CAPELLI OPERATORS FOR SPHERICAL SUPERHARMONICS AND THE
DOUGALL-RAMANUJAN IDENTITY

SIDDHARTHA SAHI #, HADI SALMASIAN®, AND VERA SERGANOVA®

ABSTRACT. Let (V,w) be an orthosymplectic Zs-graded vector space and let g := gosp(V,w) denote
the Lie superalgebra of similitudes of (V,w). It is known that as a g-module, the space Z(V) of
superpolynomials on V' is completely reducible, unless dim Vg and dim V5 are positive even integers
and dim Vg < dim V5. When £(V) is not a completely reducible g-module, we construct a natural
basis {Dx}ycz of “Capelli operators” for the algebra Z%(V)? of g-invariant superpolynomial su-
perdifferential operators on V', where the index set Z is the set of integer partitions of length at most
two. We compute the action of the operators {Dy},cz on maximal indecomposable components of
P (V) explicitly, in terms of Knop-Sahi interpolation polynomials. Our results show that, unlike the
cases where Z(V) is completely reducible, the eigenvalues of a subfamily of the Dy are not given by
specializing the Knop-Sahi polynomials. Rather, the formulas for these eigenvalues involve suitably
regularized forms of these polynomials. This is in contrast with what occurs for previously studied
Capelli operators. In addition, we demonstrate a close relationship between our eigenvalue formulas
for this subfamily of Capelli operators and the Dougall-Ramanujan hypergeometric identity.

We also transcend our results on the eigenvalues of Capelli operators to the Deligne category
Rep(O:). More precisely, we define categorical Capelli operators {Dy x}xcz that induce morphisms
of indecomposable components of symmetric powers of V;, where V; is the generating object of
Rep(O:). We obtain formulas for the eigenvalue polynomials associated to the {D; x},.; that are
analogous to our results for the operators {Dx}cz-

1. INTRODUCTION

Let V := V5 @ V5 be a vector superspace equipped with a non-degenerate even supersymmetric
bilinear form w : V x V' — C, and let osp(V,w) denote the orthosymplectic Lie superalgebra that
leaves w invariant. Set

g :=gosp(V,w) := osp(V,w) & Cz,
where z is a central element of g. Then V has a natural g-module structure, where the action of z on
V' is defined to be —1y. The g-module structure of V' induces a canonical g-module structure on the
superalgebra Z(V') of superpolynomials on V', and the superalgebra Z(V') of constant-coefficient
superdifferential operators on V. Indeed Z(V) = §(V*) and Z(V) = 8§(V) as g-modules. When
dim V5 = 0, studying &(V) is the subject of the classical theory of spherical harmonics. For an
elegant exposition of this theory we refer the reader to [g].
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Set d; := dimVj; for i € {6,1}. It is known that Z2(V) is a semisimple and multiplicity-free
g-module unless dg,dy € 2Z1 and dg < dy (see [26, B]). Let #2(V) denote the superalgebra of
superpolynomial-coefficient superdifferential operators on V', equipped with the natural g-module
structure defined by z - D := 2D — (—=1)IPI*IDg for homogencous = € g and D € 2P (V) (for
further details see for example [I9 Sec. 2]). Then there is a canonical g-module isomorphism

(1) PPV)=2(V) 2(V).
Let 7 be the set of integer partitions of length at most two, that is,
Z:={(\, ) €Z%: \; > X2 >0}.

In the cases that Z2(V) is a semisimple and multiplicity-free g-module, the irreducible components of
P (V) are naturally indexed by elements of Z (see [8,[3,26]). Then by a general algebraic construction
(see the discussion at the end of this section, or [I8| 21]) one obtains a distinguished basis { Dy} of
Capelli operators for the algebra 2% (V')? of g-invariant differential operators. By Schur’s Lemma,
the operators D) act on irreducible components of &(V) by scalars. The problem of computing
these scalars was addressed in [21], among several other examples. We remark that the problem of
computing eigenvalues of Capelli operators (which we will refer to as the Capelli eigenvalue problem)
has a long history, and has been studied extensively in the general context of multiplicity-free actions
of Lie (super)algebras [T}, 10} 13, 14}, 18] 22, 23], 20} 27]. In all of the previously investigated instances
of the Capelli eigenvalue problem, the formulas for the eigenvalues turn out to be specializations of
families of interpolation polynomials, such as Knop-Sahi polynomials, Sergeev-Veselov polynomials,
Okounkov interpolation polynomials, or Ivanov polynomials. For the definition and properties of
these families of polynomials, we refer the reader to [I1} 17, 25 16 12, ©]. In particular, in [21,
Theorem 1.13] we proved that the eigenvalues of the Capelli basis { D) } ez on irreducible components
of (V') are obtained from the two-variable interpolation polynomials previously defined by F. Knop
and the first author [I1] at the parameter value %SdimV — 1, where sdimV := dim Vi — dim V7.

In this paper, we are interested in defining the Capelli operators and computing their actions on
P (V) in the cases where Z(V) is not a semisimple g-module. Thus, henceforth we will assume
that dg = 2m and dy = 2n for m,n € N, where

k:=n—m>0.

Because of non-semisimplicity of &?(V), the usual definition of Capelli operators (see [18, [19, 21])
needs to be tweaked slightly. Furthermore, elements of 2% (V)% are not necessarily diagonalizable
on Z(V), and thus we are naturally forced to consider their Jordan decompositions.

We show that in the non-semisimple case one still has a natural basis {Dy}xez of Z2(V)9, but
a new phenomenon occurs in relation to their spectra: unlike the previous (semi-simple) instances
of the Capelli eigenvalue problem, the eigenvalues of the Capelli basis are not always specializations
of interpolation polynomials. Rather, for a subfamily of this basis, one needs polynomials that are
obtained from Knop-Sahi interpolation polynomials by removing their singular part, that is, the
part whose coefficients have poles. We provide two different formulas for the eigenvalues of this
subfamily that are related to each other through a curious polynomial identity. We prove the latter
polynomial identity using the classical Dougall-Ramanujan hypergeometric identity.

To explain our main results, we begin with the definition of the Knop-Sahi polynomials. We will
only consider these polynomials in two variables. For the definition of these polynomials in the
n-variable case, see [I1]. As usual, for m € Z=° we define the falling factorial a™ to be

a®:=ala—1)---(a—m+1).
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Let k := Q(r) be the field of rational functions in a parameter x with coefficients in Q. For A\ € Z,
let P{ € klz,y| be defined by

3 (A1 = Ao)l(m + D)2=dei(y  PAdesd o)

2 P{(x,y) := T /
@) K(.9) IO — Ag — i — j)(k + 1AAe Y

i+7<A1—A2

The polynomial Py is symmetric in the variables x and y, with leading term equal to zMyr2. An
important property of the polynomial Py is the following.

Theorem 1.1. (Knop-Sahi [I1]) PY is the unique symmetric polynomial of degree less than or equal
to |\ := A1 + A2 in k[z,y] that satisfies the following conditions:

(i) P{(p1 — kK —1,pu2) =0 for partitions p € T such that |p| < |A| and p # A.

(i) P{(M — Kk —1,X) = H\(k), where
(3) H)\(KJ) = ()\1 - )\2)')\2'()\1 —-1- K,))\—z

For certain A € Z, the coefficients of Py have poles. It is straightforward to verify that these poles
are always simple and occur at k € Z=%. Let us now define three types of elements of 7.
Definition 1.2. Let k, € ZZ°. An element \ € 7 is called

— ko-reqular, if Ay < ko or A\ — Aa =ko+ 1 or Ay — Ao > 2ko + 3.
— ko-quasireqular, if A1 > ko + 1 and Ay — Ao < ko.
— ko-singular, if ko +2 < A1 — Ay < 2k + 2.
We denote the sets of ko-regular, ko-quasiregular, and ko-singular elements of Z by Zj, regs Lk qregs

and Zj, ging-

Remark 1.3. Here is a more concrete explanation of Definition Recall that k :=n —m € Z=29.
The involution A — AT on Z2, defined by

(4) ()\1,)\2)i—>()\2+k'—|—1,/\1—k—1),

yields a bijection between k-quasiregular and k-singular partitions of the same size. For k-regular
partitions A = (A1, Ag) satisfying A; — Ay = k + 1, we have A= \. For all other \ € Ty reg We have
Mg T

The following proposition is straightforward to verify using .

Proposition 1.4. For A € T and k., € Z=°, the following statements are equivalent.
(i) The coefficients of P§ do not have poles at k = ko.
(i) A & g, sing-

The construction of the Capelli basis of the algebra % (V)9 relies on the structure of Z(V)
and Z(V) as g-modules. The algebras &(V) and (V) are naturally graded by degree and order
respectively, so that

@mgéWmamgmgéWm.

d>0 d>0

From now on we set

(5) Illg = Ik,reg U Ik,qreg-
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The indecomposable components of ,@d(V) can be indexed naturally by partitions A € Z, such that
|A| = d (see Proposition [3.1| below). That is,

(6) 2= P W,
AELT,

where 7} := {A €Z] : |A\| =d}, and each V) is an indecomposable g-module. Furthermore, the
canonical non-degenerate pairing 2%(V) @ 2%(V) — C yields a g-module isomorphism

(7) 72'(V)= 29 V) = P vy
\ELT,,

From Proposition it follows that if A # u, then V) and V,, have disjoint irreducible composition
factors. Thus from (6) and we obtain

(8) 29VIe @ eVt @ Homg(V,,Vy) = @ Homg(Va, Vi)
MNuET; MNUEL,, NET;,

Proposition [3.1] also implies that

1 if Ais k- 1
(9) dim Homg(Vy, Vy) = if A ds k-regular,
2 if X is k-quasiregular.

Indeed when A € T, greg, there exists a nilpotent element of Homg(Vy, V) that factors through the
isomorphism cosocle(V)) = socle(V)). By Corollary (3.5 the space Homg(Vy, Vi) has a natural direct
sum decomposition into two one-dimensional subspaces, that is,

(10) Homg(V)\, VA) = (ClvA ©® (CNA,

where N, is the nilpotent part of the Jordan decomposition of C‘VA’ with C denoting the Casimir
operator of g (note that N7 = 0). We now use and to define the family {Dy},7.

Definition 1.5. For A € Z, we define Dy € Z2(V)9 as follows.

D 1V>\ € Homg(V)\, V)\) if A e I];
A N, if A e Zk’,sing-

Here “~” means D) is the element of 22 2(V)? that corresponds to either 1, or N via the isomor-
phism . The operators Dy € Z%(V)?, where A € Z, are called the Capelli operators.

