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Abstract. Let (V, ω) be an orthosymplectic Z2-graded vector space and let g := gosp(V, ω) denote
the Lie superalgebra of similitudes of (V, ω). It is known that as a g-module, the space P(V ) of
superpolynomials on V is completely reducible, unless dimV0 and dimV1 are positive even integers
and dimV0 ≤ dimV1. When P(V ) is not a completely reducible g-module, we construct a natural
basis {Dλ}λ∈I of “Capelli operators” for the algebra PD(V )g of g-invariant superpolynomial su-
perdifferential operators on V , where the index set I is the set of integer partitions of length at most
two. We compute the action of the operators {Dλ}λ∈I on maximal indecomposable components of
P(V ) explicitly, in terms of Knop-Sahi interpolation polynomials. Our results show that, unlike the
cases where P(V ) is completely reducible, the eigenvalues of a subfamily of the Dλ are not given by
specializing the Knop-Sahi polynomials. Rather, the formulas for these eigenvalues involve suitably
regularized forms of these polynomials. This is in contrast with what occurs for previously studied
Capelli operators. In addition, we demonstrate a close relationship between our eigenvalue formulas
for this subfamily of Capelli operators and the Dougall-Ramanujan hypergeometric identity.

We also transcend our results on the eigenvalues of Capelli operators to the Deligne category
Rep(Ot). More precisely, we define categorical Capelli operators {Dt,λ}λ∈I that induce morphisms
of indecomposable components of symmetric powers of Vt, where Vt is the generating object of
Rep(Ot). We obtain formulas for the eigenvalue polynomials associated to the {Dt,λ}λ∈I that are
analogous to our results for the operators {Dλ}λ∈I .

1. Introduction

Let V := V0 ⊕ V1 be a vector superspace equipped with a non-degenerate even supersymmetric
bilinear form ω : V × V → C, and let osp(V, ω) denote the orthosymplectic Lie superalgebra that
leaves ω invariant. Set

g := gosp(V, ω) := osp(V, ω)⊕ Cz,
where z is a central element of g. Then V has a natural g-module structure, where the action of z on
V is defined to be −1V . The g-module structure of V induces a canonical g-module structure on the
superalgebra P(V ) of superpolynomials on V , and the superalgebra D(V ) of constant-coefficient
superdifferential operators on V . Indeed P(V ) ∼= S(V ∗) and D(V ) ∼= S(V ) as g-modules. When
dimV1 = 0, studying P(V ) is the subject of the classical theory of spherical harmonics. For an
elegant exposition of this theory we refer the reader to [8].
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Set di := dimVi for i ∈
{
0,1

}
. It is known that P(V ) is a semisimple and multiplicity-free

g-module unless d0, d1 ∈ 2Z+ and d0 ≤ d1 (see [26, 3]). Let PD(V ) denote the superalgebra of
superpolynomial-coefficient superdifferential operators on V , equipped with the natural g-module
structure defined by x · D := xD − (−1)|D|·|x|Dx for homogeneous x ∈ g and D ∈ PD(V ) (for
further details see for example [19, Sec. 2]). Then there is a canonical g-module isomorphism

(1) PD(V ) := P(V )⊗D(V ).

Let I be the set of integer partitions of length at most two, that is,

I :=
{

(λ1, λ2) ∈ Z2 : λ1 ≥ λ2 ≥ 0
}
.

In the cases that P(V ) is a semisimple and multiplicity-free g-module, the irreducible components of
P(V ) are naturally indexed by elements of I (see [8, 3, 26]). Then by a general algebraic construction
(see the discussion at the end of this section, or [18, 21]) one obtains a distinguished basis {Dλ}λ∈I of
Capelli operators for the algebra PD(V )g of g-invariant differential operators. By Schur’s Lemma,
the operators Dλ act on irreducible components of P(V ) by scalars. The problem of computing
these scalars was addressed in [21], among several other examples. We remark that the problem of
computing eigenvalues of Capelli operators (which we will refer to as the Capelli eigenvalue problem)
has a long history, and has been studied extensively in the general context of multiplicity-free actions
of Lie (super)algebras [1, 10, 13, 14, 18, 22, 23, 20, 27]. In all of the previously investigated instances
of the Capelli eigenvalue problem, the formulas for the eigenvalues turn out to be specializations of
families of interpolation polynomials, such as Knop-Sahi polynomials, Sergeev-Veselov polynomials,
Okounkov interpolation polynomials, or Ivanov polynomials. For the definition and properties of
these families of polynomials, we refer the reader to [11, 17, 25, 16, 12, 9]. In particular, in [21,
Theorem 1.13] we proved that the eigenvalues of the Capelli basis {Dλ}λ∈I on irreducible components
of P(V ) are obtained from the two-variable interpolation polynomials previously defined by F. Knop
and the first author [11] at the parameter value 1

2sdimV − 1, where sdimV := dimV0 − dimV1.
In this paper, we are interested in defining the Capelli operators and computing their actions on

P(V ) in the cases where P(V ) is not a semisimple g-module. Thus, henceforth we will assume
that d0 = 2m and d1 = 2n for m,n ∈ N, where

k := n−m ≥ 0.

Because of non-semisimplicity of P(V ), the usual definition of Capelli operators (see [18, 19, 21])
needs to be tweaked slightly. Furthermore, elements of PD(V )g are not necessarily diagonalizable
on P(V ), and thus we are naturally forced to consider their Jordan decompositions.

We show that in the non-semisimple case one still has a natural basis {Dλ}λ∈I of PD(V )g, but
a new phenomenon occurs in relation to their spectra: unlike the previous (semi-simple) instances
of the Capelli eigenvalue problem, the eigenvalues of the Capelli basis are not always specializations
of interpolation polynomials. Rather, for a subfamily of this basis, one needs polynomials that are
obtained from Knop-Sahi interpolation polynomials by removing their singular part, that is, the
part whose coefficients have poles. We provide two different formulas for the eigenvalues of this
subfamily that are related to each other through a curious polynomial identity. We prove the latter
polynomial identity using the classical Dougall-Ramanujan hypergeometric identity.

To explain our main results, we begin with the definition of the Knop-Sahi polynomials. We will
only consider these polynomials in two variables. For the definition of these polynomials in the
n-variable case, see [11]. As usual, for m ∈ Z≥0 we define the falling factorial am to be

am := a(a− 1) · · · (a−m+ 1).
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Let k := Q(κ) be the field of rational functions in a parameter κ with coefficients in Q. For λ ∈ I,
let P κλ ∈ k[x, y] be defined by

P κλ (x, y) :=
∑

i+j≤λ1−λ2

(λ1 − λ2)!(κ+ 1)λ1−λ2−i(κ+ 1)λ1−λ2−j

i!j!(λ1 − λ2 − i− j)!(κ+ 1)λ1−λ2
xλ2+iyλ2+j .(2)

The polynomial P κλ is symmetric in the variables x and y, with leading term equal to xλ1yλ2 . An
important property of the polynomial P κλ is the following.

Theorem 1.1. (Knop–Sahi [11]) P κλ is the unique symmetric polynomial of degree less than or equal
to |λ| := λ1 + λ2 in k[x, y] that satisfies the following conditions:

(i) P κλ (µ1 − κ− 1, µ2) = 0 for partitions µ ∈ I such that |µ| ≤ |λ| and µ 6= λ.

(ii) P κλ (λ1 − κ− 1, λ2) = Hλ(κ), where

(3) Hλ(κ) := (λ1 − λ2)!λ2!(λ1 − 1− κ)λ2 .

For certain λ ∈ I, the coefficients of P κλ have poles. It is straightforward to verify that these poles
are always simple and occur at κ ∈ Z≥0. Let us now define three types of elements of I.

Definition 1.2. Let k◦ ∈ Z≥0. An element λ ∈ I is called

– k◦-regular, if λ1 ≤ k◦ or λ1 − λ2 = k◦ + 1 or λ1 − λ2 ≥ 2k◦ + 3.

– k◦-quasiregular, if λ1 ≥ k◦ + 1 and λ1 − λ2 ≤ k◦.
– k◦-singular, if k◦ + 2 ≤ λ1 − λ2 ≤ 2k◦ + 2.

We denote the sets of k◦-regular, k◦-quasiregular, and k◦-singular elements of I by Ik◦,reg, Ik◦,qreg,
and Ik◦,sing.

Remark 1.3. Here is a more concrete explanation of Definition 1.2. Recall that k := n−m ∈ Z≥0.
The involution λ 7→ λ† on Z2, defined by

(4) (λ1, λ2) 7→ (λ2 + k + 1, λ1 − k − 1),

yields a bijection between k-quasiregular and k-singular partitions of the same size. For k-regular
partitions λ = (λ1, λ2) satisfying λ1 − λ2 = k + 1, we have λ† = λ. For all other λ ∈ Ik,reg we have

λ† 6∈ I.

The following proposition is straightforward to verify using (2).

Proposition 1.4. For λ ∈ I and k◦ ∈ Z≥0, the following statements are equivalent.

(i) The coefficients of P κλ do not have poles at κ = k◦.

(ii) λ 6∈ Ik◦,sing.

The construction of the Capelli basis of the algebra PD(V )g relies on the structure of P(V )
and D(V ) as g-modules. The algebras P(V ) and D(V ) are naturally graded by degree and order
respectively, so that

P(V ) ∼=
∞⊕
d≥0

Pd(V ) and D(V ) ∼=
∞⊕
d≥0

Dd(V ).

From now on we set

(5) I ′k := Ik,reg ∪ Ik,qreg.
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The indecomposable components of Pd(V ) can be indexed naturally by partitions λ ∈ I ′k such that
|λ| = d (see Proposition 3.1 below). That is,

(6) Pd(V ) ∼=
⊕
λ∈dI

′
k

Vλ,

where dI ′k := {λ ∈ I ′k : |λ| = d}, and each Vλ is an indecomposable g-module. Furthermore, the

canonical non-degenerate pairing Dd(V )⊗Pd(V )→ C yields a g-module isomorphism

(7) Dd(V ) ∼= Pd(V )∗ ∼=
⊕
λ∈dI

′
k

V ∗λ .

From Proposition 3.1 it follows that if λ 6= µ, then Vλ and Vµ have disjoint irreducible composition
factors. Thus from (6) and (7) we obtain

PD(V )g ∼=
⊕
λ,µ∈I′k

(Vλ ⊗ V ∗µ )g ∼=
⊕
λ,µ∈I′k

Homg(Vµ, Vλ) ∼=
⊕
λ∈I′k

Homg(Vλ, Vλ).(8)

Proposition 3.1 also implies that

(9) dim Homg(Vλ, Vλ) =

{
1 if λ is k-regular,

2 if λ is k-quasiregular.

Indeed when λ ∈ Ik,qreg, there exists a nilpotent element of Homg(Vλ, Vλ) that factors through the
isomorphism cosocle(Vλ) ∼= socle(Vλ). By Corollary 3.5 the space Homg(Vλ, Vλ) has a natural direct
sum decomposition into two one-dimensional subspaces, that is,

(10) Homg(Vλ, Vλ) ∼= C1Vλ ⊕ CNλ,

where Nλ is the nilpotent part of the Jordan decomposition of C
∣∣
Vλ

, with C denoting the Casimir

operator of g (note that N2
λ = 0). We now use (8) and (10) to define the family {Dλ}λ∈I .

Definition 1.5. For λ ∈ I, we define Dλ ∈PD(V )g as follows.

Dλ ∼

{
1Vλ ∈ Homg(Vλ, Vλ) if λ ∈ I ′k
Nλ if λ ∈ Ik,sing.

Here “∼” means Dλ is the element of PD(V )g that corresponds to either 1λ or Nλ via the isomor-
phism (8). The operators Dλ ∈PD(V )g, where λ ∈ I, are called the Capelli operators.

From (8) it is evident that the family {Dλ}λ∈I is a basis of PD(V )g.

2. Main results

Now let λ ∈ I and let µ ∈ I ′k. Then by Schur’s Lemma Dλ(Vµ) ⊆ Vµ, and therefore the restriction
Dλ

∣∣
Vµ
∈ Homg(Vµ, Vµ) can be expressed as

(11) Dλ

∣∣
Vµ

= dλ,µ1Vµ + d′λ,µNµ,

where dλ,µ, d
′
λ,µ ∈ C (note that Nµ = 0 for µ ∈ Ik,reg). Our main results in this paper address the

problem of computing formulas for dλ,µ and d′λ,µ. From Proposition 3.3 it follows that there exists

a symmetric polynomial fλ ∈ C[x, y] of degree |λ| := λ1 + λ2 such that

dλ,µ = fλ(µ1 − k − 1, µ2) for all µ ∈ I ′k.
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We call fλ the eigenvalue polynomial of Dλ (see Definition 3.4). It turns out (see Proposition 4.3)
that

Dλ

∣∣
Vµ

= fλ(µ1 − k − 1, µ2)1Vλ + �fλ(µ1 − k − 1, µ2)Nλ,

where f 7→ �f is the differential operator defined by

(12) �f(x, y) :=
1

4(x− y)

(
∂f

∂x
(x, y)− ∂f

∂y
(x, y)

)
.

