − X (t; η)| ≥ δ0} = inf{t ≥ 0 : ∥X t (ξ ) − X t (η)∥r ≥ δ0}. Then,
or any ε > 0,

P{∥X t (ξ ) − X t (η)∥r > ε}

= P{∥X t (ξ ) − X t (η)∥r > ε, τR(ξ ) ∧ τR(η) < t}

+P{∥X t (ξ ) − X t (η)∥r > ε, τR(ξ ) ∧ τR(η) ≥ t, S̄δ0 > t}

+P{∥X t (ξ ) − X t (η)∥r > ε, τR(ξ ) ∧ τR(η) ≥ t, S̄δ0 ≤ t}

≤ P{τR(ξ ) ∧ τR(η) < t} + P{∥X t∧τR (ξ )∧τR (η)∧S̄δ0
(ξ ) − X t∧τR (ξ )∧τR (η)∧S̄δ0

(η)∥r > ε}

+P{S̄δ0 ≤ t ∧ τR(ξ ) ∧ τR(η)}

≤ P{τR(ξ ) ∧ τR(η) < t} +
1
ε2 E∥X t∧τR (ξ )∧τR (η)∧S̄δ0

(ξ ) − X t∧τR (ξ )∧τR (η)∧S̄δ0
(η)∥2

r

+
1
δ2

0
E|X (ξ, t ∧ τR(ξ ) ∧ τR(η) ∧ S̄δ0 ) − X (η, t ∧ τR(ξ ) ∧ τR(η) ∧ S̄δ0 )|

2
. (2.9)

Similar to (2.7), we have

lim
∥η−ξ∥r →0

E
[

sup
0≤s≤t∧τR (ξ )∧τR (η)∧S̄δ0

|X (s; ξ ) − X (s; η)|2
]

= 0 (2.10)

ecall that ∥X t −Yt∥
2
r ≤ ∥ξ −η∥2

r + sup0≤s≤t |X (s) − Y (s)|2. It follows from (2.8), (2.9), and
2.10) that there exists a positive constant δ̃0 < δ0 such that for ∥ξ − η∥r ≤ δ̃0, we have

P{∥X t (ξ ) − X t (η)∥r > ε} ≤ ε. (2.11)

ince ε > 0 is arbitrary, ∥X t (ξ )− X t (η)∥r converges to 0 in probability as ∥ξ−η∥r → 0. Thus
X t (ξ ) converges to X t (η) in distribution as ξ → η in the norm ∥ · ∥r . This implies further that
or any bounded continuous function F : Cr → R, E[F(X t (ξ ))] converges to E[F(X t (η))] as
→ η in the norm ∥ · ∥r . Therefore, X t is a Feller process. The proof is completed. □

. Ergodicity

To prove the ergodicity we need to modify Assumptions 2.1 and 2.2 as follows:
10
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ssumption 3.1. b is continuous and bounded on bounded subset of Cr and satisfies the
ne-sided linear growth condition, that is, there exists a constant L > 0 such that for any
∈ Cr ,

⟨φ(0), b(φ)⟩ ≤ L(1 + ∥φ∥
2
r ).

nd there exist a function u ∈ U and positive constants K , δ and β ∈ (0, 1) such that for all
, ψ ∈ Cr with ∥φ − ψ∥r ≤ δ,

2⟨φ(0) − ψ(0), b(φ) − b(ψ)⟩+ + ∥σ (φ) − σ (ψ)∥2

≤ K
[
(∥φ − ψ∥

2
r u(∥φ − ψ∥

2
r )) ∧ ∥φ − ψ∥

1+β
r

]
. (3.1)

From Assumption 3.1, the diffusion coefficient σ satisfies the following linear growth
ondition: there exists a positive constant K̄ such that for any φ ∈ Cr

∥σ (φ)∥ ≤ K̄ (1 + ∥φ∥r ).

In addition, to construct asymptotic couplings by change of measures, we need to impose the
following condition on the diffusion coefficient σ .

ssumption 3.2. For any φ ∈ Cr , the matrix σ (φ) admits a right inverse σ−1(φ) and

∥σ−1
∥∞ := sup

φ∈Cr

∥σ−1(φ)∥ < ∞.

In this paper, we consider the following function on Cr × Cr : for ξ, η ∈ Cr

dN ,γ (ξ, η) = (N∥ξ − η∥γr ) ∧ 1, N ≥ 1, γ ∈ (0, β).

learly, each dN ,γ is a bounded metric on Cr and is equivalent to the usual distance ∥ · − · ∥r

n the sense of topology. Therefore, its corresponding L1-Wasserstein distance is a metric on
(Cr ), and convergence in this metric is equivalent to weak convergence in P(Cr ), where P(Cr )

enotes the family of probability measures on Cr . Denote

dγ (ξ, η) := d1,γ (ξ, η) = ∥ξ − η∥γr ∧ 1, ξ, η ∈ Cr .

n addition, it follows from Proposition 2.4 that the segment process (X t )t≥0 of Eq. (1.1) is a
trong Markov process on (Cr ,B(Cr)) with transition functions Pt (ξ, ·) := P(X t (ξ ) ∈ ·). The
ssociated Markovian semigroup operators are given by

Pt f (ξ ) = E f (X t (ξ )) =

∫
Cr

f (η)Pt (ξ, dη), t ≥ 0, f ∈ Bb(Cr ), ξ ∈ Cr .

nd

(Ptµ)(A) =

∫
Cr

Pt (ξ, A)µ(dξ ), µ ∈ P(Cr ), A ∈ B(Cr ).

heorem 3.1. Let Assumptions 3.1 and 3.2 hold. Assume also that there exist a continuous
unctional V : Cr → [0,∞) with lim∥ξ∥r →∞ V (ξ ) = ∞ and constants CV , θ > 0 such that

Pt V (ξ ) :=

∫
V (η)Pt (ξ, dη) ≤ CV e−θ t V (ξ ) + CV (3.2)
Cr

11
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olds for all ξ ∈ Cr and t ≥ 0. Then Pt has a unique invariant probability measure π , and for
any γ ∈ (0, β), there exist constants C, ρ > 0 such that

WdV
γ

(Pt
(
ξ, ·), π

)
≤ Ce−ρt

√
1 + V (ξ ), t ≥ 0, (3.3)

where dV
γ (ξ, η) :=

√
dγ (ξ, η)(1 + V (ξ ) + V (η)).

We first present two crucial lemmas before proving the above theorem.

Lemma 3.2. Let Assumptions 3.1 and 3.2 hold. Then for any h > 0 and γ ∈ (0, β), there
exists an N (h, γ ) > 0 such that for any N ≥ N (h, γ ) and all ξ, η ∈ Cr with dN ,γ (ξ, η) < 1,

WdN ,γ

(
Ph(ξ, ·), Ph(η, ·)

)
≤ θ1dN ,γ (ξ, η) (3.4)

olds for some θ1 ∈ (0, 1). Moreover, there exists a constant θh > 0 such that for all ξ, η ∈ Cr

WdN ,γ

(
Pt (ξ, ·), Pt (η, ·)

)
≤ θhdN ,γ (ξ, η), ∀t ∈ [0, h]. (3.5)

roof. We adopt the idea in [20] to prove this lemma. The proof is divided into four steps.
n Step 1, we construct an asymptotic coupling and then give the deviation bound between the
symptotic coupling processes X, Y in Step 2. An application of the triangle inequality gives
he desired result (3.4) in Step 3. Finally the estimation (3.5) is established in Step 4.

Fix ξ, η ∈ Cr arbitrarily and denote υ = ∥ξ − η∥r . Assume without loss of generality that
> 0. Consider the following equation

dY (t) = b(Yt )dt + σ (Yt )dW (t) + υγ−1(X (t) − Y (t))1{t≤τ }dt, Y0 = η, (3.6)

here X (t) denotes the solution to (1.1) with X0 = ξ and τ = inf{t ≥ 0 : |X (t) − Y (t)| ≥ 2υ}.
learly, Theorem 2.1 implies that under the assumptions of Lemma 3.2 the system of coupling
quations involving (1.1) and (3.6) has a unique strong solution (X, Y ).

Step 1. Fix some arbitrary h > 0. We first prove that there exist positive constants θ2 ∈ (0, 1),
1, κ2, and υ̂ small enough such that for ∥ξ − η∥r < υ̂,

P
{
∥Xh − Yh∥r ≥ θ2∥ξ − η∥r

}
≤ C1(h)∥ξ − η∥κ1

r exp
{
−C2(h)∥ξ − η∥−κ2

r

}
, (3.7)

here C1(h) and C2(h) denote some constants depending on h. Applying Itô’s formula yields
hat

|X (t) − Y (t)|2 = |ξ (0) − η(0)|2 +

∫ t

0
A(s)ds +

∫ t

0
Σ (s)dW (s),

here

A(s) = 2⟨X (s) − Y (s), b(Xs) − b(Ys)⟩ + ∥σ (Xs) − σ (Ys)∥2
−2υγ−1

|X (s) − Y (s)|21{s≤τ },

nd

Σ (s) = 2(X (s) − Y (s))⊤(σ (Xs) − σ (Ys)).

ithout loss of generality, we suppose δ ≤ 1 and 2υ ≤ δ. Observing that ∥Xs − Ys∥r ≤ 2υ
or s ≤ τ , by Assumption 3.1, we have

A(s) ≤ −2υγ−1
|X (s) − Y (s)|2 +4Kυ1+β and |Σ (s)| ≤ 8

√
Kυ

3+β
2 for all s ≤ τ. (3.8)
12
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et λ = 2υγ−1, A = 4Kυ1+β and B = 64Kυ3+β . Then for any δ0 ∈ (0, 1/2), we have

Aλ−1
= 2Kυ1+βυ1−γ

= 2Kυ2+β−γ , B1/2λ−δ0 = 23−δ0
√

Kυ2+
β−1

2 +δ0(1−γ ).

ince γ < β, we have β−1
2 +

1
2 (1 − γ ) =

β−γ

2 > 0. Recall 0 < υ < 1. We can fix δ0 < 1/2
ufficiently close to 1/2 and then choose κ > 0 small enough such that

Aλ−1
≤ 2Kυ2+κ , B1/2λ−δ0 ≤ 8

√
Kυ2+2κ .

hen there exists a υ0 ∈ (0, 1) such that for any υ ∈ (0, υ0),

υ−κ
≥ (1 + 8 log 2)1/2(Γ (δ0) + sup

x>0
xδ0e−x )

(
h1−2δ0 + υκ (Γ (δ0) + sup

x>0
xδ0e−x )

)
,

here Γ (·) is the Gamma function. Then applying Lemma A.2 in the Appendix gives that for
ll υ ∈ (0, υ0),

P(H ) ≤ c1υ
2κδ0

(
h

5−2δ0
2 + 1

)
exp

{
−c2υ

−2κ (h
1−2δ0

2 + 1)−2
}
, (3.9)

where c1, c2 > 0 depend only on δ0, and

H :=

{
sup

0≤t≤τ∧h

{
|X (t) − Y (t)|2 − e−2υγ−1t

|ξ (0) − η(0)|2
}

≥ (2K + 8
√

K )υ2+κ

}
.

