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Abstract

Under investigation is the problem of finding the best approximation of a function in a Hilbert
space subject to convex constraints and prescribed nonlinear transformations. We show that in many
instances these prescriptions can be represented using firmly nonexpansive operators, even when the
original observation process is discontinuous. The proposed framework thus captures a large body of
classical and contemporary best approximation problems arising in areas such as harmonic analysis,
statistics, interpolation theory, and signal processing. The resulting problem is recast in terms of a
common fixed point problem and solved with a new block-iterative algorithm that features approximate
projections onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible
presence of affine constraints. A numerical application to signal recovery is demonstrated.
© 2021 Elsevier Inc. All rights reserved.

Keywords: Best approximation algorithm; Constrained interpolation; Firmly nonexpansive operator; Nonlinear signal
recovery; Proximal point

1. Introduction

Let H be a real Hilbert space with scalar product (- | -) and associated norm | - |, let
xo € H, let U and V be closed vector subspaces of H with projection operators proj,;, and
projy, respectively, and let p € V. The basic best approximation problem

minimize |x —xp|| subjectto x € U and projyx = p (1.1)
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covers a wide range of scenarios in areas such as harmonic analysis, signal processing,
interpolation theory, and optics [3,22,32,35,38,40,43,52,59]. In this setting, a function of
interest x € H is known to lie in the subspace U and its projection p onto the subspace
V is known. The goal of (1.1) is then to find the best approximation to x( that is compatible
with these two pieces of information. For example, band-limited extrapolation [49] aims at
recovering a minimum energy band-limited function ¥ € H = L*(R) from the knowledge of
its values on an interval A. This corresponds to the instance of (1.1) in which xo = 0, V is
the subspace of functions vanishing outside of A, U is the subspace of functions with Fourier
transform supported by a compact interval around the origin, and p = 14X, where 1, denotes
the characteristic function of A. As shown in [59], if (1.1) is feasible (see [22] for necessary
and sufficient conditions), then the sequence (x,),cn constructed by iterating

(Vn € N)  x,41 = p + projyx, — projy (projyx,) (1.2)

converges strongly to its solution. The extension of (1.1) to finitely many vector subspaces
(Uj)jes and (Vi)rek investigated in [22] is to

minimize ||x —xg|| subjectto x € m U; and (Vk € K) projvkx = pk, where py € Vg,
jeJ

(1.3)

and it can be solved using affine projection methods. In many applications, the constraint sets
[12-14,17,27,30,41,48] or the operators yielding the prescribed values (py)rex [2,7,31,39,51,
57,58] may not be linear. Our objective is to extend the linear formulation (1.3) by employing
closed convex constraint subsets (C;);cs, together with prescriptions (py)kex resulting from
nonlinear operators (Fy)ick, 1.€.,

minimize |x — xo| subjectto x e[ |C; and (Vk € K) Fix = ps. (1.4)
jeJ

In view of (1.3), projection operators onto closed convex sets constitute a natural class of
candidates for the operators (Fy)rcx . For instance, in [51,54,58], Fj is the projection operator
onto a hypercube. However, many prescriptions (py)rex found in the literature, in particular
those of [7,31,39,57], do not reduce to best approximations from closed convex sets, and a
more general formalism must be considered to represent them. A generalization of the notion
of a best approximation was proposed by Moreau [44], who called the proximal point of x € H
relative to a proper lower semicontinuous convex function f;: H — ]—o0, +o00] the unique
minimizer p; € H of the function

1
v i)+ S I% = yII%, (1.5)

and wrote py = prox  x. This mechanism defines the proximity operator prox, : H — H of
fx- The case of a projector onto a nonempty closed convex set Dy, C H is recovered by letting
Ji = tp,, where