Thus, both dλ,µ and d′λ,µ are uniquely determined by fλ. The problem of computing fλ is solved by
Theorems A–D below.

Theorem A. Let λ ∈ Ik,reg. Then

fλ =
1

Hλ(k)
P kλ ,

where Hλ(κ) is defined in (3).

Theorem B. Let λ ∈ Ik,sing. Then

fλ =
4(λ1 − λ2 − k − 1)

H ′
λ†

(k)
P kλ† ,

where H ′
λ†

(k) denotes the derivative of Hλ†(κ) at κ = k.

The formulas for fλ in Theorems A–B still follow the pattern of specializing interpolation poly-
nomials. The new phenomenon that was described in Section 1 occurs for the formulas of fλ when
λ ∈ Ik,qreg.

Theorem C. Let λ ∈ Ik,qreg. Then

(13) fλ = lim
κ→k

(
P κλ

Hλ(κ)
+

P κ
λ†

Hλ†(κ)

)
.

Remark 2.1. Note that both
Pκλ

Hλ(κ)
and

Pκ
λ†

H
λ† (κ)

have poles at κ = k (indeed Hλ(k) = 0), but the

poles on the right hand side of (13) cancel out and the limit is well defined.

Since the leading term of Pλ is xλ1yλ2 , the polynomials {P κλ }λ∈I form a basis of the algebra

k[x, y]S2 of symmetric polynomials in x and y with coefficients in k. Indeed for any k◦ ∈ C such

that k◦ 6∈ Z≥0, the polynomials {P k◦λ }λ∈I form a basis of C[x, y]S2 . However, we cannot set κ := k◦
when k◦ ∈ Z≥0, because the coefficients of the P κλ can have poles at κ = k◦. In this case, one can

still obtain a natural basis of C[x, y]S2 by first suitably separating the regular part of P κλ and then
setting κ := k◦. We will describe this process more precisely below.

Definition 2.2. Let f(x, y) ∈ k[x, y] and let k◦ ∈ Q. Assume that the coefficients of (κ−k◦)f(x, y)
do not have any poles at κ = k◦.

(i) The singular part of f(x, y) at κ = k◦ is the polynomial Singk◦(f) ∈ Q[x, y] defined by

Singk◦(f ;x, y) := lim
κ→k◦

(κ− k◦)f(x, y).

(ii) The regular part of f(x, y) at κ = k◦ is the polynomial Regk◦(f) ∈ Q[x, y] defined by

Regk◦(f ;x, y) := lim
κ→k◦

(
f(x, y)− 1

κ− k◦
Singk◦(f ;x, y)

)
.

Example 2.3. Assume that k◦ = 1 and f(x, y) = x2 + y2 + 2κ
κ−1xy. Then Singk◦(f ;x, y) = 2xy and

Regk◦(f ;x, y) = x2 + y2 + 2xy.
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For λ ∈ I and k◦ ∈ C set

R
(k◦)
λ := Regk◦(P

κ
λ ).

Remark 2.4. Note that by Proposition 1.4, if k◦ 6∈ Z≥0 then for all λ ∈ I we have

(14) R
(k◦)
λ = lim

κ→k◦
P κλ = P k◦λ .

If k◦ ∈ Z≥0 then (14) holds whenever λ 6∈ Ik◦,sing.

The following proposition is a straightforward consequence of the above discussion.

Proposition 2.5. For k◦ ∈ C, the family
{
R

(k◦)
λ

}
λ∈I

is a basis of the algebra C[x, y]S2 of symmetric

polynomials in the variables x, y.

By analogy with the completely reducible cases, Proposition 2.5 leads to the following natural
question.

Problem. Determine the coefficients Mλ,µ ∈ C such that fλ =
∑

µ∈IMλ,µR
(k)
µ for λ ∈ I.

Clearly Theorems A–B answer this problem when λ 6∈ Ik,qreg. Surprisingly, in the case λ ∈ Ik,qreg
the formulas for the coefficients Mλ,µ become much more complicated. Before we state the result
(Theorem D below), we need to introduce some notation. For d ≥ 0 set

(15) I(d) := {λ ∈ I : |λ| ≤ d}.
For λ ∈ Ik,qreg set

(16) `λ := λ2 − λ1 + k,

so that 0 ≤ `λ ≤ k, and if µ ∈ I(k − `λ) then set

ν(λ, µ) := (λ1 − µ1, λ2 + µ2).

Note that ν(λ, µ) ∈ Ik,qreg, and in particular

R
(k)
ν(λ,µ) = P kν(λ,µ).

Theorem D. Let λ ∈ Ik,qreg. Then

fλ =
(`λ + 1)!

(λ1 − k − 1)!(λ1 + `λ − k)!

 1

(2k + 2− λ1 + λ2)!
R

(k)

λ†
+

∑
µ∈I(k−`λ)

Mλ,µR
(k)
ν(λ,µ)

 ,(17)

where the Mλ,µ are defined by

Mλ,µ :=
(−1)`λ+µ1+µ2

(
µ1
µ2

)
(`λ + µ1)!

(k − `λ − µ1 − µ2)!`λ!(`λ + µ2 + 1)!(`λ + µ1 + µ2)!µ1
if |µ| > 0,

and

Mλ,(0,0) :=
(−1)`λ+1

(k − `λ)!(`λ + 1)!2

1−
λ1+`λ−k∑
j=λ1−k

`λ + 1

j

 .

Remark 2.6. For fixed λ, µ ∈ I, the formulas for the eigenvalue of Dλ

∣∣
Vµ

given in Theorems A–D

depend only on k = n−m (rather than on m and n). This observation has a conceptual explanation
based on the Duflo-Serganova functor [7, 24]. We briefly recall the definition of this functor. Given
any Lie superalgebra g and an element x ∈ g1 such that [x, x] = 0, we set DSx(M) := Mx/xM for
every g-module M , where Mx := ker(x|M ) and xM := im(x|M ). Then DSx(M) is a gx-module,
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where gx := ker(adx)/im(adx). Further, for every g-module homomorphism h : M → N we set
DSx(h) : DSx(M) → DSx(N) to be the naturally induced gx-module homomorphism. As shown
in [7, 24], the above assignments yield a symmetric monoidal functor

DSx : Rep(g)→ Rep(gx).

If g ∼= gosp(V, ω), then gx ∼= gosp(V ′, ω′) where sdimV ′ = sdimV = −2k. Furthermore, DSx maps
the Casimir operator of g, which we can consider as an element of homg(C, S2(g)), to the Casimir
operator of gx. If Sd(V ) ∼= ⊕It where each It is a generalized eigenspace of the Casimir operator
of g with eigenvalue t, then Sd(Vx) ∼= ⊕I ′t, where I ′t

∼= DSx(It) is the generalized eigenspace of the
Casimir operator of gx with eigenvalue t. One can then show that DSx maps Capelli operators to
Capelli operators and preserves their eigenspaces. These facts imply that the eigenvalues of Dλ

∣∣
Vµ

should only depend on k.

The proof of Theorem D is substantially more difficult than those of Theorems A–C. It relies on
the following identity (in the parameter x) which, to the best of our knowledge, is new.

Theorem E. For non-negative integers i, j,N such that i+ j ≤ N ,

d

dx

(
xN−ixN−j

xN

)
(18)

=

j∑
q=0

min{N−q,N−1}∑
p=i+j−q

(−1)N+p+q+1(N − p)q iq jq (N − i− j)N−p−q xp−i xp−j(x− p+ q)

(N − p) q!xp+1(x−N + q)q
.

We remark that in the special case j = 0, Theorem E is equivalent to the formula

(19)
∂

∂x
(xN ) =

N∑
k=1

(−1)t+1

t
N txN−t,

which can be proved by logarithmic differentiation of the binomial series for (1 + z)x. However, we
are unable to find a similar quick argument for the general case.

Our proof of Theorem E involves subtle computations that reduce it to a classical hypergeometric
identity, usually referred to as Dougall’s Theorem. Recall that a generalized hypergeometric function
is a series of the form

(20) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
:=

∞∑
n=0

an1 · · · anp
bn1 · · · bnqn!

zn,

where as usual
an := a(a+ 1) · · · (a+ n− 1) for n ∈ N and a0 = 1.

Dougall’s theorem states that for a, b, c, d ∈ C such that <(a + b + c + d + 1) > 0, we have

5F4

(
1
2a + 1, a,−b,−c,−d

1
2a, a + b + 1, a + c + 1, a + d + 1

; 1

)
(21)

=
Γ(a + b + 1)Γ(a + c + 1)Γ(a + d + 1)Γ(a + b + c + d + 1)

Γ(a + 1)Γ(a + b + c + 1)Γ(a + b + d + 1)Γ(a + c + d + 1)
.

Identity (21) is a limit case of another identity for 7F6 that was discovered by Dougall (1907) and
Ramanujan (1910). For the proof and further historical remarks on Dougall’s Theorem, we refer the
reader to [2, Sec. 2.2].

Theorems A, B, and D were conjectured using computations that were implemented by SageMath.
Our efforts to prove Theorem D lead us to Theorems C and E.



8 CAPELLI OPERATORS AND THE DOUGALL-RAMANUJAN IDENTITY

Capelli operators in the Deligne category Rep(Ot). Recall from Remark 2.6 that existence
of certain monoidal functors between (rigid symmetric monoidal) categories of modules implies
that the formulas for fλ should only depend on the superdimension of V . Indeed it is possible to
transcend the construction of the Capelli basis {Dλ}λ∈I to a universal categorical framework where
the superdimension can be any complex number! More precisely, in Section 8 we show that we can
define Capelli operators in the inductive completion of the Deligne category Rep(Ot), where t ∈ C.
Then we prove analogues of Theorems A–C for the corresponding eigenvalue polynomials.

The definition of the categorical Capelli operators {Dt,λ}λ∈I in Section 8 goes as follows. The
category Rep(Ot) is the Karoubian rigid symmetric monoidal category generated by the self-dual
object Vt of categorical dimension t ∈ C. We introduce an algebra object PDVt in the inductive
completion of this category with a natural action

PDVt ⊗ PVt → PVt ,

where PVt :=
⊕

d≥0 S
d(Vt). The algebra object PDVt is the categorical analogue of PD(V ). More-

over, Hom(1,PDVt) can be equipped with a canonical algebra structure, and the natural action of
PDVt on PVt yields a homomorphism of algebras Hom(1,PDVt)→ End(PVt). The categorical Capelli
operators Dt,λ that we will define in Section 8 are elements of the algebra Hom(1,PDVt). To define
these operators, first we prove that the indecomposable summands of PVt are naturally indexed by
elements of I if t 6∈ 2Z≤0, and by elements of I ′k if t ∈ 2Z≤0, where

(22) k := − t
2

and I ′k := Ik,reg ∪ Ik,qreg.

When t 6∈ 2Z≤0, for every λ ∈ I the operator Dt,λ corresponds to the co-evaluation morphism

1
εVt,λ−−−−→ Vt,λ ⊗ V∗t,λ.

When t ∈ 2Z≤0, the definition of Dt,λ is still the same for k-regular and k-quasiregular λ, but for
k-singular λ the operator Dt,λ represents the (unique up to scaling) nilpotent element in End(Vt,λ†).
See equation (63) for further details.

After defining the operatorDt,λ, we can consider its restriction to each indecomposable component
Vt,µ of PVt that is indexed by µ. This yields an element of the algebra End(Vt,µ), of the form
dλ,µ1 + nλ,µ where dλ,µ ∈ C and n2λ,µ = 0. Furthermore

dλ,µ = fλ(µ1 − k − 1, µ2),

where fλ ∈ C[x, y] is a symmetric polynomial of degree |λ|. (We remark that the coefficients of fλ
depend on the value of t ∈ C.) Theorems A′–C′ below are the extensions of Theorems A–C to the
categorical setting of Rep(Ot).

Theorem A′. Assume that either t /∈ 2Z≤0, or that t ∈ 2Z≤0 and λ is k-regular. Then

fλ =
1

Hλ (k)
P
k
λ .

From now on we set

cλ(t) := (λ1 − λ2)(λ1 − λ2 + t− 2) for λ ∈ I.

Theorem B′. Assume that t ∈ 2Z≤0 and λ is k-singular. Then

fλ = lim
s→t

cλ†(s)− cλ(s)

Hλ†
(
− s

2

) P
− s

2

λ†
.
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Theorem C′. Assume that t ∈ 2Z≤0 and λ is k-quasiregular. Then

fλ = lim
s→t

(
1

Hλ

(
− s

2

)P− s2λ +
1

Hλ†
(
− s

2

)P− s2
λ†

)
.

