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A Variational Inequality Model for the Construction of Signals from Inconsistent
Nonlinear Equations\ast 

Patrick L. Combettes\dagger and Zev C. Woodstock\dagger 

Abstract. Building up on classical linear formulations, we posit that a broad class of problems in signal synthe-
sis and in signal recovery are reducible to the basic task of finding a point in a closed convex subset
of a Hilbert space that satisfies a number of nonlinear equations involving firmly nonexpansive oper-
ators. We investigate this formalism in the case when, due to inaccurate modeling or perturbations,
the nonlinear equations are inconsistent. A relaxed formulation of the original problem is proposed
in the form of a variational inequality. The properties of the relaxed problem are investigated, and
a provenly convergent block-iterative algorithm, whereby only blocks of the underlying firmly non-
expansive operators are activated at a given iteration, is devised to solve it. Numerical experiments
illustrate robust recoveries in several signal and image processing applications.

Key words. image recovery, signal synthesis, monotone operator, nonlinear observation, firmly nonexpansive
operator, variational inequality
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1. Introduction. Signal construction encompasses forward problems such as image syn-
thesis, holography, filter design, time-frequency distribution synthesis, and radiation therapy
planning, as well as inverse problems such as density estimation, signal denoising, image in-
terpolation, signal extrapolation, audio declipping, image reconstruction, or deconvolution;
see, e.g., [4, 16, 19, 29, 31, 32, 45, 47, 48, 51, 58]. Essential components in the mathematical
modeling of signal construction problems are equations tying the ideal solution x in a space
\scrH to given prescriptions in a space \scrG , say, Wx = p, where W is an operator mapping \scrH to
\scrG . The prescription p can be a design specification in forward problems or an observation in
inverse problems.

In 1978, Youla [60] elegantly brought to light the simple geometry that underlies many
classical problems in signal construction by reducing them to the following formulation: Given
closed vector subspaces C and D in a real Hilbert space \scrH and a point p \in D,

(1.1) find x \in C such that projDx = p,

where projD denotes the projection operator onto D. In the context of signal recovery, the
original signal of interest x is known to lie in C, and some observation p of it is available in
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Figure 1. Illustration of Problem 1.1 with m prescriptions (pi)1\leqslant i\leqslant m. The ith prescription pi is the output
produced when the ideal signal x is input to a Wiener system Wi = Fi \circ Li, i.e., the concatenation of a linear
system Li and a nonlinear system Fi [49]. In the proposed model, Fi is a firmly nonexpansive operator.

the form of its projection onto D. A natural nonlinear extension of this setting is obtained by
considering nonempty closed convex sets C in \scrH and D in a real Hilbert space \scrG , a bounded
linear operator L : \scrH \rightarrow \scrG , and a point p \in D and setting as an objective to

(1.2) find x \in C such that projD(Lx) = p.

An early instance of this model appears in [1], where C is a set of band-limited signals and p is
an observation of N clipped samples of the original signal. Thus, L : \scrH \rightarrow \BbbR 

N is the sampling
operator and D =

\bigl\{ 
y \in \BbbR 

N | \| y\| \infty \leqslant \rho 
\bigr\} 
for some \rho \in ]0,+\infty [. A key property of projectors

onto closed convex sets is their firm nonexpansiveness. Recall that an operator F : \scrG \rightarrow \scrG is
firmly nonexpansive if [6]

(1.3) (\forall x \in \scrG )(\forall y \in \scrG ) \langle x - y | Fx - Fy\rangle \geqslant \| Fx - Fy\| 2.

In [26, 27], it was shown that many nonlinear observation processes found in signal processing,
machine learning, and inference problems can be represented through such operators. This
prompts us to consider the following formulation, whereby the prescriptions are modeled via
Wiener systems (see Figure 1).

Problem 1.1. Let I be a nonempty finite set, and let C be a nonempty closed convex
subset of a real Hilbert space \scrH . For every i \in I, let \scrG i be a real Hilbert space, let pi \in \scrG i,
let Li : \scrH \rightarrow \scrG i be a nonzero bounded linear operator, and let Fi : \scrG i \rightarrow \scrG i be a firmly
nonexpansive operator. The task is to

(1.4) find x \in C such that (\forall i \in I) Fi(Lix) = pi.

The work of [26, 27] assumes that the prescription equations in Problem 1.1 are exact
and hence that a solution exists. In many instances, however, the prescription operators may
be imperfectly known, or the model may be corrupted by perturbations, so that Problem 1.1
may not have solutions; e.g., [17, 18, 31]. A dramatic consequence of this lack of feasibility
is that the algorithms proposed [26, 27] are known to diverge in such situations. To deal
robustly with possibly inconsistent equations, one must therefore come up with an appropriate
relaxed formulation of Problem 1.1, i.e., one that seeks a point in C that satisfies the nonlinear
equations in an approximate sense and coincides with the original problem (1.4) if it happens toD
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86 PATRICK L. COMBETTES AND ZEV C. WOODSTOCK

be consistent. To guide our design of a relaxed problem, let us consider a classical instantiation
of Problem 1.1.

Example 1.2. Specialize Problem 1.1 by setting, for every i \in I,

(1.5) pi = 0 and Fi = Id - projDi
, where Di is a nonempty closed convex subset of \scrG i,

and note that the operators (Fi)i\in I are firmly nonexpansive [6, Corollary 4.18]. In this context,
(1.4) reduces to the convex feasibility problem [15, 19, 62]

(1.6) find x \in C such that (\forall i \in I) Lix \in Di.

Let (\omega i)i\in I be real numbers in ]0, 1] such that
\sum 

i\in I \omega i = 1, and, for every i \in I, let dDi
be

the distance function to Di. As seen in [23] (see also [16, 17, 18, 22, 32, 61] for special cases),
a relaxation of (1.6) when it may be inconsistent is the least-squares problem

(1.7) minimize
x\in C

f(x), where f : x \mapsto \rightarrow 
1

2

\sum 

i\in I

\omega id
2
Di
(Lix) =

1

2

\sum 

i\in I

\omega i\| Lix - projDi
(Lix)\| 

2.

An important property of this formulation is that f is a smooth convex function since [6,
Corollary 12.31] asserts that

(1.8) (\forall i \in I) \nabla 
d2Di

\circ Li

2
= L\ast 

i \circ (Id - projDi
) \circ Li = L\ast 

i \circ Fi \circ Li  - L\ast 
i pi.

It can therefore be solved by the projection-gradient algorithm [6, Corollary 28.10]. Let us
also note that (1.7) is a valid relaxation of (1.6). Indeed, if the latter has solutions, then f
vanishes on C at those points only, and (1.7) is therefore equivalent to (1.6). Historically, the
first instance of the above relaxation process seems to be Legendre's least-squares methods
[37]. There, \scrH = \BbbR 

N = C, and, for every i \in I, \scrG i = \BbbR , Di = \{ \beta i\} , and Li = \langle \cdot | ai\rangle , where
\beta i \in \BbbR and 0 \not = ai \in \BbbR 

N . Set b = (\beta i)i\in I , let A be the matrix with rows (ai)i\in I , and let
(\forall i \in I) \omega i = 1/card I. Then (1.6) consists of solving the linear system Ax = b and (1.7) of
minimizing the function x \mapsto \rightarrow \| Ax - b\| 2.

In general, there is no suitable relaxation of Problem 1.1 in the form of a tractable convex
minimization problem such as (1.7). For instance, in Example 1.2, we can rewrite (1.7) as

(1.9) minimize
x\in C

f(x), where f : x \mapsto \rightarrow 
1

2

\sum 

i\in I

\omega i\| Fi(Lix) - pi\| 
2.

However, beyond the special case (1.5), f is typically a nonconvex and nondifferentiable
function [4, 43, 64], which makes it impossible to guarantee the construction of solutions.
Another plausible formulation that captures (1.7) would be to introduce in Problem 1.1 the
closed convex sets (\forall i \in I) Di =

\bigl\{ 
y \in \scrG i | Fiyi = pi

\bigr\} 
. However, the resulting minimization

problem (1.7) is intractable because we typically do not know how to evaluate the operators
(projDi

)i\in I and therefore cannot evaluate f and its gradient.
Our strategy to relax (1.4) is to forgo the optimization approach in favor of the broader

framework of variational inequalities. To motivate this approach, let us go back to Exam-
ple 1.2. Then it follows from Lemma 2.4 below and (1.8) that (1.7) is equivalent to findingD
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SIGNAL CONSTRUCTION FROM NONLINEAR EQUATIONS 87

x \in C such that (\forall y \in C)
\sum 

i\in I \omega i\langle Li(y  - x) | Fi(Lix) - pi\rangle \geqslant 0. We shall show that this
variational inequality constitutes an appropriate relaxed formulation of Problem 1.1 in the
presence of general firmly nonexpansive operators (Fi)i\in I and that it can be solved iteratively
through an efficient block-iterative fixed point algorithm. Here is a precise formulation of our
relaxed problem.

