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Abstract: Safety zones (SZs) are critical tools that can be used by wildland firefighters to avoid injury
or fatality when engaging a fire. Effective SZs provide safe separation distance (SSD) from sur-
rounding flames, ensuring that a fire’s heat cannot cause burn injury to firefighters within the SZ.
Evaluating SSD on the ground can be challenging, and underestimating SSD can be fatal. We intro-
duce a new online tool for mapping SSD based on vegetation height, terrain slope, wind speed, and
burning condition: the Safe Separation Distance Evaluator (SSDE). It allows users to draw a poten-
tial SZ polygon and estimate SSD and the extent to which that SZ polygon may be suitable, given
the local landscape, weather, and fire conditions. We begin by describing the algorithm that under-
lies SSDE. Given the importance of vegetation height for assessing SSD, we then describe an analysis
that compares LANDFIRE Existing Vegetation Height and a recent Global Ecosystem Dynamics
Investigation (GEDI) and Landsat 8 Operational Land Imager (OLI) satellite image-driven forest
height dataset to vegetation heights derived from airborne lidar data in three areas of the Western
US. This analysis revealed that both LANDFIRE and GEDI/Landsat tended to underestimate vege-
tation heights, which translates into an underestimation of SSD. To rectify this underestimation, we
performed a bias-correction procedure that adjusted vegetation heights to more closely resemble
those of the lidar data. SSDE is a tool that can provide valuable safety information to wildland fire
personnel who are charged with the critical responsibility of protecting the public and landscapes
from increasingly intense and frequent fires in a changing climate. However, as it is based on data
that possess inherent uncertainty, it is essential that all SZ polygons evaluated using SSDE are val-
idated on the ground prior to use.

Keywords: firefighter safety; safe separation distance; safety zones; LCES; Google Earth Engine;
lidar; LANDFIRE; Landsat; GEDI

1. Introduction

Wildland firefighters are tasked with a wide variety of fire management duties, many
of which place them in close proximity to flames. One of the primary tasks is the removal
of fuels and construction of containment lines in order to limit the potential damage to
lives, property, and other critical resources [1-3]. Particularly when engaged in a direct
attack, whereby firefighters may be working within a few meters or less of the flaming
front, the potential risk for safety incidents is elevated [4]. Sudden or unexpected changes
in fire behavior can have devastating effects to vulnerable fire personnel on the ground
[5]. Events such as the Yarnell Hill fire in 2013, which claimed the lives of 19 firefighters
and the South Canyon fire, which resulted in 14 firefighter fatalities, demonstrate the trag-
edy that can occur in the wildland fire profession [6-8]. Beyond these well-known, high-
fatality events, there is an additional and significant background level of mortality that
occurs among on-duty wildland firefighters [9]. The causes of death are varied, and
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include heart attacks, vehicular and aircraft accidents, falling trees, and smoke inhalation,
to name a few. Between 1990 and 2016, there were 480 wildland firefighter fatalities,
nearly one fifth (19%) of which were due to burnovers or entrapments. Burnovers are
events in which flames overcome fire personnel, either on the ground or while in a vehicle,
and entrapments are when firefighters become trapped by surrounding flames, unable to
evacuate to safety [10]. As wildland fires increase in frequency, extent, and intensity,
wildland firefighters may be put at heightened risk while working in the increasingly
complex fire environment [11-15]. Passage of the Infrastructure Investment and Job Act
in the US developing a requirement for federal agencies to “develop and adhere to rec-
ommendations for mitigation strategies for wildland firefighters to minimize exposure
due to line-of-duty environmental hazards” further underscores the importance and con-
tinued policy relevance of wildland firefighter safety (see H.R. 3684 §40803(d)(5)(A)).

To avoid injury or fatality, firefighters employ a range of safety measures in antici-
pation of and throughout fire management operations. Safety is often considered the first
priority of wildland firefighters, as evident in the 10 Standard Firefighting Orders and the
18 Watch Out Situations, colloquially referred to as the “10s and 18s” and known by all
fire crews in the US [16,17]. One of the most important safety protocols is the intercon-
nected and interdependent system of lookouts, communications, escape routes, and safety
zones (LCES) [18]. First formalized by Paul Gleason in 1991, and later modified to include
anchor points by Thorburn and Alexander in 2001 [19], proper implementation and con-
tinued reevaluation of LCES is essential to firefighter survival. Lookouts are members of
a fire crew well-trained in the interpretation of fire behavior and weather conditions who
are placed at a vantage point in the fire environment that ensures continued visual obser-
vation of the fire crew, the fire itself, and the surrounding landscape. Communications
ensure that critical information is conveyed in a clear, timely, and orderly manner be-
tween various resources deployed on a fire, including ground crews, lookouts, vehicular
and aerial assets, and incident command. Escape routes are pre-defined evacuation path-
ways that enable crews to retreat to a safety zone or other safe area. And finally, safety
zones (SZs), which are the primary focus of this paper, are areas on the landscape that
firefighters can retreat to in dangerous situations in order to avoid bodily harm. SZs are
large, open areas with little or no flammable material contained within. They can take a
variety of forms, including naturally sparsely or unvegetated areas and areas that have
had fuel removed either mechanically, or through burning.

The effectiveness of SZs is defined by the extent to which they can provide safe sep-
aration distance (SSD) from surrounding or nearby flames [4,5,20-22]. SSD is defined as
the distance one must maintain from fire to avoid burn injury, without deployment of a
fire shelter [5,22]. The current operational guideline in the US for defining SSD emerged
from the work of Butler and Cohen in 1998, who used radiative heat transfer modeling to
determine that firefighters should maintain a distance of at least 4 times the height of the
proximal flames [22]. Although this guideline has since been widely adopted [23], the re-
search that underlies it is based solely on one heat transfer mechanism: radiation. Heat
transfer by convection is also a major —sometimes dominant—force, particularly in the
presence of steep slopes and high winds [24-26]. In the presence of such convective heat,
particularly if a fire crew is upslope and/or downwind of flames, SSD will increase [5,21].
Thus, the four times flame height rule is likely insufficient in these conditions. Recent
work by Butler et al. has sought to update this guideline with the inclusion of a “slope-
wind factor”, which adds a multiplicative term to the SSD equation to account for the
effects of convective heat transfer [5,21,26-28]. In addition, given that SZs should be des-
ignated prior to, rather than during, the presence of flames, the four times flame height
rule requires firefighters to predict how tall the flames might eventually be, which is a
challenging endeavor. Accordingly, the newly proposed guidelines assume that, in a
crown fire, flame height is approximately equal to twice the vegetation height [28]. As a
result, the new SSD equation is defined as:
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SSD =8 X VH X A, 1)

where VH is vegetation height and A is the slope-wind factor. Butler recently defined
these slope-wind factors seen in Table 1, based not only on slope and wind speeds, but
also on the burning conditions, as dictated by fuel conditions (e.g., moisture) and weather
(e.g., relative humidity) [28].

Table 1. Slope-wind factors (A) from Butler, colored on a scale from blue (low A) to white (moderate
A) to red (high A) [28].