ecall that κ > 0 and the definition of the stopping time τ . Then on the set {τ < ∞}, the
inequality

|X (τ ) − Y (τ )|2 − e−2υγ−1τ
|ξ (0) − η(0)|2 ≥ (2K + 8

√
K )υ2+κ

mplies

4υ2
− e−2υγ−1τ

|ξ (0) − η(0)|2 ≥ (2K + 8
√

K )υ2+κ .

urthermore, we can choose a constant υ1 small enough such that for any υ ∈ (0, υ1)

4υ2
− e−2υγ−1τ

|ξ (0) − η(0)|2 ≥ 4υ2
− e−2υγ−1τυ2

≥ 3υ2
≥ (2K + 8

√
K )υ2+κ . (3.10)

his implies that

{τ < h} ⊂ H, for all υ ∈ (0, υ1). (3.11)

herefore, it follows from (3.9) and (3.11) that for υ ∈ (0, υ0 ∧ υ1),

P
{

sup
0≤t≤h

{
|X (t) − Y (t)|2 − e−2υγ−1t

|ξ (0) − η(0)|2
}

≥ (2K + 8
√

K )υ2+κ

}
= P

{
sup

0≤t≤h

{
|X (t) − Y (t)|2 − e−2υγ−1t

|ξ (0) − η(0)|2
}

≥ (2K + 8
√

K )υ2+κ , τ < h
}

+P
{

sup
0≤t≤h

{
|X (t) − Y (t)|2 − e−2υγ−1t

|ξ (0) − η(0)|2
}

≥ (2K + 8
√

K )υ2+κ , τ ≥ h
}

≤ P
{
τ < h

}
+ P(H )

≤ 2P(H )

≤ 2c1υ
2κδ0

(
h

5−2δ0
2 + 1

)
exp

{
−c2υ

−2κ (h
1−2δ0

2 + 1)−2
}
. (3.12)

n the other hand, the inequality

sup
{
|X (t) − Y (t)|2 − e−2υγ−1t

|ξ (0) − η(0)|2
}
< (2K + 8

√
K )υ2+κ (3.13)
0≤t≤h

13
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mplies that

sup
0≤t≤h

e2r t
|X (t) − Y (t)|2 ≤ sup

0≤t≤h
e2(r−υγ−1)t

∥ξ − η∥2
r + e2rh(2K + 8

√
K )υ2+κ .

These, together with the definition of norm ∥ · ∥r , yield that

∥Xh − Yh∥
2
r ≤ e−2rh

∥ξ − η∥2
r ∨ e−2rh sup

0≤t≤h
e2r t

|X (t) − Y (t)|2

≤ e−2rh
∥ξ − η∥2

r ∨

[
e−2rh sup

0≤t≤h
e2(r−υγ−1)t

∥ξ − η∥2
r + (2K + 8

√
K )υ2+κ

]
=

[
e−2rh

∨

(
e−2rh sup

0≤t≤h
e2(r−υγ−1)t

+ (2K + 8
√

K )υκ
)]

∥ξ − η∥2
r .

Noting that h > 0, γ ∈ (0, 1), and κ > 0, there exist constants υ2 > 0 and θ2 < 1 such that
for all υ ∈ (0, υ2),

r < υγ−1 and e−2rh
+ (2K + 8

√
K )υκ < θ2

2 < 1. (3.14)

herefore, inequality (3.13) implies

∥Xh − Yh∥r < θ2∥ξ − η∥r , ∀ υ ∈ (0, υ2).

hat is, for any v ∈ (0, v2),{
sup

0≤t≤h

{
|X (t) − Y (t)|2 − e−2υγ−1t

|ξ (0) − η(0)|2
}
< (2K + 8

√
K )υ2+κ

}
⊂

{
∥Xh − Yh∥r < θ2∥ξ − η∥r

}
.

Take υ3 = min{υ0, υ1, υ2}. Then for any υ ∈ (0, υ3), we have

P
{
∥Xh − Yh∥r ≥ θ2∥ξ − η∥r

}
≤ P

{
sup

0≤t≤h

{
|X (t) − Y (t)|2 − e−2υγ−1t

|ξ (0) − η(0)|2
}

≥ (2K + 8
√

K )υ2+κ

}
≤ 2c1υ

2κδ0
(

h
5−2δ0

2 + 1
)

exp
{
−c2υ

−2κ (h
1−2δ0

2 + 1)−2
}
,

= 2c1∥ξ − η∥2κδ0
r

(
h

5−2δ0
2 + 1

)
exp

{
−c2∥ξ − η∥−2κ

r (h
1−2δ0

2 + 1)−2
}
, (3.15)

hich yields (3.7) as desired.
Step 2. Now we estimate the change of the law of the segment process caused by the

dditional drift term, that is, we show that

∥Law(Yh) − Ph(η, ·)∥T V ≤ C3(h)∥ξ − η∥γr ,

where C3(h) is a constant depending on h. Let

J (t) = σ−1(Yt )υγ−1(X (t) − Y (t))1{t≤τ }, W̃ (t) = W (t) +

∫ t

0
J (s)ds,

and

R(t) = exp
{
−

∫ t

0
J (s)dW (s) −

1
2

∫ t

0
|J (s)|2ds

}
.

By Assumption 3.2, we obtain

|J (t)| ≤ 2∥σ−1
∥ υγ = 2∥σ−1

∥ ∥ξ − η∥γ , ∀t ≥ 0. (3.16)
∞ ∞ r

14
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hen the Girsanov theorem reveals that {W̃ (t) : 0 ≤ t ≤ h} is a Wiener process under the
robability measure Q(h) with dQ(h)

= R(h)dP. Furthermore, we can rewrite (3.6) as:

dY (t) = b(Yt )dt + σ (Yt )dW̃ (t), Y0 = η.

herefore, on the new probability space (Ω ,F ,Q(h)), Y solves (1.1) with W replaced by W̃ up
o the time h. The weak uniqueness of (1.1) implies the law of Yh under Q(h) equals Ph(η, ·).
ombining with (3.16), this means that

∥Law(Yh) − Ph(η, ·)∥TV ≤ ∥P − Q(h)
∥TV

≤

√
1
2

∫
Ω

log
(

dP
dQ(h)

)
dP

≤

√
−

1
2
E log R(h)

≤
√

h∥σ−1
∥∞∥ξ − η∥γr , (3.17)

here we used the Pinsker inequality (see, e.g., [7, Lemma A.1. (A.1)]) in the second inequality.
Step 3. We now estimate the bound of WdN ,γ (Ph(ξ, ·), Ph(η, ·)). Noting that dN ,γ ≤ 1, by

sing the triangle inequality we have

WdN ,γ (Ph(ξ, ·), Ph(η, ·)) ≤ WdN ,γ (Ph(ξ, ·), Law(Yh(η))) + WdN ,γ (Law(Yh(η)), Ph(η, ·))

≤ EdN ,γ (Xh(ξ ), Yh(η)) + ∥Law(Yh(η)) − Ph(η, ·)∥T V

≤ EdN ,γ (Xh(ξ ), Yh(η))1{∥Xh (ξ )−Yh (η)∥r<θ2∥ξ−η∥r }

+ P{∥Xh(ξ ) − Yh(η)∥r ≥ θ2∥ξ − η∥r }

+ ∥Law(Yh(η)) − Ph(η, ·)∥T V . (3.18)

hen dN ,γ (ξ, η) < 1, we have

EdN ,γ (Xh(ξ ), Yh(η))1{∥Xh (ξ )−Yh (η)∥r<θ2∥ξ−η∥r } < Nθγ2 ∥ξ − η∥γr = θ
γ

2 dN ,γ (ξ, η). (3.19)

herefore, substituting (3.15), (3.17), and (3.19) into (3.18) yields

WdN ,γ

(
Ph(ξ, ·), Ph(η, ·)

)
≤ θ

γ

2 dN ,γ (ξ, η) + 2c1∥ξ − η∥2κδ0
r

(
h

5−2δ0
2 + 1

)
exp

{
−c2∥ξ − η∥−2κ

r (h
1−2δ0

2 + 1)−2
}

+
√

h∥σ−1
∥∞∥ξ − η∥γr

≤

⎛⎜⎝θγ2 +

2c1

(
h

5−2δ0
2 + 1

)
exp

{
−c2∥ξ − η∥−2κ

r (h
1−2δ0

2 + 1)−2
}

N∥ξ − η∥
γ−2κδ0
r

⎞⎟⎠ dN ,γ (ξ, η)

+

√
h∥σ−1

∥∞

N
dN ,γ (ξ, η) (3.20)

rovided that dN ,γ (ξ, η) < 1. Since limυ→0 2c1υ
−γ+2κδ0e−c2υ

−2κ (h
1−2δ0

2 +1)−2
= 0, we have

Ĉ := sup 2c1υ
−γ+2κδ0e−c2υ

−2κ (h
1−2δ0

2 +1)−2
< ∞.
υ∈(0,1)

15
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S
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ince θ2 ∈ (0, 1) and γ > 0, we can further choose an N1 such that

θ
γ

2 +

Ĉ
(

h
5−2δ0

2 + 1
)

+
√

h∥σ−1
∥∞

N1
< 1

s satisfied. Taking N2 = υ
−γ

3 , then

dN2,γ (ξ, η) < 1 ⇔ N2∥ξ − η∥γr < 1 ⇒ ∥ξ − η∥r < υ3.

Then it follows from (3.20) that the desired assertion holds for N (h, γ ) := max{N1, N2} and

θ1 := θ
γ

2 +

Ĉ
(

h
5−2δ0

2 + 1
)

+
√

h∥σ−1
∥∞

N (h, γ )
< 1. (3.21)

hus, proved (3.4).
Step 4. We now prove (3.5). Noting that WdN ,γ (·, ·) ≤ 1 which follows from the fact

N ,γ (·, ·) ≤ 1, it suffices to prove (3.5) for ξ, η ∈ Cr with dN ,γ (ξ, η) < 1. Indeed, when
dN ,γ (ξ, η) = 1, WdN ,γ (·, ·) ≤ 1 = dN ,γ (ξ, η); that is, (3.5) holds for θh = 1. For any t ∈ [0, h],
using inequality (3.12) and the subsequent computations (with h replaced by t in appropriate
places), we can find a θ̂2 > 0 such that for all ξ, η ∈ Cr with dN ,γ (ξ, η) < 1,

sup
0≤t≤h

P
{
∥X t − Yt∥r ≥ θ̂2∥ξ − η∥r

}
≤ 2c1∥ξ − η∥2κδ0

r

(
h

5−2δ0
2 + 1

)
exp

{
−c2∥ξ − η∥−2κ

r (h
1−2δ0

2 + 1)−2
}
,

and

sup
0≤t≤h

∥Law(Yt ) − Pt (η, ·)∥TV ≤
√

h∥σ−1
∥∞∥ξ − η∥γr .