3. Structure of P(V ) and PD(V )g

Let us begin with the description of the decomposition of the g-module P(V ) as a direct sum of
indecomposable submodules. As will be seen in Proposition 3.1, the indecomposable components of
P(V ) can be characterized as generalized eigenspaces of the restriction of the Casimir operator to
each homogeneous component. A proof of Proposition 3.1 is given in A. Sherman’s PhD thesis [26]
(see also [3]).

Let bst be the Borel subalgebra of osp(V, ω) corresponding to the fundamental system

{ε1 − ε2, . . . , εm−1 − εm, εm − δ1, . . . , δn−1 − δn, 2δn} ,
and set b := bst ⊕ Cz. Also, let hst ⊆ bst denote the standard Cartan subalgebra of osp(V, ω), and
set h := hst ⊕ Cz. Let ζ ∈ h∗ be the linear functional defined by ζ(z) = 1 and ζ

∣∣
hst

= 0. For a

bst-dominant hst-weight λ, let V (λ) denote the irreducible finite dimensional osp(V, ω)-module with
highest weight λ. For any scalar c ∈ C, we can consider V (λ) as a g-module on which z acts by
c1V (λ). We denote the latter g-module by V (λ+ cζ).

Recall that C denotes the Casimir operator of gosp(V, ω). Then C acts on V (λ+cζ) by the scalar

cλ := (λ, λ) + 2(λ, ρ) = (λ2 − λ1)(2k + 2 + λ2 − λ1),
where ρ :=

∑m
i=1(−k − i)εi +

∑n
i=1(n − i + 1)δi. For t ∈ C let Pd(V, t) denote the generalized

t-eigenspace of the restriction of C to Pd(V ). Note that cλ = cλ† for λ ∈ Ik,qreg, hence Pd(V, cλ) =

Pd(V, cλ†). For λ ∈ I ′k, set

Vλ := P |λ|(V, cλ).

The proof of the following proposition can be found in [26, Sec. 10].

Proposition 3.1. Let λ ∈ I ′k.

(i) If λ ∈ Ik,reg then

Vλ ∼= V
(
(λ1 − λ2)ε1 + |λ|ζ

)
.

In particular, Vλ is an irreducible g-module.

(ii) If λ ∈ Ik,qreg then Vλ is an indecomposable g-module with a socle filtration of length 3. When
m ≥ 2, the successive quotients of the socle filtration of Vλ are isomorphic to the modules
V (µ(i) + |λ|ζ), 1 ≤ i ≤ 3, where

µ(1) = µ(3) = (λ1 − λ2)ε1 and µ(2) = (2k + 2 + λ2 − λ1)ε1.
When m = 1, the successive quotients of the socle filtration of Vλ are isomorphic to

V (µ(1) + |λ|ζ), V (µ(2) + |λ|ζ)⊕ V (µ(3) + |λ|ζ), and V (µ(4) + |λ|ζ),

where

µ(1) = µ(4) = (λ1 − λ2)ε1, µ(2) = (2k + 2 + λ2 − λ1)ε1, and µ(3) = −ε1 +

λ1−λ2+1∑
i=1

δi.

Remark 3.2. One significant difference between the non-semisimple and semi-simple cases is that
in the non-semisimple cases the spaces of homogeneous harmonic polynomials of any given degree
are not necessarily irreducible g-modules. However, for d ≤ k + 1 and d > 2k + 2 the space of
harmonic polynomials of degree d is still an irreducible g-module, isomorphic to V (dε1 + dζ).
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From now on we identify the Casimir operator C with its image in PD(V )g. Let E ∈PD(V )g

denote the degree operator (which lies in the image of the center of g).

Proposition 3.3. The operators C and E generate PD(V )g. Furthermore, for any differential
operator D ∈PD(V )g of order d, there exists a unique symmetric polynomial fD(x, y) of degree d
such that the eigenvalue of D on the indecomposable constituent Vµ is equal to fD(µ1 − k − 1, µ2).

Proof. For λ ∈ I ′k set eλ := λ1 + λ2 =
(
(λ1 − (k + 1)

)
+ λ2) + (k + 1), and recall that

cλ = (λ2 − λ1)(2k + 2 + λ2 − λ1) =
(
(λ1 − (k + 1))− λ2

)2 − (k + 1)2.

Thus cλ and eλ are symmetric polynomials in λ1 − k − 1 and λ2. The restriction to Vλ of any
operator of the form D := q(C,E), where q(x, y) ∈ C[x, y], is of the form q(cλ, eλ)1Vλ + X, where
X ∈ End(Vλ) is nilpotent.

Step 1. We prove that for every symmetric polynomial h(x, y) ∈ C[x, y] there exists an operator
D ∈PD(V )g of order at most deg h such that for every λ ∈ I ′k the restriction D

∣∣
Vλ

is of the form

h(λ1 − k − 1, λ2)1Vλ +X,

where X is nilpotent. To prove this claim, we write h as a polynomial in e1 = x + y and e2 = xy,

that is, h(x, y) =
∑

i+2j≤d ai,je
i
1e
j
2, where d := deg h. Writing e1 and e2 in terms of x + y + k + 1

and (x− y)2 − (k + 1)2, it follows that h(x, y) can also be expressed as

h(x, y) =
∑

i+2j≤d
bi,j(x+ y + k + 1)i

(
(x− y)2 − (k + 1)2

)j
,

where bi,j ∈ C. It is easy to verify that the operator D :=
∑

i+2j≤d bi,jE
iCj satisfies the claimed

properties.

Step 2. For d ≥ 0 set Vd := {D ∈PD(V )g : ord(D) ≤ d}, where ord(D) denotes the order of
D. From (8) and (9) it follows that dimVd = Nd := |I(d)|. The space of symmetric polynomials
of degree at most d also has dimension Nd. Furthermore, operators that correspond by Step 1 to
linearly independent polynomials are also linearly independent. Thus Step 1 provides Nd linearly
independent elements in Vd ∩A, where A is the subalgebra of PD(V )g that is generated by C and
E. This yields dimVd ∩ A ≥ dimVd, and consequently Vd ⊆ A.

Step 3. Let D ∈PD(V )g such that ord(D) = d. By Step 2, there exists a symmetric polynomial
fD ∈ C[x, y] such that deg fD ≤ d and D is obtained from fD by the construction of Step 1. From
Step 1 it follows that d = ord(D) ≤ deg fD ≤ d. Hence deg fD = ord(D) = d. Finally, fD is unique
because I is Zariski dense in C2. �

Definition 3.4. For D ∈ PD(V )g, the polynomial fD(x, y) whose existence is guaranteed by
Proposition 3.3 will be called the eigenvalue polynomial of D.

Corollary 3.5. For λ ∈ Ik,qreg, the restriction of C to Vλ is not diagonalizable. In particular, the
nilpotent part of the Jordan decomposition of C

∣∣
Vλ

is nonzero.

Proof. Otherwise, Proposition 3.3 would imply that D
∣∣
Vλ

is diagonalizable for all D ∈PD(V )g. In

particular, Dλ†
∣∣
Vλ

would be diagonalizable, which is a contradiction. �

Remark 3.6. As noted in Section 1, Corollary 3.5 is crucial for being able to define the basis
{Dλ}λ∈I of Capelli operators for PD(V )g.
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4. Vanishing properties and generalized values

Recall from (11) that dλ,µ denotes the eigenvalue of Dλ on Vµ. The dλ,µ satisfy the following
vanishing properties which are deduced from elementary representation-theoretic arguments.

Lemma 4.1. Let λ, µ ∈ I.

(i) Assume that λ ∈ I ′k. Then dλ,µ = 0 for all µ ∈ I ′k such that |µ| ≤ |λ| and µ 6= λ.
Furthermore, dλ,λ = 1.

(ii) Assume that λ ∈ Ik,sing. Then dλ,µ = 0 for all µ ∈ I ′k such that |µ| ≤ |λ|.

Proof. From the isomorphism (8) it follows that Dλ

∣∣
Vλ

= 1Vλ for λ ∈ I ′k . For λ ∈ Ik,sing we have

dλ,λ† = 0 because the restriction of Dλ to Vλ† is nilpotent. If |µ| < |λ| then we have Dλ

∣∣
Vµ

= 0

because Vµ ⊆ P |µ|(V ) and ord(Dλ) > |µ|. If |µ| = |λ|, then the action of Dλ on Vµ is obtained by
restriction of the g-equivariant map

P(V )⊗D(V )⊗P(V )→P(V ) , p⊗D ⊗ q 7→ pDq,

to a tensor product of the form Vη⊗V ∗η ⊗Vµ, where η = λ or η = λ† depending on wheter λ ∈ Ik,qreg
or λ ∈ Ik,sing. As |µ| = |λ|, the map V ∗η ⊗ Vµ → C corresponds to a g-invariant bilinear form
V ∗η × Vµ → C, hence to a g-equivariant linear map V ∗η → V ∗µ . Thus, when V ∗µ and V ∗η do not have

composition factors in common, we obtain Dλ

∣∣
Vµ

= 0 and in particular dλ,µ = 0. The above facts

are sufficient for verifying the claims of the lemma. �

Remark 4.2. The proof of Lemma 4.1 implies that if |µ| ≤ |λ|, then the nilpotent part of the
Jordan decomposition of Dλ

∣∣
Vµ

vanishes, unless λ is k-singular and µ = λ†.

We can now write fλ as

fλ(x, y) =
∑

i+j≤|λ|

ai,j(x
iyj + xjyi),

and interpret the constraints fλ(µ1 − k − 1, µ2) = dλ,µ for |µ| ≤ |λ| as a linear system in the
coefficients ai,j . Unfortunately, this linear system (which a priori has the same number of equations
and variables) does not determine fλ uniquely because of the redundancy that is caused by the
coincidences

(23) fλ(µ1 − k − 1, µ2) = fλ(µ†1 − k − 1, µ†2).

But we can circumvent this issue by using the Jordan decomposition of Dλ

∣∣
Vµ

to obtain extra

conditions on fλ.

Proposition 4.3. Let D ∈ PD(V )g and assume that fD(x, y) is the eigenvalue polynomial of D.
Then for λ ∈ Ik,reg ∪ Ik,qreg we have

D
∣∣
Vλ

= fD(λ1 − k − 1, λ2)1Vλ + �fD(λ1 − k − 1, λ2)Nλ,

where �fD is defined as in (12).

Proof. By Proposition 3.3 we can express D as D = p(C,E) for a polynomial p(s, t) ∈ C[s, t]. Note

that C
∣∣
Vλ

= cλ1Vλ +Nλ where N2
λ = 0, hence Cd

∣∣
Vλ

= cdλ1Vλ + dcd−1λ Nλ. It follows that

(24) D
∣∣
Vλ

= p(cλ, eλ)1Vλ +
∂p

∂s
(cλ, eλ)Nλ.

By comparing the eigenvalues on both sides of (24) and noting that I ⊆ C2 is Zariski dense, we
obtain

(25) fD(x, y) = p
(
(x− y)2 − (k + 1)2, x+ y + k + 1

)
.
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Next set
H(x, y) :=

(
(x− y)2 − (k + 1)2, x+ y + k + 1

)
.

Then by the chain rule we obtain
∂fD
∂x

(x, y) =
∂p

∂s
(H(x, y))(2x− 2y) +

∂p

∂t
(H(x, y)),

∂fD
∂y

(x, y) =
∂p

∂s
(H(x, y))(2y − 2x) +

∂p

∂t
(H(x, y)).

Taking the difference of the above relations yields

(26)
∂p

∂s
(H(x, y)) = �fD(x, y).

The statement of the lemma follows from (24) and (26). �

Using Proposition 4.3, we obtain the required extra constraints that together with the vanishing
conditions of Lemma 4.1 uniquely identify the polynomials fλ. In order to give a uniform description
of all of these constraints, we use the notion of the generalized value of a symmetric polynomial
f(x, y) at λ ∈ I, denoted by ẽv(f, λ), defined as follows.

ẽv(f, λ) :=

{
f(λ1 − k − 1, λ2) if λ ∈ Ik,reg ∪ Ik,qreg,
�f(λ1 − k − 1, λ2) if λ ∈ Ik,sing.

Then Lemma 4.1 and Remark 4.2 imply the following proposition.

Proposition 4.4. For λ, µ ∈ I, if |µ| ≤ |λ| then ẽv(fλ, µ) = δλ,µ.

In the following corollary, I(d) is defined as in (15).

Corollary 4.5. Fix a set of complex numbers {zλ : λ ∈ I(d)} for some d ≥ 0. Then there exists a
unique symmetric polynomial f(x, y) such that deg f ≤ d and ẽv(f, λ) = zλ for all λ ∈ I(d).

Proof. Follows immediately from Proposition 4.4. �

5. Proofs of Theorems A, B, and C

We now proceed towards the proofs of Theorems A–C. The next lemma is a key observation.