Problem 1.3. Let I be a nonempty finite set, let (\omega i)i\in I be real numbers in ]0, 1] such that\sum 
i\in I \omega i = 1, and let C be a nonempty closed convex subset of a real Hilbert space \scrH . For

every i \in I, let \scrG i be a real Hilbert space, let pi \in \scrG i, let Li : \scrH \rightarrow \scrG i be a nonzero bounded
linear operator, and let Fi : \scrG i \rightarrow \scrG i be a firmly nonexpansive operator. The task is to

(1.10) find x \in C such that (\forall y \in C)
\sum 

i\in I

\omega i\langle Li(y  - x) | Fi(Lix) - pi\rangle \geqslant 0.

The paper is organized as follows. Section 2 provides the notation and the necessary
background as well as preliminary results. It covers in particular the basics of monotone
operator theory, which will play an essential role in the paper. In section 3, we illustrate the
flexibility and the breadth the proposed firmly nonexpansive Wiener model. In section 4, we
analyze various properties of Problem 1.3, in particular as a relaxation of Problem 1.1. We
also provide in that section a block-iterative algorithm to solve Problem 1.3. Section 5 is
devoted to numerical experiments in the area of signal and image processing.

2. Notation, background, and preliminary results.

2.1. Notation. Our notation follows [6], to which one can refer for background on mono-
tone operators and convex analysis. Let \scrH be a real Hilbert space with scalar product \langle \cdot | \cdot \rangle ,
associated norm \| \cdot \| , and identity operator Id. The family of all subsets of \scrH is denoted by
2\scrH . The Hilbert direct sum of a family of real Hilbert spaces (\scrH i)i\in I is denoted by

\bigoplus 
i\in I \scrH i.

Let T : \scrH \rightarrow \scrH . Then T is cocoercive if there exists \beta \in ]0,+\infty [ such that

(2.1) (\forall x \in \scrH )(\forall y \in \scrH ) \langle x - y | Tx - Ty\rangle \geqslant \beta \| Tx - Ty\| 2,

and firmly nonexpansive if \beta = 1 above. The set of fixed points of T is FixT =
\bigl\{ 
x \in \scrH | Tx = x

\bigr\} 
.

Let A : \scrH \rightarrow 2\scrH . The graph of A is graA =
\bigl\{ 
(x, x\ast ) \in \scrH \times \scrH | x\ast \in Ax

\bigr\} 
, the domain of

A is domA =
\bigl\{ 
x \in \scrH | Ax \not = \varnothing 

\bigr\} 
, the range of A is ranA =

\bigl\{ 
x\ast \in \scrH | (\exists x \in \scrH ) x\ast \in Ax

\bigr\} 
,

the set of zeros of A is zerA =
\bigl\{ 
x \in \scrH | 0 \in Ax

\bigr\} 
, the inverse of A is A - 1 : \scrH \rightarrow 2\scrH : x\ast \mapsto \rightarrow \bigl\{ 

x \in \scrH | x\ast \in Ax
\bigr\} 
, and the resolvent of A is JA = (Id +A) - 1. Further, A is monotone if

(2.2)
\bigl( 
\forall (x, x\ast ) \in graA

\bigr) \bigl( 
\forall (y, y\ast ) \in graA

\bigr) 
\langle x - y | x\ast  - y\ast \rangle \geqslant 0,

and maximally monotone if, for every (x, x\ast ) \in \scrH \times \scrH ,

(2.3) (x, x\ast ) \in graA \leftrightarrow 
\bigl( 
\forall (y, y\ast ) \in graA

\bigr) 
\langle x - y | x\ast  - y\ast \rangle \geqslant 0.

If A is maximally monotone, then JA is a single-valued firmly nonexpansive operator defined
on \scrH . If A is monotone and satisfies

(2.4) (\forall (x, x\ast ) \in domA\times ranA) sup
\bigl\{ 
\langle x - y | y\ast  - x\ast \rangle | (y, y\ast ) \in graA

\bigr\} 
< +\infty ,

then it is 3\ast monotone.
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88 PATRICK L. COMBETTES AND ZEV C. WOODSTOCK

\Gamma 0(\scrH ) is the class of all lower semicontinuous convex functions from \scrH to ] - \infty ,+\infty ] which
are proper in the sense that they are not identically +\infty . Let f \in \Gamma 0(\scrH ). The domain of f
is dom f =

\bigl\{ 
x \in \scrH | f(x) < +\infty 

\bigr\} 
, the conjugate of f is the function

(2.5) \Gamma 0(\scrH ) \ni f\ast : x\ast \mapsto \rightarrow sup
x\in \scrH 

\bigl( 
\langle x | x\ast \rangle  - f(x)

\bigr) 
,

and the subdifferential of f is the maximally monotone operator

(2.6) \partial f : \scrH \rightarrow 2\scrH : x \mapsto \rightarrow 
\bigl\{ 
x\ast \in \scrH | (\forall y \in \scrH ) \langle y  - x | x\ast \rangle + f(x) \leqslant f(y)

\bigr\} 
.

The Moreau envelope of f is

(2.7) \widetilde f : \scrH \rightarrow \BbbR : x \mapsto \rightarrow inf
y\in \scrH 

\biggl( 
f(y) +

\| x - y\| 2

2

\biggr) 
.

For every x \in \scrH , the infimum in (2.7) is achieved at a unique point, which is denoted by
proxfx. This defines the proximity operator proxf = J\partial f of f .

Let C be a nonempty closed and convex subset of \scrH . The distance from x \in \scrH to C is
dC(x) = infy\in C \| x - y\| , the indicator function of C is

(2.8) \iota C : \scrH \rightarrow ] - \infty ,+\infty ] : x \mapsto \rightarrow 

\Biggl\{ 
0 if x \in C,

+\infty if x /\in C,

the normal cone to C at x \in \scrH is

(2.9) NCx = \partial \iota C(x) =

\Biggl\{ \bigl\{ 
x\ast \in \scrH | (\forall y \in C) \langle y  - x | x\ast \rangle \leqslant 0

\bigr\} 
if x \in C,

\varnothing otherwise,

and the projection operator onto C is projC = prox\iota C = JNC
.

The following facts will also come into play.

Lemma 2.1. Let A : \scrH \rightarrow 2\scrH be maximally monotone, let \mu \in ]0,+\infty [, and let \gamma \in ]0, 1/\mu [.
Set B = A  - \mu Id and \beta = 1  - \gamma \mu . Then J\gamma B : \scrH \rightarrow \scrH is \beta -cocoercive. Furthermore,

J\gamma B = J\beta  - 1\gamma A \circ (\beta  - 1Id).

Proof. Let x and q be in \scrH . Since \beta  - 1\gamma A is maximally monotone, its resolvent is single-
valued with domain \scrH . Therefore,

q \in J\gamma Bx \leftrightarrow x - q \in \gamma Bq

\leftrightarrow x - \beta q \in \gamma Aq

\leftrightarrow \beta  - 1x - q \in \beta  - 1\gamma Aq

\leftrightarrow q = J\beta  - 1\gamma A

\bigl( 
\beta  - 1x

\bigr) 
,(2.10)

which shows that J\gamma B = J\beta  - 1\gamma A \circ (\beta  - 1Id) is single-valued with domain \scrH . Finally, since M =
\beta \gamma A is maximally monotone, it follows from [6, Corollary 23.26] that J\gamma B = J\beta  - 2M \circ (\beta  - 1Id)
is \beta -cocoercive.D
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x y

CBx

Figure 2. Illustration of the variational inequality principle. The point x solves (2.12) because it lies in C,
and, for every y \in C, the angle between y  - x and Bx is acute.

Lemma 2.2 (see [6, Proposition 24.68]). Let \scrH be the real Hilbert space of N \times M matrices

under the Frobenius norm, and set s = min\{ N,M\} . Denote the singular value decomposition

of x \in \scrH by x = Ux diag (\sigma 1(x), . . . , \sigma s(x))V
\top 
x . Let \phi \in \Gamma 0(\BbbR ) be even, and set

(2.11) F : \scrH \rightarrow \scrH : x \mapsto \rightarrow Ux diag
\Bigl( 
prox\phi 

\bigl( 
\sigma 1(x)

\bigr) 
, . . . , prox\phi 

\bigl( 
\sigma s(x)

\bigr) \Bigr) 
V \top 
x .