Then (3.5) follows from similar calculations as those in (3.18)–(3.20). This proof is
completed. □

Remark 3.3. For any given h and γ , by (3.10) and (3.14), for the above δ0 and κ ,
there exists a constant N̂ (h, γ ) large enough such that we can find a θ2 < 1 and for any
υ := ∥ξ − η∥r < N̂ (h, γ )−1/γ ,

e−2rh
+ (2K + 8

√
K )υκ < θ2

2 < 1,

υ−κ
≥ (1 + 8 log 2)1/2(Γ (δ0) + sup

x>0
xδ0e−x )

(
h1−2δ0 + υκ (Γ (δ0) + sup

x>0
xδ0e−x )

)
,

nd

θ
γ

2 +

Ĉ
(

h
5−2δ0

2 + 1
)

+
√

h∥σ−1
∥∞

N̂ (h, γ )
< 1.

ince for any given N ≥ N̂ (h, γ ), dN ,γ (ξ, η) < 1 implies υ := ∥ξ − η∥r < N̂ (h, γ )−1/γ and

θ1 := θ
γ

2 +

Ĉ
(

h
5−2δ0

2 + 1
)

+
√

h∥σ−1
∥∞

N̂ (h, γ )
< 1,

emma 3.2 holds for the above N̂ (h, γ ) and θ .
1
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In addition, suppose there exist a constant Ñ and a function f such that

f (Ñ ) ≥
2
r
,

1
Ñ

Ĉ
(

f (Ñ )
5−2δ0

2 + 1
)

+
1
Ñ

√
f (Ñ )∥σ−1

∥∞ < 1 −

(1
2

)γ
,

nd for υ < Ñ−1/γ , (2K + 8
√

K )υκ < 1/8 and

υ−κ
≥ (1 + 8 log 2)1/2

(
Γ (δ0) + sup

x>0
xδ0e−x

)[
f (Ñ )1−2δ0 + υκ

(
Γ (δ0) + sup

x>0
xδ0e−x

)]
.

hen in light of (3.14), we can choose θ2 < 1/2 so that

θ̃1 :=
1
Ñ

Ĉ
(

f (Ñ )
5−2δ0

2 + 1
)

+
1
Ñ

√
f (Ñ )∥σ−1

∥∞ + θ
γ

2 < 1.

hen it follows from the proof of Lemma 3.2, for any ξ, η ∈ Cr satisfying dÑ ,γ (ξ, η) < 1,

WdÑ ,γ

(
P̃h(ξ, ·), P̃h(η, ·)

)
≤ θ̃1dÑ ,γ (ξ, η),

where h̃ = f (Ñ ).

Lemma 3.4. Under the conditions of Lemma 3.2, for any R, ε > 0, there exists a constant
R,ε > 0 satisfying e−r tR,ε R < ε such that for any t ≥ tR,ε

inf
ξ∈BR

P
{
∥X t (ξ )∥r ≤ ε

}
> 0,

where BR := {ξ ∈ Cr : ∥ξ∥r ≤ R}.

Proof. Fix R, ε > 0 arbitrarily. Let ∥ξ∥r < R. Consider the following equation

dY (t) = b(Yt )dt + σ (Yt )dW (t) − λ0Y (t)dt, Y0 = ξ, (3.22)

where λ0 is some positive constant to be determined later. Then for any t, κ̃ > 0 and
0 ∈ (0, 1/2), by [20, Lemma B.1], we obtain

P

{
sup

0≤s≤t∧τ̄n

{
|Y (s)|2 − e−2λ0s

|ξ (0)|2
}

≥
L(1 + n2)

2λ0
+

2
√

L(1 + n2)κ̃

λ
δ0
0

}
≤ c3e−c4κ̃

2
,

(3.23)

here τ̄n := inf{s ≥ 0 : ∥Ys∥r > n}, n > ∥ξ∥r , and the constants c3 and c4 > 0 depend only
n t and δ0. Note that the inequality

sup
0≤s≤t

{
|Y (s)|2 − e−2λ0s

|ξ (0)|2
}
<

L(1 + n2)
2λ0

+
2
√

L(1 + n2)κ̃

λ
δ0
0

implies

e−2r t sup
0≤s≤t

e2rs
|Y (s)|2 ≤ e−2r t sup

0≤s≤t
e2(r−λ0)s R2

+
L(1 + n2)

2λ0
+

2
√

L(1 + n2)κ̃

λ
δ0
0

,

hich further means that

∥Yt (ξ )∥2
r ≤ e−2r t

∥ξ∥2
r ∨

(
e−2r t sup e2(r−λ0)s R2

+
L(1 + n2)

2λ
+

2
√

L(1 + n2)κ̃
δ0

)
.

0≤s≤t 0 λ0

17
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ummarizing the above observations, we have{
sup

0≤s≤t

{
|Y (s)|2 − e−2λ0s

|ξ (0)|2
}
<

L(1 + n2
0)

2λ0
+

2
√

L(1 + n2
0)κ̃

λ
δ0
0

}

⊂

{
∥Yt (ξ )∥2

r ≤ e−2r t
∥ξ∥2

r

∨

(
e−2r t sup

0≤s≤t
e2(r−λ0)s R2

+
L(1 + n2)

2λ0
+

2
√

L(1 + n2)κ̃

λ
δ0
0

)}
. (3.24)

y Theorem 2.1, Eq. (3.22) has a unique global strong solution. Therefore for any fixed
≥ tR,ε, with tR,ε > 0 satisfying e−r tR,ε R < ε, there exists a constant n0 large enough such

hat

P{τ̄n0 < t} ≤
1
4
. (3.25)

ince e−2r tR,ε R2 < ε2 and the constants c3 and c4 depend only on t and δ0, we can choose
˜ > 0 such that c3e−c4κ̃

2
≤ 1/4. Furthermore, there exists a λ̂0 > r such that

e−2r tR,ε sup
0≤s≤tR,ε

e2(r−λ̂0)s R2
+

L(1 + n2
0)

2λ̂0
+

2
√

L(1 + n2
0)κ̃

λ̂
δ0
0

< ε2.

ote that e−2r tR,ε R2 < ε2. Hence, by (3.24) with λ0 = λ̂0, for the above t ≥ tR,ε fixed, we
ave {

sup
0≤s≤t

{
|Y (s)|2 − e−2λ̂0s

|ξ (0)|2
}
<

L(1 + n2
0)

2λ̂0
+

2
√

L(1 + n2
0)κ̃

λ̂
δ0
0

}

⊂

{
∥Yt (ξ )∥2

r ≤ e−2r t
∥ξ∥2

r ∨

(
e−2r t sup

0≤s≤t
e2(r−λ̂0)s R2

+
L(1 + n2)

2λ̂0
+

2
√

L(1 + n2)κ̃

λ̂
δ0
0

)}
⊂
{
∥Yt (ξ )∥r ≤ ε

}
.

Therefore, we can use (3.23) and (3.25) to obtain

P
{
∥Yt (ξ )∥r ≤ ε

}
≥ P

{
sup

0≤s≤t

{
|Y (s)|2 − e−2λ̂0s

|ξ (0)|2
}
<

L(1 + n2
0)

2λ̂0
+

2
√

L(1 + n2
0)κ̃

λ̂
δ0
0

}

= 1 − P

{
sup

0≤s≤t

{
|Y (s)|2 − e−2λ̂0s

|ξ (0)|2
}

≥
L(1 + n2

0)

2λ̂0
+

2
√

L(1 + n2
0)κ̃

λ̂
δ0
0

, τ̄n0 ≥ t

}

− P

{
sup

0≤s≤t

{
|Y (s)|2 − e−2λ̂0s

|ξ (0)|2
}

≥
L(1 + n2

0)

2λ̂0
+

2
√

L(1 + n2
0)κ̃

λ̂
δ0
0

, τ̄n0 < t

}

≥ 1 − P

{
sup

0≤s≤t∧τ̄n0

{
|Y (s)|2 − e−2λ̂0s

|ξ (0)|2
}

≥
L(1 + n2

0)

2λ̂0
+

2
√

L(1 + n2
0)κ̃

λ̂
δ0
0

}
− P

{
τ̄n0 < t

}
≥ 1 −

1
4

−
1
4

=
1
2
. (3.26)
18
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ecall that b and σ satisfy the one-sided linear growth and linear growth condition, respectively.
herefore a standard argument yields that for the t given above, we have

Ĉ1 := sup
ξ∈BR

E sup
s∈[0,t]

|Y (s)|2 < ∞. (3.27)

et

R̄(s) := exp
{∫ s

0
⟨λ̂0σ

−1(Ys)Y (s), dW (s)⟩ −
1
2

∫ s

0
λ̂2

0|σ
−1(Ys)Y (s)|

2
ds
}
, s ≥ 0.

ext we show that

sup
0≤s≤t

ER̄(s) log R̄(s) < ∞. (3.28)

o this end, we define a sequence of stopping time τn := inf{s ≥ 0 : |Y (s)| > n} for n ∈ N.
hen R̄(· ∧ τn) is a nonnegative martingale for each n ∈ N. Let Qn(A) := E[R̄(t ∧ τn)1A]

or A ∈ Ft and n ∈ N, which is a consistent family of probability measures. In addition, the
rocess

W
(n)

(s) := W (s) −

∫ s

0
λ̂0σ

−1(Yv)Y (v)dv, 0 ≤ s ≤ t ∧ τn

s a Qn Brownian motion and Y satisfies the SFDEs{
dY (s) = b(Ys)ds + σ (Ys)dW

(n)
(s), 0 ≤ s ≤ t ∧ τn,

Y0 = ξ,

under Qn . Using a similar argument as that for (3.27), we can show that EQn [sup0≤s≤t∧τn
|Y (s)|2] ≤ L̄ < ∞, where the positive constant L̄ = L̄(t, ∥ξ∥r ) is independent of n ∈ N.
Therefore, for any s ∈ [0, t] and n ∈ N, we have from Assumption 3.2 that

E[R̄(s ∧ τn) log R̄(s ∧ τn)] = EQn [log R̄(s ∧ τn)] =
1
2
EQn

[∫ s∧τn

0
λ̂2

0|σ
−1(Yu)Y (u)|

2
du
]

≤
1
2
λ̂2

0∥σ
−1

∥∞

∫ s

0
EQn |Y (u ∧ τn)|2du ≤ C(ξ, t) < ∞.

herefore, passing to the limit and utilizing Fatou’s lemma lead to (3.28), which further
mplies that {R̄(s), s ∈ [0, t]} is a uniformly integrable martingale and hence {R̄(s), s ∈

[0, t]} is a nonnegative martingale with E[R̄(t)] = 1. Then, by the Girsanov Theorem,
W (s) = W (s) −

∫ s
0 λ̂0σ

−1(Yv)Y (v)dv, s ∈ [0, t] is a Brownian motion under Q, where
(A) = E[R̄(t)1A], A ∈ Ft . Moreover, we can rewrite (3.22) as

dY (s) = b(Ys)ds + σ (Ys)dW (s), 0 ≤ s ≤ t, Y0 = ξ.