Lemma 5.1. Let p(κ;x, y) ∈ k[x, y] and let k◦ ∈ R be such that the coefficients of p(κ;x, y) do not
have poles at κ = k◦. Further, assume that for a, b, a′, b′ ∈ R we have

(a− k◦ − 1, b) = (a′, b′ − k◦ − 1) and a− b− k◦ − 1 6= 0.

Set

(27) α(κ) := p(κ; a− κ− 1, b) and β(κ) := p(κ; a′, b′ − κ− 1).

Then

�p(k◦; a− k◦ − 1, b) =
β′(k◦)− α′(k◦)

4(a− b− k◦ − 1)

Proof. Differentiating the equations given in (27) with respect to κ at κ = k◦, we obtain

α′(k◦) =
∂p

∂κ
(k◦; a− k◦ − 1, b)− ∂p

∂x
(k◦; a− k◦ − 1, b)

and

β′(k◦) =
∂p

∂κ
(k◦; a

′, b′ − k◦ − 1)− ∂p

∂y
(k◦; a

′, b′ − k◦ − 1).

Taking the difference of the above relations yields the claim of the lemma. �



CAPELLI OPERATORS AND THE DOUGALL-RAMANUJAN IDENTITY 13

Lemma 5.2. Let p(κ;x, y) ∈ k[x, y] and let k◦ ∈ R be such that the coefficients of (κ− k◦)p(κ;x, y)
do not have poles at κ = k◦. Further, assume that for a, b, a′, b′ ∈ R we have

(28) (a− k◦ − 1, b) = (a′, b′ − k◦ − 1) and a− b− k◦ − 1 6= 0.

For κ ∈ R\{k◦} sufficiently close to k◦, set

α(κ) := p(κ; a− κ− 1, b) and β(κ) := p(κ; a′, b′ − κ− 1).

Then

�Singk◦(p; a− k◦ − 1, b) =
1

4(a− b− k◦ − 1)
lim
κ→k◦

(
(β(κ)− α(κ)) + (κ− k◦)(β′(κ)− α′(κ))

)
.

Proof. Set px := ∂p
∂x and py := ∂p

∂y . Since taking the singular part commutes with partial differentia-

tion with respect to x and y, it suffices to prove that

lim
κ→k◦

(
(κ− k◦)

(
px(κ; a− k◦ − 1, b)− py(κ; a− k◦ − 1, b)

))
= lim

κ→k◦

(
(β(κ)− α(κ)) + (κ− k◦)(β′(κ)− α′(κ))

)
.(29)

Set
h(κ;x, y) := (κ− k◦)p(κ;x, y) ∈ k[x, y].

Note that h(κ;x, y) is a smooth map in a neighborhood of any point of the form (k◦, x◦, y◦) ∈ R3.
By differentiating the relation (κ − k◦)α(κ) = h(κ; a − κ − 1, b) with respect to κ at κ := k1, with
k1 6= k◦ and k1 sufficiently close to k◦, we obtain

(30) (k1 − k◦)α(k1) + α′(k1) =
∂h

∂κ
(k1, a− k1 − 1, b)− (k1 − k◦)px(k1, a− k1 − 1, b).

Similarly, by differentiating the relation (κ − k◦)β(κ) = h(κ, a′, b′ − κ − 1) with respect to κ we
obtain

(31) (k1 − k◦)β(k1) + β′(k1) =
∂h

∂κ
(k1, a

′, b′ − k1 − 1)− (k1 − k◦)py(k1, a′, b′ − k1 − 1).

By taking the difference of (30) and (31) we obtain

(k1 − k◦)(px(k1, a− k1 − 1, b)− py(k1, a′, b′ − k1 − 1))

=
∂h

∂κ
(k1, a− k1 − 1, b)− ∂h

∂κ
(k1, a

′, b′ − k1 − 1) + φ(k1),(32)

where
φ(k1) := (k1 − k◦) (β(k1)− α(k1)) +

(
β′(k1)− α′(k1)

)
.

Note that limk1→k◦ φ(k1) exists because

φ(k1) =
d

dκ

(
h(κ; a− κ− 1)− h(κ; a′, b′ − κ− 1)

) ∣∣
κ=k◦

,

and h(κ;x, y) is differentiable near (k◦, a−k◦−1, b) ∈ R3. Since h(κ;x, y) is smooth in a neighborhood
of the point (k◦, a− k◦ − 1, b) ∈ R3, from (28) it follows that

(33) lim
k1→k◦

∂h

∂κ
(k1, a− k1 − 1, b) = lim

k1→k◦

∂h

∂κ
(k1, a

′, b′ − k1 − 1).

Finally the equations (32) and (33) imply (29). �

For λ ∈ Ik,sing set

(34) rλ := − Hλ(k)

H ′
λ†

(k)
.
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Proposition 5.3. Let λ ∈ Ik,sing. Then Singk(P
κ
λ ) = rλP

k
λ†

where rλ is defined in (34).

Proof. Set p(x, y) := Singk(P
κ
λ ;x, y). By Proposition 1.4 we have p(x, y) 6= 0.

Step 1. We prove that p = sP k
λ†

for a scalar s 6= 0. To this end, by Corollary 4.5 we need to verify
that

ẽv(p, µ) = 0 when |µ| ≤ |λ| and µ 6= λ.

If µ is k-regular or k-quasiregular, then

p(µ1 − k◦ − 1, µ2) = lim
κ→k◦

(κ− k◦)P κλ (µ1 − k◦ − 1, µ2)

= lim
κ→k◦

(κ− k◦)P κλ (µ1 − κ− 1, µ2),

where for the second equality we use the fact that h(κ, x, y) := (κ−k◦)P κλ (x, y) is a smooth function
in a neighborhood of (k◦, µ1 − k◦ − 1, µ2). Therefore Theorem 1.1(i) implies that

ẽv(p, µ) = p(µ1 − k◦ − 1, µ2) = 0.

If µ is k-singular, then Lemma 5.2 for (a, b) := (µ1, µ2), (a′, b′) := (µ†2, µ
†
1), and p(κ;x, y) := P κ

λ†
(x, y)

implies that ẽv(p, µ) = 0.

Step 2. To determine the value of s, we compare the coefficient of xt1yt2 in P k
λ†

and p(x, y), where

t1 := λ†1 and t2 := λ†2. From (2) it is clear that xt1yt2 is the leading monomial of P k
λ†

and therefore

its coefficient is equal to 1. Furthermore, in the formula (2) for P κλ , the monomial xt1yt2 corresponds
to the term indexed by i := k + 1 and j := λ1 − λ2 − k − 1. It is straightforward to show that the
coefficient of the corresponding term in p(x, y) is equal to rλ. Note that by a direct calculation we
have

rλ =
(−1)(k+|λ|)(λ1 − λ2)k+1

(2k + 2− λ1 + λ2)!(λ1 − λ2 − k − 2)!
. �

For λ ∈ Ik,sing set

Qκλ(x, y) := P κλ −
rλ

κ− k
P κλ† .

Lemma 5.4. For λ ∈ Ik,sing, the coefficients of Qκλ(x, y) do not have poles at κ = k. Furthermore,
the polynomial Qλ(x, y) ∈ Q[x, y] defined by

(35) Qλ := lim
κ→k

(
P κλ −

rλ
κ− k

P κλ†

)
satisfies

(36) Qλ(x, y) = R
(k)
λ (x, y)− rλ

∂

∂κ
P kλ†(x, y).

Proof. By Proposition 5.3 the coefficients of P κλ −
rλ
κ−kP

k
λ†

do not have poles at κ = k. Furthermore,
since the coefficients of P κ

λ†
do not have poles at κ = k, it follows that each coefficient of the

polynomial P κ
λ†
− P k

λ†
is of the form (κ− k)ϕ(κ) where ϕ(κ) ∈ Q(κ) does not have a pole at κ = k.

Now

(37) Qκλ = P κλ −
rλ

κ− k
P kλ† −

rλ
κ− k

(
P κλ† −R

(k)

λ†

)
,

and therefore the coefficients of Qκλ do not have poles at κ = k. Equality (36) follows from taking
the limit κ→ k in (37). �
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For λ ∈ Ik,sing set

(38) αλ(κ) := − rλ
κ− k

Hλ†(κ) and βλ(κ) := Hλ(κ).

Proposition 5.5. Let λ ∈ Ik,sing and let Qλ ∈ Q[x, y] be defined as in (35). Set

(39) t1 := βλ(k) and t2 :=
β′λ(k)− α′λ(k)

4(k + 1− λ1 + λ2)
,

where αλ(κ) and βλ(κ) are defined in (38). Then

ẽv(Qλ, µ) = t1δλ†,µ + t2δλ,µ for all µ ∈ I satisfying |µ| ≤ |λ|.

Proof. First assume that either µ is k-regular, or µ is k-quasiregular and µ 6= λ†. By Theorem 1.1,
for κ chosen sufficiently close (but not equal) to k we have

(40) Qκλ(µ1 − κ− 1, µ2) = P κλ (µ1 − κ− 1, µ2)−
rλ

κ− k
P κλ†(µ1 − κ− 1, µ2) = 0.

By (35) we have Qλ(x, y) = limκ→kQ
κ
λ(x, y), so that ẽv(Qλ, µ) = 0.

Next assume that µ is k-singular and µ 6= λ. We use Lemma 5.1 for p(κ;x, y) := Qκλ(x, y),

(a, b) = (µ1, µ2), and (a′, b′) = (µ†2, µ
†
1). Note that Theorem 1.1 implies α(κ) = β(κ) = 0, from

which it follows that ẽv(Qλ, µ) = 0.
Next assume that µ = λ†. Then symmetry of Qλ(x, y) implies

ẽv(Qλ, µ) = Qλ(λ†1 − k − 1, λ†2) = Qλ(λ†2, λ
†
1 − k − 1)

= Qλ(λ1 − k − 1, λ2) = lim
κ→k

Qκλ(λ1 − κ− 1, λ2) = lim
κ→k

Hλ(κ) = Hλ(k).

Finally, assume that µ = λ. Then

Qκλ(µ1 − κ− 1, µ2) = Hλ(κ) and Qκλ(µ†1 − κ− 1, µ†2) = − rλ
κ− k

Hλ†(κ).

Lemma 5.1 for p(κ;x, y) := Qκλ, (a, b) := (λ†1, λ
†
2), and (a′, b′) := (λ2, λ1) yields ẽv(Qλ, µ) = t2. �

We are now ready to complete the proofs of Theorems A, B, and C.

Proof of Theorem A. Fix λ ∈ Ik,reg and set d := |λ|. By Corollary 4.5 it suffices to show that

ẽv

(
1

Hλ(k)
R

(k)
λ , µ

)
= δλ,µ for µ ∈ I(d).

Note that R
(k)
λ = P kλ . If µ is k-regular or k-quasiregular, this follows from taking the limit κ → k

in Theorem 1.1. If µ is k-singular, we set k◦ := k, (a, b) := (µ1, µ2) and (a′, b′) := (µ†2, µ
†
1) in

Lemma 5.1, and note that Theorem 1.1 implies α′(k) = β′(k) = 0.

Proof of Theorem B. By Corollary 4.5 it suffices to prove that

ẽv

(
4(λ1 − λ2 − k − 1)

H ′
λ†

(k)
R

(k)

λ†
, µ

)
= δλ,µ for µ ∈ I, |µ| ≤ |λ|.

The argument is based on Lemma 5.1 and is similar to the proof of Theorem A.



16 CAPELLI OPERATORS AND THE DOUGALL-RAMANUJAN IDENTITY

Proof of Theorem C. Set h(κ;x, y) := 1
Hλ(κ)

P κλ + 1
H
λ† (κ)

P κ
λ†

, so that the right hand side of (13)

is equal to limκ→k h(κ). The latter limit exists because by (34) we have

h(κ;x, y) =
1

Hλ†(κ)
Qκλ†(x, y) +

u(κ)

Hλ†(κ)
P κλ (x, y) where u(κ) :=

(
Hλ†(κ)

Hλ(κ)
− Hλ†(k)

(κ− k)H ′λ(k)

)
,

and

lim
κ→k

u(κ) =
d

dκ

(
Hλ†(κ)(κ− k)

Hλ(κ)

) ∣∣∣
κ=k

.

Next we set h1(x, y) := limκ→k h(κ;x, y). Since deg fλ = |λ|, by Corollary 4.5 in order to prove that
fλ = h1 it suffices to verify that ev(h1, µ) = δλ,µ for all µ ∈ I such that |µ| ≤ |λ|. If µ 6= λ†, this

follows from Proposition 5.5 and Theorem B. If µ = λ†, this follows from Lemma 5.1 because

h(κ;λ†1 − κ− 1, λ†2) = h(κ;λ2, λ1 − κ− 1) = 1.