Then F is firmly nonexpansive.

2.2. Variational inequalities. The following notion of a variational inequality was formu-
lated in [12] (see Figure 2).

Definition 2.3. Let C be a nonempty closed convex subset of \scrH , and let B : \scrH \rightarrow \scrH be a

monotone operator. The associated variational inequality problem is to

(2.12) find x \in C such that (\forall y \in C) \langle y  - x | Bx\rangle \geqslant 0.

Variational inequalities are used in various areas of mathematics and its applications
[8, 30, 35, 65]. They are also central in constrained minimization problems.

Lemma 2.4 (see [6, Proposition 27.8]). Let f : \scrH \rightarrow \BbbR be a differentiable convex function,

let C be a nonempty closed convex subset of \scrH , and let x \in \scrH . Then x minimizes f over C
if and only if it satisfies the variational inequality

(2.13) x \in C and (\forall y \in C) \langle y  - x | \nabla f(x)\rangle \geqslant 0.

2.3. Composite sums of monotone operators. We shall require the following Br\'ezis--
Haraux type of theorem, which remains valid in general reflexive Banach spaces (see [10,
Th\'eor\`eme 3] for the special case of the sum of two monotone operators).

Lemma 2.5. Let \scrH be a real Hilbert space and let (\scrG i)i\in I be a finite family of real Hilbert

spaces. Let A : \scrH \rightarrow 2\scrH be a 3\ast monotone operator and, for every i \in I, let Bi : \scrG i \rightarrow 2\scrG i

be a 3\ast monotone operator, and let Li : \scrH \rightarrow \scrG i be a bounded linear operator. Suppose that

A+
\sum 

i\in I L
\ast 
i \circ Bi \circ Li is maximally monotone. Then

(2.14)

\left\{ 
 
 
int
\bigl( 
ranA+

\sum 
i\in I L

\ast 
i (ranBi)

\bigr) 
= int ran

\bigl( 
A+

\sum 
i\in I L

\ast 
i \circ Bi \circ Li

\bigr) 

ranA+
\sum 

i\in I L
\ast 
i (ranBi) = ran

\bigl( 
A+

\sum 
i\in I L

\ast 
i \circ Bi \circ Li

\bigr) 
.
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90 PATRICK L. COMBETTES AND ZEV C. WOODSTOCK

Proof. Clearly, ran (A +
\sum 

i\in I L
\ast 
i \circ Bi \circ Li) \subset (ranA +

\sum 
i\in I L

\ast 
i (ranBi)). It is therefore

enough to show that

(2.15)

\Biggl\{ 
int
\bigl( 
ranA+

\sum 
i\in I L

\ast 
i (ranBi)

\bigr) 
\subset ran

\bigl( 
A+

\sum 
i\in I L

\ast 
i \circ Bi \circ Li

\bigr) 

ranA+
\sum 

i\in I L
\ast 
i (ranBi) \subset ran

\bigl( 
A+

\sum 
i\in I L

\ast 
i \circ Bi \circ Li

\bigr) 
.

Without loss of generality, set I = \{ 1, . . . ,m\} , and introduce the Hilbert direct sum \bfscrH =
\scrH \oplus \scrG 1 \oplus \cdot \cdot \cdot \oplus \scrG m. Furthermore, introduce the bounded linear operator \bfitL : \scrH \rightarrow \bfscrH : x \mapsto \rightarrow 
(x, L1x, . . . , Lmx) and the operator \bfitM : \bfscrH \rightarrow 2\bfscrH : (x, y1, . . . , ym) \mapsto \rightarrow Ax \times B1y1 \times \cdot \cdot \cdot \times 
Bmym, which is 3\ast monotone since A and (Bi)i\in I are. Note also that, since \bfitL \ast : \bfscrH \rightarrow 
\scrH : (x, y1, . . . , ym) \mapsto \rightarrow x+

\sum 
i\in I L

\ast 
i yi, the operator

(2.16) \bfitL \ast \circ \bfitM \circ \bfitL = A+
\sum 

i\in I

L\ast 
i \circ Bi \circ Li

is maximally monotone. We can therefore apply [42, Theorem 5] to obtain

(2.17)

\Biggl\{ 
int\bfitL \ast (ran\bfitM ) \subset ran (\bfitL \ast \circ \bfitM \circ \bfitL )

\bfitL \ast (ran\bfitM ) \subset ran (\bfitL \ast \circ \bfitM \circ \bfitL ),

which is precisely (2.15).

We consider below a monotone inclusion problem involving several operators.

Problem 2.6. Let (\omega i)i\in I be a finite family of real numbers in ]0, 1] such that
\sum 

i\in I \omega i = 1,
let A0 : \scrH \rightarrow 2\scrH be maximally monotone, and, for every i \in I, let \beta i \in ]0,+\infty [, and let
Ai : \scrH \rightarrow \scrH be \beta i-cocoercive. The task is to find x \in \scrH such that 0 \in A0x+

\sum 
i\in I \omega iAix.

Proposition 2.7 (see [24, Proposition 4.9]). Consider the setting of Problem 2.6 under the

assumption that it has a solution. Let K be a strictly positive integer, and let (In)n\in \BbbN be a se-

quence of nonempty subsets of I such that (\forall n \in \BbbN )
\bigcup K - 1

k=0 In+k = I. Let \gamma \in ]0, 2min1\leqslant i\leqslant m \beta i[,
let x0 \in \scrH , and let (\forall i \in I) ti, - 1 \in \scrH . Iterate

(2.18)

for n = 0, 1, . . .            

for every i \in In\bigl\lfloor 
ti,n = xn  - \gamma Aixn

for every i \in I \smallsetminus In\bigl\lfloor 
ti,n = ti,n - 1

xn+1 = J\gamma A0

\Biggl( 
\sum 

i\in I

\omega iti,n

\Biggr) 
.

Then (xn)n\in \BbbN converges weakly to a solution to Problem 2.6.

3. Firmly nonexpansive Wiener models. The proposed Wiener model (see Figure 1) in-
volves a linear operator followed by a firmly nonexpansive operator acting on a real Hilbert
space \scrG . Typical examples of linear transformations in the context of signal constructionD
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include the Fourier transform, the Radon transform, wavelet decompositions, frame decom-
positions, audio effects, or blurring operators. We show that firmly nonexpansive operators
model many useful nonlinearities in this context. Key examples based on those of [27] are
recalled, and new ones are proposed. Following [27], we call p \in \scrG a proximal point of y \in \scrG 
relative to a firmly nonexpansive operator F : \scrG \rightarrow \scrG if Fy = p.

3.1. Projection operators. As seen in section 2.1, the projection operator onto a nonempty
closed convex set is firmly nonexpansive.

Example 3.1. For every j \in \{ 1, . . . ,m\} , let Gj be a real Hilbert space, and let Dj \subset Gj be
nonempty closed and convex. Suppose that \scrG =

\bigoplus 
1\leqslant j\leqslant m Gj . The operator

(3.1) F : (yj)1\leqslant j\leqslant m \mapsto \rightarrow (projDj
yj)1\leqslant j\leqslant m,

which is also the projection onto the closed convex set D =\times 1\leqslant j\leqslant mDj , is the hard clipper of
[27, Example 2.11]. If we specialize to the case when, for every j \in \{ 1, . . . ,m\} , Gj = \BbbR , we
obtain the standard hard clipping operators of [1, 31, 55].

Example 3.2. Let K \subset \scrG be a nonempty closed convex cone. The operator F = projK
is used as a distortion model when K is the positive orthant [53, section 10.4.1]. An-
other instance of a conic projection operator arises in isotonic regression [5], where K =\bigl\{ 
(\xi i)1\leqslant i\leqslant N \in \BbbR 

N | \xi 1 \leqslant \cdot \cdot \cdot \leqslant \xi N
\bigr\} 
.

Example 3.3. Compression schemes such as downsampling project a high-dimensional ob-
ject of interest onto a closed convex subset of a low-dimensional subspace of \scrG [41].

3.2. Proximity operators. As seen in section 2.1, the proximity operator of a function in
\Gamma 0(\scrG ) is firmly nonexpansive. The following construction will be particularly useful.