In other word, Y solves (1.1) up to time t under Q. In view of the pathwise uniqueness for
(1.1), it follows from the Yamada–Watanabe Theorem (see, e.g., [18, Proposition 5.3.20] or [18,
Corollary 5.3.23]) that for any ξ ∈ Cr , there exists a measurable mapping Φξ : C([0, t]; Rd ) →

([0, t]; Rd ) such that

X |[0,t] = Φξ (W |[0,t]), Y |[0,t] = Φξ (W |[0,t]),

where X and Y denote the solutions to Eqs. (1.1) and (3.22) with initial data ξ , respectively.

By [7, Theorem A.2] and (3.27), we have

19
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D

R
(

T

d
C
R

P
{

t

p

T

sup
ξ∈BR

DK L
(
Law(W |[0,t] ∥ Law(W |[0,t]))

)
≤
λ̂2

0

2
E
∫ t

0
|σ−1(Ys)Y (s)|

2
ds ≤

λ̂2
0Ĉ1t
2

∥σ−1
∥

2
∞

=: Ĉ2. (3.29)

enote

Dt =

{
x ∈ C([0, t]; Rd ) : sup

0≤s≤t
er (s−t)

|Φξ (x)(s)| ≤ ε

}
.

ecall e−2r tR,ε R2 < ε2, t ≥ tR,ε and the definition of the norm ∥ · ∥r . It follows from (3.26),
3.29), and [7, Lemma A.1] that for any M > 1 and ξ ∈ BR , we have

P
{
∥X t (ξ )∥r ≤ ε

}
= P

{
sup

0≤s≤t
er (s−t)

|X (s)| ≤ ε
}

= P
{

sup
0≤s≤t

er (s−t)
|Φξ (W |[0,t])(s)| ≤ ε

}
= Law(W |[0,t])(Dt )

≥
Law(W |[0,t])(Dt )

M
−

DK L
(
Law(W |[0,t] ∥ Law(W |[0,t]))

)
+ log 2

M log M

≥
1

2M
−

Ĉ2 + log 2
M log M

.

aking M = exp{4Ĉ2 + 4 log 2}, we have

inf
ξ∈BR

P
{
∥X t (ξ )∥r ≤ ε

}
≥

1
4 exp{4Ĉ2 + 4 log 2}

> 0.

This is the desired assertion. □

Remark 3.5. It is worth noting that Lemma 3.4 holds only for t ≥ tR,ε depending on the initial
ata and ε. This is the essential difference between SFDEs with infinite delay and finite delay.
onsequently we have to obtain the explicit dependence between N and h in Lemma 3.2 (see
emark 3.3) to prove Theorem 3.1.

Now we present the proof of Theorem 3.1.

roof of Theorem 3.1. Since lim∥ξ∥r →∞ V (ξ ) = ∞, there exists a constant R > 0 such that
ξ ∈ Cr : V (ξ ) ≤ 4CV } ⊂ BR . Let

h =
log(R ∨ 1) + 2 + γ−1 log(2N )

r
.

By Lemma 3.2 and Remark 3.3, there exist constant N > 0 large enough and θ1 ∈ (0, 1) such
hat

WdN ,γ

(
Ph(ξ, ·), Ph(η, ·)

)
≤ θ1dN ,γ (ξ, η) (3.30)

rovided dN ,γ (ξ, η) < 1, that is, dN ,γ is contractive for Ph . Let ε = (2N )−1/γ . Then we have

e−rh R ≤ e−2
( 1

2N

) 1
γ
< ε.

herefore, for the above R, h and ε, it follows from Lemma 3.4 that

ϱ := inf P
{
∥Xh(ξ )∥r ≤ ε

}
> 0. (3.31)
ξ∈BR
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ix ξ and η ∈ BR arbitrarily, and construct independent Cr -valued random variable ς1, ς2 such
hat

Law(ς1) = Ph(ξ, ·) and Law(ς2) = Ph(η, ·).

Then by (3.31), dN ,γ ≤ 1 and γ ∈ (0, 1), we get

WdN ,γ

(
Ph(ξ, ·), Ph(η, ·)

)
≤ EdN ,γ (ς1, ς2)

= EdN ,γ (ς1, ς2)1{∥ς1∥r>ε or ∥ς2∥r>ε} + EdN ,γ (ς1, ς2)1{∥ς1∥r ≤ε,∥ς2∥r ≤ε}

≤ P {∥ς1∥r > ε or ∥ς2∥r > ε} + N (2ε)γP {∥ς1∥r ≤ ε, ∥ς2∥r ≤ ε}

≤ 1 − ϱ2
+ 2γ−1ϱ2

= 1 − (1 − 2γ−1)ϱ2 < 1.

his implies that BR is dN ,γ -small for Ph , which further implies that {ξ ∈ Cr : V (ξ ) ≤ 4CV }

s dN ,γ -small for Ph .
Since dN ,γ is a metric and is equivalent to ∥ · − · ∥r , P(Cr ) is complete under the metric

dN ,γ and Pt is also Feller under dN ,γ . Therefore it follows from [15, Theorem 4.8] that Pt

as a unique invariant probability measure π . Moreover, there exists a t∗ > 0 such that

WdV
N ,γ

(
Pt∗µ, Pt∗ν

)
≤

1
2
WdV

N ,γ

(
µ, ν

)
(3.32)

or all µ, ν ∈ P(Cr ). In addition, In light of (3.2) and (3.5), using the Hölder inequality gives
hat for t ∈ [0, t∗], there exists a constant C̃ > 0 such that

WdV
N ,γ

(
Pt (ξ, ·), Pt (η, ·)

)
= inf

Π∈C(Pt (ξ,·),Pt (η,·))

∫
Cr ×Cr

(
dN ,γ (x, y)(1 + V (x) + V (y))

) 1
2 Π (dx, dy)

≤ inf
Π∈C(Pt (ξ,·),Pt (η,·))

(∫
Cr ×Cr

dN ,γ (x, y)Π (dx, dy)
) 1

2

×

(∫
Cr ×Cr

(1 + V (x) + V (y))Π (dx, dy)
) 1

2

≤
(
WdN ,γ (Pt (ξ, ·), Pt (η, ·))

) 1
2
(
1 + CV e−θ t (V (ξ ) + V (η)) + 2CV

) 1
2

≤ θ
1
2

t∗

(
dN ,γ (ξ, η)

) 1
2
(
1 + CV e−θ t (V (ξ ) + V (η)) + 2CV

) 1
2

≤ C̃dV
N ,γ (ξ, η), (3.33)

here C(Pt (ξ, ·), Pt (η, ·)) denotes the family of couplings of Pt (ξ, ·) and Pt (η, ·). Note that the
asserstein distance WdV

N ,γ

(
·, ·
)

is convex. Then by using the semigroup property of Pt and
ensen’s inequality, it follows from (3.32) and (3.33) that for any t > 0 and ξ ∈ Cr ,

WdV
N ,γ

(
Pt (ξ, ·), π

)
= WdV

N ,γ

(
Pt (ξ, ·), Ptπ

)
= WdV

N ,γ

(
P[t/t∗]t∗ Pt−[t/t∗]t∗ (ξ, ·), P[t/t∗]t∗ Pt−[t/t∗]t∗π

)
≤

1
2[t/t∗] WdV

N ,γ

(
Pt−[t/t∗]t∗ (ξ, ·), Pt−[t/t∗]t∗π

)
≤

1
[t/t ]

∫
WdV

(
Pt−[t/t∗]t∗ (ξ, ·), Pt−[t/t∗]t∗ (η, ·)

)
π (dη)
2 ∗ Cr
N ,γ
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t

≤ C̃
1

2[t/t∗]

∫
Cr

dV
N ,γ (ξ, η)π (dη)

≤ C̃
1

2[t/t∗]

√
1 + V (ξ ) + π(V ). (3.34)

n addition, it is easy to see from (3.2) that π(V ) < ∞. Therefore, (3.34) implies that there
xist constants C and ρ > 0 such that

WdV
N ,γ

(Pt
(
ξ, ·), π

)
≤ Ce−ρt

√
1 + V (ξ ), t ≥ 0.

Since dV
γ (ξ, η) ≤ dV

N ,γ (ξ, η), (3.3) follows and the proof is completed. □

Remark 3.6. Similar to (3.34), it is easy to observe from (3.32) that for any µ, ν ∈ P(Cr )
ith (µ× ν)(dV

N ,γ (·, ·)) < ∞, there exists some c > 0 such that

WdV
N ,γ

(Ptµ, Ptν) ≤ ce−ρtWdV
N ,γ

(µ, ν), t ≥ 0.

4. Asymptotic log-Harnack inequality

To establish the asymptotic log-Harnack inequality for Eq. (1.1), we need to impose the
following stronger conditions on the coefficients b and σ .

Assumption 4.1. b is continuous and bounded on bounded subset of Cr . In addition, there
exist a positive constant K1, a decreasing continuous function u ∈ U and a probability measure
µ ∈ M2r such that for any ξ, η ∈ Cr ,

2⟨φ(0) − ψ(0), b(φ) − b(ψ)⟩+ + ∥σ (φ) − σ (ψ)∥2

≤ K1

∫ 0

−∞

|φ(θ ) − ψ(θ )|2u(|φ(θ ) − ψ(θ )|2)µ(dθ).

Moreover, the function s ↦→ su(s2) is increasing and there exist constants K2 > 0 and
0 < α < 1 such that the function u ∈ U satisfies the following inequality

su2(s) ≤ K2
(
(su(s))α + su(s)

)
, ∀s > 0. (4.1)

It is easy to observe that the function u(s) = log(e2
∨ s−1) ∈ U is decreasing and satisfies

(4.1), and su(s2) is increasing.

Assumption 4.2. The functional σ satisfies ∥σ∥∞ := supφ∈Cr ∥σ (φ)∥ < ∞ and for any φ ∈ Cr ,
σ (φ) admits a right inverse σ−1(φ) and ∥σ−1

∥∞ := supφ∈Cr ∥σ (φ)∥ < ∞.

For convenience, we first present some notation and definitions to be used in this section.
Let (E, d) be a Polish space. For a function f : E → R and any x ∈ E , denote

|D f (x)| = lim sup
d(x,y)→0

| f (x) − f (y)|
d(x, y)

.

e further denote ∥D f ∥∞ = supx∈E |D f (x)|. An increasing sequence (dn)n≥1 of bounded,
ontinuous pseudo-metrics on (E, d) is called totally separating if for every x ̸= y, it holds
hat lim d (x, y) = 1.
n→∞ n
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efinition 4.1 ([14, Definition 3.8]). A Markov semigroup (Pt )t≥0 satisfies the asymptotic
trong Feller property if it is Feller and there exist a sequence of positive real numbers (tn)n≥1
nd a totally separating sequence (dn)n≥1 of pseudo-metrics such that for every x ∈ E ,

inf
U∈Ux

lim sup
n→∞

sup
y∈U

Wdn

(
Ptn (x, ·), Ptn (y, ·)

)
= 0,

where Ux := {U ⊆ E : x ∈ U and U is an open set}.

For any λ > r , consider the following SFDEs with infinite delay{
d X (t) = b(X t )dt + σ (X t )dW (t),
dY (t) = {b(Yt ) + λσ (Yt )σ−1(X t )Γ (X (t), Y (t))}dt + σ (Yt )dW (t),

(4.2)

ith the initial data X0 = ξ and Y0 = η, where

Γ (X (t), Y (t)) =

⎛⎜⎜⎜⎜⎝
(X1(t) − Y 1(t))u(|X1(t) − Y 1(t)|2)
(X2(t) − Y 2(t))u(|X2(t) − Y 2(t)|2)

...