6. Proof of Theorem D

We begin the proof of Theorem D by the following proposition which is a variation of Theorem C.

Proposition 6.1. For λ ∈ Ik,qreg, we have

(41) fλ =
1

Hλ†(k)

(
Qλ† +

β′
λ†

(k)− α′
λ†

(k)

H ′λ(k)
R

(k)
λ

)
,

where Qλ† is defined as in Lemma 5.4.

Proof. Note that R
(k)
λ = P kλ . Since deg(Qλ†) = deg(fλ†) = deg(fλ) = |λ|, from Proposition 5.5 and

Corollary 4.5 it follows that Qλ† = t1fλ + t2fλ† , so that

fλ =
1

t1
(Qλ† − t2fλ†) ,

where t1 and t2 are defined in (39). The claim now follows from Theorem B. �

From now on we assume that λ ∈ Ik,qreg. Then we can express λ and λ† as

λ = (d+ k + 1, d+ `+ 1) and λ† = (d+ k + `+ 2, d),

where d ≥ 0 and 0 ≤ ` ≤ k. Note that ` = `λ† , where `λ† is defined in (16).

Proposition 6.2. Suppose that P κλ =
∑
αm,n(κ)xmyn, where αm,n(κ) ∈ k. Then

fλ =
(`+ 1)!

d!(d+ `+ 1)!(k + `+ 2)!
R

(k)

λ†
+

(−1)`+1(k + 1)`+1

d!(d+ `+ 1)!(k + 1)!`!

∑
α′m,n(k)xmyn(42)

+
(−1)`

d!(d+ `+ 1)!(k − `)!`!

(
d+`+1∑
i=d+1

1

i
− 1

`+ 1

)
R

(k)
λ .

Proof. From Proposition 6.1 and (36) we obtain

(43) fλ =
1

Hλ†(k)

(
R

(k)

λ†
− rλ†

∂P κλ
∂κ

+
β′
λ†

(k)− α′
λ†

(k)

H ′λ(k)
R

(k)
λ

)
.

By straightforward calculations we can verify that

rλ† =
(−1)`(k + `+ 2)k+1

(k − `)!`!
, Hλ†(k) =

(k + `+ 2)!d!(d+ `+ 1)!

(`+ 1)!
, and αλ†(k) = βλ†(k) = Hλ†(k).
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Next note that for a polynomial f(κ) := c
∏
i(ai − κ) we have f ′(k) = −f(k)

∑
i

1
ai−k . In particular

α′λ†(k) = −Hλ†(k)
d∑

i=`+1

1

i
and β′λ†(k) = −Hλ†(k)

d+`+1∑
i=`+2

1

i
.

Finally, H ′λ(k) = limκ→k

(
Hλ(κ)
κ−k

)
= (−1)`+1(k− `)!(d+ `+ 1)!d!`!, and the claim of the proposition

follows by making substitutions in (43). �

Proof of Theorem D. By equating the right hand sides of (42) and (17), and then reparametrizing
the summation in (42) in terms of a := k−`−µ1 and b := µ2, it follows that Theorem D is equivalent
to the equation

(44)
∂P κλ
∂κ

=
∑

µ∈I∗(k−`)

(−1)k−`+|µ|+1(`+ 1)!(`+ k − `− µ1)!
(
k−`−µ1
µ2

)
(k − `)!

(µ1 − µ2)!(k − `− µ1)(`+ µ2 + 1)!(k − µ1 + µ2)!
P κ(µ1+`+1,µ2+`+1),

where I∗(k − `) := I(k − `)\{(k − `, 0)}. Now set N := k − `. From (2) or [11, Cor. 2.3] it follows
that

P κ(µ1+`+1,µ2+`1)
= x`+1y`+1P κµ (x− `− 1, y − `− 1).

Therefore after dividing both sides of (44) by x`+1y`+1 and making the substitution

(x, y) 7→ (x+ `+ 1, y + `+ 1),

we obtain that proving (44) reduces to verifying

(45)
∂

∂κ
P κ(N,0) =

∑
µ∈I∗(N)

(−1)N−µ1−µ2+1(`+ 1)!(`+N − µ1)!
(
N−µ1
µ2

)
N !

(µ1 − µ2)!(N − µ1)(`+ µ2 + 1)!(`+N − µ1 + µ2)!
P κµ .

To prove (45), it suffices to verify that the coefficients of the terms xiyj with 0 ≤ i+ j ≤ N on both
sides are equal. These coefficients can be computed explicitly using the formula (2). After some
routine algebraic computations, it follows that the equality of the coefficients of xiyj on both sides
of (45) is equivalent to the identity

d

dκ

(
κN−i κN−j

κN

)
=
∑
µ

(−1)N−µ1−µ2+1
(
N−µ1
µ2

)
iµ2jµ2(N − i− j)N−µ1−µ2

(N − µ1)κµ1−µ2(κ− µ1 + µ2 − 1)µ2(κ−N + µ2)
µ2
κµ1−iκµ1−j ,(46)

where the summation is on all partitions µ := (µ1, µ2) 6= (N, 0) that satisfy

N ≥ µ1 + µ2 ≥ i+ j and µ1 ≥ i ≥ j ≥ µ2.

Note that (46) is a one-variable identity in a free parameter κ. By the above discussion, Theorem
D follows from (46). Note that (46) is equivalent to Theorem E after the substitutions x := κ and
(p, q) := (µ1, µ2). We will prove Theorem E in the next section.

7. Proof of Theorem E

In this section we prove Theorem E, which completes the proof of Theorem D. Set d := N − i
and ψL(x) := xd

(x−N+1)···(x−N+j) . Then identity (18) is equivalent to the relation

(47)
d

dx
ψL(x) = ψR(x),
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where

ψR(x) :=

j∑
q=0

min{N−q,N−1}∑
p=N−d+j−q

(−1)N+p+q+1(N − p)q (N − d)q jq (d− j)N−p−q xp+d−N xp−j(x− p+ q)

(N − p) q!xp+1(x−N + q)q
.

Our strategy is to prove a two-variable identity that implies (47) as a special case. For integers
q, r ≥ 0 such that d ≥ r ≥ q ≥ 0, let E(q, r) be the rational function in variables x, y defined by

E(q, r) := (−1)r+q+1rq(x− y − d)qjq(d− j)r−q
(
xd−r(y + r + q)

rq!(y + r + j)j+r

)(
(y + r − 1)r−q

y + q

)
.

Lemma 7.1. Set

ψ1(x, y) :=

j∑
q=0

d−j+q∑
r=max{1,q}

E(q, r).

Then ψR(x) = ψ1(x, x−N).

Proof. This is a straightforward computation. Note that r = N − p, where p is as in the definition
of ψR(x). �

Lemma 7.2. Set

ψ2(x, y) := − xd∏j
t=1(y + t)

(
−

j∑
t=1

1

y + t

)
+
∂xd

∂x

(
1∏j

t=1(y + t)

)
.

Then d
dxψL(x) = ψ2(x, x−N).

Proof. This follows from computing d
dxψL(x) using the Leibniz rule. �

Lemma 7.1 and Lemma 7.2 imply that in order to verify (47), it suffices to prove that

(48) ψ1(x, y) = ψ2(x, y).

The rest of this section is devoted to the proof of (48). Set

Ě(q, r) := (y + 1) · · · (y + j)E(q, r).

Then (48) is equivalent to

(49) −

(
j∑
t=1

1

y + t

)
xd +

∂xd

∂x
=

j∑
q=0

d−j+q∑
r=max{1,q}

Ě(q, r).

Next set ` := d− j and s := r− q. For q and r in the range of indices on the right hand side of (49)
we have 0 ≤ s ≤ ` when q ≥ 1, and 1 ≤ s ≤ ` when q = 0. Thus, the right hand side of (49) can be
written as a double sum over the indices (q, s) ∈ T , where

T :=
{

(a1, a2) ∈ Z2 : 0 ≤ a1 ≤ j, 0 ≤ a2 ≤ `, (a1, a2) 6= (0, 0)
}
.

Now define δs,0 := 1 if s = 0, and δs,0 := 0 if s ≥ 1. After substituting x by x+ j + ` and dividing
both sides of (49) by (j + `)!, it follows that (49) is equivalent to the identity

−(x+ j + `)j+`

(j + `)!

(
j∑
t=1

1

y + t

)
+

1

(j + `)!

(
∂

∂x
(x+ j + `)j+`

)
=
∑̀
s=0

(−1)s+1F (s),(50)

where

F (s) :=

j∑
q=δs,0

(y + 2q + s)

(
j

q

)(
`

s

)(
(q + s− 1)!

(j + `)!

)
(y + j)j−q

(y + q + s+ j)j+1
(x− y)q(x+ j + `)j+`−q−s.
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Consequently, to complete the proof of Theorem E, it suffices to verify (50). We will prove (50)
after the proof of Proposition 7.3 below, which yields explicit formulas for F (s).

Proposition 7.3. Let F (s) be defined as above. Then

(51) F (s) =
(x+ j + `)`−s(x+ j)j

s(`− s)!(j + `)j
for 1 ≤ s ≤ `,

and

(52) F (0) =
(x+ j + `)j+`

(j + `)!

j∑
t=1

(
1

y + t
− 1

x+ t

)
.

Proof. Set

H(s) :=
(`− s)!(j + `)j

(x+ j + `)j+`−s
F (s),

so that H(s) =
∑j

q=δs,0
E1(q, s), where

E1(q, s) :=
1

s!

(
j

q

)
(y + 2q + s)(q + s− 1)!

(y + j)j−q

(y + q + s+ j)j+1
(x− y)q

(x+ j + s)s

(x+ q + s)q+s
.

It suffices to prove that

(53) H(s) =
1

s
for s ∈ Z such that 1 ≤ s ≤ `,

and

(54) H(0) =

j∑
k=1

1

y + k
−

j∑
k=1

1

x+ k
.

Our strategy is to relate H(s) to Dougall’s Theorem. First note that

(55)
E1(q + 1, s)

E1(q, s)
=
h1(q)

h2(q)
for 0 ≤ q ≤ j and E1(q, s) = 0 for q > j,

where

h1(q) =

(
q +

1

2
y +

1

2
s+ 1

)
(q + y + s)(q + y + s)(q − j)(q + s)(q + y − x),

and

h2(q) =

(
q +

1

2
y +

1

2
s

)
(q + y + s+ j + 1)(q + y + 1)(q + x+ s+ 1)(q + 1).

Furthermore,

(56) E1(0, s) =
(y + j)j(x+ j + s)s

s(y + s+ j)j(x+ s)s
for s ∈ Z+.

We can write (56) as E1(0, s) = 1
sφ(s), where

φ(s) :=
(y + j)jΓ(x+ j + s+ 1)Γ(x+ 1)

(y + s+ j)jΓ(x+ s+ 1)Γ(x+ j + 1)
.

Thus we can extend E1(0, s) to a meromorphic function of s for any choice of x, y ∈ C. Note that
if x, y > 0 then E1(0, s) does not have any poles for s ∈ R+. Using (55) we can extend E1(q, s) for
1 ≤ q ≤ j to a continuous function for s ≥ 0 as long as x, y, x− y − j > 0. In particular, under the
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same conditions on x and y, we can extend H(s) to a continuous function of the parameter s ∈ R+

by setting H(s) :=
∑j

q=0E1(q, s). From (55) it follows that

(57) H(s) = E1(0, s)

1 +

j∑
q=1

 ∏
0≤q′≤q−1

h1(q
′)

h2(q′)

 .

The products that appear in the summands of (57) simplify, and by comparing with (20) we obtain

(58) H(s) = E1(0, s)

[
5F4

(
1
2y + 1

2s+ 1 , y + s , −j , s , y − x
1
2y + 1

2s , y + s+ j + 1 , y + 1 , x+ s+ 1
; 1

)]
for s ∈ R+.

Note that in the hypergeometric series on the right hand side of (58), only the first j + 1 terms are
nonzero (because of the −j appearing in the top row of parameters). From Dougall’s Theorem for
a = y + s, b = j, c = −s, and d = x− y, we obtain

H(s) = E1(0, s)
Γ(y + s+ j + 1)Γ(y + 1)Γ(x+ s+ 1)Γ(x+ j + 1)

Γ(y + s+ 1)Γ(y + j + 1)Γ(x+ 1)Γ(x+ j + s+ 1)

= E1(0, s)
(x+ j)j

(y + j)j
(y + s+ j)j

(x+ s+ j)j
.

If s ∈ Z and 1 ≤ s ≤ `, then from (56) it follows that

H(s) =
1

s

(
(y + j)j(x+ j + s)s

(y + s+ j)j(x+ s)s

)
(x+ j)j

(y + j)j
(y + s+ j)j

(x+ s+ j)j
=

1

s
.