From ({8)]) it is evident that the family {Dj}ez is a basis of Z22(V)s.

2. MAIN RESULTS
Now let A € Z and let y € Zj.. Then by Schur’s Lemma D) (V) C V,,, and therefore the restriction
D,\}V € Homg(V),, V,,) can be expressed as
i

(11) Dly, = daply, +dy , Ny,

where d) ,,, d) . € C (note that N, = 0 for p € I} 1e¢). Our main results in this paper address the
problem of computing formulas for dy , and d), - From Proposition it follows that there exists
a symmetric polynomial fy € Cz,y] of degree |A| := A1 + Ay such that

dyy = Al — k=1, pg) for all p € Ty,



CAPELLI OPERATORS AND THE DOUGALL-RAMANUJAN IDENTITY 5

We call fy the eigenvalue polynomial of D) (see Definition . It turns out (see Proposition
that

D)\|Vu = fa(pr —k =1, p2) 1y, +Ofa(u1 — k — 1, u2) Ny,
where f +— Of is the differential operator defined by

1 of of
12 O = = - == .
(12) Fan) = 1 (Gt - S )
Thus, both d) ,, and d’/\, ., are uniquely determined by fy. The problem of computing f) is solved by
Theorems [AHDI below.

Theorem A. Let A € Iy 1o Then
1

_ k
f)\ - H)\(k)P)n

where Hy(k) is defined in (3).
Theorem B. Let A € I 4ing. Then

AN —Xo—k—1)
f)\ = P 5
H; (k) A

where H\; (k) denotes the derivative of Hyi (k) at k = k.

The formulas for f) in Theorems [AHB] still follow the pattern of specializing interpolation poly-
nomials. The new phenomenon that was described in Section [1] occurs for the formulas of f) when
A E Ik,qreg-

Theorem C. Let A € Iy, qreg- Then

L Py P
(13) fA—ilg;g <HA(/£) +HM(H)>'

" K
P)\

P

Remark 2.1. Note that both == and :(TH) have poles at k = k (indeed H)(k) = 0), but the
A

poles on the right hand side of (13)) cancel out and the limit is well defined.

A1

Since the leading term of Py is #My*2, the polynomials {P{} ez form a basis of the algebra
k[z,y]>? of symmetric polynomials in 2 and y with coefficients in k. Indeed for any k, € C such
that ko ¢ Z=°, the polynomials {P)]fo}AeI form a basis of C[z,y]°2. However, we cannot set & := kq
when ko € Z=2°, because the coefficients of the Py’ can have poles at x = ko. In this case, one can
still obtain a natural basis of C[z,y]% by first suitably separating the regular part of P{ and then
setting k := k.. We will describe this process more precisely below.

Definition 2.2. Let f(z,y) € k[z,y] and let k, € Q. Assume that the coefficients of (k — ko) f(x, )
do not have any poles at k = k.

(i) The singular part of f(x,y) at kK = ko is the polynomial Sing,_(f) € Q[z,y| defined by
Singy, (f;2,y) == lim (k — ko) f(z,y).

(ii) The regular part of f(x,y) at kK = ko is the polynomial Reg;,_(f) € Q[x,y] defined by

Regy, (f;2,y) == Kli_{Ikl <f(fc,y) - Singko(f;%y)> -

o

Kk — ko

Example 2.3. Assume that ko = 1 and f(z,y) = 2% +y*> + %xy. Then Singy,_(f;z,y) = 2zy and
Regy, (fi2,y) = 2® + y* + 2zy.
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For A € 7 and k., € C set
ko K
R{"™) .= Reg,,_(PY).

Remark 2.4. Note that by Proposition if ko & Z20 then for all A € T we have
(14) R = lim Py = PP,

rk—ko

If ko € Z20 then holds whenever A\ & 7y, ging-

The following proposition is a straightforward consequence of the above discussion.

Proposition 2.5. For k, € C, the family {Rg\k")}/\ ; is a basis of the algebra Clx, y]52 of symmetric
€

polynomials in the variables x,y.

By analogy with the completely reducible cases, Proposition leads to the following natural
question.

Problem. Determine the coefficients M) , € C such that fy =} M,\#R/(f) for A € 7.

neT

Clearly Theorems[AHB| answer this problem when A ¢ T}, qreg. Surprisingly, in the case X\ € Zy, greg
the formulas for the coefficients M) , become much more complicated. Before we state the result
(Theorem [D] below), we need to introduce some notation. For d > 0 set

(15) Z(d) :={XA €T : |N <d}.
For A € T greg set
(16) £y =Xy — A+ k,

so that 0 < ¢\ <k, and if u € Z(k — £)) then set
v(A ) == (A1 — g1, A2 + p2).
Note that v(X, ) € Ty greg, and in particular

(k)  _ pk
Rl/()\,y,) - PV()\,},L)'
Theorem D. Let A\ € I, greg. Then
(4r+1)! 1 (k) (k)
1 = M
(an A M —k—DIM+0 -k | 2k+2— M + AQ)!RA* DL MR, |
REL(k—Ly)
where the M) ,, are defined by
— 1)tttz (Y, 4 |
My, = — o) £ 11) if 1l > 0,
(k= Oy — p1 — p2) Ny + po + DI+ p1 + p2)
and
(—1)P ! RSN
M>\7(070) = T 12 1-— Z B
G GrDE ' T 2 T

Remark 2.6. For fixed A, u € Z, the formulas for the eigenvalue of D>\|V given in Theorems ﬁ
"

depend only on k = n—m (rather than on m and n). This observation has a conceptual explanation
based on the Duflo-Serganova functor [7, 24]. We briefly recall the definition of this functor. Given
any Lie superalgebra g and an element « € gy such that [z, z] = 0, we set DS, (M) := M?*/xM for
every g-module M, where M* := ker(z|,,;) and zM := im(z|,;). Then DS,(M) is a g,-module,
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where g, := ker(ad;)/im(ad;). Further, for every g-module homomorphism h : M — N we set
DSz (h) : DSz (M) — DS,(N) to be the naturally induced gy-module homomorphism. As shown
n [7, 24], the above assignments yield a symmetric monoidal functor

DS, : Rep(g) — Rep(ga).
If g = gosp(V,w), then g, = gosp(V’/,w’) where sdimV’ = sdimV = —2k. Furthermore, DS, maps
the Casimir operator of g, which we can consider as an element of homgy(C, 8%(g)), to the Casimir
operator of g,. If 84(V) = @I, where each I; is a generalized eigenspace of the Casimir operator
of g with eigenvalue ¢, then 8%(V,) = @I/, where I/ = DS, (I;) is the generalized eigenspace of the
Casimir operator of g, with eigenvalue t. One can then show that DS, maps Capelli operators to
Capelli operators and preserves their eigenspaces. These facts imply that the eigenvalues of D |,,

should only depend on k.

The proof of Theorem [D] is substantially more difficult than those of Theorems [AHC] It relies on
the following identity (in the parameter ) which, to the best of our knowledge, is new.

Theorem E. For non-negative integers i,j, N such that i+ j < N,

d [ aN=igh=i
1 Bl (e
(18) dz ( N )

Z mm{NiN 1}( DN4rtatl (N — p)249 j9 (N — j — §)N=P=d yp=i pp=J j(fﬁ—p—FQ)

(N —p)gla?tl(z — N +¢)2

p=i+j—q
We remark that in the special case j = 0, Theorem [E] is equivalent to the formula

N o Nt
(19) ({)ax(xN):Z( lt) Nigh=t

k=1

which can be proved by logarithmic differentiation of the binomial series for (1 + 2z)*. However, we
are unable to find a similar quick argument for the general case.

Our proof of Theorem [E] involves subtle computations that reduce it to a classical hypergeometric
identity, usually referred to as Dougall’s Theorem. Recall that a generalized hypergeometric function
is a series of the form

a.....a © G .q?
(20) o O N B i s i
where as usual

a":=a(a+1)---(a+n—1) forn €N and a = 1.
Dougall’s theorem states that for a,b,c,d € C such that ®(a+b+c+d+1) > 0, we have

(21) F, Qa+1,a,—b, —c,—d
2a a+b+1,a+c+1, a+d+1

_T@+b+l'(a+c+1Il'(a+d+1)I'(a+b+c+d+1)

S T@@+DIl(a+b+c+DIl(a+b+d+1)I'(a+c+d+1)
Identity is a limit case of another identity for yFg that was discovered by Dougall (1907) and
Ramanujan (1910). For the proof and further historical remarks on Dougall’s Theorem, we refer the
reader to [2, Sec. 2.2].

Theorems [A] [B] and [D] were conjectured using computations that were implemented by SageMath.
Our efforts to prove Theorem [D]lead us to Theorems [C] and [E]
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Capelli operators in the Deligne category Rep(O;). Recall from Remark that existence
of certain monoidal functors between (rigid symmetric monoidal) categories of modules implies
that the formulas for fy should only depend on the superdimension of V. Indeed it is possible to
transcend the construction of the Capelli basis { D) }aez to a universal categorical framework where
the superdimension can be any complex number! More precisely, in Section [§] we show that we can
define Capelli operators in the inductive completion of the Deligne category Rep(Oy), where t € C.
Then we prove analogues of Theorems [AHC| for the corresponding eigenvalue polynomials.

The definition of the categorical Capelli operators {Dy x},.; in Section 8 goes as follows. The
category Rep(O;) is the Karoubian rigid symmetric monoidal category generated by the self-dual
object V; of categorical dimension ¢ € C. We introduce an algebra object PDy, in the inductive
completion of this category with a natural action

PDVt X P\/t — Pvt,

where Py, := @50 8%(V;). The algebra object PDy, is the categorical analogue of 2 %(V). More-
over, Hom(1, PDV:) can be equipped with a canonical algebra structure, and the natural action of
PDy, on Py, yields a homomorphism of algebras Hom(1, PDy,) — End(Py, ). The categorical Capelli
operators Dy \ that we will define in Section |8 are elements of the algebra Hom(1, PDy,). To define
these operators, first we prove that the indecomposable summands of Py, are naturally indexed by
elements of 7 if t ¢ 2Z=Y and by elements of 7, if t € 275 where

(22)

=

t
= —5 and I/E = Z&,reg U Ik,qreg-
When t ¢ 2Z=°, for every A € T the operator D,  corresponds to the co-evaluation morphism

€v
A
12 Ve @ V.