Slope
Flat Low Moderate Steep
(0-7.5%) (7.6-22.5%) (22.6—40%) (>40%)
) 2 Low
( O_I:g};; /s) 1.5 2 Moderate
’ 1.5 1.5 3 Extreme
15 2 3 4 L
Wind Moderate oW Burning
Speed (4.6-8.9 m/s) 2 4 6 Moderate Condition
P o 2.5 5 6 Extreme
Hieh 25 3 4 6 Low
& 3 5 7 Moderate
(>8.9 m/s)
4 5 - Extreme

Although guidelines for use on the ground are valuable, they still require the fire-
fighters themselves to make the calculation of SSD on the ground while engaged in other
fire management activities. This requires the ability to accurately estimate vegetation
height and terrain slope and anticipate wind speed and fire intensity. Moreover, even if
these difficult interpretations and predictions can be made, an even more challenging en-
deavor is to identify an area on the ground cleared of vegetation that provides the calcu-
lated SSD in all directions. In order to reduce the subjectivity of this process and the po-
tential for interpretation error, Campbell et al. sought to develop a robust, geospatially
driven approach for identifying and assessing the suitability of SZs in advance of a fire
using high-resolution airborne lidar, which provides detailed terrain and vegetation
height information [20]. Their method automatically identified open areas, determined
the height of surrounding trees, and calculated a score for the relative suitability of poten-
tial safety zones within the open areas based on tree height and SSD. The potential for
broad applicability of their approach, however, is limited by three main factors: (1) the
lack of widely available airborne lidar data, (2) the temporal relevancy of and lack of
scheduled updates to available lidar data, and (3) the fact that only existing clearings
could be assessed. With respect to the first limitation, at present, high-quality, publicly
accessible airborne lidar data is particularly sparse in the Western US, where fires are most
frequent, large, and intense. Regarding the second limitation, vegetation structure is dy-
namic in fire-prone environments, where SZ assessment is most important. Thus, having
outdated lidar data potentially limits accurate SSD calculation. Lastly, although existing
open areas may be viable SZs, firefighters often use areas that have already burned
(“black” areas) or create SZs through mechanical fuel removal.

To resolve the limitations of this previous work and to improve wildland firefighter
safety, we are introducing a new, interactive, web-based, open-access mapping tool for
estimating SSD and evaluating potential SZ effectiveness through geospatial analysis. In-
stead of relying on lidar, this tool uses LANDFIRE Existing Vegetation Height data, which
is both nationally available in the contiguous US and is updated every few years. Addi-
tionally, instead of only assessing SSD-driven suitability on clearings that already exist,
this tool allows users to draw their own SZ polygon to evaluate the potential suitability
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of a SZ in any environment. Since LANDFIRE vegetation heights may not be as accurate
as airborne lidar, given that it is a modeled product driven by satellite imagery, it is im-
portant to quantify the effects of differing sources of vegetation height data on SSD eval-
uation. Accordingly, the primary objectives of this study are to: (1) introduce and describe
the algorithm that underlies a new tool for calculating SSD and analyzing SZ suitability;
(2) compare SSD and potential SZ suitability using different sources of vegetation height
data; (3) demonstrate an example case study of the tool in a simulated wildland fire-
fighting situation.

2. Materials and Methods
2.1. Algorithm Description

The Safe Separation Distance Evaluator (SSDE) algorithm is built and applied in
Google Earth Engine (GEE), a cloud-based platform for processing and analyzing GIS and
remotely sensed data, using the JavaScript application programing interface [29]. GEE
was selected for few reasons: (1) it enables the production of user-facing applications that
can be widely accessed by anyone with an internet connection; (2) it hosts an immense
catalog of geospatial data, including datasets necessary for the analysis of SZ suitability;
(3) its cloud computing capabilities provide for rapid execution of complex geospatial
functions, allowing users to quickly assess SZ suitability. Accordingly, all data processing
described in this section is conducted using the GEE.

The SSDE evaluates SSD in two primary ways (Figure 1). The first is per-pixel SSD,
which is a representation of how far one must be from that pixel (e.g., in meters) in order
to avoid burn injury (Figure 1a). This is calculated at the individual pixel level across an
entire area of interest based on the vegetation height and terrain slope within each pixel,
and user-defined wind speed and burn condition classes. It provides a landscape-scale
view of SSD and can be used to aid in the delineation of potential SZ polygons. However,
it is perhaps more important to evaluate SSD at the level of the SZ polygon, as this can
help fire personnel determine the suitability of a potential SZ. Accordingly, the second
way that SSDE evaluates SSD is through the analysis of proportional SSD (pSSD) within
potential SZ polygons (Figure 1b). pSSD quantifies the extent to which a potential SZ pol-
ygon provides SSD from surrounding vegetation/flames, considering the average per-
pixel SSD contained within a series of segments (or clusters of contiguous pixels) around
the SZ polygon. Measured in percent, a pSSD of 100% or greater for a given pixel would
mean that, factoring in vegetation height surrounding the polygon, slope, wind speed,
and burn condition, the pixel’s location should provide sufficient SSD, should fire person-
nel opt to use this location as a SZ. Conversely, a pixel with a pSSD of less than 100%
would indicate that firefighters located within that pixel may risk injury from burning
vegetation outside the boundary of the polygon. A detailed description of the computa-
tion of both SSD and pSSD follows.

( ) high
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Figure 1. Conceptual depiction of the two different ways that SSDE calculates SSD, including a per-
pixel SSD, representing the distance one must maintain from a pixel in order to avoid burn injury
(a), and within-SZ polygon pSSD, representing the relative extent to which a potential SZ polygon
provides SSD from surrounding flames, based on segment-level mean SSD (b).

Per-pixel SSD is calculated as follows. The algorithm relies on two primary input
datasets, both of which are available on a nationwide basis in the US. The first is
LANDFIRE Existing Vegetation Height, version 2.0, which is a 30 m spatial resolution
raster dataset where each pixel represents the average height of the dominant vegetation
within that pixel (Figure 2b) [30,31]. The second is a Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM), also at 30 m spatial resolution [32]. Using the
SRTM DEM, terrain slope in percent is calculated (Figure 2c). This slope raster is then
converted into a slope-wind factor dataset, based on user-defined wind speed and burn-
ing condition categories (Figure 2d; Table 1). Using Equation (1), SSD is calculated from
the slope-wind factor and vegetation height data, producing a spatially exhaustive repre-
sentation of the distance one must maintain from each pixel in the image dataset in order
to avoid injury (Figure 2e). As discussed further in Sections 2.3 and 3.3, there is a user-
selected bias correction option that is built into SSDE to account for underestimation of
tree heights in the LANDFIRE data.

Vegetation Height [m] (b)

0

20+

Slope [%] (¢) Slope-Wind Factor (d) SSD [m] (e)
o [T 50+ oMY [so0+

Figure 2. Illustration of the process for calculating per-pixel SSD in an example focus area in central
New Mexico (a), including the vegetation height data from LANDFIRE (b), the SRTM-derived slope
data (c), the slope-wind factor under moderate burning conditions and moderate wind speeds (d),
and the resulting SSD raster (e). Legend labels contain parenthetical indication relevant sub-figure.
Note that this figure does not illustrate the SZ selection process in a real or simulated wildland fire;
it merely conveys the calculation of per-pixel SSD in a landscape in which fires could occur.