This completes the proof of (53). For (54), set

ψ3(s) :=
(x+ j)j

(y + j)j
(y + s+ j)j

(x+ s+ j)j
,

so that H(s) = E1(0, s)ψ3(s). Then

H(0) =

j∑
q=1

E1(q, 0) = lim
s→0+

j∑
q=1

E1(q, s) = lim
s→0+

(H(s)− E1(0, s))

= lim
s→0

E1(0, s) (ψ3(s)− 1) = lim
s→0+

φ(s)

(
1

s
(ψ3(s)− 1)

)
= ψ′3(0) lim

s→0+
φ(s).

It is straightforward to check that lims→0+ φ(s) = 1 and ψ′3(0) =
∑j

k=1
1

y+k −
∑j

k=1
1

x+k . �

We now return to the proof of (50). Using the Leibniz rule and (19) we have

∂

∂x
(x+ j + `)j+` =

∂

∂x

(
(x+ j + `)`(x+ j)j

)
= (x+ j)j

∂

∂x
(x+ j + `)` + (x+ j + `)`

∂

∂x
(x+ j)j

= (x+ j)j

(∑̀
t=1

(−1)t+1 `
t

t
(x+ j + `)`−t

)
+ (x+ j + `)j+`

(
j∑
t=1

1

x+ t

)
.

Identity (50) follows from substituting the latter formula in its left hand side, and rewriting its right
hand side using Proposition 7.3.
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8. Capelli operators in Deligne’s Category Rep(Ot)

In this section, we define the categorical Capelli operators Dt,λ and prove Theorems A′–C′. We
begin by defining general categorical analogues of the algebras P(V ) and PD(V ). Let C be a
Karoubian F-linear symmetric monoidal category, where F is a field of characteristic zero. Given an
object X of C, set PdX := Sd(X) for d ≥ 0 and PX :=

⊕
d≥0 P

d
X, where we consider PdX as an object of

the inductive completion of C. Then PX is a commutative algebra object when equipped with the
multiplication morphism µX : PX ⊗ PX → PX that is induced from the monoidal structure of C. If
X is left rigid and X∗ denotes the left dual of X, then we set

PDX := PX ⊗ PX∗
∼=
⊕
p,q≥0

Sp(X)⊗ Sq(X∗).

For q ≥ p ≥ 0 the evaluation morphism ε
Sp(X) : Sp(X∗)⊗ Sp(X)→ 1 yields a morphism

trp,q : Sp(X∗)⊗ Sq(X)→ Sq−p(X),

and we set

γp,q : PX ⊗ Sp(X∗)⊗ Sq(X)→ PX , γp,q := µX ◦ (1⊗ trp,q).

For p > q ≥ 0 we set γp,q := 0. Then γ := ⊕p,q≥0γp,q is a morphism γ : PDX⊗PX → PX. Moreover,
there exists a unique morphism µ̃ : PDX ⊗ PDX → PDX satisfying

γ(µ̃⊗ 1) = γ(1⊗ γ).

Thus PDX is an associative algebra object and PX is a PDX-module in the inductive completion of C.
The “order” filtration of PDX is given by setting

PDiX := PX ⊗ Si(X∗) for i ≥ 0.

There is also a Z-grading on PDX given by

PDX,i :=
⊕
p−q=i

Sp(X)⊗ Sq(X∗),

so that PDX
∼= ⊕i∈ZPDX,i. Note that PDX,0 is a subalgebra object of PDX. If ιX : 1→ X⊗X∗ is the

co-evaluation of X then clearly ιX ∈ Hom(1,PD0).

Next suppose that there exists an isomorphism X
β−→ X∗, and set

(59) ωX := (1⊗ β−1)ιX and ω∗X := (β ⊗ 1)ιX.

It is straightforward to verify that ωX ∈ Hom(1,PD2) and ω∗X ∈ Hom(1,PD−2).
We now return to the Deligne category Rep(Ot). Recall that Rep(Ot) is the Karoubian C-linear

rigid symmetric monoidal category generated by the self-dual object Vt of categorical dimension
t ∈ C. We denote the identity object of Rep(Ot) by 1 and the braiding of Rep(Ot) by

σ : M⊗ N→ N⊗M.

Since Vt is self-dual, we have evaluation and co-evaluation morphisms

ε : Vt ⊗ Vt → 1 and ι : 1→ Vt ⊗ Vt,

that satisfy the usual duality axioms. Furthermore, these morphisms satisfy the relations

σι = ι , εσ = ε , ει = t.

By definition, for d ≥ 0 the C-algebra End(V⊗dt ) is generated by the morphisms 1⊗(i−1)⊗σ⊗1⊗(d−i−1)

and ιε⊗ 1⊗(d−2). The category Rep(Ot) satisfies the following properties (see [4, 5, 15]).

Proposition 8.1. The following statements hold in the category Rep(Ot).
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(i) For d ≥ 0, the algebra End(V⊗dt ) is isomorphic to the Brauer algebra Brd(t).

(ii) Every indecomposable object of Rep(Ot) is isomorphic to the image of a primitive idempotent

in End(V⊗dt ) for some d ≥ 0.

(iii) Hom(V⊗pt ,V⊗qt ) = {0} if p− q is odd. If p− q is even, then Hom(V⊗pt ,V⊗qt ) is generated as

a (Brq(t), Brp(t))-bimodule by ε⊗
p−q
2 ⊗ 1⊗q if p > q, and by ι⊗

q−p
2 ⊗ 1⊗p if q > p.

(iv) If t /∈ Z, then Rep(Ot) is an abelian semisimple tensor category and in particular Brd(t) is
a semisimple algebra.

(vi) If t ∈ Z and p, q ≥ Z≥0 such that p − 2q = t, then there exists a symmetric monoidal

full functor Fp|q : Rep(Ot) → Rep(osp(p|2q)) such that Fp|q(Vt) = Cp|2q, where Cp|2q is the
defining representation of osp(p|2q).

Our next goal is to define categorical analogues of invariant differential operators, and in particular
the Euler and Casimir operators. To this end, we set

At := Hom (1,PDVt,0) and Bt := Hom (1,PDVt) .

Then At and Bt are algebras with the products defined by

α1 ⊗α2 7→ µ̃ ◦ (α1 ⊗α2) ◦ ι◦,
where ι◦ : 1 → 1 ⊗ 1 is the co-evaluation of 1. One can interpret Bt as the algebra of Ot-invariant
differential operators acting on PVt . Similarly, At can be interpreted as the algebra of GO t-invariant
differential operators on PVt .

The morphism γ : PDVt ⊗ PVt → PVt induces homomorphisms of associative algebras

γAt : At → End(PVt) and γBt : Bt → End(PVt).

Then Et := γAt(ι) acts by the scalar d on PdVt . Set ∆t := 1
2γBt

(
ωVt

)
and Θt := 1

2γBt
(
ω∗Vt

)
, where

ωVt
and ω∗Vt are defined as in (59), with β := 1Vt . It is straightforward to verify the relations

(60) [Et,∆t] = −2∆t, [Et,Θt] = 2Θt, [∆t,Θt] = Et +
t

2
.

Now set

(61) Ct := (Et +
t

2
)2 − 2Θt∆t − 2∆tΘt −

t2

4
+ t = E2

t + tEt − 4Θt∆t − 2Et.

One can check that Ct is indeed the Casimir element for the Lie algebra object gt ' Λ2(Vt).

Proposition 8.2. Let t ∈ C and let At, Bt, γAt, and γBt be as above. Then the following statements
hold.

(i) γBt(Bt) is generated by ∆t and Θt.

(ii) γBt(Bt) is isomorphic to the universal enveloping algebra U(sl2).

(iii) γAt(At) is generated by Ct and Et.

Proof. (i) Fix b ∈ γBt(Bt) and choose d ∈ N sufficiently large such that the restriction of b on

P≤dVt
:=
⊕

p≤d P
p
Vt

uniquely determines b among elements of γBt(Bt). Since projections from P≤dVt
onto PpVt for 0 ≤ p ≤ d can be expressed as polynomials in Et, we can write b as

b =
∑

0≤p,q≤d
fq(Et)bgp(Et),

where fi, gi ∈ C[x]. Each summand fq(Et)bgp(Et) can be identified with an element of Hom(PpVt ,P
q
Vt

)

for some p, q ≥ 0. To complete the proof of (i), it suffices to express element of Hom(PpVt ,P
q
Vt

) in

terms of ∆t and Θt. To prove the latter claim, first assume p = q. Recall that the algebra End(V⊗pt )
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is generated by the symmetric group Sp and the morphism ιε ⊗ 1⊗(p−2). Since PpVt = Sp(Vt) is a

direct summand of V⊗pt , the canonical restriction End(V⊗pt ) → End(PpVt) is a surjection. But the

action of Sp on Sp(Vt) is trivial, hence End(PpVt) = End(Sp(Vt)) is generated by Θt∆t. Next assume

that p 6= q. Then by Proposition 8.1(iii), for q > p the homomorphism

C[Θt∆t]Θ
q−p
2

t C[Θt∆t]→ Hom(Sp(Vt), S
q(Vt))

is surjective. Similarly, for p > q the homomorphism

C[Θt∆t]∆
p−q
2

t C[Θt∆t]→ Hom(Sp(Vt), S
q(Vt))

is surjective.

(ii) Since ∆t,Et+
t
2 ,−Θt form a standard sl2-triple, we obtain a surjection U(sl2)→ γBt(Bt). Next

we prove that the latter homomorphism is injective.
First, we assume that t /∈ 2Z. For every simple object X of Rep(Ot) the space MX := Hom(X,PVt)

is a γBt(Bt)-module and hence a U(sl2)-module. It suffices to show that M := ⊕XMX is a faithful
U(sl2)-module, where the direct sum is taken over isomorphism classes of simple objects of Rep(Ot).
Note that each MX is a weight module with weights in Z≥0+ t

2 . From the theory of Verma modules for

sl2 it follows that if d is such that dim Hom(X,Pd−2Vt
) < dim Hom(X,PdVt), then M contains a Verma

module with lowest weight d+ t
2 as a subrepresentation. Next we show that for all but finitely many

d ≥ 0, the latter inequality holds for some X. Indeed since Θt induces a monomorphism Pd−2Vt
→ PdVt ,

it suffices to show that Pd−2Vt
and PdVt are not isomorphic objects. The latter follows from comparing

the categorical dimensions, which is given by the formula

dimPdVt =
t(t+ 1) . . . (t+ d− 1)

d!
.

Hence M contains sl2-submodules which are Verma modules with lowest weights d + t
2 for all but

finitely many d ∈ N. The intersections of the annihilators of these Verma modules is the trivial ideal
of U(sl2) (see [6, Sec. 8.4]), hence M is a faithful U(sl2)-module.

If t ∈ 2Z the result follows from the analogous result for osp(2m|2n) with 2m − 2n = t, where
m,n ∈ N (see for instance [26]) using the functor Fm|n defined in Proposition 8.1(vi).

(iii) Note that γAt(At) is the centralizer of Et inside γBt(Bt). Thus (ii) implies that (iii) is equivalent
to the well-known fact that the centralizer of the Cartan subalgebra in U(sl2) is generated by the
Cartan subalgebra and the Casimir operator. �

Lemma 8.3. Let d ∈ Z≥0 and let Ct,d be the image of Ct in End(PdVt). Let pdt (x) ∈ C[x] be the

minimal degree monic polynomial such that pdt (Ct,d) = 0. Then

pdt (x) =
∏

0 ≤ a ≤ d

d ≡ a mod 2

(x− a(a+ t− 2)).

Proof. For d ≤ 1 the statement is trivial since Ct,0 = 0 and Ct,1 = (t − 1)1Vt . We will prove the
statement by induction on d.

First we assume that t /∈ Z. We claim that

PdVt
∼= Pd−2Vt

⊕ ker ∆t

∣∣
PdVt
.

Indeed, from representation theory of sl2 (see the proof of Proposition 8.2(ii)) it follows that ∆t is
surjective. Semisimplicity of Rep(Ot) implies the claim.
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By (61), the operator Ct,d acts on ker ∆t by the scalar d(d + t − 2). Since d(d + t − 2) is not a

root of pd−2t (x), we have pdt (x) = (x−d(d+ t−2))pd−2t (x). The statement now follows by induction.
Next assume that t ∈ Z. Choose positive integers a, b such that a − 2b = t. Then from Propo-

sition 3.1 it follows that prt (x) is the minimal polynomial for Fa|b(Ct,d), where Fa|b is the functor

given in Proposition 8.1(iv). The homomorphism Fa|b : End(Pd)→ End(Pd(V )) is surjective since

Fa|b is full. On the other hand, End(Pd) is spanned by
{
Θp
t∆

p
t : 0 ≤ p ≤ bd2c

}
(see the proof of

Proposition 8.2(i)). Hence

dim End(PdVt) ≤ 1 +
⌊d

2

⌋
= dim End(Pd(V )),

and thus Fa|b is an isomorphism. Consequently, the minimal polynomials of Fa|b(Ct,d) and Ct,d are

identical. The statement now follows from the decomposition of Pd(V ) as a gosp(a|2b)-module (see
Proposition 3.1 and [26, Sec. 10]). �

Remark 8.4. If t /∈ 2Z≤0 then pdt (x) does not have multiple roots. If t ∈ 2Z≤0 then the multiplicity
of each root of pdt (x) is at most 2.