When t € 2Z=°, the definition of D, ) is still the same for k-regular and k-quasiregular A, but for
k-singular A the operator Dy y represents the (unique up to scaling) nilpotent element in End(Vt’ A )-
See equation for further details.

After defining the operator Dy ), we can consider its restriction to each indecomposable component
Vi, of Py, that is indexed by p. This yields an element of the algebra End(Vy,), of the form
dy 1+ ny, where d, , € C and n?\’u = 0. Furthermore

d)\,u = f)\(lul —k— 17“2)7

where f, € C[z,y] is a symmetric polynomial of degree |A|. (We remark that the coefficients of f
depend on the value of ¢ € C.) Theorems below are the extensions of Theorems to the
categorical setting of Rep(Oy).
Theorem A’. Assume that either t ¢ 27", or that t € 2Z<° and X is k-reqular. Then

1

_ _ - pk
fA_H/\(E)P)\'

From now on we set
C)\(t) = ()\1 — )\2)()\1 — A+t — 2) for A e T.
Theorem B'. Assume that t € 2250 and X is k-singular. Then

. cyils) —exls) -3
Fa=lim =—————P %
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Theorem C'. Assume that t € 2250 and X is k-quasiregular. Then

i LS DS S
f>\_£1£>I%<H>\(—§>P’\ +H)\T(_§)P)\T>.

3. STRUCTURE OF Z(V) AND L (V)¢

Let us begin with the description of the decomposition of the g-module £ (V) as a direct sum of
indecomposable submodules. As will be seen in Proposition the indecomposable components of
P (V) can be characterized as generalized eigenspaces of the restriction of the Casimir operator to
each homogeneous component. A proof of Proposition is given in A. Sherman’s PhD thesis [26]
(see also [3]).

Let b5 be the Borel subalgebra of osp(V,w) corresponding to the fundamental system

{51 — €2, 3 Em—1 — EmsEm — 015+, 0p_1 _5na25n}a
and set b := b5 @ Cz. Also, let b* C b5 denote the standard Cartan subalgebra of osp(V,w), and
set h := b @ Cz. Let ¢ € h* be the linear functional defined by ((z) = 1 and ¢ pt = 0. For a

b5-dominant h5-weight A, let V(\) denote the irreducible finite dimensional osp(V,w)-module with
highest weight A\. For any scalar ¢ € C, we can consider V() as a g-module on which z acts by
cly(y). We denote the latter g-module by V(A + c().

Recall that C' denotes the Casimir operator of gosp(V,w). Then C acts on V(A+¢() by the scalar

ey = ()\’ >\) + Q(A’p) = ()\2 — )\1)(2k +2+ A — )\1)1

where p == 37 (=k —i)e; + S0 (n — i + 1)§;. For t € C let 2%(V,t) denote the generalized
t-eigenspace of the restriction of C' to 224(V). Note that cy = cyt for A € Ty, greg, hence 24V, c)) =
P4V, cyt). For X € T, set

V= 2V, ¢y).
The proof of the following proposition can be found in [26, Sec. 10].

Proposition 3.1. Let A € 7] .
(i) If X € L veg then
V\ & V((/\l — )\2)&?1 + ’)\’C)
In particular, V) is an irreducible g-module.

(ii) If A € Lk qreg then V) is an indecomposable g-module with a socle filtration of length 3. When
m > 2, the successive quotients of the socle filtration of Vy are isomorphic to the modules
V(u® +|N¢), 1 <i<3, where

p = p® =\ = A)er and P = (2k + 2+ X2 — Az
When m = 1, the successive quotients of the socle filtration of Vy are isomorphic to
V(D + M0, V(@ + MO @ V(P + M), and V(™ +])0),

where

A1—A2+1
p =™ = (A = No)er, u® = (2k+2+ Xy — A)ey, and p® = —¢ + Z J;.
i=1

Remark 3.2. One significant difference between the non-semisimple and semi-simple cases is that
in the non-semisimple cases the spaces of homogeneous harmonic polynomials of any given degree
are not necessarily irreducible g-modules. However, for d < k 4+ 1 and d > 2k + 2 the space of
harmonic polynomials of degree d is still an irreducible g-module, isomorphic to V' (de1 + d().



10 CAPELLI OPERATORS AND THE DOUGALL-RAMANUJAN IDENTITY

From now on we identify the Casimir operator C' with its image in ZZ(V)9. Let E € Z2(V )8
denote the degree operator (which lies in the image of the center of g).

Proposition 3.3. The operators C and E generate 2P (V)8. Furthermore, for any differential
operator D € PP (V)? of order d, there exists a unique symmetric polynomial fp(x,y) of degree d
such that the eigenvalue of D on the indecomposable constituent V,, is equal to fp(ui —k — 1, p2).

Proof. For X € T}, set ey := A1 + X = (A1 — (k+1)) + A2) + (k + 1), and recall that

= (o= A2k +24+ X — A1) = (M — (k+1)) = X)) = (k+1)%

Thus ¢y and ey are symmetric polynomials in A\; — k — 1 and Ao. The restriction to V) of any
operator of the form D := ¢(C, E), where ¢(z,y) € Clz,y], is of the form ¢(cy,ex)1y, + X, where
X € End(V)) is nilpotent.

Step 1. We prove that for every symmetric polynomial h(z,y) € C|x,y] there exists an operator
D e Z2(V)9 of order at most degh such that for every X € Z; the restriction D’VA is of the form

h()\l —k— 1,)\2)1\/)\ + X,

where X is nilpotent. To prove this claim, we write h as a polynomial in e; = z +y and ey = wy,
that is, h(z,y) = > ;1 9<a a; jeiel, where d := degh. Writing e; and ey in terms of z +y + k + 1
and (z —y)? — (k + 1)2, it follows that h(x,y) can also be expressed as

hzy)= Y bigle+y+k+1)((z—y)? - (k+1)2),
1+25<d

where b; ; € C. It is easy to verify that the operator D := Zi+2j§d bi jE'CY satisfies the claimed
properties.

Step 2. For d > 0 set V; := {D e Z2(V)% : ord(D) < d}, where ord(D) denotes the order of
D. From and (9) it follows that dimV; = N4 := |Z(d)|. The space of symmetric polynomials
of degree at most d also has dimension N;. Furthermore, operators that correspond by Step 1 to
linearly independent polynomials are also linearly independent. Thus Step 1 provides Ny linearly
independent elements in V; N A, where A is the subalgebra of 222(V)? that is generated by C and
FE. This yields dim V3 N A > dim Vg, and consequently V; C A.

Step 3. Let D € Z2(V)? such that ord(D) = d. By Step 2, there exists a symmetric polynomial
fp € C[z,y] such that deg fp < d and D is obtained from fp by the construction of Step 1. From
Step 1 it follows that d = ord(D) < deg fp < d. Hence deg fp = ord(D) = d. Finally, fp is unique
because 7 is Zariski dense in C?. OJ

Definition 3.4. For D € Z%(V)8, the polynomial fp(x,y) whose existence is guaranteed by
Proposition will be called the eigenvalue polynomial of D.

Corollary 3.5. For A\ € Iy qreg, the restriction of C to Vy is not diagonalizable. In particular, the
nilpotent part of the Jordan decomposition of C"VA S nonzero.

Proof. Otherwise, Proposition [3.3| would imply that D‘VX is diagonalizable for all D € ZZ2(V)%. In

particular, D, ‘V)\ would be diagonalizable, which is a contradiction. (]

Remark 3.6. As noted in Section [, Corollary is crucial for being able to define the basis
{Dx} ¢z of Capelli operators for 22 (V)8.
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4. VANISHING PROPERTIES AND GENERALIZED VALUES

Recall from that dy , denotes the eigenvalue of Dy on V,. The d), satisfy the following
vanishing properties which are deduced from elementary representation-theoretic arguments.

Lemma 4.1. Let \,u € L.

(i) Assume that X € I;. Then dy, = 0 for all p € I; such that |pu| < || and p # A
Furthermore, dy » = 1.
(ii) Assume that A\ € Ty ging. Then dy,, =0 for all pn € Z;, such that || < |A|.

Proof. From the isomorphism it follows that D,\‘VA = 1y, for A € I,’c . For A € Zj ging we have
dyxt = 0 because the restriction of Dy to V)t is nilpotent. If |u| < || then we have D,\}VH =0
because V,, C 2(V) and ord(Dy) > |u|. If || = |A|, then the action of Dy on V), is obtained by
restriction of the g-equivariant map

PV)o2(V)e 2(V)—= 2(V), p® D ®q~— pDq,

to a tensor product of the form V,, @ Vy ®V),, where n = A or n = A depending on wheter \ € Ty qreg
or A € Ty ging. As |u| = |A|, the map Vi@V, — C corresponds to a g-invariant bilinear form
Vi x V), = C, hence to a g-equivariant linear map V,* — V,;. Thus, when V' and V¥ do not have

composition factors in common, we obtain DA{V = 0 and in particular dy , = 0. The above facts
"
are sufficient for verifying the claims of the lemma. O

Remark 4.2. The proof of Lemma implies that if |u| < |A|, then the nilpotent part of the
Jordan decomposition of D,\‘V vanishes, unless X is k-singular and p = AT.
"

We can now write fy as
f)\(l’,y) = Z ai,j(xly] + x]yl)7
i+ <|A|
and interpret the constraints fi(u1 — k — 1,pu2) = dy, for |u| < || as a linear system in the
coefficients a; j. Unfortunately, this linear system (which a priori has the same number of equations
and variables) does not determine f) uniquely because of the redundancy that is caused by the
coincidences

(23) Pl =k =1 iz) = falprf =k — 1, ah).
But we can circumvent this issue by using the Jordan decomposition of D,\‘V to obtain extra
I

conditions on f).

Proposition 4.3. Let D € Z2(V)? and assume that fp(z,y) is the eigenvalue polynomial of D.
Then for X € Ty reg U Ik qreg we have

DlV)\ = fD()\l — k- 17)\2)1VA + DfD()\l —k— 17 )\Z)N/\7

where LIfp is defined as in .

Proof. By Proposition we can express D as D = p(C, E) for a polynomial p(s,t) € C[s,t]. Note
that C‘VA = c\1y, + N, where N3 =0, hence C’d|vA = cfi\lvA + dcf\l_lN)\. It follows that

op
(24) DlVA = p(ex,en)ly, + %(C)\, ex)Ny.
By comparing the eigenvalues on both sides of and noting that Z C C? is Zariski dense, we
obtain

(25) fo@y) =p((z—y)?—(k+1)*z+y+k+1).
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Next set
H(z,y) = ((= —y)?—(k+1D%z4+y+k+ 1).
Then by the chain rule we obtain

0 1.4) = 21w ) 22— 29) + L0100, 3)
o, o

90 (a,y) = S (H(2,)(2y — 20) + 1 (H ().