Example 3.4. For every j \in \{ 1, . . . ,m\} , let Gj be a real Hilbert space, and let gj \in \Gamma 0(Gj).
Suppose that \scrG =

\bigoplus 
1\leqslant j\leqslant m Gj , and set F : \scrG \rightarrow \scrG : (yj)1\leqslant j\leqslant m \mapsto \rightarrow (proxgiyj)1\leqslant j\leqslant m. Then [6,

Proposition 24.11] asserts that

(3.2) F = proxg, where g : \scrG \rightarrow ] - \infty ,+\infty ] : (yj)1\leqslant j\leqslant m \mapsto \rightarrow 

m\sum 

j=1

gj(yj).

Example 3.5. In Example 3.4, suppose that, for every j \in \{ 1, . . . ,m\} , gj = \phi j \circ \| \cdot \| , where
\phi j is an even function in \Gamma 0(\BbbR ) such that \phi j(0) = 0 and \phi j \not = \iota \{ 0\} . Set (\forall j \in \{ 1, . . . ,m\} )
\rho j = max \partial \phi j(0). Then we derive from [11, Proposition 2.1] that

(3.3) F : \scrG \rightarrow \scrG : (yj)1\leqslant j\leqslant m \mapsto \rightarrow 
\Bigl( \bigl( 

prox\phi j
\| yj\| 

\bigr) 
\lfloor yj\rfloor \rho j

\Bigr) 

1\leqslant j\leqslant m
,

where \lfloor yj\rfloor \rho j =

\Biggl\{ 
yj/\| yj\| if \| yj\| > \rho j ,

0 if \| yj\| \leqslant \rho j .

Example 3.6. Consider the special case of Example 3.5 in which, for some j \in \{ 1, . . . ,m\} ,
\phi j is not differentiable at the origin, which implies that \rho j > 0. Then proxgj acts as a
thresholder with respect to the jth variable in the sense that, if \| yj\| \leqslant \rho j , then the jthD
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 - 4  - 3  - 2  - 1 1 2 3 4

1

 - 1

Figure 3. Proximal soft clipping operators on \BbbR with saturation at \pm 1: \eta \mapsto \rightarrow sign(\eta )(1  - exp( - | \eta | )) [53,
section 10.6.3] (blue), \eta \mapsto \rightarrow 2 arctan(\eta )/\pi [25] (red), and \eta \mapsto \rightarrow \eta /(1 + | \eta | ) [39] (green).

coordinate of Fy is zero. For instance, suppose that, for every j \in \{ 1, . . . ,m\} , \phi j = \rho j | \cdot | ;
hence, \partial \phi j(0) = [ - \rho j , \rho j ] and gj = \rho j\| \cdot \| . Then Fy = p is acquired though the group-shrinkage
operation [63]

(3.4) p =

\biggl( \biggl( 
1 - 

\rho j
max\{ \| yj\| , \rho j\} 

\biggr) 
yj

\biggr) 

1\leqslant j\leqslant m

.

Example 3.7. In contrast to the hard clipping operations of Example 3.1, soft clipping
operators are not projection operators in general, but many turn out to be proximity operators
[27] (see Figure 3). For instance, consider the setting of Example 3.5 with

(3.5) (\forall j \in \{ 1, . . . ,m\} ) \phi j : \eta \mapsto \rightarrow 

\left\{ 
 
 
 - | \eta |  - ln(1 - | \eta | ) - 

\eta 2

2
if | \eta | < 1,

+\infty if | \eta | \geqslant 1.

Then we obtain the soft clipping operator

(3.6) F : (yj)1\leqslant j\leqslant m \mapsto \rightarrow 

\biggl( 
yj

1 + \| yj\| 

\biggr) 

1\leqslant j\leqslant m

used in [39]. Soft clipping operators model sensors in signal processing [4, 39, 53] and activation
functions in neural networks [25].

3.3. General firmly nonexpansive operators. Not all firmly nonexpansive operators are
proximity operators [21].

Example 3.8. Let (Rj)1\leqslant j\leqslant m be nonexpansive operators on \scrG . Then the operator

(3.7) F =
Id +R1 \circ \cdot \cdot \cdot \circ Rm

2
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1/2

Input

1/2

+
Output

R1R2

Figure 4. The distortion operator F in Example 3.8 for m = 2.

is firmly nonexpansive [6, Proposition 4.4], but it is not a proximity operator [21, Example 3.5].
A concrete instance of (3.7) is found in audio signal processing. Consider a distortion p \in \scrG 
of a linearly degraded audio signal Lx \in \scrG modeled by

(3.8) F (Lx) = p,

where L produces effects such as echo or reverberation [53, Chapter 11] and F comprises
several simpler operations (Rj)1\leqslant j\leqslant m which turn out to be firmly nonexpansive (see, e.g.,
Example 3.2, [27], and [53, section 10.6.2]). These simpler distortion operators are then used
in series and blended with a proportion of the input signal [53, section 10.9], so that the overall
process is described by (3.7) (see Figure 4). More generally F remains firmly nonexpansive
when R1 \circ \cdot \cdot \cdot \circ Rm is replaced by any nonexpansive operator.

3.4. Proxification. In some instances, a prescription q \in \scrG may be given by an equation
of the form Qy = q, where Q : \scrG \rightarrow \scrG is not firmly nonexpansive. In this section, we provide
constructive examples of proxification, by which we mean the replacement of the equality
Qy = q with an equivalent equality Fy = p, where p \in \scrG and F : \scrG \rightarrow \scrG is firmly nonexpansive.

Definition 3.9. Let Q : \scrG \rightarrow \scrG , and let q \in ranQ. Then (Q, q) is proxifiable if there exists a
firmly nonexpansive operator F : \scrG \rightarrow \scrG and p \in ranF such that (\forall y \in \scrG ) Qy = q \leftrightarrow Fy = p.
In this case, (F, p) is a proxification of (Q, q).

We begin with a necessary condition describing when this technique is possible.

Proposition 3.10. Let Q : \scrG \rightarrow \scrG and q \in ranQ be such that (Q, q) is proxifiable. Then

(3.9) Q - 1
\bigl( 
\{ q\} 
\bigr) 
=
\bigl\{ 
y \in \scrG | Qy = q

\bigr\} 
is closed and convex.

Proof. The proxification assumption means that there exists a firmly nonexpansive oper-
ator F : \scrG \rightarrow \scrG and p \in ranF such that Q - 1(\{ q\} ) = F - 1(\{ p\} ). Now set T = Id  - F + p.
Then it follows from [6, Proposition 4.4] that T is firmly nonexpansive and therefore from [6,
Corollary 4.24] that Q - 1(\{ q\} ) = F - 1(\{ p\} ) = FixT is closed and convex.

Interestingly, condition (3.9) is also assumed in various nonlinear recovery problems [45,
46, 56]. However, the solution techniques of these papers require the ability to project onto
Q - 1(\{ q\} )---a capability which rarely occurs when dim\scrG > 1. The numerical approach pro-
posed in section 4 will circumvent this requirement and lead to provenly convergent algorithms
which instead rely on evaluating the associated firmly nonexpansive operator F : \scrG \rightarrow \scrG .D
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Example 3.11 (see [27, Proposition 2.14]). For every j \in \{ 1, . . . ,m\} , let Gj be a real Hilbert
space, let Dj be a nonempty closed convex subset of Gj , let \gamma j \in ]0,+\infty [, and set

(3.10) Qj : Gj \rightarrow Gj : yj \mapsto \rightarrow 

\Biggl\{ 
yj if dDj

(yj) > \gamma j ,

projDj
yj if dDj

(yj) \leqslant \gamma j

and

(3.11) Sj : Gj \rightarrow Gj : yj \mapsto \rightarrow 

\left\{ 
 
 
yj +

\gamma j
dDj

(yj)
(projDj

yj  - yj) if yj \not \in Dj ,

yj if yj \in Dj .

Suppose that \scrG =
\bigoplus 

1\leqslant j\leqslant m Gj , set Q : \scrG \rightarrow \scrG : (yj)1\leqslant j\leqslant m \mapsto \rightarrow (Qjyj)1\leqslant j\leqslant m, and let q \in ranQ.
Even though Q is discontinuous, (Q, q) is proxifiable. Indeed, set S : \scrG \rightarrow \scrG : (yj)1\leqslant j\leqslant m \mapsto \rightarrow 
(Sjyj)1\leqslant j\leqslant m, F : \scrG \rightarrow \scrG : (yj)1\leqslant j\leqslant m \mapsto \rightarrow (Sj(Qjyj))1\leqslant j\leqslant m, and p = Sq. Then (F, p) is a prox-
ification of (Q, q). In particular, if, for every j \in \{ 1, . . . ,m\} , Dj = \{ 0\} , then Q is the block
thresholding estimation operator of [34, section 2.3].