0, if x € Dy;
Vx eH) ip(x)= 1.6
( ) ) {+w,ifx¢Dk (0
is the indicator function of Dy. Proximity operators were initially motivated by applications
in mechanics [9,45,47] and have become a central tool in the analysis and the numerical
solution of numerous data processing tasks [21,23]. We shall see later that they also model
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various nonlinear observation processes. The properties of proximity operators are detailed
in [5, Chapter 24], among which is the fact that the operator prox , can be expressed as the
resolvent of the subdifferential of fj, that is, prox, = (Id+9 £, where

(Vx €M) fi)={ueH |(¥yeH) (y—x|u)+ filx) < i} (.7
As shown by Moreau [46], the set-valued operator A; = df; is maximally monotone, i.e.,
Vx e H)Vu € H) [u eAix & VyeH)Vve Ay (x—ylu—v)=> 0]. (1.8)

This property prompted Rockafellar [53] to generalize the notion of a proximal point as follows:
given a maximally monotone set-valued operator A;: H — 2%, the proximal point of X € H
relative to Ay is the unique point py € H such that X — py € Agpy, ie., pr = Ju X,
where J, = (Id +A)7 't H — H is the resolvent of A;. As stated in [5, Corollary 23.9],
a remarkable consequence of Minty’s theorem [42] is that an operator Fy: H — H is
the resolvent of a maximally monotone operator A;: H — 27 if and only if it is firmly
nonexpansive, meaning that

(Vx € H)(Vy € H) |IFex — Feyl? + 10d = F)x — Ad = Fyll* < flx — ylI*. (1.9)

In view of this equivalence, we call p; a proximal point of X € H relative to a firmly
nonexpansive operator F,: H — H if pp = Fyx. As we shall show in Section 2, firmly
nonexpansive operators constitute a powerful device to represent a variety of nonlinear
processes to generate the prescriptions (pi)rex in (1.4). In light of these considerations, we
propose to investigate the following nonlinear best approximation framework.

Problem 1.1. Let xo € H and let J and K be at most countable sets such that J N K = &
and JUK # @. For every j € J, let C; be a closed convex subset of H and, for every k € K,
let pr € H and let F;: H — H be a firmly nonexpansive operator. Suppose that there exists
X € ﬂjej C; such that (Vk € K) Fix = py. The task is to

minimize |x —xg|| subjectto x € m C; and (Yke K) Fx = p;. (1.10)
jeJ

In Problem 1.1, the function of interest lies in the intersection of the sets (C;);cs, and its
proximal points (py)iek relative to firmly nonexpansive operators (Fj)rcx are prescribed. The
objective is to obtain the best approximation to a function xo € H from the set of functions
which satisfy these properties.

As noted above, the numerical solution of the linear problem (1.3) is rather straightforward
with existing projection techniques, while characterizing the existence of solutions for any
choices of the prescribed values (p;)rcx — the so-called inverse best approximation property —
is a more challenging task that was carried out in [22]. In the nonlinear setting, this property
is of limited interest since it fails in simple scenarios [22, Remark 1.2]. Our objectives in the
present paper are to demonstrate the far reach and the versatility of Problem 1.1, and to devise
an efficient and flexible numerical method to solve it.

The remainder of the paper consists of four sections. In Section 2, we show the ability of
our proximal point modeling to capture a variety of observation processes arising in practice,
including some which result from discontinuous operators. In Section 3, we propose a new
block-iterative algorithm to construct the best approximation to a reference point from a
countable intersection of closed convex sets. The algorithm features approximate projections
onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible

3



PL. Combettes and Z.C. Woodstock Journal of Approximation Theory 268 (2021) 105606

presence of affine subspaces in the constraint sets (C;)jcs. In Section 4, Problem 1.1 is
rephrased in terms of a common fixed point problem and the algorithm of Section 3 is used to
solve it. A numerical illustration of our framework is presented in Section 5.