Taking the difference of the above relations yields

dp

(26) o (H(z,y) = Ofp(a.y)

The statement of the lemma follows from and . O

Using Proposition [£.3] we obtain the required extra constraints that together with the vanishing
conditions of Lemma[f.I] uniquely identify the polynomials fy. In order to give a uniform description
of all of these constraints, we use the notion of the generalized value of a symmetric polynomial
f(z,y) at A € Z, denoted by ev(f, ), defined as follows.

s = G e T
Then Lemma and Remark imply the following proposition.
Proposition 4.4. For A\, € Z, if || < |A| then ev(fa, i) = 0xp-

In the following corollary, Z(d) is defined as in ([L5).

Corollary 4.5. Fiz a set of complex numbers {z) : X € Z(d)} for some d > 0. Then there exists a
unique symmetric polynomial f(x,y) such that deg f < d and ev(f,\) = z) for all A € Z(d).

Proof. Follows immediately from Proposition [£.4] O

5. PrRoors oF THEOREMS [A] [B], anD [C]
We now proceed towards the proofs of Theorems [AHC| The next lemma is a key observation.

Lemma 5.1. Let p(k;z,y) € k[z,y] and let ko € R be such that the coefficients of p(k;x,y) do not
have poles at k = ko. Further, assume that for a,b,a’,t’ € R we have

(a—ko—1,0) = (a",V/ —ko—1) and a—b—ko —1#0.
Set
(27) a(k) :=p(k;a— Kk —1,b) and B(k) :=p(k;ad’ b/ — rk —1).

Then
B (ko) — o/ (ko)
4a—b—ko—1)

Proof. Differentiating the equations given in with respect to x at kK = ko, we obtain

Op(ko;a — ko — 1,0) =

Jp op
/ _9p L _ _Op o B
o (ko) = E)n(k"’a ko —1,b) ax(k"’a ko —1,b)
and 5 5
/ _9P o _ 9P
B(ko)——aﬁ(ko,a,b ko —1) —ay(ko,ajb ko — 1).

Taking the difference of the above relations yields the claim of the lemma. O
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Lemma 5.2. Let p(k;x,y) € k[z,y]| and let ko € R be such that the coefficients of (k — ko)p(k; x,y)
do not have poles at k = ko. Further, assume that for a,b,a’,b’ € R we have
(28) (a—ko—1,0) = (a",V/ —ko—1) and a—b—ko —1#0.
For k € R\{ko} sufficiently close to k., set
a(k) :==p(k;a— Kk —1,b) and B(k) = p(k;a’, b/ — Kk —1).
Then
OSing;,_(p;a — ko — 1,0)

T 4(a—b . o) A ((Bs) = alw) + (5 = ko) (§'(s) — o/()) -

Proof. Set p, := % and p, = gy. Since taking the singular part commutes with partial differentia-

tion with respect to x and y, it suffices to prove that

lim <(/<a - ko)(pm(/ﬁ;a — ko — 1,0) — py(r;a — ko — 1,b))>

r—rko

(29) = lim ((B(k) — a(k)) + (5 — ko) (B'(K) — o/ (K))) -

k—ko

h(k;2,y) := (K — ko)p(k; 2, y) € k[, y].
Note that h(x;x,y) is a smooth map in a neighborhood of any point of the form (ko,xo,%,) € R3.
By differentiating the relation (k — ko)a(k) = h(k;a — k — 1,b) with respect to k at k := k1, with
k1 # ko and ki sufficiently close to k., we obtain

(30) (kl — ko)a(kl) + O/(k)l) = gh(kl,a — k1 — 1,b) — (kl — ko)px(k‘l,a — k1 — 1,b).

oK
Similarly, by differentiating the relation (k — ko)B(k) = h(k,d’,b/ — k — 1) with respect to x we
obtain
Oh
(31) (k1 — ko)B(Kk1) + B' (k1) = %(klaalab/ — k1 —1) = (k1 — ko)py(k1, ', b — k1 — 1).
By taking the difference of and we obtain

(kl - ko)(pa?(k;lva - kl - ]-ab) _py(klva’lvb/ - kl - ]-))

oh oh
(32) = 7(]431,(1 — k1 — 1,b) — 9 (k‘l,a',b' — k1 — 1) + qZS(k‘l),

0K Ok
where
¢(k1) = (k1 — ko) (B(k1) — a(kn)) + (B'(k1) — o/ (k1)) -
Note that limg, %, ¢(k1) exists because
d
o(k1) = T (h(k;a — Kk —1) = h(r;d',b' — Kk — 1)) |
and h(k;, y) is differentiable near (ko, a—ko—1,b) € R3. Since h(x;x,y) is smooth in a neighborhood
of the point (ko,a — ko — 1,b) € R3, from it follows that

k=ko’

oh oh
lim —(ki,a—ky —1,b) = lim —(ky,ad/,b' —ky —1).
(33) s gk a—ki—1b) = lim ootk a, b —k - 1)
Finally the equations (32) and (33)) imply ([29)). O

For A € I, sing set

(34) Ty i——
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Proposition 5.3. Let A € Zj, ging. Then Singy,(PY) = r)\P)’fT where ry is defined in (34)).

Proof. Set p(x,y) := Sing(Py;x,y). By Proposition |1.4| we have p(z,y) # 0.
Step 1. We prove that p = sP/{"’T for a scalar s # 0. To this end, by Corollary we need to verify
that

ev(p,p) =0 when |u| < |\ and p # A.

If p is k-regular or k-quasiregular, then
p(pr — ko — 1, p2) = lim (k — ko) PY (11 — ko — 1, pi2)
rk—ko

— lim (x — ko) Py (1 — 5 — L o),

rk—ko

where for the second equality we use the fact that h(k,z,y) := (k— ko) P{(x,y) is a smooth function
in a neighborhood of (ko, 1 — ko — 1, pt2). Therefore Theorem [L.1[i) implies that

ev(p, ) = p(p1 — ko — 1, p2) = 0.

If p1 is k-singular, then Lemmafor (a,b) := (p1, po), (a',b') := (M; ,u,J{)7 and p(k; 2,y) := Py (@, y)
implies that ev(p, u) = 0.

Step 2. To determine the value of s, we compare the coefficient of 292 in PfT and p(x,y), where
ty = )\I and tg := )\; From it is clear that z1y%2 is the leading monomial of P;\“T and therefore
its coefficient is equal to 1. Furthermore, in the formula for P{, the monomial 2242 corresponds
to the term indexed by i := k 4+ 1 and j := Ay — Ay — k — 1. It is straightforward to show that the
coefficient of the corresponding term in p(x,y) is equal to ). Note that by a direct calculation we
have

(_1)(k+\A|)(/\1 — Ao)ktL

_ . 0
DTk r2 M )= e — k- 2)!

For A € I, sing set
(DY “

Qx(z,y) =Py — i

Lemma 5.4. For A € Iy, sing, the coefficients of Q%5(x,y) do not have poles at k = k. Furthermore,
the polynomial Qx(z,y) € Qlz,y] defined by

. [P
(35) Qx = lim <Pf Rl— ff)
satisfies
k 0
(36) Qulr.y) = B (2.9) = rag Pl ().
Proof. By Proposition the coeflicients of Py — 2, P)’fT do not have poles at kK = k. Furthermore,

since the coefficients of P} do not have poles at x = k, it follows that each coefficient of the
polynomial Pf; — P is of the form (k — k)¢(r) where ¢(x) € Q(x) does not have a pole at k = k.
Now

K _ DK P k P K (k)
(37) Qi =P — P = (P - R

and therefore the coefficients of Q¥ do not have poles at x = k. Equality follows from taking
the limit Kk — k in . O
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For A € Ty, sing set

)

(38) ay(k) = —
Proposition 5.5. Let A € Zj, ging and let Qx € Q[z,y] be defined as in . Set

BA(k) — (k)
Ak+1-M+ )

Hyi(k) and Bi(k) := Hr(k).

(39) t1:=0Oa(k) and ty:=

where o\ (k) and Br(k) are defined in (38). Then
ev(Qx, ) = 10yt , +t20x,  for all p € T satisfying |p| < [A].

Proof. First assume that either p is k-regular, or p is k-quasiregular and p # AT. By Theorem [1.1
for k chosen sufficiently close (but not equal) to k we have

.
(40) Qx(m — £ — 1, p2) = P (1 —%—Lm)—ﬁp'ﬁ(m—ﬂ—l,uz) =0.

By we have Q,\(a:,y) = limy;p, Qi(xay% so that al(QA,M) =0.

Next assume that p is k-singular and u # A. We use Lemma for p(k;z,y) = QY(z,y),
(a,b) = (1, p2), and (a/,') = (u, ul). Note that Theorem n implies a(k) = B(k) = 0, from
which it follows that ev(Qx, ) = 0.

Next assume that g = Af. Then symmetry of Q(x,y) implies

F(Qrs 1) = QAN =k — 1A = QAL AL — k- 1)
= Q)\()\l — ki — 1,)\2) = hIIle};()\l — K — 1,)\2) = hn’kH)\(K,) = HA(I{Z)
K— K—

Finally, assume that g = A. Then

Q5(i — K — 1, p9) = Hy(k) and  Q5(uf —k—1,pu) = ——>—

k—k
Lemma for p(k;z,y) == QF, (a,b) := ()\L )\g), and (a/,b) := (A2, A1) yields ev(Qy, p) = t2. O

We are now ready to complete the proofs of Theorems [A] [B] and [C]

Hy:i (k).

Proof of Theorem Fix A € Zj, yeg and set d := |A|. By Corollary it suffices to show that

o (1 _pt )
ev <H,\(k:)R/\ ,u) =0y, for peZ(d).

Note that R = P)’f . If p is k-regular or k-quasiregular, this follows from taking the limit x — &

in Theorem If v is k-singular, we set ko := k, (a,b) := (u1,p2) and (a/,b') := (,ug,;[{) in

Lemma and note that Theorem |1.1) implies o/ (k) = §'(k) = 0.