The per-pixel, landscape-wide layers representing SSD, vegetation height, and slope,
as well as the high-resolution Google imagery base map, can be used to identify potential
SZ on the landscape. In a realistic wildland fire scenario, this identification process would
likely be undertaken by a GIS specialist working with an incident management team, who
has specific knowledge of the current fire extent, projected changes in fire behavior, and



Fire 2022, 5, x FOR PEER REVIEW

6 of 25

crew assignments. However, given the open-access nature of SSDE, this process can like-
wise be undertaken by anyone with an interest in wildland firefighter safety. To calculate
pSSD at the SZ polygon level, the user can define a potential SZ using the polygon draw-
ing tools in SSDE, guided by the conditions both within the polygon and surrounding the
polygon. The best SZs are those that contain no flammable material within, naturally or
otherwise, so ideally this SZ polygon would be drawn in an area with low fuel loading,
such as short or sparse grasses or litter. Alternatively, a SZ polygon could also be drawn
in an area that has recently burned, or an area that would be targeted for fuel removal to
create a SZ.

pSSD within a SZ is dependent upon the slope and vegetation height of the surround-
ing landscape. As discussed in the Introduction, heat transfer from flames generally in-
creases with increasing vegetation height and terrain slope. Accordingly, a SZ in the midst
of steep terrain and tall vegetation will require a larger SSD than a SZ in the midst of flat
terrain and short vegetation. If we assume that the SZ itself contains little or no flammable
material, then the primary concern for SZ evaluation is the area surrounding the SZ. Ac-
cordingly, to calculate pSSD within the SZ polygon, slope and vegetation height need to
be evaluated within a “buffer” surrounding a SZ [20,33]. In an environment with short
vegetation, a relatively small buffer surrounding a SZ needs to be evaluated, because
flame heights will tend to be low and more distant vegetation will not affect the suitability
of a SZ given its limited capacity for transferring heat over long distances (Figure 3a).
Conversely, in the presence of tall trees and steep slopes, larger buffer areas are needed to
account for the effects of more distant fuel and flames (Figure 3b). For example, a stand of
20 m tall forest in a low-slope environment with moderate wind speed and burning con-
ditions would require an SSD of 320 m—that is, to maintain safety, firefighters would
need to find a SZ that provides at least 320 m of separation from this stand. However, if
the SZ evaluation procedure only included an analysis of vegetation within a small (e.g.,
20 m) buffer around the SZ, then the potentially dangerous effects of the heat emitting
from a crown fire in this stand could be missed, putting the firefighters at risk.

(@)

) W
NV
N/ SHORTER
- .
SHORTER VEGETATION SAFETY ZONE
LOWER INTENSITY

(b)

) )| °FR
SSD

TALLER VEGETATION SAFETY ZONE
HIGHER INTENSITY

Figure 3. Relationship between the safe separation distance (SSD) defined by vegetation surround-
ing the safety zone and the size of the buffer needed around the safety zone to ensure that all rele-
vant surrounding vegetation is considered in the safety zone analysis. With shorter vegetation, a
smaller buffer is needed (a), whereas with taller vegetation, a larger buffer is needed (b). Note that
the relationship between vegetation height and SSD is not drawn to scale.
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Accordingly, to ensure that an appropriately sized buffer area is evaluated around a
potential SZ polygon, the buffer size must be defined by the highest per-pixel SSD in the
surrounding area. To do this, the largest theoretically possible SSD in the US (SSDusmax) is
first calculated as follows:

SSDUSmax =8 X VHUSmax X Amax/ (2)

where VHusmax is the height of the tallest tree in the US (116 m) and Amaxis the maximum
slope-wind factor from Table 1 (10). As a result, SSDusmax is equal to 9280 m. While this is
purely a theoretical SSD, it provides a useful initial buffer distance. The potential SZ pol-
ygon is buffered by this SSDusmax, and then the highest SSD pixel value within the initial
buffer (SSDszmax) is then identified. This value is then used to create the final buffer around
a designated SZ polygon, which will serve as the basis of SSD evaluation.

The buffer area is then used to clip out a subset of the SSD raster (Figure 4a). Given
that each pixel possesses its own SSD (based on its unique combination of vegetation
height and slope-wind factor), it is important to consider the variation in SSD that is found
throughout the area surrounding the SZ polygon. Vegetation may be taller or slopes may
be steeper on one edge of a SZ polygon as compared to the other. Accounting for this
spatial variability at the pixel level would greatly increase computation time, so the SSDE
algorithm applies an image segmentation function on the clipped SSD raster to generate
a series of segments (i.e., clusters of similar pixels) representing areas with relatively ho-
mogeneous SSD values (Figure 4a). From each segment, Euclidean distance is calculated
on a continuous basis as a 30 m spatial resolution raster where each pixel represents the
distance from that segment. Each segment also has a mean SSD value, aggregated from
the SSD pixel values within the segment. Accordingly, a comparison between the Euclid-
ean distance raster and the segment’s mean SSD value should provide insight into
whether pixels in the SZ polygon are within or beyond the SSD. To determine this on a
relative basis, the Euclidean distance is then divided by the segment’s mean SSD, resulting
in a dataset containing pixels representing pSSD, where pixel values under 1 (or 100%)
represent areas that would be unsafe if the fuel within that segment were burning under
crown fire conditions (Figure 4b). Values over 1 (or 100%) represent areas that would be
safe, according to the SSD guideline. This process is repeated for every segment surround-
ing the SZ polygon, producing a series of pSSD rasters. To reduce these rasters down to a
single representation of pSSD within the SZ polygon, the minimum pixel value (repre-
senting the “worst-case” pSSD for all segments surrounding the polygon) is extracted
among all of the rasters (Figure 4c). This pSSD raster enables the identification of the safest
area within the potential SZ polygon, defined as the location with the highest pSSD (Fig-
ure 4d). Lastly, a threshold is applied to the pSSD to distinguish between safe areas, or
areas that are equal to or greater than 100% of pSSD, and unsafe areas, or areas that are
less than 100% of pSSD (Figure 4d). The size of the resulting safe areas is important for
wildland firefighters, as it provides a sense for how many resources (e.g., firefighters,
trucks, dozers, engines) can utilize the SZ at once. It has been estimated that approxi-
mately 5 m? (50 ft?) is recommended for each firefighter, and 28 m?2 (300 ft?) for each piece
of heavy equipment [33,34]. To enable users to interact with the resulting data outside of
GEE, there are options for downloading all of the resulting data layers, including the SSD
raster, pSSD raster, safe/unsafe raster, the SZ polygon vector feature, and the safest point
vector feature.
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Figure 4. Illustration of the process for calculating within-safety zone (5Z) safe separation distance
(SSD) in the same example focus area in central New Mexico shown in Figure 1, including the man-
ual input of a SZ polygon, the buffering of that SZ polygon, and the generation of SSD segments (a),
the calculation of pSSD from a single example segment (b), the combined minimum of pSSD from
all segments (c), and derivative safety products, including the safest point and a binary classification
of safe versus unsafe within the SZ polygon (d). Legend labels contain parenthetical indication rel-
evant sub-figure(s).