(Xd (t) − Y d (t))u(|Xd (t) − Y d (t)|2)

⎞⎟⎟⎟⎟⎠ . (4.3)

nder Assumption 4.1, it is easy to see that b and σ satisfy Assumptions 2.1 and 2.2. Since
he first equation of (4.2) does not depend on Y , it has a unique solution. To show the existence
nd uniqueness of solution to the second equation of (4.2), it suffices to verify that

b̃(φ) := λσ (φ)σ−1(ξ )Γ (ξ (0), φ(0)), φ ∈ Cr

s a drift satisfies Assumptions 2.1 and 2.2 for any fixed ξ ∈ Cr . This, however, follows directly
rom Assumptions 4.1 and 4.2; see Proposition A.3. Therefore we can apply Theorem 2.1 again
o conclude that the second equation of (4.2) has a unique strong solution. Summarizing the
bove observation yields that (4.2) has a unique strong solution (X, Y ). Let

h(t) = λσ−1(X t )Γ (X (t), Y (t)), B(t) = W (t) +

∫ t

0
h(s)ds,

nd define

R(t) = exp
{
−

∫ t

0
⟨h(s), dW (s)⟩ −

1
2

∫ t

0
|h(s)|2ds

}
.

urther, define the stopping time

τn = inf{t ≥ 0 : ∥X t∥r ∨ ∥Yt∥r ≥ n}, n ∈ N.

ecalling that 0u(0) = 0 and u is continuous, (4.1) implies that for any fixed n ≥ 1,
R(t ∧ τn)}t≥0 is a martingale. Thus it follows from Girsanov’s theorem that for any fixed

T ≥ 0, {B(t ∧ τn)}t∈[0,T ] is a d-dimensional Wiener process under the probability measure
dQT,n := R(T ∧ τn)dP. For t ≤ T ∧ τn , rewrite (4.2) as{

d X (t) = {b(X t ) − λΓ (X (t), Y (t))}dt + σ (X t )d B(t), X0 = ξ,

dY (t) = b(Yt )dt + σ (Yt )d B(t), Y0 = η.
(4.4)

Since X (t) and Y (t) depend on the whole history, it is impossible to construct a successful
coupling for X t and Yt . Thus, we aim to establish the asymptotic result. In order to establish
the asymptotic log-Harnack inequality for SFDEs with infinite delay, we have to verify that
{B(t)}t∈[0,∞) is a Wiener process on some probability space. We now present the following

result.
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emma 4.1. Let Assumptions 4.1 and 4.2 hold. Then for all λ ≥ r + K1µ
(2r )/2 + 1/2, we

ave

sup
t≥0

E
[
R(t) log(R(t))

]
< ∞. (4.5)

onsequently, there exists a unique probability measure Q on (Ω ,F∞) such that

dQ
dP

⏐⏐⏐⏐
Ft

= R(t), ∀t ≥ 0. (4.6)

Moreover, {B(t),Ft ; 0 ≤ t < ∞} is a d-dimensional Wiener process on (Ω ,F∞,Q).

Proof. Let Z (t) = X (t) − Y (t). By Assumption 4.2 and (4.1), we have

E[R(t ∧ τn) log(R(t ∧ τn))] = EQt,n log(R(t ∧ τn))

= EQt,n

(
−

∫ t∧τn

0
⟨h(s), d B(s)⟩ +

1
2

∫ t∧τn

0
|h(s)|2ds

)
≤

d
2
λ2

∥σ−1
∥

2
∞
EQt,n

∫ t∧τn

0
|Z (s)|2u2(|Z (s)|2)ds

≤
d K2

2
λ2

∥σ−1
∥

2
∞
EQt,n

∫ t∧tn

0

(
|Z (s)|2u(|Z (s)|2)

)αds

+
d K2

2
λ2

∥σ−1
∥

2
∞
EQt,n

∫ t∧τn

0
|Z (s)|2u(|Z (s)|2)ds, (4.7)

where EQt,n denotes the expectation operator with respect to the probability measure Qt,n . For
some positive constant r0 < r , applying the Itô formula and using Assumption 4.1 give

e2r0(t∧τn )
|Z (t ∧ τn)|2 = |ξ (0) − η(0)|2 − 2λ

∫ t∧τn

0
e2r0s

d∑
i=1

|Z i (s)|
2
u(|Z i (s)|

2
)ds

+

∫ t∧τn

0
e2r0s(2r0|Z (s)|2 + 2⟨Z (s), b(Xs) − b(Ys)⟩

+∥σ (Xs) − σ (Ys)∥2)ds

+ 2
∫ t∧τn

0
e2r0s Z (s)⊤(σ (Xs) − σ (Ys))d B(s)

≤ ∥ξ − η∥2
r + 2(r0 − λ)

∫ t∧τn

0
e2r0s

d∑
i=1

|Z i (s)|
2
u(|Z i (s)|

2
)ds

+ K1

∫ t∧τn

0

∫ 0

−∞

e2r0s
|Z (s + θ )|2u(|Z (s + θ )|2)µ(dθ )ds

+ 2
∫ t∧τn

0
e2r0s Z (s)⊤(σ (Xs) − σ (Ys))d B(s). (4.8)

y the Tonelli theorem and a substitution technique, we have∫ t∧τn

0

∫ 0

−∞

e2r0s
|Z (s + θ )|2u(|Z (s + θ )|2)µ(dθ )ds

=

∫ t∧τn ∫ −s

e2r0s
|Z (s + θ )|2u(|Z (s + θ )|2)µ(dθ )ds
0 −∞
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+

∫ t∧τn

0

∫ 0

−s
e2r0s

|Z (s + θ)|2u(|Z (s + θ )|2)µ(dθ )ds

≤

∫ t∧τn

0

∫
−s

−∞

e2r0se−2r (s+θ )(e2r (s+θ )
|Z (s + θ)|2u(e2r (s+θ)

|Z (s + θ )|2)
)
µ(dθ)ds

+

∫ 0

−∞

∫ t∧τn

0
e2r0s−2r0θ |Z (s)|2u(|Z (s)|2)dsµ(dθ )

≤ ∥ξ − η∥2
r u(∥ξ − η∥2

r )
∫ t∧τn

0

∫
−s

−∞

e2r0se−2r (s+θ )µ(dθ )ds

+µ(2r )
∫ t∧τn

0
e2r0s

|Z (s)|2u(|Z (s)|2)ds

≤
µ(2r )

2r − 2r0
∥ξ − η∥2

r u(∥ξ − η∥2
r ) + µ(2r )

∫ t∧τn

0
e2r0s

|Z (s)|2u(|Z (s)|2)ds

≤
µ(2r )

2r − 2r0
∥ξ − η∥2

r u(∥ξ − η∥2
r ) + µ(2r )

∫ t∧τn

0
e2r0s

d∑
i=1

|Z i (s)|
2
u(|Z i (s)|

2
)ds, (4.9)

here the first inequality follows from the fact that asu(s) ≤ asu(as) for a ∈ [0, 1] and the
ast inequality follows from the fact that (s + t)u(s + t) ≤ su(s) + tu(t) for s, t ≥ 0, which
ollows from the fact that u(·) is decreasing. Substituting (4.9) into (4.8) yields that

e2r0(t∧τn )
|Z (t ∧ τn)|2 =

(
1 +

K1

2r − 2r0
µ(2r )

)
∥ξ − η∥2

r u(∥ξ − η∥2
r )

+ (2r0 + K1µ
(2r )

− 2λ)
∫ t∧τn

0
e2r0s

d∑
i

|Z i (s)|
2
u(|Z i (s)|

2
)ds

+ 2
∫ t∧τn

0
e2r0s Z (s)⊤(σ (Xs) − σ (Ys))d B(s). (4.10)

ote that r0 < r and λ ≥ r + K1µ
(2r )/2 + 1/2. Thus we have∫ t∧τn

0
e2r0s

|Z (s)|2u(|Z (s)|2)ds ≤

∫ t∧τn

0
e2r0s

d∑
i=1

|Z i (s)|
2
u(|Z i (s)|

2
)ds

≤

(
1 +

K1

2r − 2r0
µ(2r )

)
∥ξ − η∥2

r u(∥ξ − η∥2
r )

+ 2
∫ t∧τn

0
e2r0s Z (s)⊤(σ (Xs) − σ (Ys))d B(s).

aking expectation with respect to EQt,n on both sides of the above inequality, we obtain

EQt,n

∫ t∧τn

0
e2r0s

|Z (s)|2u(|Z (s)|2)ds ≤

(
1 +

K1

2r − 2r0
µ(2r )

)
∥ξ − η∥2

r u(∥ξ − η∥2
r ). (4.11)

y virtue of Hölder’s inequality and (4.11), we have

EQt,n

∫ t∧τn

0

(
|Z (s)|2u(|Z (s)|2)

)αds

= EQt,n

∫ t∧τn
e−2r0αs (e2r0s

|Z (s)|2u(|Z (s)|2)
)α

ds

0
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≤

{
EQt,n

∫ t∧τn

0
e

−2r0αs
1−α ds

}1−α {
EQt,n

∫ t∧τn

0
e2r0s

|Z (s)|2u(|Z (s)|2)ds
}α

≤

(
1 − α

2r0α

)1−α

Aα, (4.12)

here A := (1 +
K1

2r−2r0
µ(2r ))∥ξ − η∥2

r u(∥ξ − η∥2
r ). Substituting (4.11) and (4.12) into (4.7)

gives that

sup
t≥0,n≥1

E
[
R(t ∧ τn) log(R(t ∧ τn))

]
≤

d K2

2
λ2

∥σ−1
∥

2
∞

[(1 − α

2r0α

)1−α

Aα + A
]
. (4.13)

y Fatou’s lemma, it follows from (4.13) that

sup
t≥0

E
[
R(t) log(R(t))

]
≤

d K2

2
λ2

∥σ−1
∥

2
∞

[(1 − α

2r0α

)1−α

Aα + A
]
< ∞.

his establishes (4.5).
We now prove (4.6). We first show that {R(t),Ft ; 0 ≤ t < ∞} is a uniformly integrable

artingale. The uniform integrability follows from (4.5) directly. Therefore we only need to
rove that R(t) is a martingale. By the Dominated Convergence Theorem and the martingale
roperty of R(t ∧ τn), for any t > s, we have

E[R(t)|Fs] = E[ lim
n→∞

R(t ∧ τn)|Fs] = lim
n→∞

E[R(t ∧ τn)|Fs] = lim
n→∞

R(s ∧ τn) = R(s),

hich implies {R(t),Ft ; 0 ≤ t < ∞} is a martingale.
Since {R(t)}t≥0 is a uniformly integrable martingale, it follows from the Submartingale

onvergence Theorem (see, e.g., [18, Theorem 3.15]) that the limit R(∞) := limt→∞ R(t)
xists for almost all ω ∈ Ω and R(∞) is an integrable random variable. Moreover, {R(t),Ft :