Example 3.12. Consider Example 3.11 with, for every j \in \{ 1, . . . ,m\} , Gj = \BbbR , Dj = \{ 0\} ,
and \gamma j = \gamma \in ]0,+\infty [. Then each operator Qj in (3.10) reduces to the hard thresholder

(3.12) hard\gamma : \eta \mapsto \rightarrow 

\Biggl\{ 
\eta if | \eta | > \gamma ,

0 if | \eta | \leqslant \gamma ,

Sj : \eta \mapsto \rightarrow \eta  - \gamma sign(\eta ), and

(3.13) Sj \circ hard\gamma = soft\gamma : \eta \mapsto \rightarrow sign(\eta )max\{ | \eta |  - \gamma , 0\} 

is the soft thresholder on [ - \gamma , \gamma ]. Furthermore, it follows from Example 3.11 that (F, p) is
a proxification of (Q, q). The resulting transformation Q is used for signal compression in
[28, 54] and as a sensing model in [9].

Next, we combine Example 3.12 with Lemma 2.2 to address low rank matrix approxi-
mation. Note the properties of \phi in Lemma 2.2 imply that prox\phi 0 = 0. Therefore, firmly
nonexpansive operators of the form (2.11) cannot increase the rank of a matrix.

Example 3.13. Let \scrG be the real Hilbert space of N \times M matrices under the Frobenius
norm, set s = min\{ N,M\} , and let us denote the singular value decomposition of y \in \scrG 
by y = Uy diag (\sigma 1(y), . . . , \sigma s(y))V

\top 
y . Let \rho \in ]0,+\infty [, let hard\rho be given by (3.12), set

S : \BbbR \rightarrow \BbbR : \eta \mapsto \rightarrow \eta  - \rho sign(\eta ), and set

(3.14)

\left\{ 
 
 
Q : \scrG \rightarrow \scrG : y \mapsto \rightarrow Uy diag

\Bigl( 
hard\rho 

\bigl( 
\sigma 1(y)

\bigr) 
, . . . , hard\rho 

\bigl( 
\sigma s(y)

\bigr) \Bigr) 
V \top 
y

S : \scrG \rightarrow \scrG : y \mapsto \rightarrow Uy diag
\Bigl( 
S
\bigl( 
\sigma 1(y)

\bigr) 
, . . . , S

\bigl( 
\sigma s(y)

\bigr) \Bigr) 
V \top 
y .

Let q \in ranQ, and set F = S \circ Q and p = Sq. Since soft\rho = prox\rho | \cdot | and \rho | \cdot | is even, it
follows from Example 3.12 and Lemma 2.2 that (F, p) is a proxification of (Q, q). The operator
Q is used in image compression to produce low rank approximations [3, 36, 44, 59] and the
associated firmly nonexpansive operator F soft-thresholds singular values at level \rho .D
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Remark 3.14. In the setting of Example 3.13, consider the compression technique per-
formed by the nonconvex projection operator R : \scrG \rightarrow \scrG [13], which truncates singular values
at a given rank r \in \{ 1, . . . , s  - 1\} , i.e., R : y \mapsto \rightarrow Uy diag

\bigl( 
\sigma 1(y), . . . , \sigma r(y), 0, . . . , 0

\bigr) 
V \top 
y . Let

y \in \scrG , and set q = Ry. Then, for every \rho \in ]\sigma r+1(y), \sigma r(y)[, Qy = q. Therefore, knowledge of
the low rank approximation q to y can be exploited in our framework by proxifying (Q, q) using
Example 3.13. Note that \rho can be estimated from q since one has access to \sigma r(q) = \sigma r(y).

Our last example illustrates how proxification can be used to handle a prescription arising
from an extension of the notion of a proximity operator for nonconvex functions.

Example 3.15. Let \mu \in ]0,+\infty [, let \gamma \in ]0, 1/\mu [, set \beta = 1 - \gamma \mu , and let g : \scrG \rightarrow ] - \infty ,+\infty ]
be proper, lower semicontinuous, and \mu -weakly convex in the sense that g + \mu \| \cdot \| 2/2 is
convex. For every y \in \scrG , g + \| y  - \cdot \| 2/(2\gamma ) is a strongly convex function in \Gamma 0(\scrG ) and, by
[6, Corollary 11.17], it therefore admits a unique minimizer Q\gamma gy, which defines the operator
Q\gamma g : \scrG \rightarrow \scrG . Now let q \in ranQ\gamma g, and set A = \partial (g + \mu \| \cdot \| 2/2), B = A  - \mu Id, F = \beta Q\gamma g,
and p = \beta q. Then A is maximally monotone, but in general, since g is not convex, Q\gamma g is not
firmly nonexpansive. However,

\bigl( 
\forall (y, p) \in \scrG \times \scrG 

\bigr) 
Q\gamma gy = p \leftrightarrow p \in zer

\Bigl( 
\partial 
\Bigl( 
\gamma g +

\gamma \mu 

2
\| \cdot \| 2  - 

\gamma \mu 

2
\| \cdot \| 2 +

1

2
\| y  - \cdot \| 2

\Bigr) \Bigr) 

\leftrightarrow p \in zer (\gamma A+ \beta Id - y) = zer (Id + \gamma B  - y)

\leftrightarrow J\gamma By = p,(3.15)

so Lemma 2.1 implies that Q\gamma g = J\gamma B is \beta -cocoercive. Thus, (F, p) is a proxification of
(Q\gamma g, q). Operators of the form Q\gamma g are used for shrinkage in [7, 38, 50] in the same spirit
as in Example 3.6. For instance, for \scrG = \BbbR and \rho \in ]0,+\infty [, the penalty g = ln(\rho + | \cdot | ) of
[38, 50] is \rho  - 2-weakly convex and yields

(3.16) Q\gamma g : y \mapsto \rightarrow 

\left\{ 
      
      

1

2

\bigl( 
y  - \rho +

\sqrt{} 
| y + \rho | 2  - 4\gamma 

\bigr) 
if y >

\gamma 

\rho 
,

0 if | y| \leqslant 
\gamma 

\rho 
,

1

2

\bigl( 
y + \rho  - 

\sqrt{} 
| y  - \rho | 2  - 4\gamma 

\bigr) 
if y <  - 

\gamma 

\rho 
.

3.5. Operators arising from monotone equilibria. The property that the object of in-
terest is a zero of the sum of two monotone operators can be modeled in our framework as
follows.

Example 3.16. Let A : \scrG \rightarrow 2\scrG be maximally monotone, let \beta \in ]0,+\infty [, and let B : \scrG \rightarrow \scrG 
be \beta -cocoercive. Let \gamma \in ]0, 2\beta [, and set

(3.17) F =

\biggl( 
1 - 

\gamma 

4\beta 

\biggr) \bigl( 
Id - J\gamma A \circ (Id - \gamma B)

\bigr) 
and p = 0.

Then F is firmly nonexpansive, and, for every y \in \scrG , Fy = p \leftrightarrow y \in zer (A + B). Indeed,
set R = J\gamma A \circ (Id  - \gamma B). By [6, Proposition 26.1(iv)], R is (2  - \gamma /2\beta ) - 1-averaged, and
zerF = FixR = zer (A+B). It follows from [6, Proposition 4.39] that Id - R is (1 - \gamma /(4\beta ))-
cocoercive, which makes F firmly nonexpansive.D
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Example 3.17. Let f \in \Gamma 0(\scrG ), let \beta \in ]0,+\infty [, and let g : \scrG \rightarrow \BbbR be a convex and dif-
ferentiable function such that \nabla g is \beta  - 1-Lipschitzian. Consider the task of enforcing the
property

(3.18) y \in Argmin (f + g).

Set A = \partial f and B = \nabla g. Then B is \beta -cocoercive [6, Corollary 18.17], and (3.18) holds if and
only if y \in zer (A+B). Therefore, Example 3.16 yields a proximal point representation (F, p)
of (3.18).

4. Analysis and numerical solution of Problem 1.3. We first show that Problem 1.3 is
an appropriate relaxation of Problem 1.1.

Proposition 4.1. Suppose that the set of solutions to Problem 1.1 is nonempty. Then it

coincides with the set of solutions to Problem 1.3.

Proof. Let x be a solution to Problem 1.1. Then it is clear that x solves Problem 1.3.
Now let x be a solution to Problem 1.3. Then x \in C and

(4.1) (\forall y \in C)
\sum 

i\in I

\omega i\langle Li(x - y) | Fi(Lix) - pi\rangle \leqslant 0.