2.2. Vegetation Height Analysis

Given that LANDFIRE Existing Vegetation Height is a modeled product based on
multispectral satellite imagery, it can be assumed that there is inherent inaccuracy in its
vegetation height estimates. Conversely, airborne lidar data, which result from laser
pulses emitted from an airborne platform reflecting off the ground and aboveground sur-
faces, provide direct measurements of vegetation height. Thus, airborne lidar is consid-
ered a reliable source of data for deriving accurate and precise canopy height models in
vegetated environments [35]. In fact, the models that derive the LANDEFIRE Existing Veg-
etation Height product are trained in part using airborne lidar data, in addition to ground-
level plot measurements [36]. Inaccuracy in vegetation height results in inaccuracy in SSD,
and inaccuracy in SSD could have significant effects on the safety of wildland firefighters.
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Accordingly, to quantify these effects, we compared LANDFIRE-driven SSD to lidar-
driven SSD.

Although LANDFIRE is one of the most widely used, nationwide vegetation height
products in the US, particularly among wildland fire scientists, it is not the only one. A
recent study by Potapov et al. introduced a new global forest height product driven by a
combination of Global Ecosystem Dynamics Investigation (GEDI) data and Landsat 8 OLI
imagery [37,38]. GEDI is a spaceborne lidar instrument that produces large footprint (~25
m diameter) full waveform surface elevation data. Distinct from airborne lidar, however,
which produces a dense point cloud of measurements that can be used to interpolate spa-
tially exhaustive, high-resolution height models, GEDI's sampling design is such that
large gaps exist between successive and adjacent footprints, limiting the capacity to pro-
duce spatially contiguous height models. However, Potapov et al. used GEDI data to train
a model to predict forest height using Landsat imagery on a global scale. Similarly to
LANDFIRE, this GEDI/Landsat hybrid product is a modeled product and, as such, pos-
sesses inherent uncertainty. In the interest of basing our algorithm on the best and most
reliable vegetation height data, we also compared the GEDI/Landsat-derived SSD to air-
borne lidar-derived SSD.

To compare LANDFIRE, GEDI/Landsat, and airborne lidar, we selected three areas
in fire-prone regions of the Western US. These areas were selected to capture a range of
terrain and vegetation height conditions. Importantly, each of the three areas was required
to have recently collected, freely available airborne lidar data and no recent major disturb-
ances. The 3 areas selected, each 20 x 20 km in size, are shown in Figure 5. The first area is
in western New Mexico (Figure 5a), ranging in elevation from 1659 to 3032 m (mean =
2253 m), ranging in slope from 0 to 153% (mean = 26%), and is dominated by ponderosa
pine forests and pifion-juniper woodlands. According to the airborne lidar data, vegeta-
tion heights range from 0 to 41 m (mean = 13 m). The second area is in western Wyoming
(Figure 5b), ranging in elevation from 1741 to 3038 m (mean = 2284 m), ranging in slope
from 0 to 179% (mean = 35%), and is dominated by Douglas fir and lodgepole pine forests
and sagebrush shrublands. According to the airborne lidar data, vegetation heights range
from 0 to 40 m (mean = 15 m). The third area is in northern California (Figure 5c), ranging
in elevation from 137 to 1399 m (mean = 729 m), ranging in slope from 0 to 195% (mean =
30%), and is dominated by Douglas fir forests, black oak woodlands, and ruderal grass-
lands. According to the airborne lidar data, vegetation heights range from 0 to 72 m (mean
=22 m).
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Figure 5. Three test areas used to assess SSD uncertainty, including a site in western New Mexico
(a), western Wyoming (b), and northern California (c), as well as a locator map illustrating their
broader geographic context (d). The LANDFIRE SSD shown represents low burning conditions and
light wind. The SZs represent randomly generated polygons used for testing.

Airborne lidar datasets for each of these 3 areas were acquired from the USGS 3D
Elevation Program (3DEP) [39]. The New Mexico data came from the USGS 3DEP dataset
titled “NM_SouthCentral_2018_D19”, collected in 2018 with an average point density of
6.0 pts/m2 The Wyoming data came from the USGS 3DEP dataset titled “WY_South-
west_2020_D20", collected in 2020 with an average point density of 7.6 pts/m2. The Cali-
fornia data from the USGS 3DEP dataset titled “USGS_LPC_CA_NoCAL_Wild-
fires_B4_2018”, collected in 2018 with an average point density of 10.1 pts/m2. It should
be noted that there are some temporal discrepancies between the airborne lidar data
(2018-2020), LANDFIRE data (2016), and GEDI/Landsat data (2019). To avoid issues as-
sociated with major vegetation height changes that may have occurred between these time
frames, these areas were selected specifically to avoid containing any fires that had oc-
curred between 2015 and 2021. To match the training and validation data used in the
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development of LANDFIRE and Potapov et al.’s height products, airborne lidar canopy
height models were derived at a 30 m spatial resolution using the 90 percentile of above-
ground point returns within each pixel. All of the airborne lidar data processing was con-
ducted using LAStools [40].

To assess SSD uncertainty, the algorithm described in Section 2.1 was applied to each
of the three vegetation height datasets (LANDFIRE, GEDI/Landsat, and airborne lidar).
However, to enable the flexibility needed for this comparative analysis, the algorithm was
implemented in Python with heavy reliance on the Esri ArcPy library, rather than GEE.
Given that the GEDI/Landsat product does not include vegetation heights lower than 3 m
(as it is considered a “forest” height product), LANDFIRE vegetation heights were used
in areas lower than 3 m in height for the GEDI/Landsat analysis. For all three datasets, the
same terrain slope was used, derived from a USGS 3DEP 30 m digital elevation model. In
each of the three test areas, SZ polygons were automatically generated, using a random
shape generator created for this study. Briefly, it starts with a randomly located point, and
then creates a shape based on a randomly defined number of equally spaced vertices that
are placed at random distances from the center point. The distances are selected from a
normal distribution with a mean between 100 and 1000 m and a standard deviation of 0.25
times the mean. The resulting shape is then smoothed to produce a final SZ polygon, as
can be seen in Figure 5a—c. In all, 25 SZ polygons were generated for each test area (75
total). Since each polygon was evaluated independently, randomly placed polygons could
overlap. For each SZ polygon, every unique combination of burning condition and wind
speed was evaluated. As a result, the algorithm was run 2025 times (3 vegetation height
datasets x 75 SZs x 3 burning conditions x 3 wind speeds).

Four statistical comparisons were made between the results from the three different
vegetation height datasets. The first was a per-pixel SSD comparison. For this, a set of 25
random points was generated within each combination of vegetation height dataset, burn-
ing condition, and wind speed (675 points total), and pixel values were extracted from
SSD rasters. The second was the maximum pSSD found within each of the randomly gen-
erated SZ polygon for each combination of vegetation height dataset, burning condition,
and wind speed. The third was the total safe area (the areas meeting or exceeding SSD)
within the SZ polygon for each combination of vegetation height dataset, burning condi-
tion, and wind speed. All three of these comparisons were made using ordinary least
squares regression between LANDFIRE and airborne lidar, GEDI/Landsat and airborne
lidar, and LANDFIRE and GEDI/Landsat. The fourth and final statistical comparison was
aimed at determining the geographic divergence between the locations identified as being
the safest point within each SZ. For this, the horizontal distance between safe points was
calculated between LANDFIRE and airborne lidar, GEDI/Landsat and airborne lidar, and
LANDFIRE and GEDI/Landsat, from which histograms and associated descriptive statis-
tics were derived.