Notation. 7 is a real Hilbert space with scalar product (- | -), associated norm || - ||, and identity
operator Id. The family of all subsets of # is denoted by 2*. The expressions x, — x and
x, — x denote, respectively, the weak and the strong convergence of a sequence (x,),en tO
x in H. The distance function to a subset C of H is denoted by d¢. Ih(H) is the class of
all lower semicontinuous convex functions from H to ]—oo, +00] which are proper in the
sense that they are not identically 4o0o. The conjugate of f € [H(H) is denoted by f* and
the infimal convolution operation by [J. The set of fixed points of an operator 7: H — H is
FixT = {x € H | Tx = x}. The Hilbert direct sum of a family of real Hilbert spaces (H;);er
is denoted by €, ; H;. For background on convex and nonlinear analysis, see [5].

2. Prescribed values as proximal points

We illustrate the fact that the proximal model adopted in Problem 1.1 captures a wealth of
scenarios encountered in various areas to represent information on the ideal underlying function
X € H obtained through some observation process. We discuss firmly nonexpansive observation
processes in Section 2.1 and cocoercive ones in Section 2.2. In Section 2.3, we move to more
general models in which the operators need not be Lipschitzian or even continuous.

2.1. Prescriptions derived from firmly nonexpansive operators

We start with an instance of a proximal point prescription arising in a decomposition setting.

Proposition 2.1. Let (H;);c1 be an at most countable family of real Hilbert spaces, let H =
D, Hi, let X € H, and let (X;)ier be its decomposition, i.e., (Vi € 1) X; € H;. For everyi €1,
let F;: H; — H; be a firmly nonexpansive operator. If 1 is infinite, suppose that there exists
2 = (Zi)ie1 € H such that ), ||Fiz; — Zi||?> < +00. Set F: H — H: x = (X)ier = (FiX)ien
and p = (F;X;)ic1. Then p is the proximal point of X relative to F.

Proof. If I is infinite, we have

1 2 2 2 2
(xeH) D IFxiIP < Y IFx —Fizil® + 3 IRz —zil* + 3l

iel iel iel iel
2 2 2
<Y I =zl + Y IFizi — zil” + |z
iel iel
2 2 2
= x —zIP + > IFizi — ziI* + |zl
iel
< 4o0. 2.1
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This shows that, in all cases, F is well defined and p € H. Furthermore,

(Vx e H)(Vy € H) [|Fx — Fy|> =) IFix — Fiyill?

iel

<Y I =yl = D lldd — Foxi — (d — Foy; |1?
iel iel

= [lx — y[I* = |dd = F)x — (d = F)y|*. (2.2)

Thus, F is firmly nonexpansive. [J

Corollary 2.2. Let (H;);e1 be an at most countable family of real Hilbert spaces, let
H =@, Hi, let X € H, and let (X;)ic1 be its decomposition. For every i € 1, let f; € I'y(H;)
and, if 1 is infinite, suppose that f; > 0 = f;(0). Then p = (proxf[ii)ieﬂ is a proximal point of
X, namely, p = proxfy_c, where f:H — ]—00,+00] : x = (X;)jel —> Zieﬂ f,(X;).

Proof. We first note that f is proper since the functions (f;);cy are. Furthermore, we observe
that, for every i € I, the function f;: H — ]—o0,+00]: x — fi(X;) lies in Io(H). We
therefore derive from [5, Corollary 9.4] that f = )", f; is lower semicontinuous and convex.
This shows that f € Io(H) and consequently that prox, is well defined. For every i € I,
let us introduce the firmly nonexpansive operator F; = prox;. If I is infinite, since O is a
minimizer of each of the functions (f;);c;, we derive from [5, Proposition 12.29] that (Vi € I)
prox, 0 = 0. In turn, the condition ), ; [[Fizi — z;||*> < +00 holds with (Vi € I) z; = 0. In
view of Proposition 2.1, p is the proximal point of X relative to F: H — H: x > (proxy, X;)ier.
Finally, since

.1 _ —2 . 1 _ 2
f(prox ;x) + 5||x — prox x| —gg{l(f(Y)+ §||x =l )
1
= mi fiy) + < 1% = yill®
;2171{1?61[(()/)+2I| yll)