Therefore, since x \in C and, for every i \in I, Fi(Lix) = pi, we obtain

(4.2)
\sum 

i\in I

\omega i\langle Lix - Lix | Fi(Lix) - Fi(Lix)\rangle \leqslant 0

and, by firm nonexpansiveness of the operators (Fi)i\in I ,

(4.3)
\sum 

i\in I

\omega i\| Fi(Lix) - Fi(Lix)\| 
2 \leqslant 
\sum 

i\in I

\omega i\langle Lix - Lix | Fi(Lix) - Fi(Lix)\rangle \leqslant 0.

We conclude that (\forall i \in I) Fi(Lix) = Fi(Lix) = pi.

Remark 4.2. Consider the setting of Problem 1.3, and set \bfscrG =
\bigoplus 

i\in I \scrG i, \bfitL : \scrH \rightarrow : \bfscrG : x \mapsto \rightarrow 
(Lix)i\in I , \bfitF : \bfscrG \rightarrow \bfscrG : (yi)i\in I \mapsto \rightarrow (Fiyi)i\in I , and \bfitp = (pi)i\in I . Note that

(4.4) Problem 1.1 admits a solution if and only if \bfitp \in \bfitF 
\bigl( 
\bfitL (C)

\bigr) 
.

Thus, the quantity d\bfitF (\bfitL (C))(\bfitp ) provides a measure of inconsistency of Problem 1.1. We can
actually use a solution to Problem 1.3 to estimate it. Indeed, suppose that x1 and x2 are
solutions to (1.10). Then (1.3) yields

\sum 

i\in I

\omega i\| Fi(Lix1) - Fi(Lix2)\| 
2 \leqslant 
\sum 

i\in I

\omega i\langle Lix1  - Lix2 | Fi(Lix1) - Fi(Lix2)\rangle 

=
\sum 

i\in I

\omega i\langle Li(x1  - x2) | Fi(Lix1) - pi\rangle 

+
\sum 

i\in I

\omega i\langle Li(x2  - x1) | Fi(Lix2) - pi\rangle 

\leqslant 0.(4.5)D
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Hence, for every i \in I, there exists a unique pi \in \scrG i such that every solution x to Problem 1.3
satisfies

(4.6) Fi(Lix) = pi.

In turn, if x is any solution to Problem 1.3, then

(4.7) d\bfitF (\bfitL (C))(\bfitp ) = inf
x\in C

\| \bfitp  - \bfitF (\bfitL x)\| \leqslant \| \bfitp  - \bfitF (\bfitL x)\| =

\sqrt{} \sum 

i\in I

\| pi  - pi\| 
2.

Next, we turn to the existence of solutions.

Proposition 4.3. Problem 1.3 admits a solution in each of the following instances:

(i)
\sum 

i\in I \omega iL
\ast 
i pi \in ran (NC +

\sum 
i\in I \omega iL

\ast 
i \circ Fi \circ Li).

(ii) C is bounded.

(iii) ranNC +
\sum 

i\in I \omega iL
\ast 
i (ranFi) = \scrH .

(iv) For some i \in I, L\ast 
i is surjective, and one of the following holds:

a) L\ast 
i (ranFi) = \scrH .

b) Fi is surjective.

c) \| Fi(y)\| \rightarrow +\infty as \| y\| \rightarrow +\infty .

d) ran (Id - Fi) is bounded.

e) There exists a continuous convex function gi : \scrG i \rightarrow \BbbR such that Fi = proxgi.

Proof. Set A = NC and (\forall i \in I) Bi = \omega iFi. Then the operators (Bi)i\in I are cocoercive.
Now define

(4.8) M = A+
\sum 

i\in I

L\ast 
i \circ Bi \circ Li.

It follows from [6, Proposition 4.12] that B =
\sum 

i\in I L
\ast 
i \circ Bi \circ Li is cocoercive and hence

maximally monotone by [6, Example 20.31], with domB = \scrH . On the other hand, [6, Exam-
ple 20.26] asserts thatA is maximally monotone. We therefore derive from [6, Corollary 25.5(i)]
that

(4.9) M is maximally monotone.

(i) Let x \in \scrH . In view of (2.9), x solves Problem 1.3 if and only if

(4.10)  - 
\sum 

i\in I

\omega iL
\ast 
i

\bigl( 
Fi(Lix) - pi

\bigr) 
\in NCx,

that is,
\sum 

i\in I \omega iL
\ast 
i pi \in Mx.

(ii) Since domM = domA = C is bounded, it follows from (4.9) and [6, Corollary 21.25]
that M is surjective, so (i) holds.

(iii) It follows from [6, Example 25.14] that A is 3\ast monotone and from [6, Exam-
ple 25.20(i)] that the operators (Bi)i\in I are likewise. Hence, in view of (4.9), we invoke
Lemma 2.5 to get

(4.11) int ranM = int ran

\biggl( 
A+

\sum 

i\in I

L\ast 
i \circ Bi \circ Li

\biggr) 
= int

\biggl( 
ranA+

\sum 

i\in I

L\ast 
i (ranBi)

\biggr) 
= \scrH .D
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So M is surjective and (i) holds.
(iv)b)\Rightarrow (iv)a)\Rightarrow (iii): Clear.
(iv)c)\Rightarrow (iv)b): Since Fi is maximally monotone by [6, Example 20.30], this follows from

[6, Corollary 21.24].
(iv)d)\Rightarrow (iv)c): Set \rho = supy\in \scrG i

\| y - Fiy\| . Then \| Fiy\| \geqslant \| y\|  - \| y - Fiy\| \geqslant \| y\|  - \rho \rightarrow +\infty 
as \| y\| \rightarrow +\infty .

(iv)e)\Rightarrow (iv)b): We derive from [6, Proposition 16.27] that \scrG i = int dom gi \subset dom \partial gi =
dom (Id + \partial gi) = ran (Id + \partial gi)

 - 1 = ran proxgi .

Example 4.4. A simple instance when Problem 1.1 has no solution while the relaxed Prob-
lem 1.3 does is the following. Take disjoint nonempty closed convex subsets C and D of \scrH such
that C is bounded, and let I = \{ 1\} , \scrG 1 = \scrH , L1 = Id, F1 = Id - projD, and p1 = 0. Then the
solution set of Problem 1.1 is C \cap D = \varnothing , while that of Problem 1.3 is Fix (projC \circ projD) \not = \varnothing 

[33].

We have described in Example 1.2 an instance of the relaxed Problem 1.3 which is in
fact a minimization problem. The next proposition describes a general setting in which a
minimization problem underlies Problem 1.3. It involves the Moreau envelope of (2.7).

Proposition 4.5. Consider the setting of Problem 1.3, and suppose that, for every i \in I,
there exists gi \in \Gamma 0(\scrG i) such that Fi = proxgi. Then the objective of Problem 1.3 is to

(4.12) minimize
x\in C

f(x), where f : x \mapsto \rightarrow 
\sum 

i\in I

\omega i

\Bigl( 
\widetilde g\ast i (Lix) - \langle Lix | pi\rangle 

\Bigr) 
.

Proof. We derive from [6, Proposition 24.4] that (\forall i \in I) \nabla \widetilde g\ast i = proxgi . In turn, f is
differentiable and

(4.13) (\forall x \in \scrH ) \nabla f(x) =
\sum 

i\in I

\omega iL
\ast 
i

\bigl( 
proxgi(Lix) - pi

\bigr) 
=
\sum 

i\in I

\omega iL
\ast 
i

\bigl( 
Fi(Lix) - pi

\bigr) 
.

Consequently, (1.10) is equivalent to finding a solution to (2.13), i.e., by Lemma 2.4, to
minimizing f over C.

Next, we present a block-iterative algorithm for solving Problem 1.3.

Proposition 4.6. Consider the setting of Problem 1.3 under the assumption that it has a

solution. Let K be a strictly positive integer, and let (In)n\in \BbbN be a sequence of nonempty subsets

of I such that

(4.14) (\forall n \in \BbbN )
K - 1\bigcup 

k=0

In+k = I.D
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Let x0 \in \scrH , let \gamma \in ]0, 2[, and, for every i \in I, let ti, - 1 \in \scrH and set \gamma i = \gamma /\| Li\| 
2. Iterate

(4.15)

for n = 0, 1, . . .            

for every i \in In\bigl\lfloor 
ti,n = xn  - \gamma iL

\ast 
i

\bigl( 
Fi(Lixn) - pi

\bigr) 

for every i \in I \smallsetminus In\bigl\lfloor 
ti,n = ti,n - 1

xn+1 = projC

\Biggl( 
m\sum 

i=1

\omega iti,n

\Biggr) 
.