2.3. LANDFIRE Bias Correction

As mentioned in Section 2.1 and discussed in greater detail in the Section 3.2, the per-
pixel SSD comparison revealed that, in comparison to the airborne lidar-based SSD values,
the LANDFIRE and GEDI/Landsat SSD values were underestimated. To ensure that the
algorithm is not overestimating the relative safety of drawn SZs, a bias correction proce-
dure was developed. Although both LANDFIRE and GEDI/Landsat featured a similar
trend in bias, the bias correction was only tested on the LANDFIRE data, given the fact
that LANDFIRE was ultimately selected as the vegetation height dataset used in SSDE,
the justification for which is further discussed in Section 4. To correct for underestimation
in SSD, the linear regression model resulting from the per-pixel SSD comparison was used
to adjust LANDFIRE SSD pixel values through a linear transformation. To test the extent
to which this bias correction procedure increased the agreement between LANDFIRE- and
lidar-derived SSD values and SZ suitability metrics, the same four statistical comparisons
previously described were conducted: (1) per-pixel SSD linear regression; (2) within-S5Z
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maximum pSSD linear regression; (3) within-SZ total safe area linear regression; (4) safest
point distance histogram comparison. Lastly, to enable users to select between using the
raw LANDFIRE data or the bias-corrected LANDFIRE data as a basis of SSD calculation,
a selection option was added to SSDE.

2.4. Use Case Demonstation

To provide an example use case for SSDE, we simulated a situation in which wildland
firefighters are tasked with selecting a SZ during an active wildfire. To do this, we created
a fictional fire perimeter in a ponderosa pine forest in an area of northern New Mexico
that has a variety of potential SZs in the form of open grassy meadows. Two of these po-
tential SZs are delineated and analyzed using SSDE. To test the viability of these potential
SZ under different weather and fire conditions, they are each evaluated for two sets of
extremes: (1) light wind and low burn condition; (2) high wind and extreme burn condi-
tion.

3. Results
3.1. GEE Application

The SSDE was developed in GEE and a free, open-access, web-based application can
be viewed at https://firesafetygis.users.earthengine.app/view/ssde (accessed on 6 January
2022). Screen captures of the interface can be seen in Figures 6-8. Figure 6 represents the
view that a user would have when zoomed to an area of interest, including an instruc-
tional panel on the left that explains how to use the tool (Figure 6a), the main map interface
with a Google imagery base map (Figure 6b), and the polygon drawing tool that can be
used to digitize a potential SZ polygon (Figure 6c).
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Figure 6. A screen capture of the Wildland Fire Safe Separation Distance Evaluator Google Earth
Engine web application, including an instructional panel on the left that explains how to use the
tool (a), the main map interface with a Google imagery base map (b), and the polygon drawing tool
that can be used to digitize a potential SZ polygon (c).
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Figure 7. A screen capture of the Wildland Fire Safe Separation Distance Evaluator Google Earth
Engine web application, including the user-selected options for generating and downloading a SSD
map (a), and an example of the resulting map (b).
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Figure 8. A screen capture of the Wildland Fire Safe Separation Distance Evaluator Google Earth
Engine web application, including the widgets used for calculating SZ suitability and downloading
the resulting layers (a), a layer representing pSSD (b), the ‘Layers” menu for toggling on and off
layer visibility (c), and a widget with several quantitative suitability metrics for two different wind
speed-burning condition combinations (d).



Fire 2022, 5, x FOR PEER REVIEW

14 of 25

The user then has the option to select the burning condition, wind speed, and
whether or not to correct for vegetation height bias (Figure 7a). Following these selections,
the user generates a per-pixel SSD map (Figure 7b). The user also has the option to down-
load the resulting raster image (Figure 7a).

The user can then manually draw in a potential SZ polygon and evaluate a variety of
suitability metrics by selecting ‘Calculate SZ SSD’ (Figure 8a). As a result, three new spa-
tial layers will be added to the map, each within the extent of the SZ polygon, including
the pSSD (Figure 8b), as well as a point feature representing the safest location and a safe
(pixels greater than or equal to SSD) and unsafe (pixels less than SSD) raster. These layers
can be toggled on and off in the ‘Layers’ menu (Figure 8c). The layers can also be individ-
ually downloaded (Figure 8a). Lastly, a series of tabular metrics are also computed and
displayed to aid in the evaluation of SZ suitability (Figure 8d). The user can evaluate and
compare multiple different wind speeds, burning conditions, and whether or not bias is
corrected for.

3.2. Vegetation Height Analysis

The results of the per-pixel SSD uncertainty analysis can be seen in Figure 9. When
compared to airborne lidar-derived SSD, which we assume to be the most accurate given
the fact that airborne lidar vegetation heights are directly-measured rather than modeled,
it becomes clear that both LANDFIRE- and GEDI/Landsat-derived SSD values, on aver-
age, are underestimated (Figure 9a,b). Since all of the other variables (slope, wind speed,
burning condition) were held constant, this means LANDFIRE and GEDI/Landsat vege-
tation height products underestimated vegetation heights, as taller vegetation results in
higher SSD. Per-pixel SSD values are still fairly strongly correlated (R2anDFiRE-tidar = 0.63;
R2GeD1/Landsatlidar = 0.68), suggesting that the modeled products trend towards similar results
as the airborne lidar-derived per-pixel SSD, but the regression slopes of less than 1 indi-
cate that both LANDFIRE and GEDI/Landsat will underestimate per-pixel SSD, particu-
larly on the high end. This further points towards the fact that LANDFIRE and
GEDI/Landsat fail to capture the structure of very tall vegetation well, though this failure
appears more pronounced in the LANDFIRE data, given the lower regression line slope.
Of particular note is the presence of a number of sample points where the LANDFIRE and
GEDI/Landsat per-pixel SSD values approach zero but the airborne lidar per-pixel SSD
values are greater than zero. A visual assessment of the three vegetation height datasets
in comparison to aerial imagery revealed that, at least in some cases, this can be attributed
to the presence of standing dead vegetation such as in a post-fire environment. The air-
borne lidar captures this standing dead vegetation since the laser pulses interact with any
aboveground objects. However, the LANDFIRE and GEDI/Landsat, both of which rely
heavily on spectral data tend to suggest there is no vegetation in these areas, given the
fact that the typical vegetation reflectance signal (e.g., high near infrared reflectance, low
visible wavelength reflectance) is no longer present after a disturbance event. The com-
parison between LANDFIRE and GEDI/Landsat directly further suggests that LANDFIRE
tends to underestimate vegetation heights to a greater extent than GEDI/Landsat, though
they are strongly correlated (R?LANDFIRE-GEDILandsat = 0.74) (Figure 9c).
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Figure 9. Results of the per-pixel SSD comparison between LANDFIRE and airborne lidar (a),
GEDI/Landsat and airborne lidar (b), and LANDFIRE and GEDI/Landsat (c). The red line represents
the ordinary least-squares regression model between the x and y variables, whereas the black line
represents the 1:1 line, where x is equal to y.