Proof of Theorem [B} By Corollary [£.5] it suffices to prove that

_(4A =N —k—1) (k)
ev R/
( )

) — S for p€Z, |l < AL

The argument is based on Lemma [5.1] and is similar to the proof of Theorem [A]
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Proof of Theorem [C| Set h(k;z,y) == 4= PF + P so that the right hand side of (13))
Hyx(r)" A 7 H (k)" A
A
K

is equal to lim,_,; A(x). The latter limit exists because by we have

L e ()
h(H7 7y) - H)\f(/ﬁ:)Q)‘T( ’y)—i_H)\T(Ii)

) _ (Hyi(k) H,y: (k)
P{(z,y) where u(k):= <I{)\;(l€) B (m—l?:)HMk))’

and

) d (Hy(k)(k—k)

il_r)r;cu(fs) dr ( H) (k) > K=k
Next we set hi(z,y) = limx_j h(k;z,y). Since deg fx = |A|, by Corollary [.5]in order to prove that
fr = hq it suffices to verify that ev(hi,n) = 6y, for all u € T such that [u] < |Al. If g # AT, this
follows from Proposition and Theorem [Bl If 1 = AT, this follows from Lemma because

h(k; Al =k — 1,AD) = h(k; Ao, A — ke — 1) = 1.

6. PROOF OF THEOREM
We begin the proof of Theorem [D] by the following proposition which is a variation of Theorem [C]
Proposition 6.1. For A € Ij, greq, we have

1

(41) = o (k) (QM +

where Qi is defined as in Lemma [5.4)

"(k) — o (k
ﬂAT(IZf;\(k‘)M( )ng)) 7

Proof. Note that R&k) = P¥. Since deg(Q,+) = deg(f\+) = deg(f») = |A|, from Proposition and
Corollary it follows that Qi = t1f) + tafyi, so that

fr= @y~ tafi),
where t1 and ¢9 are defined in . The claim now follows from Theorem O
From now on we assume that A\ € Zy greq. Then we can express A and A as
A=(d+k+1,d+0+1) and AN =(d+k+(+2,d),
where d > 0 and 0 < ¢ < k. Note that ¢ = ¢y, where ¢,; is defined in .

Proposition 6.2. Suppose that P{ =) apn(K)2™y™, where o, n(k) € k. Then

(€4 1)! (k) (1) (k4 1)L ,
42 = m, n
) Ty e TR +d!(d+£+1)!(k+1)!e!Zo‘mv”(k’)x 4

+ 1 d§11—1 Ry
di{d+ e+ Dk -0\ 4= i L+1 A

1=

Proof. From Proposition and we obtain

1 (k) Py B (k) — i (k)
43 = RY — R .
( ) f)\ H)\T (k’) ( AT Tt Ok + H;\(ki) A
By straightforward calculations we can verify that

(=1)(k + € + 2)k+L (k+€+2)d(d+ ¢+ 1)
(k-0 ({+1)! ’

and ayi (k) = Byi (k) = Hyi (k).

At = H,y: (k) =
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Next note that for a polynomial f(k) := ¢[],(a; — k) we have (k) =—f(k)

d_ d+e+1
O/)\T(k) = —H) (k) Z 7 and 51\7( = —Hyi(k Z =
i=(+1 =2

Finally, H! (k) = lim,,_,j, (Hl(g)) = (=1)"*1(k — £)!(d + £+ 1)!d'¢!, and the claim of the proposition

K

follows by making substitutions in . O

Proof of Theorem [Dl By equating the right hand sides of and , and then reparametrizing
the summation in (42)) in terms of @ := k—£¢— py and b := po, it follows that Theorem@ is equivalent

to the equation
OPf
44 A =
(44) 2 >
HEL*(k—L)

where Z%(k — ¢) == Z(k — O)\{(k — ¢,0)}. Now set N :=k — ¢. From or [I1 Cor. 2.3] it follows
that

(DR DUk = ) (T (= 0
(1 — )k — € = pa) (04 o + DUk — g+ pag)! - BarEFbpet ey

VA V4
P(I:Ll+€+17u2+él) ilyilpﬂ($ —f-1, U £~ 1)'

Therefore after dividing both sides of by 2ftlyf*L and making the substitution
(x,y) —» (x+L0+1,y+L+1),
we obtain that proving reduces to verifying
N—p1—pa+1 N—p
(—=1)N—H1—H2 (E—i—l)!(ﬁ—i—N—ul)!( s 1)N! .

0
45 —Py g = .
) G0 = 2 G O = ) e+ D N )

To prove , it suffices to verify that the coefficients of the terms ziy? with 0 < i+ j < N on both
sides are equal. These coefficients can be computed explicitly using the formula . After some
routine algebraic computations, it follows that the equality of the coefficients of ziy? on both sides
of is equivalent to the identity

d < i HN—J'> (DN (SN i — )
n

P17t p1 ) ,

46 —
(46) dr kY (N — pp)kE=E2 () — pg + po — 1)E2(k — N + pg)¥2

where the summation is on all partitions p := (u1, p2) # (IV,0) that satisfy
NZ>Zm+pe>i+j and pp 21> 35 2> po.

Note that is a one-variable identity in a free parameter k. By the above discussion, Theorem
@ follows from . Note that is equivalent to Theorem [Ef after the substitutions z := k and
(p,q) := (p1, p2). We will prove Theorem [E| in the next section.

7. PROOF OF THEOREM [El

In this section we prove Theorem [E] which completes the proof of Theorem Set d == N — 1
zd

and ¢ (z) := NN Then identity is equivalent to the relation

(47) () = Y(o),
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where

Z mm{NZq’N (L)AL (N )8 (V= d)2 9 (d — )N a2 HN g2 p 4 g)

(N —p) qla?™(z — N 4 ¢)2

q=0 p=N—-d+j—q

Our strategy is to prove a two-variable identity that implies as a special case. For integers
q,r > 0 such that d > r > g > 0, let E(q,r) be the rational function in variables x,y defined by

(y+r+q) \ [(y+r—1)"=2
) )

(rq Wy +7+ j)" y+q

B(q,r) = (=1)"""" iz — y — d)252(d — 5)"=

Lemma 7.1. Set

J d—j+q

= Z Z E(q,r).

q=0 r=max{1,q}
Then (z) = 1 (z,2 — N).
Proof. This is a straightforward computation. Note that r = N — p, where p is as in the definition
of Yr(x). 0
Lemma 7.2. Set

24 J 1 Oxd 1
s e — — e +7 S — .
valy) i:1<y+t>< ;yﬂ) dx ( i:1<y+t>)

Then jLipr(x) = ta(z,z — N).
Proof. This follows from computing %wL (x) using the Leibniz rule. O
Lemma and Lemma imply that in order to verify , it suffices to prove that
(48) 1z, y) = Pa(z,y).
The rest of this section is devoted to the proof of . Set
E(q,r):=(y+1)---(y+7)FE(g,r).
Then is equivalent to

J 1 J d—j+q 3
(49) —<;y+t> d 4 => Y E(qgr).

q=0 r=max{1,q}

Next set £ :=d—j and s :=r —q. For ¢ and 7 in the range of indices on the right hand side of
we have 0 < s < ¢ when ¢ > 1, and 1 < s < ¢ when ¢ = 0. Thus, the right hand side of can be
written as a double sum over the indices (g, s) € T, where
T = { (a1,a2) € 72 . 0<a <j, 0<ay <V, (ar,a2) # (0,0)}.
Now define 650 :=1if s =0, and 650 := 0 if s > 1. After substituting « by 4+ j + ¢ and dividing
both sides of by (5 + ¢)!, it follows that is equivalent to the identity
¢

w4 j+ 0 (2 .
Go) IO (Z : >+(. S (gt + +07) = S FG),

! [
(7 +0)! — Y+t Jj+1) g

where

o= i(y+2q+s><g)<ﬁ>((qﬂ_l)% WP (o= )i+ g+ O,

5 G+0" ) (y+q+s+5)*
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Consequently, to complete the proof of Theorem it suffices to verify . We will prove
after the proof of Proposition below, which yields explicit formulas for F(s).

Proposition 7.3. Let F(s) be defined as above. Then
(z+j+ 05z + )2

(51) F(s) = =G L 08 for1<s<{,
and

GRS RN LA 1
(52) F(0) = (+0)! ;<y—|—t_az+t>'
Proof. Set ‘

H(s) = (L—9)(j+ 0)2~L F(s),

(45 + £

so that H(s) = Z=5s , E1(g, ), where

1) Y W)=
Bula.0) = (N + 20 st - 0y

It suffices to prove that

1
(53) H(s):;forseZsuch that 1 < s </,
and
J J
1 1
(54) H(0) =),

kzly—i-k: k:1x+k

Our strategy is to relate H(s) to Dougall’s Theorem. First note that
El(q +1, 5) _ hl(Q)

(55) Figs) M) for0<¢<j and Fi(¢g,s) =0 for ¢ > j,
where

hi(q) = <q+;y+;s+1) (a+y+s)a+y+s)a—i)g+s)a+y—x),
and

ha(q) = <q+;y+;s> (g+y+s+i+D(g+y+1)(g+z+s+1)(g+1).
Furthermore,
(56) Eq(0,s) = W+ i)z +j+5)° for s € Z*.

Cos(y+s+5)(x+s)E
We can write as F1(0,s) = 1¢(s), where

(y+ )T +j+s+ Dz +1)
(y+s+5)T(z+s+ D0z +j+1)
Thus we can extend Fj(0,s) to a meromorphic function of s for any choice of z,y € C. Note that

if z,y > 0 then F1(0, s) does not have any poles for s € RT. Using we can extend Fj(q, s) for
1 < ¢ < j to a continuous function for s > 0 as long as z,y,z — y — j > 0. In particular, under the

¢(s) =
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same conditions on z and y, we can extend H(s) to a continuous function of the parameter s € R
by setting H(s) := Zézo Ei(q,s). From it follows that

_ - h(d)
(57) H(s)=E(0,s) [1+> | ]

/
= \ozgrzg 2@

The products that appear in the summands of simplify, and by comparing with we obtain

1 1 .
1 1oy _ _
5F4< Yt lyts, =, 8.y 1>] for s € RT.