Then (xn)n\in \BbbN converges weakly to a solution to Problem 1.3.

Proof. Set A0 = NC and (\forall i \in I) Ai = \| Li\| 
 - 2(L\ast 

i \circ Fi \circ Li  - L\ast 
i pi). For every i \in I, since

Fi is firmly nonexpansive, it follows from [6, Proposition 4.12] that Ai is firmly nonexpansive,
i.e., cocoercive with \beta i = 1. Thus, (4.15) is a special case of (2.18), and the conclusion follows
from Proposition 2.7.

An attractive feature of (4.15) is its ability to activate only a subblock of operators (Fi)i\in In
at iteration n, as opposed to all of them as in classical algorithms dealing with inconsistent
common fixed point problems [16, 17, 18, 20, 22]. This flexibility is of the utmost relevance
for very-large-scale applications. It will also be seen in section 5 to lead to more efficient
implementations. Condition (4.14) regulates the frequency of activation of the operators.
Since K can be chosen arbitrarily, it is actually quite mild.

5. Numerical experiments. In this section, we illustrate the ability of the proposed frame-
work to efficiently model and solve various signal and image recovery problems with incon-
sistent nonlinear prescriptions. Each instance will use the block-iterative algorithm (4.15),
which was shown in Proposition 4.6 to produce an exact solution of Problem 1.3 from any
initial point in \scrH . Here, we implement it with x0 = 0.

Remark 5.1. In the modeling of signal construction problems as minimization problems,
it is common practice to add a function g to the objective in order to promote desirable
properties in the solutions. Several functions are thus averaged and contribute collectively to
defining solutions. A prominent example is the promotion of sparsity through the addition of
a penalty such as the \ell 1 norm in \BbbR 

N [14, 57]. In the more general variational inequality setting
of Problem 1.3, this can be mimicked by adding the prescription Fy = 0, where F = Id - proxg,
i.e., by Moreau's decomposition, F = proxg\ast [6, Remark 14.4]. Note that exact satisfaction
of the equality Fy = 0 would just mean that one minimizes g since Fix proxg = Argmin g.
In general, when incorporated to Problem 1.3, the pair (F, p) = (Id  - proxg, 0) is intended
to promote the properties g would in a standard minimization problem. We investigate in
sections 5.3 and 5.4 this technique to encourage sparsity in \BbbR 

N through the incorporation of
the operator F = projB\infty (0;\rho ) = Id - prox\rho \| \cdot \| 1 , where B\infty (0; \rho ) is the \ell \infty ball of \BbbR N centered
at the origin and with radius \rho \in ]0,+\infty [.

5.1. Image recovery from phase. The goal is to recover the original image x \in \scrH = \BbbR 
N

(N = 2562) shown in Figure 5(a) from the following:
\bullet Bounds on pixel values: x \in C = [0, 255]N .D
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100 PATRICK L. COMBETTES AND ZEV C. WOODSTOCK

(a) (b) (c)

Figure 5. Experiment of section 5.1: (a) Original image x. (b) Degraded image p1. (c) Recovered image.

\bullet The degraded image p1 \in \scrG 1 = \scrH shown in Figure 5(b), which is modeled as follows.
The image x is blurred by L1 : \scrH \rightarrow \scrG 1, which performs discrete convolution with a
15\times 15 Gaussian kernel with standard deviation of 3.5, then corrupted by an additive
noise w1 \in \scrG 1. The blurred image-to-noise ratio is 20 log10(\| L1x\| /\| w1\| ) = 24.0 dB.
Pixel values beyond 60 are then clipped. Altogether, p1 = projD1

(L1x + w1), where
D1 = [0, 60]N . This process models a low-quality image acquired by a device which
saturates at photon counts beyond a certain threshold. We therefore use F1 = projD1

in (1.10).
\bullet An approximation of the mean pixel value \rho 2 = 138 of x. To enforce this information,

following Example 1.2, we set \scrG 2 = \scrH , L2 = Id, p2 = 0, and

(5.1) F2 : (\eta k)1\leqslant k\leqslant N \mapsto \rightarrow 

\biggl( \sum N
k=1 \eta k
N

 - \rho 2

\biggr) 
1.

\bullet The phase \theta \in [ - \pi , \pi ]N of the 2-D discrete Fourier transform of a noise-corrupted
version of x, i.e., \theta = \angle DFT (x + w3), where w3 \in \scrH , yields an image-to-noise ratio
20 log10(\| x\| /\| w3\| ) = 49.0 dB. To model this information, we set \scrG 3 = \scrH , L3 = Id,
p3 = 0, and, following Example 1.2, we employ

(5.2) F3 : y \mapsto \rightarrow y  - IDFT

\biggl( \bigm| \bigm| DFT y
\bigm| \bigm| max

\Bigl\{ 
cos
\bigl( 
\angle (DFT y) - \theta 

\bigr) 
, 0
\Bigr\} 
exp(\imath \theta )

\biggr) 
.

Due to the noise present in p1 and \theta , and the inexact estimation \rho 2 of the pixel mean,
this instance of Problem 1.1 (I = \{ 1, 2, 3\} ) is inconsistent. We thus arrive at the relaxed
Problem 1.3 by setting \omega 1 = \omega 2 = \omega 3 = 1/3. By Proposition 4.3(ii), since C is bounded,
Problem 1.3 is guaranteed to possess a solution. The solution shown in Figure 5(c) is computed
using algorithm (4.15) with \gamma = 1.9 and (\forall n \in \BbbN ) In = I. This experiment illustrates
a nonlinear recovery scenario with inconsistent measurements which nonetheless produces
realistic solutions obtained by exploiting all available information.

5.2. Signal recovery. The goal is to recover the original signal x \in \scrH = C = \BbbR 
N (N =

1024) shown in Figure 6(a) from the following:D
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Figure 6. Experiment of section 5.2: (a) Original signal x. (b) Piecewise constant approximation p1. (c)
Recovered signal.

\bullet A piecewise constant approximation p1 of x, given by p1 = projD1
(x + w1), where

w1 \in \scrG 1 = \scrH represents noise and D1 is the subspace of signals in \scrG 1 which are
constant by blocks along each of the 16 sets of 64 consecutive indices in \{ 1, . . . , N\} 
(see Figure 6(b)). The signal-to-noise ratio is 20 log10(\| x\| /\| w1\| ) =  - 2.3 dB. We
model this observation by setting L1 = Id and F1 = projD1
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102 PATRICK L. COMBETTES AND ZEV C. WOODSTOCK

\bullet A bound \rho 2 = 0.025 on the magnitude of the finite differences of x. To enforce this
information, following Example 1.2, we set \scrG 2 = \BbbR 

N - 1, L2 : \scrH \rightarrow \scrG 2 : (\xi i)1\leqslant i\leqslant N \mapsto \rightarrow 
(\xi i+1  - \xi i)1\leqslant i\leqslant N - 1, p2 = 0, and F2 = Id - projD2

, where D2 =
\bigl\{ 
y \in \scrG 2 | \| y\| \infty \leqslant \rho 2

\bigr\} 
,

that is, using (3.13),

(5.3) F2 : (\eta k)1\leqslant k\leqslant N - 1 \mapsto \rightarrow 
\bigl( 
soft\gamma (\eta k)

\bigr) 
1\leqslant k\leqslant N - 1

.

\bullet A collection of m = 1200 noisy thresholded scalar observations r3 = (\chi j)j\in J \in \BbbR 
m of

x, where J = \{ 3, . . . ,m+ 2\} . The true data formation model is

(5.4) (\forall j \in J) \chi j = R(\langle x | ej\rangle ) + \nu j ,

where (ej)j\in J is a dictionary of random vectors in \BbbR 
N with zero-mean i.i.d. entries,

the noise vector w3 = (\nu j)j\in J yields a signal-to-noise ratio of 20 log10(\| r3\| /\| w3\| ) =
17.8 dB, and R is the thresholding operator of the type found in [2, 52] (\rho = 0.05),
namely,

(5.5) R : \BbbR \rightarrow \BbbR : \eta \mapsto \rightarrow 

\Biggl\{ 
sign(\eta ) 4

\sqrt{} 
\eta 4  - \rho 4 if | \eta | > \rho ,

0 if | \eta | \leqslant \rho .