≤ t ≤ ∞} is a martingale (see, e.g., [18, Problem 3.20]). Define a probability measure on
∞ as follows

Q(A) = E[1A R(∞)] for A ∈ F∞.

ecause {R(t),Ft : 0 ≤ t ≤ ∞} is a martingale, Q(A) = E[1A R(t)] for A ∈ Ft , t ≥ 0.
ence (4.6) holds. Additionally, in light of Girsanov’s theorem, for each fixed T > 0,

B(t),Ft ; 0 ≤ t ≤ T } is a d-dimensional Wiener process on (Ω ,FT ,QT ), where QT (A) :=

[1A R(T )] = Q(A), ∀A ∈ FT . As a result, {B(t),Ft ; 0 ≤ t < ∞} is a d-dimensional Wiener
rocess on (Ω ,F∞,Q). This proof is completed. □

emma 4.2. Let Assumptions 4.1 and 4.2 hold. Then for any r0 ∈ (0, r ), there exists a
onstant C1 > 0 such that the asymptotic coupling (X t , Yt ) satisfies

EQ∥X t − Yt∥
2
r ≤ C1∥ξ − η∥2

r u(∥ξ − η∥2
r )e−2r0t . (4.14)

roof. Since {B(t),Ft ; 0 ≤ t < ∞} is a d-dimensional Wiener process, inequality (4.11) is
till valid for the probability measure Q in place of EQt,n . In addition, noting that the solution

X (t) to (1.1) is non-explosive, by (4.11) and Fatou’s lemma, we have

EQ

∫ t

e2r0s
|Z (s)|2u(|Z (s)|2)ds ≤

(
1 +

K1
µ(2r )

)
∥ξ − η∥2

r u(∥ξ − η∥2
r ). (4.15)
0 2r − 2r0
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y the Burkholder–Davis–Gundy inequality, and using Assumption 4.1 and the Cauchy–
chwarz inequality, we have

2EQ sup
0≤s≤t

∫ s

0
e2r0vZ (v)⊤(σ (Xv) − σ (Yv))d B(v)

≤ 8
√

2EQ

(∫ t

0
e4r0s

|Z (s)|2∥σ (Xs) − σ (Ys)∥2ds
) 1

2

≤
1
2
EQ sup

0≤s≤t
e2r0s

|Z (s)|2 + 64K1EQ

∫ t

0

∫ 0

−∞

e2r0s
|Z (s + θ )|2u(|Z (s + θ )|2)µ(dθ)ds

≤
1
2
EQ sup

0≤s≤t
e2r0s

|Z (s)|2 +
64K1

2r − 2r0
µ(2r )

∥ξ − η∥2
r u(∥ξ − η∥2

r )

+64K1µ
(2r )EQ

∫ t

0
e2r0s

|Z (s)|2u(|Z (s)|2)ds. (4.16)

t follows from (4.10), (4.15), and (4.16) that

EQ sup
0≤s≤t

e2r0s
|Z (s)|2 ≤ C̃1∥ξ − η∥2

r u(∥ξ − η∥2
r ),

here C̃1 := 2 + 128K1µ
(2r )

+ (65 + 64K1µ
(2r )) K1µ

(2r )

r−r0
. Recall the definition of the norm ∥ · ∥r .

Noting that 0 < r0 < r , we obtain

∥Z t∥
2
r = sup

θ≤0
e2rθ

|Z (t + θ )|2

≤ sup
s≤t

e2r0(s−t)
|Z (s)|2 ≤ e−2r0t

∥ξ − η∥2
r + e−2r0t sup

0≤s≤t
e2r0s

|Z (s)|2.

hus, we have

EQ∥Z t∥
2
r ≤ (C̃1 + 1)∥ξ − η∥2

r u(∥ξ − η∥2
r )e−2r0t .

ence (4.14) holds for C1 = C̃1 + 1. This proof is completed. □

heorem 4.3. Let Assumptions 4.1 and 4.2 hold. Then for any r0 ∈ (0, r ), there exists a
onstant C2 > 0 such that for t > 0, the asymptotic log-Harnack inequality

Pt log f (η) ≤ log Pt f (ξ ) + C2(∥ξ − η∥2
r u(∥ξ − η∥2

r ))α + C2∥ξ − η∥2
r u(∥ξ − η∥2

r )

+ C2e−r0t
∥D log f ∥∞

√
∥ξ − η∥2

r u(∥ξ − η∥2
r ) (4.17)

olds for any ξ, η ∈ Cr and f ∈ B+

b (Cr ) with f ≥ 1 and ∥D log f ∥∞ < ∞. Consequently, the
arkov semigroup Pt is asymptotically strong Feller.

roof. In light of Lemma 4.1 and the weak uniqueness of solution to (1.1), Yt also has the
arkov semigroup Pt under the probability measure Q, i.e., Pt f (η) = EQ f (Yt ) for any t ≥ 0

nd f ∈ Bb(Cr ). Therefore, for any f ∈ B+

b with f ≥ 1 and ∥D log f ∥∞ < ∞, by the
efinition of ∥D log f ∥∞ and the Young inequality (see e.g., [1, Lemma 2.4]), we obtain

Pt log f (η) = EQ log f (Yt ) = EQ log f (X t ) + EQ(log f (Yt ) − log f (X t ))

≤ ER(t) log f (X t ) + ∥D log f ∥∞EQ∥X t − Yt∥r

≤ ER(t) log R(t) + log P f (ξ ) + ∥D log f ∥
(
E ∥X − Y ∥

2) 1
2 . (4.18)
t ∞ Q t t r
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ecall that

E
[
R(t) log R(t)

]
≤

d K2

2
λ2

∥σ−1
∥

2
∞

((
1 − α

2r0α

)1−α

Aα + A

)
, (4.19)

here A := (1 +
K1

2r−2r0
µ(2r ))∥ξ − η∥2

r u(∥ξ − η∥2
r ). Substituting (4.14) and (4.19) into (4.18)

yields

Pt log f (η) ≤ log Pt f (ξ ) +
d K2

2
λ2

∥σ−1
∥

2
∞

((
1 − α

2r0α

)1−α

Aα + A

)
+ e−r0t

∥D log f ∥∞

√
C1∥ξ − η∥2

r u(∥ξ − η∥2
r ).

herefore (4.17) holds for

C2 = max
{√

C1,
d K2

2
λ2

∥σ−1
∥

2
∞

(
1 − α

2r0
)1−α(1 +

K1

2r − 2r0
µ(2r )),

d K2

2
λ2

∥σ−1
∥

2
∞

(1 +
K1

2r − 2r0
µ(2r ))

}
.

inally, in view of [34, Theorem 1.4], (4.17) implies that the Markov semigroup Pt is
symptotically strong Feller. This completes this proof. □

emark 4.4. When the diffusion term depends on the history of the solution, the SFDEs might
ave a reconstruction property (see, e.g., [26]), which causes the laws of segment processes
ith different initial data to be mutually singular. This indicates that the strong Feller property

nd the ergodicity under the total variational distance are invalid. This is the reason why this
aper only shows the asymptotic log-Harnack inequality and the exponential ergodicity under
asserstein distance.

. Example

In this section we study a concrete example to illustrate the main results of the paper.

xample 5.1. Consider the following 1-dimensional stochastic functional differential equation
ith infinite delay

d X (t) =

{
−γ1 X (t) +

∫ 0

−∞

Φ(X (t + θ ))µ(dθ )
}

dt

+

{
1 +

∫ 0

−∞

1 ∧ |Φ(X (t + θ))|µ(dθ )
}

dW (t), (5.1)

here γ1 > 0, µ ∈ M2r and W (t) is a 1-dimensional Wiener process. Φ(x) is a continuous
unction satisfying

Φ(x) =

⎧⎪⎨⎪⎩
Φ1(x), x ∈ (−∞,− 1

2 ]
Φ2(x), x ∈ [− 1

2 ,
1
2 ]

Φ3(x), x ∈ [ 1
2 ,∞),

here Φ1, Φ3 are Lipschitz continuous in that

|Φ1(x) − Φ1(y)|2 ≤ β1|x − y|
2, x, y ∈

(
−∞,−

1]
, β1 > 0,
2
28
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a

S

B

T
T
(

|Φ3(x) − Φ3(y)|2 ≤ β3|x − y|
2, x, y ∈

[1
2
,∞

)
, β3 > 0,

nd Φ2 is Hölder-Dini continuous and satisfies

|Φ2(x) − Φ2(y)|2 ≤ β2|x − y|
2 log

e2

|x − y|
2 , x, y ∈

[
−

1
2
,

1
2

]
, β2 > 0. (5.2)

If 2γ1 > 1 + 6(β1 + β2 + β3)µ(2r ), then the assertions of Theorems 2.1, 3.1, and 4.3 hold.

Proof. Clearly, the diffusion coefficient satisfies Assumption 4.2. Now we first verify (5.1)
satisfies Assumption 4.1 with the function u(s) = log(s−1e2

∨ e2), s > 0. Set 0u(0) =

lims→0 su(s) = 0 and it is easy to verify that u(s) = log(s−1e2
∨ e2) ∈ U is decreasing and

satisfies (4.1), and su(s2) is increasing . Since s log(s−1e2
∨ e2) is increasing and log(s−1e2

∨

e2) ≥ 1, we see that for any x, y ∈ R

|Φ(x) − Φ(y)|2 ≤ 3(β1 + β2 + β3)|x − y|
2 log

(
e2

|x − y|
2 ∨ e2

)
=: A1|x − y|

2 log
(

e2

|x − y|
2 ∨ e2

)
. (5.3)

ince s log(s−1e2
∨ e2) ≤ 1 + 2s for s ≥ 0, (5.3) implies

|Φ(x)|2 ≤ 2(1 + ε)A1|x |
2
+ (1 + ε)A1 + (1 +

1
ε

)|Φ(0)|2 =: 2(1 + ε)A1|x |
2
+ A2. (5.4)

y the Cauchy inequality and the Hölder inequality, for any φ,ψ ∈ Cr we have

2⟨φ(0) − ψ(0), b(φ) − b(ψ)⟩+ + ∥σ (φ) − σ (ψ)∥2

= 2
⟨
φ(0) − ψ(0),−γ1(φ(0) − ψ(0)) +

∫ 0

−∞

Φ(φ(θ )) − Φ(ψ(θ ))µ(dθ )
⟩
+

+

⏐⏐⏐⏐∫ 0

−∞

(1 ∧ |Φ(φ(θ ))|) − (1 ∧ |Φ(ψ(θ ))|)µ(dθ )
⏐⏐⏐⏐2

≤

(
−2γ1|φ(0) − ψ(0)|2 + γ1|φ(0) − ψ(0)|2

+
1
γ1

∫ 0

−∞

|Φ(φ(θ )) − Φ(ψ(θ ))|2µ(dθ )
)

+

+

∫ 0

−∞

|Φ(φ(θ )) − Φ(ψ(θ ))|2µ(dθ )

≤

(
1
γ1

+ 1
)∫ 0

−∞

|Φ(φ(θ )) − Φ(ψ(θ ))|2µ(dθ )