Lemma 8.5. Let pdt (x) be as in Lemma 8.3. Let ui, 1 ≤ i ≤ e, be the distinct roots of pdt (x) with
corresponding multiplicities mui ∈ {1, 2}. Set Wui := ker ((Ct,d − ui)mui ). Then PdVt

∼=
⊕e

i=1Wui

and every Wui is an indecomposable object of Rep(Ot).

Proof. The proof of the decomposition PdVt
∼=
⊕e

i=1Wui is similar to that of the Primary Decom-

position Theorem in linear algebra. Set qi(x) :=
pdt (x)

(x−ui)mui
and choose gi, hi ∈ C[x] such that

qi(x)gi(x) + (x − ui)muihi(x) = 1. Then the morphisms πi := qi(Ct,d)gi(Ct,d) are the projections
onto the Wui .

Next we show that each Wui is indecomposable. Recall that Ct,d generates the algebra End(PdVt)
(see the proof of Proposition 8.2(i)). Since Wui is a direct summand, it follows that End(Wui) is
also generated by the restriction of Ct,d. Consequently, End(Wui)

∼= C[x]/〈(x− ui)mui 〉, hence Wui

is indecomposable. �

Recall from (22) that k := − t
2 . For λ ∈ I and t ∈ C set

cλ(t) := (λ1 − λ2)(λ1 − λ2 + t− 2) = (λ2 − λ1)(λ2 − λ1 + 2k + 2).

Now let d ∈ Z≥0, and let pdt (x) be as in Lemma 8.3. Given λ ∈ I such that |λ| = d, we denote
the multiplicity of the root cλ(t) of pdt (x) by mλ. Lemma 8.5 immediately implies the following
corollary, which is the categorical analogue of (6). Recall that I ′k is defined as in (22).

Corollary 8.6. For λ ∈ I set Vt,λ := ker ((Ct,d − cλ(t))mλ) where d := |λ|. Then the following
statements hold.

(i) If t 6∈ 2Z≤0 then PdVt
∼=
⊕

λ∈I,|λ|=d Vt,λ.

(ii) If t ∈ 2Z≤0 then PdVt
∼=
⊕

λ∈dI
′
k
Vt,λ.

We are now going to define the eigenvalue polynomial fD for an element D ∈ At. From now on,
for D ∈ At we denote the restriction of γAt(D) to Vt,µ by D

∣∣
Vt,µ

.

Proposition 8.7. Let D ∈ At. Set S := I if t 6∈ 2Z≤0 and S := I ′k otherwise. Then there exists a

unique symmetric polynomial fD(x, y) such that for every λ ∈ S, we have

D
∣∣
Vt,λ

= fD(λ1 − k − 1, λ2) · 1Vt,λ + ηλ,

where ηλ ∈ End(Vt,λ) satisfies η2λ = 0.
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Proof. Existence follows from Corollary 8.6 and Proposition 8.2(iii), and the argument is similar to
the proof of Proposition 3.3. Uniqueness follows from the fact that P is Zariski dense in C2. Note
that when t ∈ 2Z≤0, the coincidence relation (23) implies that two symmetric polynomials that
agree on S also agree on I. �

Definition 8.8. Let D ∈ At. The eigenvalue polynomial of D is the polynomial fD(x, y) ∈ C[x, y]
that is given in Proposition 8.7.

The construction of the Capelli operators in Rep(Ot). Our next task is to define the Capelli
operators {Dt,λ}λ∈I .

• If t /∈ 2Z≤0 then for all λ ∈ I we define Dt,λ ∈ At as the element corresponding to the
co-evaluation morphism

(62) 1
εVt,λ−−−−→ Vt,λ ⊗ V∗t,λ.

• If t ∈ 2Z≤0 and λ is k-regular or k-quasiregular, we define Dt,λ as in (62).

• If t ∈ 2Z≤0 and λ is k-singular, we define Dt,λ as the element of At corresponding to the
morphism

(63) 1
Ct,|λ|−cλ(t)−−−−−−−−→ Vt,λ† ⊗ V∗t,λ† ,

Using the fact that (Ct,|λ|−cλ(t)) ∈ End(Vt,λ†)
∼= Hom(1,Vt,λ†⊗V∗

t,λ†
). Here and in the rest

of the paper λ† is defined as in Remark 1.3, but with k replaced by k. Lemma 8.5 implies
that Ct,|λ| − cλ(t) is a nilpotent element of order two in End(Vt,λ†).

For d ≥ 0 let Jdt denote the annihilator of P≤dVt
:=
⊕

p≤d P
p
Vt

in At. Since At is commutative, Jd is
a two-sided ideal of At. Moreover, we have a decomposition

At = Adt ⊕ Jdt ,

where Adt := PDdVt ∩ At. Let

πt,d : At → Adt

denote the projection with kernel Jdt . Our next task is to show that as t varies, the projections πt,d
deform with polynomials coefficients. From Proposition 8.2 it follows that γAt is an injection. Thus,
from now on we identify Ct and Et with their images under γAt .

Lemma 8.9. For i, j, d ≥ 0, there exist polynomials φi,j,d,i′,j′ ∈ C[x] such that

πt,d(C
i
tE

j
t ) =

∑
2i′+j′≤d

φi,j,d,i′,j′(t)C
i′
t E

j′

t for all t ∈ C.

Proof. We will describe a recursive procedure for finding the φi,j,d,i′,j′ with the desired properties.

Step 1. Using one-variable interpolation, for every j ≥ 0 we can find scalars ap for 0 ≤ p ≤ d such

that Ej
t −

∑d
p=0 apE

p
t ∈ Jdt . This proves the statement for the special case i = 0.

Step 2. We show that for every i ≥ 0 there exist polynomials ψp,q(t) for 1 ≤ p ≤ Ni and 0 ≤ q ≤ bd2c,
where Ni ∈ N, such that the element L ∈ At defined by

(64) L :=

b d
2
c∑

p=0

Ni∑
q=1

ψp,q(t)C
p
tE

q
t ,

satisfies Ci
t−L ∈ Jdt . Indeed by (60) and (61) we can write Ci

t as a linear combination of monomials
of the form Ep

tΘ
q
t∆

q
t with coefficients that are polynomial in t. Furthermore we can discard the
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monomials for which q > bd2c, because ∆q
t

∣∣
Sd(Vt)

= 0. Next we use (60) and (61) again to rewrite

Θq
t∆

q
t first in terms of powers of Θt∆t and then in terms of powers of Ct. The latter process will

only add extra powers of Et and coefficients that are polynomial in t. This completes the proof of
existence of L.

Step 3. Fix a pair (i, j) of exponents. Assume that the statement of the lemma holds for all Ci′
t E

j′

t

such that either i′ < i, or i′ = i and 2i′ + j′ < 2i + j. We now verify the lemma for Ci
tE

j
t . If

2i + j ≤ d there is nothing to prove, and therefore we assume that 2i + j ≥ d + 1. If j = 0 then

using Step 2 we can reduce the problem to monomials of the form Ci′
t E

j′

t where i′ < i. If j > 0

then set L′ := Ci
t

∏2i+j−1
r=2i (Et − r). Note that Ct −L′ is a linear combination of monomials Ci

tE
j′

t

satsifying 2i+ j′ < 2i+ j. Furthermore, by Step 2 the restriction of Ci
t to

⊕2i−1
p=0 Sp(Vt) is equal to

a linear combination of monomials Cp
tE

q
t where p ≤ i − 1, with polynomial coefficients. It follows

that the restriction of L′ to
⊕d

p=0 S
p(Vt) is also equal to a linear combination of monomials Cp

tE
q
t

where p ≤ i− 1, with polynomial coefficients. �

The next lemma is the categorical incarnation of Lemma 4.1.

Lemma 8.10. Let λ ∈ I and set d := |λ|.
(i) If t 6∈ 2Z≤0, then Dt,λ is the unique element of Adt such that Dt,λ

∣∣
Vt,λ

= 1 and Dt,λ

∣∣
Vt,µ

= 0

for all µ ∈ I satisfying |µ| ≤ |λ| and µ 6= λ.

(ii) If t ∈ 2Z≤0 and λ is k-regular, then Dt,λ is the unique element of Adt such that Dt,λ

∣∣
Vt,λ

= 1

and Dt,λ

∣∣
Vt,µ

= 0 for all µ ∈ I ′k satisfying |µ| ≤ |λ| and µ 6= λ.

(iii) If t ∈ 2Z≤0 and λ is k-singular, then Dt,λ is the unique element of Adt such that

Dt,λ

∣∣
V
t,λ†

= Ct,d − cλ(t),

and Dt,λ

∣∣
Vt,µ

= 0 for all µ ∈ I ′k satisfying |µ| ≤ |λ| and µ 6= λ†.

(iv) If t ∈ 2Z≤0 and λ is k-quasiregular, then Dt,λ is the unique element of Adt such that

Dt,λ

∣∣
Vt,λ

= 1,

and Dt,λ

∣∣
Vt,µ

= 0 for all µ ∈ I ′k satisfying |µ| ≤ |λ| and µ 6= λ.

Proof. The stated properties ofDt,λ are straightforward from the definition. Uniqueness follows from

the fact that any element of Adt is uniquely determined by its restriction to a morphism of P≤dVt
. �

Let λ ∈ I and set d := |λ|. For s ∈ C such that s 6∈ 2Z≤0 we define Ls,t,λ ∈ At by

(65) Ls,t,λ :=

∏d−1
i=0 (Et − i)

∏
|ν|=d,ν 6=λ (Ct − cν(s))

d!
∏
|ν|=d,ν 6=λ(cλ(s)− cν(s))

.

We remark that Ls,t,λ is well-defined because the factors (cλ(s)− cν(s)) in the denominator of (65)
vanish only if s ∈ 2Z≤0 and λ and ν are a pair of ks-quasiregular and ks-singular partitions, where
ks := − s

2 . We can now expand the right hand side of (65) and express Ls,t,λ as

(66) Ls,t,λ =
∑
i,j≥0

ηλ,i,j(s)C
i
tE

j
t ,

where the ηλ,i,j are rational functions of s. Note that the ηλ,i,j are independent of t and do not have
poles in C outside the set 2Z≤0.

Definition 8.11. For s ∈ C such that s 6∈ 2Z≤0, we define Ds,t,λ ∈ At as follows.
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(i) If either t 6∈ 2Z≤0, or t ∈ 2Z≤0 and λ is k-regular, then we set Ds,t,λ := Ls,t,λ.

(ii) If t ∈ 2Z≤0 and λ is k-singular, then we set Ds,t,λ := (cλ†(s)− cλ(s))Ls,t,λ† .

(iii) If t ∈ 2Z≤0 and λ is k-quasiregular, then we set Ds,t,λ := Ls,t,λ +Ls,t,λ† .

Using (66) we can express Ds,t,λ as

(67) Ds,t,λ =
∑
i,j

ηi,j(s)C
i
tE

j
t ,

where ηi,j(s) is equal to ηλ,i,j(s) or (cλ†(s)− cλ(s))ηλ†,i,j(s) or ηλ,i,j(s) + ηλ†,i,j(s) in cases (i), (ii),
and (iii) of Definition 8.11, respectively.

For k-quasiregular λ we define

φ̃1,λ(s) :=
∏

|ν|=|λ|,ν 6=λ,λ†
(cλ(s)− cν(s))−1 and φ̃2,λ(s) :=

∏
|ν|=|λ|,ν 6=λ,λ†

(cλ†(s)− cν(s))−1.

The next proposition is a key step in the proofs of Theorems A′–C′.

Proposition 8.12. The rational functions ηi,j(s) in (67) do not have any poles at s = t.

Proof. For Ds,t,λ as in Definition 8.11(i)-(ii) this follows from the fact that for λ, ν ∈ I such that
|λ| = |ν|, we have cλ(s) = cν(s) if and only if s ∈ 2Z≤0 and λ and ν are a pair of (− s

2)-quasiregular
and (− s

2)-singular partitions. For Ds,t,λ as in Definition 8.11(iii) note that

Ds,t,λ =
∏

|ν|=d,ν 6=λ,λ†
(Ct − cν(s))

∏d−1
i=0 (Et − i)

d!
D′,(68)

where d := |λ| and

D′ :=

(
φ̃1,λ(s)

Ct − cλ†(s)
cλ(s)− cλ†(s)

− φ̃2,λ(s)
Ct − cλ(s)

cλ(s)− cλ†(s)

)
.