The results of the SZ polygon-level maximum pSSD uncertainty analysis can be seen
in Figure 10. The results follow a similar trend from the per-pixel SSD comparison, which
makes sense given that within-SZ pSSD is driven by the pixel-level SSD values surround-
ing the SZ polygon. Both LANDFIRE and GEDI/Landsat overestimate the maximum
pSSD within SZ polygons as compared to airborne lidar (Figure 10a,b). This can once
again be attributed to vegetation height underestimation from these modeled products as
compared to airborne lidar data. In addition, there is a much greater correlation at the SZ
polygon level than at the pixel level. For example, at the pixel level, LANDEFIRE and lidar
SSD have a coefficient of determination (R?) of 0.63, whereas at the SZ polygon level,
LANDFIRE and lidar maximum pSSD have an R2of 0.92. This is likely due in part to the
segmentation procedure that aggregates adjacent pixels with similar SSD values and com-
putes a mean, which drives the pSSD calculation, thus reducing the pixel-level noise and
producing a stand-level estimate of vegetation height. This high correlation also suggests
that SZ polygon size is likely the major driver of within-SZ pSSD, outweighing the effects
of differing vegetation height estimates. When comparing between the 2 modeled prod-
ucts, LANDFIRE and GEDI/Landsat produce very similar results with a high correlation
(R2LANDFIRE-GEDI/Landsat = 0.88) and a regression line slope of close to 1 (0.94) (Figure 10c).
Again, even though LANDFIRE tended to produce slightly lower per-pixel SSD values
due to lower vegetation height estimation (Figure 7c), when pixels are aggregated at the
segment level and when those segment-level pSSD estimates are further aggregated at the
SZ polygon level, subtle differences in vegetation height bear little effect on pSSD calcu-
lation.
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Figure 10. Results of the safety zone polygon-level maximum pSSD comparison between LAND-
FIRE and airborne lidar (a), GEDI/Landsat and airborne lidar (b), and LANDFIRE and GEDI/Land-
sat (c). The red line represents the ordinary least-squares regression model between the x and y
variables, whereas the black line represents the 1:1 line, where x is equal to y.

The results of the SZ polygon-level total safe area uncertainty analysis can be seen in
Figure 11. These results mirror those seen in Figure 9, which makes sense given that safe
area is a direct product of the within-SZ pSSD calculation. Both LANDFIRE and
GEDI/Landsat tend to overestimate total safe area within SZ polygons as compared to
airborne lidar (Figure 11a,b). While such an overestimation is potentially problematic, the
most acutely problematic disagreement between the modeled products and the airborne
lidar is the large number of SZ polygons where lidar indicates there is 0 ha safe area and
the modeled products indicate there is greater than 0 ha safe area—in some cases as much
as 100 ha of safe area. However, it is important to recognize that since the safe versus
unsafe classification is based on a defined pSSD threshold, a SZ polygon that reaches 99%
of SSD would still be mapped as unsafe, so small differences in vegetation heights can
have large effects on these results. Once again, the LANDFIRE and GEDI/Landsat safe
area estimates are both highly correlated and relatively unbiased when compared to one
another (Figure 11c).
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Figure 11. Results of the safety zone-level total safe area comparison between LANDFIRE and air-
borne lidar (a), GEDI/Landsat and airborne lidar (b), and LANDFIRE and GEDI/Landsat (c). The
red line represents the ordinary least-squares regression model between the x and y variables,
whereas the black line represents the 1:1 line, where x is equal to y.

The results of the safest point geographic displacement analysis can be seen in Figure
12. LANDFIRE and GEDI/Landsat result in safest points being on average between about
100 and 150 m from the lidar-derived safest point location (Figure 12a,b). Given the 30 m
spatial resolution of the analysis, that means, on average, the safest points are within 3-5
pixels of one another. This suggests that the geography of the safest point is perhaps not
as sensitive to the vegetation height as it is to the geometry of the SZ polygon. However,
there are exceptions, given the right-skewed tail of the distributions. In a select few in-
stances, safest points were found to be 800 m apart or more. From a firefighter safety per-
spective, this is a significant deviation, as the safest point is likely the target gathering
point within the SZ for the crew and equipment. The LANDFIRE and GEDI/Landsat safest
points are, on average, closer to one another than they each are to the airborne lidar-de-
rived safest points (Figure 12c).
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Figure 12. Results of the safety zone polygon-level total safest point location comparison between
LANDFIRE and airborne lidar (a), GEDI/Landsat and airborne lidar (b), and LANDFIRE and
GEDI/Landsat (c).

3.3. LANDFIRE Bias Correction

The results of the LANDFIRE bias correction procedure can be seen in Figure 13. The
bias correction resulted in SSD and SZ suitability metrics that align more closely with
those derived from airborne lidar. Specifically, in all three regression analyses, including
the per-pixel SSD (Figure 13a), the within-SZ polygon maximum pSSD (Figure 13b), and
the within-SZ polygon total safe area (Figure 13c), the regression slope was much closer
to one than the un-corrected data. The bias correction bore little effect on the safest point
location comparison, which makes sense given the fact that vegetation heights were all
increased linearly, meaning the placement of the safest point would not have changed
significantly (Figure 13d).
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Figure 13. Results of the comparison between bias-corrected LANDFIRE data and airborne lidar
data, including per-pixel SSD (a), within-SZ polygon maximum pSSD (b), within-SZ polygon total
safe area (c), and distance between modeled safest points (d).

3.4. Use Case Demonstration

The results of the case study demonstration can be seen in Figure 14. The two poten-
tial SZ polygons varied in shape, size, and proximity to the fire perimeter. In a direct attack
situation, a fire crew would be working in close proximity to the perimeter of the fire.
Thus, having a SZ that is in close proximity to the crew is the best way to ensure that they
can access the SZ quickly via a pre-planned escape route. Based on proximity alone, SZ 1
is superior to SZ 2 (Figure 14a). Indeed, provided that wind speeds were light and burn
conditions were low, SZ 1 would provide sufficient SSD for the crew, providing a maxi-
mum within-SZ pSSD of 115%, and a total safe area of 0.36 ha (Figure 14b). However,
under high winds and extreme burn conditions, this SZ would no longer be suitable (Fig-
ure 14c). In comparison, SZ 2 is further away, but due to its larger size, provides greater
SSD, particularly under light winds and low burn conditions (Figure 14d). Even though
this polygon is much larger, it still does not meet the SSD guideline under high winds and
extreme burn conditions, providing a maximum within-SZ pSSD of 74% (Figure 14e).
Armed with this information, however, the crew could opt to expand SZ 2 to increase its
suitability through mechanical fuel removal or controlled burning.

SZ 1, Light Wind, Low Burn | SZ 1, High Wind, Extreme Burn
Maximum pSSD: 115% Maximum pSSD: 26%
Total Safe Area: 0.36 ha Total Safe Area: 0 ha

SZ 2, Light Wind, Low Burn | SZ 2, High Wind, Extreme Burn
Maximum pSSD: 353% Maximum pSSD: 74%
Total Safe Area: 90 ha Total Safe Area: 0 ha
(d)

(e)

Potential SZs 0% pSSD 100%+ O Safest Point

Figure 14. Results of the evaluation of two potential SZs in a simulated wildland fire scenario in
northern New Mexico, including an overview map (a), and the suitability analysis results for SZ 1
under light wind and low burn conditions (b), SZ 1 under high wind and extreme burn conditions
(c), SZ 2 under light wind and low burn conditions (d), and SZ 2 under high wind and extreme burn
conditions (e).