≤ A1

(
1
γ1

+ 1
)∫ 0

−∞

|φ(θ ) − ψ(θ )|2 log
(

e2

|φ(θ ) − ψ(θ )|2
∨ e2

)
µ(dθ ). (5.5)

his implies Assumption 4.1 holds for u(s) = log(s−1e2
∨ e2), s > 0 and K1 = A1 (1/γ1 + 1).

herefore, (5.1) has a unique global strong solution and the asymptotic log-Harnack inequality
4.17) in Theorem 4.3 holds. In addition, since lim s1−β log(e2/s2) = 0 for any given
s→0

29
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β

w
n

w

A

∈ (0, 1), we have

s2 log
(

e2

s2

)
= s1+β

(
s1−β log

(
e2

s2

))
≤ sup

s∈(0,1]

(
s1−β log

(
e2

s2

))
s1+β

=: Kβs1+β for s ∈ (0, 1],

here Kβ is a constant depending only on β. Since s log(s−1e2
∨ e2) is concave on [0, 1] and

ondecreasing and vanishes at 0, it follows from (5.5) that for ∥φ(θ ) − ψ(θ )∥r ≤ 1

2⟨φ(0) − ψ(0), b(φ) − b(ψ)⟩+ + ∥σ (φ) − σ (ψ)∥2

≤ µ(2r ) A1

(
1
γ1

+ 1
)

∥φ − ψ∥
2
r log

(
e2

∥φ(θ ) − ψ(θ )∥2
r

∨ e2
)

≤ Kβµ
(2r ) A1

(
1
γ1

+ 1
)

∥φ − ψ∥
1+β
r ,

hich implies Assumption 3.1 holds for K = Kβµ
(2r ) A1 (1/γ1 + 1) and δ = 1. Hence, we

only need to verify (3.2) to prove Theorem 3.1. By Itô’s formula, for some r0 ∈ (0, 2r ) and
any initial data X t = ξ , we have

er0t
|X (t)|2 = |ξ (0)|2 + 2

∫ t

0
er0s X (s)σ (X t )dW (t)

+

∫ t

0
er0s(r0|X (s)|2 + 2⟨X (s), b(Xs)⟩ + ∥σ (Xs)∥2)ds. (5.6)

By using the Cauchy inequality and (5.4), we obtain

2⟨X (s), b(Xs)⟩ + ∥σ (Xs)∥2

≤ −2γ1|X (s)|2 + 2
∫ 0

−∞

|X (s)Φ(X (s + θ ))|µ(dθ )

+

⏐⏐⏐⏐1 +

∫ 0

−∞

1 ∧ |Φ(X (t + θ ))|µ(dθ )
⏐⏐⏐⏐2

≤ −2γ1|X (s)|2 + |X (s)|2 +

∫ 0

−∞

|Φ(X (s + θ ))|2µ(dθ ) + 4

≤ −2γ1|X (s)|2 + |X (s)|2 + 2(1 + ε)A1

∫ 0

−∞

|X (s + θ)|2µ(dθ) + A2 + 4. (5.7)

Substituting (5.7) into (5.6) yields

er0t
|X (t)|2 ≤ ∥ξ∥2

r +
1
r0

(A2 + 4)er0t
+ 2

∫ t

0
er0s X (s)σ (Xs)dW (s)

+ (r0 + 1 − 2γ1)
∫ t

0
er0s

|X (s)|2ds

+ 2(1 + ε)A1

∫ t

0

∫ 0

−∞

er0s
|X (s + θ )|2µ(dθ )ds. (5.8)

pplying the Tonelli theorem and a substitution technique gives∫ t ∫ 0

er0s
|X (s + θ )|2µ(dθ )ds
0 −∞
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N
t

T

R
h
i

R
h

≤

∫ t

0

∫
−s

−∞

er0s
|X (s + θ )|2µ(dθ)ds +

∫ t

0

∫ 0

−s
er0s

|X (s + θ )|2µ(dθ )ds

≤ ∥ξ∥2
r

∫ t

0

∫
−s

−∞

er0se−2r (s+θ )µ(dθ )ds +

∫ 0

−t

∫ t

−θ

er0s
|X (s + θ )|2dsµ(dθ )

≤
1

2r − r0
µ(2r )

∥ξ∥2
r +

∫ 0

−∞

∫ t

0
er0(s−θ )

|X (s)|2dsµ(dθ )

≤
1

2r − r0
µ(2r )

∥ξ∥2
r + µ(2r )

∫ t

0
er0s

|X (s)|2ds. (5.9)

By the Burkholder–Davis–Gundy inequality, we have

2E sup
0≤u≤t

∫ u

0
er0s X (s)σ (Xs)dW (s)

≤ 2
√

32E

(∫ t

0
e2r0s

⏐⏐⏐⏐X (s)
(
1 +

∫ 0

−∞

1 ∧ |Φ(X (s + θ))|µ(dθ )
)⏐⏐⏐⏐2 ds

) 1
2

≤ 2
√

32E
(

sup
0≤s≤t

er0s
|X (s)|2

∫ t

0
4er0sds

) 1
2

≤
1
2
E sup

0≤s≤t
er0s

|X (s)|2 +
256
r0

er0t . (5.10)

oting that 2γ1 > 1 + 6(β1 +β2 +β3)µ(2r ), we can find constants ε, r0 > 0 small enough such
hat

r0 + 1 − 2γ1 + 2(1 + ε)A1µ
(r0)

≤ 0.

Then substituting (5.9) and (5.10) into (5.8) yields that

E sup
0≤s≤t

er0s
|X (s)|2 ≤ 2

(
1 +

2(1 + ε)A1µ
(2r )

2r − r0

)
∥ξ∥2

r +
520 + 2A2

r0
er0t . (5.11)

Recall that for r0 ≤ 2r ,

E∥X t∥
2
r ≤ e−r0t

∥ξ∥2
r + e−r0tE sup

0≤s≤t
er0s

|X (s)|2.

Then by (5.8), we have

E∥X t∥
2
r ≤

(
3 +

4(1 + ε)A1µ
(2r )

2r − r0

)
e−r0t

∥ξ∥2
r +

520 + 2A2

r0
.

his shows (3.2) holds for V (ξ ) = ∥ξ∥2
r . Therefore Theorem 3.1 holds for (5.1). □

emark 5.2. In fact, by a slight modification of the above proof, one can prove (3.2) still
olds for σ (φ) = 1 +

∫ 0
−∞

|Φ(φ(θ ))|µ(dθ ) when γ1 > 1 + 6(β1 + β2 + β3)µ(2r ). In general, it
s not easy to verify the Lyapunov condition (3.2) for SFDEs (see, e.g., [3,8]).

emark 5.3. We now show that there is Hölder-Dini continuous function Φ2 such that (5.2)
olds. Let

f (x) = x1−a log
e2

, x ∈ (0, 1], a ∈ (0, 1).

x2
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W

T
N
[

w
T
s

w
m

e compute

f ′(x) = 2(1 − a)x−a
(
− log x −

a
1 − a

)
.

hen f ′(x) > 0 for x ∈ (0, exp [−a/(1 − a)]) and f ′(x) ≤ 0 for x ∈ [exp [−a/(1 − a)], 1].
oting that limx→0 f (x) = 0 and f (1) = 2, there exists a unique constant x0 ∈ (0, exp

−a/(1 − a)]) such that f (x0) = 2. Then define

ϕ(x) =

{√
f (x), x ∈ (0, x0)
√

2, x ∈ [x0,∞).

Clearly, ϕ(x) is increasing and ϕ(x) ≤
√

f (x) for x ∈ (0, 1]. Moreover, it is easy to verify that∫ 1

0

ϕ(x)
x

dx =

∫ x0

0

√
x1−a log e2

x2

x
dx +

∫ 1

x0

√
2

x
dx ≤ −

√
2 log x0 +

∫ x0

0

√
log e2

x2

x1+a
dx < ∞

here in the last step we have used the fact lims→0 sβ log(e2/s2) = 0 for any given β ∈ (0, 1).
his implies the function ϕ(x) is a Dini function. Hence, we can choose the function Φ2

atisfying the following inequality

|Φ2(x) − Φ2(y)| ≤ |x − y|
1+a

2 ϕ(|x − y|), |x − y| ≤ 1,

hich indicates Φ2 is Hölder-Dini continuous. This, together with ϕ(x) ≤
√

f (x) for x ∈ (0, 1],
eans that such Hölder-Dini continuous function Φ2 satisfies (5.2).
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Appendix

This section includes two auxiliary tail-estimates. The first one is to establish the Fernique-
type inequality for Wiener processes, which is a direct consequence of the [21, Lemma 3.1].
The second one is a slight modification of [20, Lemma B.1].

Lemma A.1. Let W (t) be a 1-dimensional Wiener process. For any given T > 0, δ ∈ (0, 1/2),
and for all x > 0 satisfying x ≥ (1 + 8 log 2)1/2(T 1−2δ

+ x−1),

P

{
sup

t1,t2∈[0,T ]

|W (t1) − W (t2)|
|t1 − t2|δ

> x

}

≤ C
(
T x

1−2δ
2 + 1

)2x−1(T 1−2δ
+ x−1) exp

{
−

x2

2(T 1−2δ + x−1)2

}
,

where C > 0 depends only on δ.

Proof. Since W (t) is a Wiener process, for any t1, t2 ∈ [0, T ],

W (t1) − W (t2)
δ

∼ N (0, |t1 − t2|1−2δ).

|t1 − t2|
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T

W

N

W

T

S

hen we claim that

γ 2(ε) := sup
ti ,si ∈[0,T ]
|si −ti |≤ε,i=1,2

E
(

W (t1) − W (t2)
|t1 − t2|δ

−
W (s1) − W (s2)

|s1 − s2|
δ

)2

≤ 5ε1−2δ. (A.1)

e will prove (A.1) momentarily. As a consequence of (A.1), we obtain

Q(h) := (2 +
√

2)
∫

∞

1
γ (h2−y2

)dy

≤
√

5(2 +
√

2)
∫

∞

1
2−

1−2δ
2 y2

dyh
1−2δ

2 =: Q̄(h).

ote that

Q−1(x) ≥ Q̄−1(x) = C1x
2

1−2δ ,

where Q−1(x) := sup{y : Q(y) ≤ x}, and C1 depends only on δ. In addition,

σ 2
:= sup

t1,t2∈[0,T ]
E
(

W (t1) − W (t2)
|t1 − t2|δ

)2

= T 1−2δ.

Hence the desired result follows from [21, Lemma 3.1].
We now prove the claim (A.1). First, we write γ 2(ε) = supti ,si ∈[0,T ],|si −ti |≤ε,i=1,2

H (s1, s2, t1, t2), where

H (s1, s2, t1, t2) := E
(

W (t1) − W (t2)
|t1 − t2|δ

−
W (s1) − W (s2)

|s1 − s2|
δ

)2

= |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2E
[
W (t1) − W (t2)

][
W (s1) − W (s2)

]
|t1 − t2|δ|s1 − s2|

δ
.

e next derive an upper bound for H (s1, s2, t1, t2) in different cases. Without loss of generality,
we can assume t1 < t2. When s1 < s2, there are five cases to consider.