58 H(s) = F1(0,s . )
(58) (5) = Ea(0,5) SU+ss, y+s+i+1l,y+1l, 24+s5+1

Note that in the hypergeometric series on the right hand side of , only the first j + 1 terms are
nonzero (because of the —j appearing in the top row of parameters). From Dougall’s Theorem for
a=y+s,b=j,c=—s,and d =x — y, we obtain

T(y+s+j+ 1)y +DT(z+s+D0(z+j+1)
Ny+s+1)N(y+j+ DN z+ D (z+5+s+1)

(@ +5) (y+s+4)

(y+ ) (z+s+5)

If se Z and 1 < s </, then from it follows that

H(s) = E1(0,s)

= El(O, S)

H@y:1<@+4wad+ﬂf)<w+ﬁ?@+s+jﬂ I
i Wr)l(z+s+jl s

(y+ 5+ )2 + o)
This completes the proof of . For , set

(2 +5) (y+ 5 +5)*
(y+5) (z+s+5)L

wg(s) =

] J
H(O) = qz:; El(q7 0) = Sli)%l+ z:; El (CL S) = SE}%L (H(S) - El (07 S))
1
= lim F1(0 —1) =1 - —1) | = ¥%(0) li .
liy £1(0,5) (4a(5) = 1) = i 0(6) (0 = 1)) = 05(0) Jims o0
It is straightforward to check that lim, o+ ¢(s) =1 and ¢4(0) = f;:l yﬁ — i:l TLc O

We now return to the proof of . Using the Leibniz rule and we have

gg(m+j+€)”: 86; ((x+j+£)ﬁ(x+j)l)

) o .
. g . 4 . l N\j
= (z+7) —ax(erj + O 4 (440 —a$(x+])
. ot , I
_ N R s Bl : =t ; Jj+L
(z+7) ;1( 1) t(x+3+€)>+(:c+y+€)(;lxﬂ)-

Identity follows from substituting the latter formula in its left hand side, and rewriting its right
hand side using Proposition [7.3
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8. CAPELLI OPERATORS IN DELIGNE’S CATEGORY Rep(Oy)

In this section, we define the categorical Capelli operators D, ) and prove Theorems We
begin by defining general categorical analogues of the algebras Z(V) and ZZ(V). Let C be a
Karoubian F-linear symmetric monoidal category, where F is a field of characteristic zero. Given an
object X of C, set P% := 84(X) for d > 0 and Px := @~ P%, where we consider P% as an object of
the inductive completlon of C. Then Py is a commutative algebra object when equipped with the
multiplication morphism py : Px ® Px — Px that is induced from the monoidal structure of C. If
X is left rigid and X* denotes the left dual of X, then we set

PDx :=Px @ Px- = @ 8”(X) @ 87(X*).
0,420
For ¢ > p > 0 the evaluation morphism €g, y, : (X*) ® 8P(X) — 1 yields a morphism
tr, , : SP(X*) ® 89(X) — 897P(X),
and we set
Ypg: Px @8P(X*) @84(X) = Px , 7,,:=pxo(1®try,).

For p > ¢ > 0 we set 7, , := 0. Then v := @p ¢>07, 4 Is & morphism v : PDx ® Px — Px. Moreover,
there exists a unique morphism g : PDx ® PDx — PDx satisfying

Y(p®l)=v1®7).
Thus PDx is an associative algebra object and Py is a PDx-module in the inductive completion of C.
The “order” filtration of PDx is given by setting

PD := Px ® 8'(X*) fori > 0.
There is also a Z-grading on PDx given by
PDx, := € $7(X) ® 87(X"),
P—q=i

so that PDx = ®;czPDx ;. Note that PDx is a subalgebra object of PDx. If 1x : 1 — X ® X* is the
co-evaluation of X then clearly ¢tx € Hom(1,PDy).

Next suppose that there exists an isomorphism X i X*, and set
(59) wx =10 MNix and w}:=(B8® 1)x.

It is straightforward to verify that wx € Hom(1,PD3) and wy € Hom(1,PD_3).

We now return to the Deligne category Rep(O;). Recall that Rep(O;) is the Karoubian C-linear
rigid symmetric monoidal category generated by the self-dual object V; of categorical dimension
t € C. We denote the identity object of Rep(O;) by 1 and the braiding of Rep(O;) by

o M®N—=>N®M.
Since V; is self-dual, we have evaluation and co-evaluation morphisms
€e:Vi®Vy;—1 and ¢:1—Vi®Vy,
that satisfy the usual duality axioms. Furthermore, these morphisms satisfy the relations
oL=tL , e€ec=€¢ , €L=1.

By definition, for d > 0 the C-algebra End(Vt®d) is generated by the morphisms 12(—D go@1®d—i-1)
and te ® 1¥(9=2) The category Rep(0O;) satisfies the following properties (see [4, 5, [15]).

Proposition 8.1. The following statements hold in the category Rep(Oy).
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(i) Ford> 0, the algebra End(V®?) is isomorphic to the Brauer algebra Bry(t).

(ii) Every indecomposable object of Rep(Oy) is isomorphic to the image of a primitive idempotent
in End(VPY) for some d > 0.

(iii) Hom(VEP, V) = {0} if p— q is odd. If p— q is even, then Hom(ViP, VYY) is generated as
a (Brg(t), Brp(t))-bimodule by €® 3 @ 1% if p > ¢, and by 12T @ 1%P if ¢ > p.

(iv) If t ¢ Z, then Rep(Oy) is an abelian semisimple tensor category and in particular Bry(t) is
a semisimple algebra.

(vi) If t € Z and p,q > Z=° such that p — 2q = t, then there exists a symmetric monoidal
full functor Fp, : Rep(O:) — Rep(o0sp(p|2q)) such that Fpo(Vi) = CPI24, where CPI24 s the
defining representation of 0sp(p|2q).

Our next goal is to define categorical analogues of invariant differential operators, and in particular

the Euler and Casimir operators. To this end, we set
A; :=Hom (1,PDy,p) and B;:=Hom(1,PDy,).
Then A; and By are algebras with the products defined by
a1 ®ag > fro(ar ® az) oL,

where ¢, : 1 — 1 ® 1 is the co-evaluation of 1. One can interpret B; as the algebra of O-invariant
differential operators acting on Py,. Similarly, A; can be interpreted as the algebra of GO-invariant
differential operators on Py, .

The morphism ~ : PDy, ® Py, — Py, induces homomorphisms of associative algebras

YA, : A; = End(Py,) and ~g, : By — End(Py,).

Then E; := 7a,(¢) acts by the scalar d on P{l/t. Set Ay := %’th (wvt) and ©; := %'th (wi‘/t), where
wy, and wy, are defined as in (B9), with B8 := 1y,. It is straightforward to verify the relations

t
(60) [Et, At] = _2At, [.lat7 @t] == 2@t, [At, @t] = Et + 5
Now set
t t?
(61) C;:=(E; + 5)2 — 20,8, - 20,0, - +t= E? 1 tE, — 4©,;A; — 2E;.

One can check that C; is indeed the Casimir element for the Lie algebra object g; ~ A2(V;).

Proposition 8.2. Lett € C and let A¢, By, ya,, and g, be as above. Then the following statements
hold.

(1) vg,(B¢) is generated by Ay and ©.

(ii) vg,(B¢) is isomorphic to the universal enveloping algebra U (sly).

(iii) va,(A¢) is generated by C; and Ey.
Proof. (i) Fix b € ~g,(B¢) and choose d € N sufficiently large such that the restriction of b on
P\%d = @pg d Pz\j/t uniquely determines b among elements of vg,(B¢). Since projections from Pétd
onto P{),t for 0 < p < d can be expressed as polynomials in E;, we can write b as

b= fo(E)bgy(Ey),
0<p,q<d
where f;, g; € Clz]. Each summand f,(E;)bg,(E;) can be identified with an element of Hom(PY, , PY, )
for some p,q > 0. To complete the proof of (i), it suffices to express element of Hom(P{:’/t7 Pi’,t) in
terms of A; and ©;. To prove the latter claim, first assume p = ¢. Recall that the algebra End(V,?p )
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is generated by the symmetric group S, and the morphism te ® 18(r=2) " Since Pz\g/t = 8P(Vy) is a
direct summand of Vi, the canonical restriction End(V{P) — End(PY,) is a surjection. But the
action of S, on 8P(V;) is trivial, hence End(PYy, ) = End(8”(V;)) is generated by ©;A;. Next assume
that p # ¢. Then by Proposition [8.1f(iii), for ¢ > p the homomorphism

C[O.A]©,? C[O,A,] — Hom(SP(V,),8%(Vy))

is surjective. Similarly, for p > ¢ the homomorphism

CIO,AA, T C[O,A,] — Hom(SP(V;),8%(V}))

is surjective.
(ii) Since Ay, Ey + %, —0©; form a standard sly-triple, we obtain a surjection U(slz) — 7B, (B:). Next
we prove that the latter homomorphism is injective.

First, we assume that ¢ ¢ 2Z. For every simple object X of Rep(O;) the space My := Hom(X, Py, )
is a g, (B¢)-module and hence a U (slz)-module. It suffices to show that M := @&xMx is a faithful
U (sly)-module, where the direct sum is taken over isomorphism classes of simple objects of Rep(Oy).
Note that each My is a weight module with weights in Zzo—&—%. From the theory of Verma modules for
sly it follows that if d is such that dim Hom(X, P{i/t_Q) < dim Hom(X, P{l/t), then M contains a Verma
module with lowest weight d + % as a subrepresentation. Next we show that for all but finitely many
d > 0, the latter inequality holds for some X. Indeed since ®; induces a monomorphism P{i/t_Q — P{i/t,

it suffices to show that P@;Q and P‘\i/t are not isomorphic objects. The latter follows from comparing
the categorical dimensions, which is given by the formula

tt+1)... (t+d—1)
d!

Hence M contains sly-submodules which are Verma modules with lowest weights d + % for all but
finitely many d € N. The intersections of the annihilators of these Verma modules is the trivial ideal
of U(sly) (see [0, Sec. 8.4]), hence M is a faithful U(slz)-module.

If t € 27 the result follows from the analogous result for osp(2m|2n) with 2m — 2n = t, where
m,n € N (see for instance [26]) using the functor F,,, defined in Proposition (Vi).