4. Discussion

We envision the SSDE being of broad interest to the wildland fire community, from
fire scientists to incident management personnel to wildland firefighters. Its open-access
nature allows anyone to explore, examine, and interact with the concepts of SZs and SSD.
Even if not used in an operational context, there is great value in being able to quickly and
easily examine the conditions that define potential SZ suitability on a broad spatial scale.
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Wildland firefighters designate SZs on a daily basis as a part of their fire management
duties. Built into this designation process is an inherent degree of subjectivity that can
result in differences in the interpretation of SZ suitability between and among crews. By
using an objective tool for SZ suitability analysis that can be broadly applied in the US,
fire crews across the country can increase the consistency and reliability of the SZ evalua-
tion process. However, given that this is a web-based platform requiring an internet con-
nection, that also does not translate well to a mobile environment, we do not envision this
as a real-time decision-making tool that firefighters could use on the ground. Instead, op-
erational use of SSDE could be at the incident command level, for daily or more frequent
evaluation of potential SZs for crews working on a fire. Given the dynamic and fast-paced
nature of fire management, it is essential to be able to make rapid assessments of SZ suit-
ability, particularly as fire conditions change. For example, cross-referencing near-real
time data representing the current fire perimeter with SSDE can enable the evaluation of
whether or not previously burned areas can provide SSD from nearby unburned fuel. Ad-
ditionally, our SZ suitability driver analysis revealed the strong influence of wind on max-
imum within-SZ pSSD. This highlights the need to continually re-evaluate SZ suitability
not only as the fire evolves, but as local weather conditions change as well.

There is relatively little research on the actual utilization of SZ in wildland fire-
fighting. As discussed in the Introduction, SZ are largely designated ad hoc by firefighters,
with little support from GIS and remote sensing data. As a result, there are essentially no
publicly available datasets that represent SZ that were used by firefighters. If they were
available, we could perform more empirically driven studies of SZ effectiveness, but as it
stands, we are limited to using theoretical models to predict safety zone effectiveness
based on fire physics [21,22,25-27]. While we do not know how many firefighters have
suffered injuries or fatalities due specifically to the selection of inadequate SZ, we do know
that burnovers and entrapments occur on an annual basis, and that these injuries and fa-
talities would be much less likely to occur if escape routes and SZ were properly em-
ployed. Every wildland fire safety incident is different from the last, so there is no system-
atic way to determine the extent to which a tool such as SSDE would have mitigated the
incident. However, with the increased infusion of reliable geospatial data and modeling
into wildland firefighter safety, we hope to minimize future incidents. In future research,
it would be beneficial to compare the results of SSDE to actual SZ used by firefighters.
This could be accomplished through the GPS collection of SZ in the field or perhaps
through simulation of SZ selection in a virtual environment, to minimize risk to fire per-
sonnel while still gaining valuable, realistic insight into SZ selection [41-43].

The SSD guideline upon which SSDE is based (Equation (1), Table 1) can be quite
restrictive, particularly in landscapes featuring rugged terrain and tall trees. For example,
in a worst-case scenario (high winds, extreme burning conditions), trees that were 25 m
tall and on slopes that were steep (>40%) would produce an SSD equal to 2 km, making
SZ designation impractical, if not impossible. However, even if no SZ is found to meet
guidelines, SSDE still can provide an analysis of which safety zones are closest to meeting
the SSD requirement. SSDE enables evaluation of newly burned potential SZs or existing
clearings that nearly meet the SSD requirement and could be enlarged through prescribed
burning or mechanical fuel removal. For example, if a potential SZ polygon delineated
within an existing clearing was determined through the use of SSDE to only reach a max-
imum pSSD of 90%, SSDE could be further used to evaluate the relative suitability of one
or more potential SZ expansion options. These options could be informed by the aerial
imagery, terrain, vegetation height, and SSD data built into SSDE, which could aid in the
determination of the areas that might be best suited for fuel removal (i.e., removing sparse,
short shrubs on flat slopes rather than dense, tall trees on steep slopes to improve the SZ).

Our comparative analysis between SZ suitability metrics derived from LANDFIRE,
GEDI/Landsat, and airborne lidar revealed that the former two 30 m products tended to
underestimate vegetation height and thus overestimate the suitability of potential SZs.
However, given that airborne lidar data are not widely available in the Western US, and
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even where they are available may not reflect current vegetation structural conditions, the
SSDE had to be built using either LANDFIRE or GEDI/Landsat to enable broad applica-
tion. If one product or the other demonstrated a significantly closer alignment with the
lidar-derived suitability metrics, then we would have built SSDE using the superior prod-
uct, yet no such clear winner emerged, with LANDFIRE marginally outperforming
GEDI/Landsat at the SZ level and GEDI/Landsat marginally outperforming LANDFIRE
at the pixel level. Thus, we were left to rely on other factors in choosing which dataset to
base the SSDE algorithm on. We chose LANDFIRE for the two primary reasons. First,
LANDEFIRE is a well-established interagency US government-funded program that has a
lengthy history and is already well-known to the wildland fire community in the US. Sec-
ondly, LANDFIRE data are scheduled to be continually updated to reflect changes in veg-
etation structure over time. This is particularly important given the dynamic nature of
vegetation in disturbance-prone regions of the US. SSDE could potentially be expanded
to other regions of the world if adequate vegetation height data becomes available. The
GEDI/Landsat forest height data used in this study are globally available but does not
include vegetation below 3 m in height; thus, additional height information would be
needed to fill in this lower range. Alternatively, regionally specific height models could
be developed where airborne lidar is more common.

Although other variables were found to be more important predictors of maximum
within-SZ pSSD than vegetation height (e.g., wind speed and slope; Appendix A), we only
performed an uncertainty analysis on the vegetation height source data. The slope data in
our study were derived from SRTM DEMs, which are widely regarded to be an accurate
source of elevation (and, in turn, slope) data [44,45]. That being said, a previous compari-
son between SRTM and other DEM source datasets have revealed that SRTM-derived
slope estimates tend to be comparatively high [46]. However, given the relatively coarse
categorization of slope classes used to calculate SSD in our model, we believe the results
would be minimally affected by using different sources of elevation data. With respect to
the other variables (wind speed, burn condition, SZ geometry), these are all user-defined
in SSDE. That is not to say that user definition does not come with inherent uncertainty,
but the uncertainty analysis can, and indeed should, be conducted by the user of SSDE.
For example, by simulating different wind speed and burn conditions, the user can gain
a valuable sense of the variability of SZ suitability. There is also inherent uncertainty in
the fire physics research that has defined the SSD equation (Equation (1)); however, test-
ing that uncertainty is beyond the scope of this study. The SSDE platform is sufficiently
flexible to enable future updates to the fundamental SSD equation that underlies the al-
gorithm.