Case I1: s1 < s2 ≤ t1 < t2 or t1 < t2 ≤ s1 < s2.

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
≤ |s2 − t2|1−2δ

+ |s1 − t1|1−2δ.

Case I2: s1 ≤ t1 ≤ s2 ≤ t2.

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(s2 − t1)
|t1 − t2|δ|s1 − s2|

δ

≤ 2(|t1 − t2| ∨ |s1 − s2|)1−2δ
−

2(s2 − t1)
(|t1 − t2| ∨ |s1 − s2|)2δ .

hen if |t1 − t2| ≤ |s1 − s2|, we have

H (s1, s2, t1, t2) ≤ 2|s1 − s2|
1−2δ

−
2(s2 − t1)
|s1 − s2|

2δ ≤
2(t1 − s1)
|s1 − s2|

2δ ≤ 2|t1 − s1|
1−2δ.

imilarly, when |t1 − t2| > |s1 − s2|, we have H (s1, s2, t1, t2) ≤ 2|t2 − s2|
1−2δ .

Case I3: s1 ≤ t1 < t2 ≤ s2.

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(t2 − t1)
|t1 − t2|δ|s1 − s2|

δ

≤ 2|s1 − s2|
1−2δ

−
2(t2 − t1)

2δ

|s1 − s2|
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W

S

≤
2(t1 − s1) + 2(s2 − t2)

|s1 − s2|
2δ

≤ 2|t1 − s1|
1−2δ

+ 2|s2 − t2|1−2δ

Case I4: t1 ≤ s1 < s2 ≤ t2. Similar to Case I3, we have

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(s2 − s1)
|t1 − t2|δ|s1 − s2|

δ

≤ 2|t2 − s2|
1−2δ

+ 2|t1 − s1|
1−2δ

Case I5: t1 ≤ s1 ≤ t2 ≤ s2. Similar to Case I2, we obtain

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(t2 − s1)
|t1 − t2|δ|s1 − s2|

δ

≤ 2|s1 − t1|1−2δ
+ 2|s2 − t2|1−2δ.

hen s1 ≥ s2, we also have five cases as follows.
Case II1: s2 ≤ s1 ≤ t1 < t2 or t1 ≤ t2 ≤ s2 ≤ s1. Similar to Case I1, we have

H (s1, s2, t1, t2) ≤ |s2 − t2|1−2δ
+ |s1 − t1|1−2δ.

Case II2: s2 ≤ t1 ≤ s1 ≤ t2.

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(t1 − s1)
|t1 − t2|δ|s1 − s2|

δ

≤ 2|t2 − s2|
1−2δ

+
2(s1 − t1)

|t1 − t2|δ|s1 − s2|
δ

≤ 2|t2 − s2|
1−2δ

+ 2|t1 − s1|
1−2δ.

Case II3: s2 ≤ t1 < t2 ≤ s1.

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(t1 − t2)
|t1 − t2|δ|s1 − s2|

δ

≤ 2|t2 − s2|
1−2δ

+ |t1 − s1|
1−2δ

+
2(t2 − t1)
|t1 − t2|2δ

≤ 4|t2 − s2|
1−2δ

+ |t1 − s1|
1−2δ.

Case II4: t1 ≤ s2 ≤ s1 ≤ t2. Similar to Case II3, we arrive at

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(s2 − s1)
|t1 − t2|δ|s1 − s2|

δ

≤ 4|t2 − s2|
1−2δ

+ |t1 − s1|
1−2δ.

Case II5: t1 ≤ s2 ≤ t2 ≤ s1. Similar to Case II2, we get

H (s1, s2, t1, t2) = |t1 − t2|1−2δ
+ |s1 − s2|

1−2δ
−

2(s2 − t2)
|t1 − t2|δ|s1 − s2|

δ

≤ 2|t1 − s1|
1−2δ

+ 2|t2 − s2|
1−2δ.

ummarizing the above observations, we have

γ 2(ε) = sup
ti ,si ∈[0,T ],|si −ti |≤ε,i=1,2

H (s1, s2, t1, t2) ≤ 5ε1−2δ.

The claim (A.1) is established as desired. □
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P

a

f

N

emma A.2. Let Y (t) ≥ 0 be an Itô process with

dY (t) = U (t)dt + d M(t),

where M is a continuous local martingale with quadratic variation

⟨M⟩(t) =

∫ t

0
m(s)ds, t ≥ 0.

If there exist constants A ≥ 0, B > 0, λ > 0, T > 0 and random variable τ ∈ [0, T ] such that

U (t) ≤ −λY (t) + A, m(t) ≤ B, whenever t ≤ τ.

Then for any δ ∈ (0, 1/2), there exist constants C1,C2 > 0, which depend only on δ, such that
for any R ≥ 1 satisfying

R ≥ (1 + 8 log 2)1/2(Γ (δ) + sup
x>0

xδe−x )
(
T 1−2δ

+ R−1(Γ (δ) + sup
x>0

xδe−x )
)
,

P
{

sup
t≤τ

(
Y (t) − e−λt Y (0)

)
≥ Aλ−1

+ B1/2λ−δR
}

≤ C1(T
5−2δ

2 + 1)R−2δ exp

{
−

C2 R2

2(T
1−2δ

2 + 1)2

}
.

roof. This result follows directly from Lemma A.1 and the same argument as that in the
proof of [20, Lemma B.1]. □

Proposition A.3. Under Assumptions 4.1 and 4.2, b̃(φ) := λσ (φ)σ−1(ξ )Γ (ξ (0), φ(0)), φ ∈ Cr
s a drift satisfies Assumptions 2.1 and 2.2 for any fixed ξ ∈ Cr , where Γ (·, ·) is given by (4.3).

Proof. Since su(s) is increasing, according to the definition of Γ (·, ·), we need only to verify
b̃ satisfies Assumptions 2.1 and 2.2 for each component. Hence without any loss of generality,
we can assume d = 1 in what follows and hence b̃ takes the following form:

b̃(φ) := λσ (φ)σ−1(ξ )(ξ (0) − φ(0))u(|ξ (0) − φ(0)|2), φ ∈ Cr .

In light of Assumptions 4.1 and 4.2, it is easy to see that b̃ satisfies the linear growth condition,
which implies that b̃ satisfies Assumption 2.2 and is bounded on bounded subset of Cr . Now it
remains to show that b̃ satisfies (2.1). For any φ,ψ ∈ Cr and fixed ξ ∈ Cr with ∥φ∥r ∨∥ψ∥r < k
or some k > 0, we compute

⟨φ(0) − ψ(0), b̃(φ) − b̃(ψ)⟩

≤ λ∥σ−1
∥∞|φ(0) − ψ(0)|∥σ (φ) − σ (ψ)∥|ξ (0) − φ(0)|u(|ξ (0) − φ(0)|2)

+ λ∥σ∥∞∥σ−1
∥∞|φ(0) − ψ(0)|

×
⏐⏐(ξ (0) − φ(0))u(|ξ (0) − φ(0)|2) − (ξ (0) − ψ(0))u(|ξ (0) − ψ(0)|2)

⏐⏐
=: λ∥σ−1

∥∞Υ1(φ,ψ) + λ∥σ∥∞∥σ−1
∥∞Υ2(φ,ψ).

oting that su(s) is increasing and concave, by Assumption 4.1, we obtain

∥σ (φ) − σ (ψ)∥2
≤ K1

∫ 0

−∞

e−2rθe2rθ
|φ(θ ) − ψ(θ )|2u(e−2rθe2rθ

|φ(θ ) − ψ(θ )|2)µ(dθ )

≤ K1

∫ 0

e−2rθ
∥φ − ψ∥

2
r u(e−2rθ

∥φ − ψ∥
2
r )µ(dθ )
−∞
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w

w

f

≤ K1

∫ 0

−∞

e−2rθ
∥φ − ψ∥

2
r u(∥φ(θ ) − ψ(θ )∥2

r )µ(dθ )

≤ K1µ
(2r )

∥φ − ψ∥
2
r u(∥φ(θ ) − ψ(θ )∥2

r ).

Recalling that u(·) ≥ 1 and su(s2) is increasing, then we arrive at

Υ1(φ,ψ) ≤

√
K1µ(2r )(k + ∥ξ∥r )u(k + ∥ξ∥r )∥φ − ψ∥

2
r u(∥φ(θ ) − ψ(θ )∥2

r ).

We now estimate Υ2(φ,ψ) and assume φ(0) ≤ ψ(0) without any loss of generality.
Case (i): φ(0) ≤ ξ (0) ≤ ψ(0). In this case, we have |ξ (0) − φ(0)| ∨ |ξ (0) − ψ(0)| ≤

|φ(0) − ψ(0)|. Since su(s2) is increasing, we obtain

Υ2(φ,ψ) ≤ 2|φ(0) − ψ(0)|2u(|φ(0) − ψ(0)|2).

Case (ii): ξ (0) ≤ φ(0) ≤ ψ(0). Since u is decreasing and su(s2) is increasing, we have

0 ≤ (ξ (0) − φ(0))u(|ξ (0) − φ(0)|2) − (ξ (0) − ψ(0))u(|ξ (0) − ψ(0)|2)

= (ξ (0) − φ(0))(u(|ξ (0) − φ(0)|2) − u(|ξ (0) − ψ(0)|2))

+(ψ(0) − ψ(0))u(|ξ (0) − ψ(0)|2)

≤ (ψ(0) − ψ(0))u(|ξ (0) − ψ(0)|2) ≤ (ψ(0) − ψ(0))u(|φ(0) − ψ(0)|2),

hich implies Υ2(φ,ψ) ≤ |φ(0) − ψ(0)|2u(|φ(0) − ψ(0)|2).
Case (iii): φ(0) ≤ ψ(0) ≤ ξ (0). We compute

0 ≤ (ξ (0) − φ(0))u(|ξ (0) − φ(0)|2) − (ξ (0) − ψ(0))u(|ξ (0) − ψ(0)|2)

≤ (ψ(0) − φ(0))u(|ξ (0) − φ(0)|2) ≤ (ψ(0) − φ(0))u(|ψ(0) − φ(0)|2),

hich implies Υ2(φ,ψ) ≤ |φ(0) − ψ(0)|2u(|φ(0) − ψ(0)|2).
Summarizing the above estimations and noting that su(s) is increasing, we have

⟨φ(0) − ψ(0), b̃(φ) − b̃(ψ)⟩ ≤ λ∥σ−1
∥∞

√
K1µ(2r )(k + ∥ξ∥r )u(k + ∥ξ∥r )∥φ − ψ∥

2
r

× u(∥φ(θ ) − ψ(θ )∥2
r )

+ λ∥σ∥∞∥σ−1
∥∞|φ(0) − ψ(0)|2u(|φ(0) − ψ(0)|2)

≤ Lk∥φ − ψ∥
2
r u(∥φ − ψ∥

2
r ),

or some Lk > 0. Hence, b̃ satisfies Assumptions 2.1 and 2.2 under Assumptions 4.1 and
4.2. □
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