(iii) Note that ya, (A;) is the centralizer of E; inside vg,(B;). Thus (ii) implies that (iii) is equivalent
to the well-known fact that the centralizer of the Cartan subalgebra in U(slz) is generated by the
Cartan subalgebra and the Casimir operator. OJ

dim Py, =

Lemma 8.3. Let d € Z=° and let Cy 4 be the image of Cy in End(P{l/t). Let p}(z) € Clx] be the
minimal degree monic polynomial such that pf(Ctd) = 0. Then

pie)= [ (@-aa+t-2).
0<a<d
d = a mod 2

Proof. For d < 1 the statement is trivial since C;o = 0 and Cy; = (t — 1)1y,. We will prove the
statement by induction on d.
First we assume that ¢ ¢ Z. We claim that

Py, = PU 2 @ ker Ay, -
t

Indeed, from representation theory of sl (see the proof of Proposition [8.2(ii)) it follows that A is
surjective. Semisimplicity of Rep(O;) implies the claim.
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By (61), the operator C' 4 acts on ker A; by the scalar d(d + ¢ — 2). Since d(d +t — 2) is not a
root of p?~2(z), we have pl(z) = (x —d(d+t —2))p?2(z). The statement now follows by induction.
Next assume that t € Z. Choose positive integers a,b such that a —2b = t. Then from Propo-
sition it follows that pi(x) is the minimal polynomial for Fy,(Cyq), where Fy, is the functor

given in Proposition (iv). The homomorphism F, : End(PY) — End(2%(V)) is surjective since
Fgpp is full. On the other hand, End(P?) is spanned by {©7AY : 0 <p < [2]|} (see the proof of
Proposition [8.2f1i)). Hence

dim End(P{,) <1+ gJ — dim End(24(V)),

and thus F,; is an isomorphism. Consequently, the minimal polynomials of F,;(Ctq) and Cy 4 are

identical. The statement now follows from the decomposition of 22¢(V) as a gosp(a|2b)-module (see
Proposition and [26], Sec. 10]). O

Remark 8.4. If t ¢ 2Z=0 then p(z) does not have multiple roots. If t € 2Z=C then the multiplicity
of each root of pd(z) is at most 2.

Lemma 8.5. Let p}(x) be as in Lemma . Let u;, 1 < i < e, be the distinct roots of pi(x) with
corresponding multiplicities my, € {1,2}. Set Wy, := ker ((Cy,q — u;)™i). Then P§ = @5_ Wy,
and every W, is an indecomposable object of Rep(Oy).

Proof. The proof of the decomposition P{l/t =~ @P;_, W,, is similar to that of the Primary Decom-

position Theorem in linear algebra. Set g¢;(x) := (xfi% and choose g¢;, h; € C|x] such that
¢i(x)gi(x) + (v — us)™ i hi(x) = 1. Then the morphisms m; := ¢;(Ct4)gi(Ctq) are the projections
onto the W,,.

Next we show that each W, is indecomposable. Recall that C; 4 generates the algebra End(P{i,t)
(see the proof of Proposition [8.2(i)). Since W,, is a direct summand, it follows that End(W,,) is
also generated by the restriction of C; 4. Consequently, End(W,,,) = C[z]|/((z — u;)""), hence W,

is indecomposable. O
Recall from that k := —%. For A€ Z and t € C set
C)\(t) = ()\1 — )\2)()\1 - )\2 +t— 2) = ()\2 — )\1)()\2 - )\1 + 2&4‘ 2).

Now let d € ZZ°, and let pf(x) be as in Lemma Given A € T such that |A\| = d, we denote
the multiplicity of the root c(t) of pf(z) by my. Lemma immediately implies the following
corollary, which is the categorical analogue of @ Recall that Ié is defined as in .

Corollary 8.6. For A € Z set V) = ker ((Cyq — c(t))™*) where d := |\|. Then the following
statements hold.

(if) If t € 225" then P{, = @yc 1 Vi

We are now going to define the eigenvalue polynomial f p for an element D € A;. From now on,
for D € A; we denote the restriction of v, (D) to Vi, by D‘Vt .
N

Proposition 8.7. Let D € A. Set S:=T ift ¢ 2Z=° and S := I}, otherwise. Then there exists a
unique symmetric polynomial f p(x,y) such that for every A € S, we have

D’Vt,x = fD()‘l — k-1, >‘2) ' 1Vt,>\ + 1

where m, € End(Vy ) satisfies n3 = 0.
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Proof. Existence follows from Corollary and Proposition (iii), and the argument is similar to
the proof of Proposition Uniqueness follows from the fact that P is Zariski dense in C2. Note
that when t € 2Z<C, the coincidence relation implies that two symmetric polynomials that
agree on S also agree on Z. O

Definition 8.8. Let D € A;. The eigenvalue polynomial of D is the polynomial fp(z,y) € Clz,y]
that is given in Proposition

The construction of the Capelli operators in Rep(O;). Our next task is to define the Capelli
operators {Dy }aez.

o Ift ¢ 2759 then for all A € T we define D, ) € A; as the element corresponding to the
co-evaluation morphism

€
(62) 1 —25 V@ Vi

o If t € 2Z<p and X is k-regular or k-quasiregular, we define D; ) as in .
o If t € 2Z<o and A is k-singular, we define D; ) as the element of A; corresponding to the
morphism

Ciz—C (t) N
(63) 1 —pAT Vi ® Vi,

Using the fact that (Cy 5 —ca(t)) € End(V, 5+) = Hom(1,V, yi @ V] )\t) Here and in the rest

of the paper A' is defined as in Remark . but with k£ replaced by k. Lemma implies
that C |y — cx(t) is a nilpotent element of order two in End(V, »t).

For d > 0 let Jd denote the annihilator of P* @p< d Pv in A;. Since A; is commutative, J¢ is
a two-sided ideal of A;. Moreover, we have a decomp081t10n
A=Al @ Jd

where A := PD{l/t NA;. Let
Ttd - At — Agl
denote the projection with kernel J¢. Our next task is to show that as ¢ varies, the projections Ttd

deform with polynomials coefficients. From Proposition it follows that «,, is an injection. Thus,
from now on we identify C; and E; with their images under vy, .

Lemma 8.9. Fori,j,d > 0, there exist polynomials gzbij a4, € Clx] such that
ma(CIE]) = > ¢ijaiyt)Ch EY forallteC.
2/ +j5'<d

Proof. We will describe a recursive procedure for finding the ¢; ; 4. j» with the desired properties.
Step 1. Using one-variable interpolation, for every 7 > 0 we can find scalars a, for 0 < p < d such
that Eg — Zgzo a,EY € Jf. This proves the statement for the special case i = 0.
Step 2. We show that for every ¢ > 0 there exist polynomials ¢, 4(t) for 1 <p < N; and 0 < g < L%J,
where N; € N, such that the element L € A; defined by

15l N
(64) L:= Z Z @Dp,q(t)Cnga

p=0 g=1

satisfies Ct — L € J¢. Tndeed by and we can write C' as a linear combination of monomials
of the form EYO7AY with coefficients that are polynomial in ¢. Furthermore we can discard the
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monomials for which ¢ > L%J, because Ag‘ sa(v,) = 0. Next we use and again to rewrite

O7A] first in terms of powers of @;A; and then in terms of powers of C;. The latter process will
only add extra powers of E; and coefficients that are polynomial in ¢. This completes the proof of
existence of L.

Step 3. Fix a pair (7, j) of exponents. Assume that the statement of the lemma holds for all Cf;/ E{/

such that either i < i, or ¢/ = i and 2 + j' < 2i + j. We now verify the lemma for C%Eg If
2i + j < d there is nothing to prove, and therefore we assume that 2i +j > d+ 1. If j = 0 then

using Step 2 we can reduce the problem to monomials of the form CilE{/ where i/ <. If 7 >0

then set L' := Ci[[*2" (E; — r). Note that C; — L' is a linear combination of monomials CiE!

satsifying 2i + j' < 2i 4 j. Furthermore, by Step 2 the restriction of C’ to @?f:_ol 8P(Vy) is equal to
a linear combination of monomials C¥ E} where p < i — 1, with polynomial coefficients. It follows
that the restriction of L to @ﬁzo 8P(V¢) is also equal to a linear combination of monomials C¥ E7
where p < ¢ — 1, with polynomial coefficients. O

The next lemma is the categorical incarnation of Lemma 4.1
Lemma 8.10. Let A € T and set d := |A|.
(i) Ift & 2Z=°, then Dy ) is the unique element of A¢ such that DW\‘VM =1 and Dt’)\‘vt,u =0

for all u € T satisfying |u| < || and p # X.
(i) Ift € 2Z=° and X\ is k-regular, then D, ) is the unique element of A¢ such that DM‘Vt L= 1

and Dtak‘vt =0 for all p € I, satisfying |p| < |A| and p # A.
S &
(iil) Ift € 2Z=° and X is k-singular, then D,  is the unique element of A} such that
D =Ciq—ci(t
t’/\’Vt,AT t,d e(t),

and Dt’A‘Vt =0 for all p € I, satisfying |p| < |A| and p # AT
S &
(iv) Ift € 2Z=° and X is k-quasireqular, then Dy  is the unique element of A} such that
Dt,/\‘vt \ = 17

and DM‘VW =0 for all p € Iy satisfying |u| < |A| and p # .

Proof. The stated properties of Dy y are straightforward from the definition. Uniqueness follows from
the fact that any element of A¢ is uniquely determined by its restriction to a morphism of P\S/td. O

Let A € Z and set d := |\|. For s € C such that s ¢ 2Z=" we define L,;,c A by
d— .
IT:20 (Bt — ) [jyj—duza (Ct — cu(s))
d! H|u|:d,y;é)\(c/\(s) —cy(s))
We remark that L, 5 is well-defined because the factors (cx(s) — ¢, (s)) in the denominator of

vanish only if s € 2Z<0 and X and v are a pair of ks-quasiregular and ke-singular partitions, where
ks := —5. We can now expand the right hand side of and express L, \ as

(66) Loix= Y mnij(s)CLEL,
0.j>0

(65) L, :=

where the 7, ; ; are rational functions of s. Note that the 7, ; ; are independent of ¢ and do not have
poles in C outside the set 2Z<0.

Definition 8.11. For s € C such that s ¢ 2Z=°, we define Dy, ) € A; as follows.
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(i) If either t ¢ 2Z=Y or t € 2Z=0 and ) is k-regular, then we set Dy ) :=Lgy».
(ii) If t € 2Z=° and X is k-singular, then we set Dy := (cyi(s) — ex(s)) Ly zt-
(iii) If ¢ € 2Z=° and X is k-quasiregular, then we set Dy 5 := Ls; ) + L,y

Using we can express Dy \ as
(67) Dyip =Y 1i(s)CLE],
1,3

where 7; j(s) is equal to ny;;(s) or (cy+(s) — ex(8))nrt;(8) or My j(s) + Myt ;(s) in cases (i), (ii),
and (iii) of Definition respectively.

For k-quasiregular A we define
dins)i= ] (e —cls)™ and donls):= [ (en(s) —en(s) ™
[V[=[ALyAXAT R NEZOWY
The next proposition is a key step in the proofs of Theorems
Proposition 8.12. The rational functions n; j(s) in do not have any poles at s = t.