We assume that R is misspecified and that the presence of noise is unknown, so that
the data acquisition process is incorrectly modeled as

(5.6) (\forall j \in J) \chi j = Q(\langle x | ej\rangle ),

where

(5.7) Q : \BbbR \rightarrow \BbbR : \eta \mapsto \rightarrow 

\Biggl\{ 
sign(\eta )

\sqrt{} 
\eta 2  - \rho 2 if | \eta | > \rho ,

0 if | \eta | \leqslant \rho .

Note that Q is not Lipschitzian. Nonetheless, with

(5.8) S : \BbbR \rightarrow \BbbR : \eta \mapsto \rightarrow sign(\eta )
\Bigl( \sqrt{} 

\eta 2 + \rho 2  - \rho 
\Bigr) 
,

it is straightforward to verify that S \circ Q = soft\rho and that, for every j \in J , (Fj , pj) =
( soft\rho , S\chi j) is a proxification of (Q,\chi j). Also, for every j \in J , we set \scrG j = \BbbR and
Lj = \langle \cdot | ej\rangle .

We thus consider the instantiation of Problem 1.3 in which I = \{ 1, 2\} \cup J and, for every
i \in I, \omega i = 1/(card I). Since (ej)j\in J is overcomplete and, for every j \in J , Fj is surjective,
it follows that \scrH =

\bigl\{ \sum 
j\in J \omega j\eta jej | \eta j \in ranFj

\bigr\} 
=
\sum 

j\in J \omega jL
\ast 
j (ranFj) \subset 

\sum 
i\in I \omega iL

\ast 
i (ranFi),

so Problem 1.3 is guaranteed to possess a solution by Proposition 4.3(iii). Algorithm (4.15)D
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Figure 7. Experiment of section 5.2: Relative error 20 log
10
(\| xn  - x\infty \| /\| x0  - x\infty \| ) (dB) versus execution

time (seconds) for full activation (red) and cyclic activation (5.9) (green).

produces the signal shown in Figure 6(c) with \gamma = 1.9 and the following activation strategy.
At every iteration, F1 and F2 are activated, while we partition J into four blocks of 300
elements and cyclically activate one block per iteration, i.e.,

(5.9) (\forall n \in \BbbN )(\forall j \in \{ 0, 1, 2, 3\} ) I4n+j = \{ 1, 2, 3 + 300j, . . . , 2 + 300(j + 1)\} ,

which satisfies condition (4.14) with K = 4. The results show that, even when the data are
noisy and poorly modeled, Problem 1.3 produces quite robust recoveries. The execution time
savings resulting from the use of (5.9) compared to the full activation strategy (i.e., In = I
for every n \in \BbbN ) are displayed in Figure 7. Note that in very-large-scale scenarios in which all
data cannot be simultaneously loaded into memory, activation strategies such as (5.9) make
algorithm (4.15) implementable.

5.3. Sparse image restoration. The goal is to recover the original image x \in \scrH = \BbbR 
N

(N = 2562) shown in Figure 8(a) from the following:
\bullet Bounds on pixel values: x \in C = [0, 255]N .
\bullet The low rank approximation q1 \in \scrG 1 = \scrH displayed in Figure 8(b) of a blurred
noisy version of x modeled as follows. The blurring operator L1 : \scrH \rightarrow \scrG 1 ap-
plies a discrete convolution with a uniform 7 \times 7 kernel, and the operators Q and
S are as in Example 3.13, with threshold \rho = 500. Then q1 = Q(L1x + w1) is
a rank-85 compression, where w1 \in \scrG 1 induces a blurred image-to-noise ratio of
20 log10(\| L1x\| /\| w1\| ) = 17.6 dB. By Example 3.13, we obtain a proxification of (Q, q1)
with (F1, p1) = (S \circ Q,Sq1).

\bullet x is sparse. To promote this property in the solutions to (1.10), following Remark 5.1,
we set \scrG 2 = \scrH , L2 = Id, p2 = 0, \rho 2 = 1.5, and F2 = projB\infty (0;\rho 2).

We therefore arrive at an instance of Problem 1.3 with I = \{ 1, 2\} and \omega 1 = \omega 2 = 1/2. Since C
is bounded, Proposition 4.3(ii) guarantees that a solution exists. Algorithm (4.15) with \gamma = 1D
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(a) (b) (c)

Figure 8. Experiment of section 5.3: (a) Original image x. (b) Degraded image q1. (c) Recovered image.

yields the recovery in Figure 8(c). Even though computing F1 requires only one singular value
decomposition (not two, as (3.14) may suggest), it is the most numerically expensive operator
in this problem. Therefore, we choose to activate F1 only every 5 iterations, i.e.,

(5.10) In =

\Biggl\{ 
\{ 2\} if n \not \equiv 0 mod 5,

\{ 1, 2\} if n \equiv 0 mod 5.

Figure 10 displays the time savings resulting from the use of (5.10) compared to full activation
(both activation strategies yield visually indistinguishable recoveries). Notice that, while the
observation in Figure 8(b) is virtually illegible, many of the words in the recovery of Figure 8(c)
can be discerned.

Finally, we examine the use of the nonfirmly nonexpansive sparsity-promoting operator of
Example 3.15. Specifically, Q\gamma g is given by (3.16), which is induced by the logarithmic penalty
with parameters \rho = \rho 2 and \gamma = 0.05/\rho 22. This implies that 0.95Q\gamma g is firmly nonexpansive
and hence that Id  - 0.95Q\gamma g is likewise. Figure 9 displays the result when F2 is replaced by
componentwise applications of Id - 0.95Q\gamma g. In this experiment, the \ell 1 penalty-based operator
F2 yields a sharper recovery in Figure 8(c) than the recovery in Figure 9, which is induced by
the logarithmic penalty.

5.4. Source separation. This experiment incorporates nonlinear compression to a prob-
lem in astronomy, which seeks to separate a background image x1 \in \BbbR 

N (N = 6002) of stars
from a galaxy image x2 \in \BbbR 

N [40]. The goal is to construct the image pair (x1, x2) \in \scrH =
\BbbR 
N \times \BbbR 

N given the following:
\bullet Bounds on pixel values: (x1, x2) \in C = [0, 255]N \times [0, 255]N .
\bullet The low rank approximation q1 \in \scrG 1 = \BbbR 

N shown in Figure 11(b) of the original
superposition x1+x2 shown in Figure 11(a), which is modeled as follows. Set L1 : \scrH \rightarrow 
\scrG 1 : (x1, x2) \mapsto \rightarrow x1 + x2, and let Q and S be as in Example 3.13 with \rho = 1500. The
resulting rank-22 approximation of x1 + x2 is given by q1 = Q(L1(x1, x2)). It follows
from Example 3.13 that (F1, p1) = (S \circ Q,Sq1) is a proxification of (Q, q1).
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Figure 9. Experiment of section 5.3: Recovered image with logarithmic thresholding instead of soft thresh-
olding.
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Figure 10. Experiment of section 5.3: Relative error 20 log
10
(\| xn - x\infty \| /\| x0 - x\infty \| ) (dB) versus execution

time (seconds) for full activation (red) and block activation (5.10) (green).

\bullet x1 is sparse, and x2 admits a sparse representation relative to the 2-D discrete co-
sine transform L : \BbbR N \rightarrow \BbbR 

N [40]. To encourage these properties, as discussed in
Remark 5.1, we set \scrG 2 = \scrH , L2 : (x1, x2) \mapsto \rightarrow (x1, Lx2), p2 = 0, and F2 : (y1, y2) \mapsto \rightarrow 
(projB\infty (0;10)y1, projB\infty (0;45)y2). In view of Example 3.1, F2 is firmly nonexpansive.

Thus, we arrive at an instance of Problem 1.3 with I = \{ 1, 2\} and \omega 1 = \omega 2 = 1/2. By
Proposition 4.3(ii), this problem is guaranteed to possess a solution since C is bounded.
Algorithm (4.15) with \gamma = 1 provides the solution shown in Figure 11(c)--(d). To improve
algorithmic performance, we adopt the activation strategy (5.10); see Figure 12 for time
savings compared to the full activation strategy. As can be seen from Figure 11, this approach
produces effective recoveries. Even though this problem involves a discontinuous observation
process, we can nonetheless solve it with algorithm (4.15), which exploits all of the information
at hand.D
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(a) (b)

(c) (d)

Figure 11. Experiment of section 5.4: (a) Original image x1 + x2. (b) Low rank compression of x1 + x2.
(c) Recovered background (stars). (d) Recovered foreground (galaxy).
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Figure 12. Experiment of section 5.4: Relative error 20 log
10
(\| xn - x\infty \| /\| x0 - x\infty \| ) (dB) versus execution

time (seconds) for full activation (red) and block activation (5.10) (green).D
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