Then D′ = γ0(s) + γ1(s)Ct where

γ0(s) = −
φ̃1,λ(s)cλ†(s)− φ̃2,λ(s)cλ(s)

cλ(s)− cλ†(s)
and γ1(s) =

φ̃1,λ(s)− φ̃2,λ(s)

cλ(s)− cλ†(s)
.

From the remark about vanishing of the differences (cλ(s)−cν(s)) it follows that φ̃1,λ(s) and φ̃2,λ(s)

do not have poles at s = t. Furthermore, from cλ(t) = cλ†(t) it follows that φ̃1,λ(t) = φ̃2,λ(t). This
implies that γ0(s) and γ1(s) do not have poles at s = t. Hence the coefficients ηi,j(s) of Ds,t,λ are
also regular at s = t. �

Because of Proposition 8.12, for t ∈ 2Z≤0 and λ ∈ I we can define

(69) Dt,t,λ :=
∑
i,j

ηi,j(t)C
i
tE

j
t = lim

s→t
Ds,t,λ.

Proposition 8.13. Dt,λ = πt,d(Dt,t,λ).

Proof. It suffices to check that Dt,t,λ satisfies the vanishing properties given in Lemma 8.10. If
t 6∈ 2Z≤0 then Rep(Ot) is semisimple, and in particular the Vt,ν are simple objects. It is then
straightforward to check the action of Dt,t,λ = Lt,t,λ on each Vt,ν using (65). If t ∈ 2Z≤0 then from
Lemma 8.9 and Proposition 8.12 it follows that

πt,d(Dt,t,λ) = lim
s→t

πt,d(Ds,t,λ),
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and again we can compute the action of Ds,t,λ using (65). The argument is by a case by case con-
sideration, and we will only give the details for the most difficult case, i.e., when λ is k-quasiregular.
In this case Ds,t,λ = Ls,t,λ +Ls,t,λ† for s sufficiently close but not equal to t. Now choose ν ∈ I ′k. If

|ν| < |λ| then both Ls,t,λ and Ls,t,λ† vanish on Vt,ν because they contain the factor (Et− |ν|). This

implies that Ds,t,λ

∣∣
Vt,ν

= 0, hence Dt,t,λ

∣∣
Vt,ν

= 0. Next assume that |ν| = |λ| and set d := |λ|. If ν is

k-regular, then Vt,ν is a simple object and bothLs,t,λ andLs,t,λ† contain the factor (Ct−cν(s)), which

acts on Vt,ν by (cν(t)− cν(s))1Vt,ν . Since lims→t(cν(t)− cν(s)) = 0, we obtain πt,d(Dt,t,λ)
∣∣
Vt,ν

= 0.

If ν is k-quasiregular and ν 6= λ, then from (68) it follows that

Ds,t,λ = (Ct − cν(s))(Ct − cν†(s))D

for some D ∈ At of the form D =
∑

i,j ψi,j(s)C
i
tE

j
t , where the ψi,j are rational functions without

poles at s = t. Now set N := (Ct − cν†(t))
∣∣
Vt,ν

. Then

(Ct − cν(s))(Ct − cν†(s))
∣∣
Vt,ν

= (cν†(t)− cν(s) +N)(cν†(t)− cν†(s) +N).

AsN2 = 0 and lims→t(cν†(t)−cν†(s)) = lims→t(cν†(t)−cν(s)) = 0, we obtain lims→tDs,t,λ

∣∣
Vt,ν

= 0.

Finally, if ν = λ then from (68) it follows that Ds,t,λ

∣∣
Vt,ν

= D(1)D(2) for

D(1) :=
∏

|η|=d,η 6=λ,λ†
(cλ(t)− cη(s) +N)

and

D(2) :=

(
φ̃1,λ(s)

cλ(s)− cλ†(s)
(cλ(t)− cλ†(s) +N)−

φ̃2,λ(s)

cλ(s)− cλ†(s)
(cλ(t)− cλ(s) +N)

)
,

Since N2 = 0, we have D(i)
∣∣
Vt,ν

= γ
(i)
0 (s) + γ

(i)
1 (s)N for i ∈ {1, 2}, so that

(70) Ds,t,λ

∣∣
Vt,ν

= γ0(s) + γ1(s)N ,

where γ0(s) = γ
(1)
0 (s)γ

(2)
0 (s) and γ1(s) = γ

(1)
0 (s)γ

(2)
1 (s) + γ

(1)
1 (s)γ

(2)
0 (s). To complete the proof we

need to verify that lims→t γ0(s) = 1 and lims→t γ1(s) = 0.

To prove lims→t γ0(s) = 1 first note that lims→t γ
(1)
0 (s) = φ̃1,λ(t)−1. Furthermore,

γ
(2)
0 (s) = φ̃1,λ(s)

cλ(t)− cλ†(s)
cλ(s)− cλ†(s)

− φ̃2,λ(s)
cλ(t)− cλ(s)

cλ(s)− cλ†(s)
,

and from φ̃1,λ(t) = φ̃2,λ(t) it follows that lims→t γ
(2)
0 (s) = φ̃1,λ(t).

To prove lims→t γ1(s) = 0, note that

γ1(s) = φ̃1,λ(s)φ̃2,λ(s)

 ∏
|ν|=d , ν 6=λ,λ†

(cλ(t)− cν(s))

(φ̃3(s) + φ̃4(s)
)

where φ̃3(s) :=
φ̃2,λ(s)

−1−φ̃1,λ(s)−1

cλ(s)−cλ† (s)
and

φ̃4(s) :=

 ∑
|ν|=d , ν 6=λ,λ†

1

cλ(t)− cν(s)

( φ̃2,λ(s)−1(cλ(t)− cλ†(s))− φ̃1,λ(s)−1(cλ(t)− cλ(s))

cλ(s)− cλ†(s)

)
.
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From φ̃1,λ(t) = φ̃2,λ(t) it follows that

(71) lim
s→t

φ̃4(s) = φ̃1,λ(t)−1
∑

|ν|=d , ν 6=λ,λ†

1

cλ(t)− cν(t)
.

Furthermore cλ(s)− cλ†(s) = (s− t) (2(λ1 − λ2) + t− 2), so that

lim
s→0

φ̃3(s) = lim
s→t

(φ̃2,λ(s)−1 − φ̃2,λ(t)−1)− (φ̃1,λ(s)−1 − φ̃−11,λ(t))

cλ(s)− cλ†(s)

=
1

2(λ1 − λ2) + (t− 2)

(
d

ds
φ̃2,λ(s)−1

∣∣
s=t
− d

ds
φ̃1,λ(s)−1

∣∣
s=t

)
.

Now

(72)
d

ds
φ̃1,λ(s)−1

∣∣
s=t

= φ̃1,λ(t)−1
∑

|ν|=d , ν 6=λ,λ†

(λ1 − λ2)− (ν1 − ν2)
cλ(t)− cν(t)

and

(73)
d

ds
φ̃2,λ(s)−1

∣∣
s=t

= φ̃2,λ(t)−1
∑

|ν|=d , ν 6=λ,λ†

(−λ1 + λ2 − t+ 2)− (ν1 − ν2)
cλ(t)− cν(t)

.

From (71), (72) and (73) it follows that lims→t(φ̃3(s) + φ̃4(s)) = 0, hence lims→t γ1(s) = 0. �

Remark 8.14. There is a more conceptual argument for proving lims→t γ1(s) = 0 in (70) as follows.
The construction of Rep(Ot) is valid over the field C(ξ) of rational functions in a parameter ξ, yielding
a Karoubian rigid symmetric monoidal category generated by a self-dual object Vξ of dimension ξ.
Let us denote the latter category by Rep(Oξ). The algebra At and the operators Ct, Et, and Dt,λ

have counterparts Aξ, Cξ, Eξ, and Dξ,λ in the inductive completion of Rep(Oξ). For t ∈ C, let

Ot ⊆ C(ξ) denote the local ring of rational functions without a pole at ξ = t, and let Aξ ⊆ Aξ
be the Ot-subalgebra of Aξ generated by Cξ and Eξ. Further, let evξ=t : Aξ → At be the ring
homomorphism obtained by naturally extending evξ=t(Cξ) := Ct and evξ=t(Eξ) := Et. One can

show that Rep(Oξ) is semisimple, and it follows that the restriction of Dξ,λ to P≤dVξ
is an idempotent

morphism. One can then use the fact that evξ=t is a ring homomorphism to prove that evξ=t(Dξ,λ)

is an idempotent when restricted to P≤dVt
, and therefore it does not have a nonzero nilpotent part.

Lemma 8.15. Assume that t ∈ 2Z≤0. Let Ut ⊆ C be an open set such that Ut∩Z = {t}. For s ∈ Ut
let Ls ∈ As be defined by

(74) Ls :=

p∑
i,j=0

ψi,j(s)C
i
sE

j
s,

where the ψi,j are rational functions without poles in Ut. Let fLs be defined as in Definition 8.8 for
s ∈ Ut. Then fLt = lims→t fLs as elements of C[x, y].

Proof. Let s ∈ Ut\{t}. Then the category Rep(Os) is semisimple and by (74) we have

fLs(µ1 + s
2 − 1, µ2) =

∑p
i,j=0 ψi,j(s)cµ(s)i(µ1 + µ2)

j for µ ∈ I.

Since I is Zariski dense in C2, it follows that

fLs(x, y) =
∑p

i,j=0 ψi,j(s)((x− y)2 − ( s2 − 1)2)(x+ y)j .

In particular, the coefficients of fLs(x, y) are rational functions without poles in Ut. Thus, the limit
lims→t fLs exists.
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The action of Lt on Vt,µ, where µ ∈ I ′k, is equal to
∑p

i,j=0 ψi,j(t)(cµ(t) +N)i(µ1 + µ2)
j , where

N is the nilpotent part of Ct

∣∣
Vt,µ

(recall that N2 = 0). Thus

fLt (µ1 − k − 1, µ2) =

p∑
i,j=0

ψi,j(t)cµ(t)i(µ1 + µ2)
j .

Consequently for all µ ∈ I ′k,

(75) fLt (µ1 − k − 1, µ2) = lim
s→t

fLs

(
µ1 +

s

2
− 1, µ2

)
= lim

s→t
fLs (µ1 − k − 1, µ2) ,

where for the second equality we use the fact that the coefficients of fLs(x, y) do not have poles in
Ut. But then (75) also holds for all µ ∈ I since both fLt and lims→t fLs are symmetric polynomials.

Since I is Zariski dense in C2, we obtain fLt = lims→t fLs . �

We are now ready to prove Theorems A′–C′. Recall that fλ := fDt,λ
, where the right hand side

is defined as in Definition 8.8. Since Dt,λ ∈ Adt , Lemma 8.9 implies that deg fλ ≤ |λ|.

Proof of Theorems A′–C′. First assume that t 6∈ 2Z≤0. Then by Lemma 8.10(i) the polynomial
fλ satisfies vanishing conditions analogous to the hypotheses of Theorem 1.1, and the claim follows.
Next assume that t ∈ 2Z≤0. Our strategy is to reduce this case to the case t 6∈ 2Z≤0. Let ηi,j(s) be
as in (67). Set Ut := {t} ∪ (C\Z). By Lemma 8.9,

πt,d(Ds,t,λ) =
∑
i,j,i′,j′

ηi,j(s)φi,j,d,i′,j′(t)C
i
sE

j
s for s ∈ Ut.

Using Proposition 8.13 and Proposition 8.12 we obtain

Dt,λ = πt,d(Dt,t,λ) = lim
s→t

πt,d(Ds,t,λ)

= lim
s→t

∑
i,j,i′,j′

ηi,j(s)φi,j,d,i′,j′(t)C
i
tE

j
t = lim

s→t

∑
i,j,i′,j′

ηi,j(s)φi,j,d,i′,j′(s)C
i
tE

j
t ,

where in the last step we use Proposition 8.12. Set

Ls :=
∑
i,j,i′,j′

ηi,j(s)φi,j,d,i′,j′(s)C
i
sE

j
s,

so that Lt = Dt,λ. Next fix s ∈ Ut\{t}. We use the special case of Theorem A′ that was proved

above to compute fLs . If λ is k-regular, then Ls = πs,d(Ls,s,λ) and thus fLs = 1
Hλ(− s2)

P
− s

2
λ . If λ

is k-singular, then Ls = (cλ†(s)− cλ(s))πs,d(Ls,s,λ†) and thus

fLs =
cλ†(s)− cλ(s)

Hλ

(
− s

2

) P
− s

2

λ†
.

Finally, if λ is k-quasiregular, then Ls = πs,d(Ls,s,λ +Ls,s,λ†) and thus

fLs =
1

Hλ

(
− s

2

)P− s2λ +
1

Hλ†
(
− s

2

)P− s2
λ†

.

Now Lemma 8.15 implies Theorems A′–C′.
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