Proof. For Dy, » as in Definition [8.11|i)-(ii) this follows from the fact that for A\, € Z such that
Al = |v|, we have ) (s) = ¢, (s) if and only if s € 2Z=° and X and v are a pair of (—%)-quasiregular
and (—3)-singular partitions. For D, ) as in Definition 8.11{(iii) note that

1= (B — i)
(68) Dg, )= H (Ci—cu(s)) Od—!tD/,
v|=dv£AN

where d := || and
D/ = <§Z~517>\($)
Then D’ = ~(s) + 71(s)C where
dia(s)ent(s) = dan(s)en(s) _ P1a(5) = dan(s)
ex(s) — exi(s) cx(s) —exi(s)
From the remark about vanishing of the differences (cy(s) — ¢, (s)) it follows that ¢1 \(s) and ¢g 5 (s)

do not have poles at s = t. Furthermore, from cy(t) = ¢, (t) it follows that ¢y x(t) = ¢a.1(t). This
implies that vy(s) and 71(s) do not have poles at s = ¢t. Hence the coefficients 7; j(s) of Dy, \ are

C:—cyi(s) (s Ci —cy\(9)
axs) —ex(s) g CM(S)) |

and  71(s)

Yo(s) =

also regular at s = ¢. (|
Because of Proposition for t € 2Z<° and \ € T we can define
(69) Dy = Z 1i,j(t)CLE] = m D g .
Z7J

Proposition 8.13. D, \ = 7 q(Dyy ).

Proof. Tt suffices to check that Dy, satisfies the vanishing properties given in Lemma If
t ¢ 2Z<° then Rep(O;) is semisimple, and in particular the V;, are simple objects. It is then
straightforward to check the action of Dy = Ly » on each Vy, using . If t € 2Z=0 then from
Lemma [8.9] and Proposition it follows that

TFt,d(Dt,t,A) = lim ﬂ't,d(Ds,t,A),
s—t
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and again we can compute the action of Dy, ) using . The argument is by a case by case con-
sideration, and we will only give the details for the most difficult case, i.e., when A is k-quasiregular.
In this case Dy = Lsyx + Ly, yt for s sufficiently close but not equal to t. Now choose v € 7;. If

lv| < [A] then both Ly x and Ly 5+ vanish on Vy, because they contain the factor (E; — |v/|). This
implies that D ; ,\‘V =0, hence Dy, ,\‘V = 0. Next assume that |v| = |A| and set d := |A|. If v is
k-regular, then V; , is a simple object and both L, and L, \+ contain the factor (Ci—c,(s)), which
acts on Vi, by (c,(t) —c,(s))ly,,. Since lim, (e, (t) — c,,( )) =0, we obtain 7, q(Dy ») ’VW =0.
If v is k-quasiregular and v # A, then from it follows that

Ds,t,A = (Ct - CV(S))(Ct — Cut (S))D

for some D € A; of the form D =}, . ¢i7j(s)C,’;E¥, where the 1); ; are rational functions without

poles at s =t. Now set N := (C; — ¢t (t))‘vt . Then

(Ct = cu())(Cr = c,i(s)) |y, , = (i (t) — ev(s) + N)(e,i(t) — e,i(s) + N).

As N2 = 0 and lim,_¢(c, 1 (t) —c,t (s)) = limg_y¢(c 1 (t)—c,(s)) = 0, we obtain limg_,; stm‘vt =0.
Finally, if v = A then from it follows that DS:”\'Vt =DWD®A for

DW= [ (ex(®)—ey(s)+ N)
[n|=dn#EAXT

and

bax(s)

cx(s) — e (s)

D® .= (W(q(t) —cyi(s)+N) —

s) = ¢ (s)

(ex(t) —ex(s) + N)) :

Since N? = 0, we have D(i)}vt = "yéi)(s) + ’yy)(s)N for i € {1,2}, so that
(70) Dizaly,, =10(s) +71(s)N,

where yo(s) = 7(()1)(8)7(()2)(3) and y1(s) = ’y(gl)(s)’yg)(s) + ’yg)(s)'y((f)(s). To complete the proof we
need to verify that lims_;vo(s) = 1 and limg_,; y1(s ) 0.
To prove lims_;70(s) = 1 first note that limg_; ’)/0 ( )= ¢1 A(t)~L. Furthermore,
ex(t) —exils) cx(t) — ex(s)

B (s) = dra(s )m _¢2’>\(S)C)\(S) —cyi(s)’

and from gz~517)\(t) = QEQ,)\( t) it follows that limg_,, 70 ( )= At).
To prove limg_,; 1 (s) = 0, note that

() = b1adanis) | T (exlt) = en(®) | (dsls) +duls))

lv|=d, v£XAT

where 3(s) = %’Aéi)(;)l__il{?s(; ) and

(s) 5 ! (%Mﬂﬂm@—qwﬁ mm><mw—q@v.

ea(t) —eu(s) ea(s) — exi(s)

lv|=d, v£EX AT
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From ¢\ (t) = ¢2.1(t) it follows that

(71) lim $a(s) = o)™t > M

lv|=d, v£XAT ¢
Furthermore ¢y (s) — ¢yi(s) = (s — t) (2(A\1 — A\2) +t — 2), so that

(P22(8)"" = d2a(®) ™) = (D1a(5) " = $13(1))

lim (;33(3) = lim

s—0 s—t C)\(S) — ¢yt (S)
= 1 dz -1 _4d- -1
2\ =)+ (t—-2) (ds%”\(s) o=t 751 (5) \w) -
Now
d - - A= A2) — (v1 —
(72) E(Zﬁl)‘(s)il}s:t _ (]517)\(15)71 Z (M _ (i)) ((:l/tt) 2
lv|=d, v£A AT A v
and
d - - - _ M+ A —t+2)— (v —
(73) %@’A(S) 1‘S:t = dor(t)"! Z (=1 z i c) (t)(V1 V)
lv|=d, v£A N A v
From (71, and it follows that limy_(d3(s) + @4(s)) = 0, hence lims_; y1(s) = 0. O

Remark 8.14. There is a more conceptual argument for proving lims_,;y1(s) = 0 in as follows.
The construction of Rep(Oy) is valid over the field C(€) of rational functions in a parameter £, yielding
a Karoubian rigid symmetric monoidal category generated by a self-dual object V¢ of dimension .
Let us denote the latter category by Rep(Og¢). The algebra A; and the operators Cy, E;, and Dy y
have counterparts A¢, C¢, E¢, and D¢y in the inductive completion of Rep(O¢). For t € C, let
Oy C C(§) denote the local ring of rational functions without a pole at £ = ¢, and let Kg C A
be the O;-subalgebra of A¢ generated by C¢ and E¢. Further, let eve—; : A — A; be the ring
homomorphism obtained by naturally extending eve—;(Cy¢) := C; and eve—(E¢) := E;. One can
show that Rep(Og) is semisimple, and it follows that the restriction of D¢ ) to P\S/j is an idempotent
morphism. One can then use the fact that eve—; is a ring homomorphism to prove that eve—;(Dg )
is an idempotent when restricted to P\S/td7 and therefore it does not have a nonzero nilpotent part.

Lemma 8.15. Assume thatt € 2Z=Y. Let U; C C be an open set such that UyNZ = {t}. For s € U,
let Ls € Ag be defined by

P
(74) L= i;(s)CLE],
i,j=0
where the v; j are rational functions without poles in Uy. Let fr_ be defined as in Deﬁnitionfor
s € Up. Then fr, =lims .y fr. as elements of Clz,y].

Proof. Let s € Ug\{t}. Then the category Rep(Os) is semisimple and by we have
Fr,(m+35—1p2) =3 o vij(s)cu(s) (u1 + p2)? for peT.
Since Z is Zariski dense in C2, it follows that
Fr.(@,y) =30 o vii(s)((z —y)” = (5 = 1)*) (@ +v).

In particular, the coefficients of f (z,y) are rational functions without poles in U;. Thus, the limit
limg ¢ f, exists.



30 CAPELLI OPERATORS AND THE DOUGALL-RAMANUJAN IDENTITY

The action of Ly on Vy,, where u € Z;, is equal to D7 .o ¥i;()(cu(t) + N)"(u1 + p2)?, where
N is the nilpotent part of Ct{vt (recall that N2 = 0). Thus
N

Fr, (i —k—1,p9) Z bij(t)en(t) (1 + p2)’.
4,j=0

Consequently for all 1 € T},

s .
(75) Fo,(mn—k-1 Mz)—hme <Nl+§_1vﬂ2>:EE%fLS(Nl_E_LMQ)v

where for the second equality we use the fact that the coefficients of fy_(z,y) do not have poles in
U;. But then also holds for all € 7 since both fr, and lims_; f_ are symmetric polynomials.
Since 7 is Zariski dense in C?, we obtain fp, = lim_; fp, . O

We are now ready to prove Theorems Recall that f := fp, ,, where the right hand side
is defined as in Definition Since Dy \ € Af, Lemma [8.9|implies that deg f, < |A|.

Proof of Theorems First assume that ¢ ¢ 2Z<°. Then by Lemma (1) the polynomial
f ) satisfies vanishing conditions analogous to the hypotheses of Theorem and the claim follows.
Next assume that ¢ € 2Z=C. Our strategy is to reduce this case to the case t ¢ 2Z=<°. Let n; j(s) be
as in (67). Set Uy := {t} U (C\Z). By Lemma[8.9]

7Ttd st)\ Z 771,] (szdz ( )CéEi for s € U;.
7‘7 Z 7‘7
Using Proposition and Proposition we obtain
Dt,/\ = TFt,d(Dt,t,A) = lim ‘ﬂ't,d(Ds,t,,\)
4,5,8.3" 1,5,8',5’
where in the last step we use Proposition Set
= > 0ij(s)$ijar g (s)CLE],
1,53
so that Ly = Dy . Next fix s € U;\{t}. We use the special case of Theorem |[A’| that was proved
above to compute fr . If X is k-regular, then Ly = 7, 4(Ls ) and thus fr = ﬁPA_E. If A\
A=z
is k-singular, then Ls = (ct(s) — ex(8))ms,a(Lg s 1) and thus
cxi(s) —eals) ,—3
fo, =l pos,
ENC T
Finally, if A is k-quasiregular, then Ls = m, 4(Lg s + Ly ¢ 1) and thus
1 _s 1 _
- Py p
Hy(-3)

TR
Now Lemma implies Theorems

(Sl

fr,=
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