This study represents an important contribution to a growing body of literature sur-
rounding the application of GIS and remote sensing to wildland firefighter safety. This
study builds upon previous work by Dennison et al. and Campbell et al. [20,33] using
airborne lidar to identify and evaluate SZ suitability but scales the application to the con-
tiguous US. Escape routes are a second component of LCES that can be modeled, includ-
ing variation in travel rates with slope [47,48], impacts of lidar-derived vegetation density
and surface roughness on travel rates [49], and a landscape scale Escape Route Index [50].
Travel rates used in geospatial modeling can simulate the evacuation of a fire crew in
comparison to predicted fire behavior in order to assess potential trigger points on the
landscape that a fire crew could use [51]. Beyond SZs and escape routes, there is an emer-
gence of other geospatially driven approaches for fire management that have implications
for firefighter safety, such as the mapping of snag hazards [52], the spatially explicit esti-
mation of suppression difficulty [2,53], the prediction of potential control locations [3,54],
and the mapping of potential wildland fire operational delineations [55,56]. These tools
are now commonly used in the US to enhance situational awareness and improve the
quality of strategic decision-making on large and complex wildfire incidents [57]. Taken
together, these tools stand to greatly improve the efficiency and safety with which
wildland firefighters can engage in their life-saving work.
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5. Conclusions

SZs are one of the most important safety tools available to wildland firefighters. The
difference between a good SZ (one that provides sufficient SSD) and a bad SZ (one that
does not), can be the difference between life and death. Although guidelines exist for the
assessment of SSD, errors in estimating vegetation height, distances, and SSD based on
anticipated slope, wind, and fire conditions could result in firefighter injury or fatality. In
this study we have introduced a broadly applicable methodology and associated open-
access web mapping tool for the assessment of SZ suitability based on vegetation height,
terrain slope, wind speed, and burning conditions. The tool enables users to delineate
their own potential SZ anywhere in the contiguous US and rapidly compute a variety of
suitability metrics that are driven by free and publicly available datasets. SSDE allows for
those with wide-ranging expertise to explore and examine the complexities of potential
SZ suitability, and how the conditions that affect SZ suitability vary over space with veg-
etation height and slope.

As with all geospatially driven tools, however, it is important to consider the effects
that data inaccuracy and uncertainty may have on the tool’s results. This importance is
greatly amplified when the tool is designed to ensure the safety of others. To that end, we
compared two different modeled vegetation height datasets to reference data derived
from airborne lidar data with respect to their relative agreement on the array of SZ suita-
bility metrics produced by the tool. Although correlations between the two datasets and
airborne lidar were relatively high across all metrics, they tended to underestimate vege-
tation heights, resulting in an overestimation of the relative safety of SZs. However, this
disagreement enabled us to implement a bias correction option in the tool to enable users
to perform raw and lidar-adjusted SZ evaluations. Even with the bias correction, it is of
the utmost importance that all results emerging from the use of the SSDE be validated on
the ground by professionals prior to the formal designation of SZs. In the future, as air-
borne lidar becomes more widely available and frequently updated, efforts should be
made towards basing SSD on lidar, rather than modeled geospatial vegetation height
products. As fire science continues to advance our understanding of the complex nature
between fuel, topography, and weather, the analysis of SSD should reflect the most up-
dated understanding of how radiative and convective heat transfer affects SZ suitability.
In addition, the practical application of SSD and SZs needs to be developed, to determine
how firefighters utilize the information provided by guidelines and mapping tools.
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Appendix A

There are several factors that drive the suitability of potential SZ according to the
SSDE. These include geometry of the SZ polygon (area, shape), height of the surrounding
vegetation, slope of the surrounding terrain, the wind speed, and burn condition. How-
ever, these factors are not equal in terms of their influence on SZ suitability. Quantifying
the relative influence of suitability controls can provide valuable insight into the relative
stability (or inversely, variability) of SZ suitability under different conditions. For exam-
ple, if SZ polygon size explained the vast majority of variance in maximum within-SZ
pSSD, then that would suggest SZs are fairly robust to changes in surrounding landscape
conditions, and weather/fire conditions. To quantify the relative influence of different
drivers of pSSD, we used random forests [58]. Random forests are an ensemble machine
learning method that uses iterative subsampling of data to generate a series of decision
trees to make predictions and assess variable importance. For each of the 75 random SZ
polygons generated for the vegetation height analysis (Section 2.2; Figure 5) we had nine
different pSSD values, resulting from unique combinations of wind speed and burn con-
dition classes, totaling 675 data points. Using the randomForest library in R [59,60], we
built a model to predict maximum within-SZ polygon pSSD, based on the independent
variables described in Table Al. These models were run using the default parameters and
were not tuned for performance, as the goal was merely to assess variable importance and
not maximize predictive accuracy. The equations for calculating shape metrics were
gleaned from Lindsay [61] and computed using Esri ArcGIS. Variable importance was
assessed in terms of the relative proportion of mean squared predictor error that would
result from the removal of a particular variable from the model.

Table Al. Predictor variables used in the analysis of the SZ suitability driver analysis.

Predictor Data Type Description

Median vegetation height among pixels within
buffer area around SZ polygon
Median slope among pixels within buffer area

Vegetation Height Continuous

Slope Continuous

around SZ polygon
Wind Speed Categorical Wind speed class from Table 1
Burn Condition Categorical Burn condition class from Table 1
SZ Polygon Area Continuous Total area of the SZ polygon
SZ Polygon Pergneter— Contintous Length of the SZ pollygon perimeter divided by
to-Area Ratio its area
SZ Polygon Elongation . Or.1e n.u?us the length of the shortest polygon
Ratio Continuous  axis divided by the length of the longest poly-
gon axis
SZ Polygon Related . One minus the area of the polygon divided by
. o . Continuous ] )
Circumscribing Circle the area of the smallest encompassing circle
SZ Polygon Shape . One minus the area of the polygqn divided by
. Continuous  the area of a convex hull containing the poly-
Complexity Index

gon

The results of the SZ polygon suitability driver analysis can be seen in Table A2. Wind
speed emerged as the most important determinant of maximum within-SZ pSSD by a
large margin. This stands in stark contrast to the relatively minimal effect of burn condi-
tion, which was determined to be the least important predictor. These differences can be
explained through the examination of A values in Table 1, where increases in wind speed
always result in a higher A, whereas increases in burn condition do not. Slope was the
second most important predictor which, when taken together with the importance of
wind speed, highlights the impact that convective heating, as captured by A, has on pSSD.
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SZ polygon area is the third most important predictor; however, its relatively small influ-
ence in comparison to wind speed suggests that the suitability of potential SZ polygons is
not very robust to changes in wind conditions. Vegetation height is the fourth most im-
portant determinant of maximum within-SZ pSSD, meaning that SZs must take into ac-
count local vegetation conditions in order to ensure safety of wildland firefighters. The
four SZ polygon shape metrics all had similar and relatively low importance, but their
inclusion does have a significant effect on the amount of variance in maximum pSSD ex-
plained. For example, a random forest model built without these four metrics only ex-
plains 83% of variance in pSSD, whereas their inclusion increases that number to 94%. The
ideal shape for a SZ would be approximately a circle, where SSD can be maintained from
surrounding vegetation on all sides. So, a large circular SZ will possess very different suit-
ability than an equal area linearly-shaped SZ (e.g., a road). Thus, the importance of SZ
shape should not be underestimated.

Table A2. Variable importance for predicting maximum within-SZ pSSD, measured in terms of the
percent increase in mean squared error that would result from the removal of that variable

(%IncMSE).

Predictor Rank %IncMSE

Wind Speed 1 95.3

Slope 2 40.6

SZ Polygon Area 3 31.0

Vegetation Height 4 27.9

SZ Polygon Perimeter-to-Area Ratio 5 25.9

SZ Polygon Shape Complexity Index 6 17.4

SZ Polygon Elongation Ratio 7 16.7

SZ Polygon Related Circumscribing Circle 8 16.7

Burn Condition 9 15.2
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