= > min (f(y) + LR~y
yieHl‘ 1 1 2 1 1

iel
o1 5
= > _{ fitprox; X)) + S 1IX; — prox; Xl
iel
1
=)+ 5I¥ - pl% (2.3)

we conclude that p = prox ,x. [

Corollary 2.3. Suppose that H is separable, let (e;);c1 be an orthonormal basis of H, and
let x € H. For every i € [, let B; € 10, +oo[ and let g;: R — R be increasing and 1/8;-
Lipschitzian. If 1 is infinite, suppose that (Vi € 1) 0;(0) = 0. Then p =), ; Bioi((x | ¢;))e; is
a proximal point of X.

Proof. For every i € I, B;o; is increasing and nonexpansive, hence firmly nonexpansive.
We then deduce from Proposition 2.1 that &: @) — 20): (&)ier — (Bioi(&))icr 1s firmly
nonexpansive. Now set L: H — £2(I): x — ({(x | ¢;)jerand F = L*o $oL. Since |L| =1, it
follows from [5, Corollary 4.13] that F is firmly nonexpansive. This shows that p = L*(®(LX))
is the proximal point of X relative to F. [
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Example 2.4. In the context of Corollary 2.3, for every i € I, let w; € [0, 1], let n; € 10, +00[,
let 8; € 10, +o0[, and set g; : & > (Rw; /m)arctan(n; &)+ (1 —w;)sign(€)(1 —exp(—4;|€|)). Then,
for every i € I, p; is increasing and (2w;n; /7 + (1 — w;)§;)-Lipschitzian with g;(0) = 0. The
resulting proximal point

_ o(Ele))
P= ZH 2w/ + (1 — @) @4

models a parallel distortion of the original signal x [56, Sections 10.6 & 13.5].

Example 2.5 (Shrinkage). In signal processing and statistics, a powerful idea is to decompose
a function X € H in an orthonormal basis (¢;);cr and to transform the coefficients of the
decomposition to construct nonlinear approximations with certain attributes such as sparsity
[11,20,23,25,26,28,55]. As noted in [23], a broad model in this context is

p = (prox,, (¥ | e))e; 2.5)
iel

where, for every i € I, the function ¢; € IH(R) satisfies ¢; > 0 = ¢;(0) and models prior
information on the coefficient (x | ¢;). The problem is then to reconstruct X given its shrunk
version p. For instance, in the classical work of [28], (e;);c1 is a wavelet basis and (Vi € I)
¢i = ol - |, with @ € 10, +oo[. This yields p = >, (sign({x | e;)) max{|(X | &;)| — w, 0})e;.
In general, to see that p in (2.5) is a proximal point of X, it suffices to apply Corollary 2.3
with, for every i € I, B; = 1 and ¢; = prox,,, whence ¢;(0) = 0 by [5, Proposition 12.29].
More precisely, [5, Proposition 24.16] entails that p is the proximal point of X relative to the
function f: H — ]—o00, +00] : x > Y, ¢i((x | €)).

Example 2.6 (Partitioning). Let ({2, F, u) be a measure space and let ({2;);c; be an at most
countable F-partition of 2. Let us consider the instantiation of Proposition 2.1 in which
H = L>(£2,F, ) and, for every i € I, H; = L*(£2;, F;, ), where F; = {Q,- ns | S e ff"}. Let
X € H and (Vi € Il) X; = X|p,. Moreover, for every i € I, ¢; is an even function in I'h(R) such
that ¢;(0) = 0 and ¢; # 1y, and we set p; = max d¢;(0). Then we derive from Corollary 2.2
and [8, Proposition 2.1] that the proximal point of X relative to f: x — Y, ¢ (IX;[)) is
p= ((PIOX(,,I. IIYiII)Up,-(Yi)),GH, where
Xi/IXill, 1 (1%l > pi3

2.6
0, if |IXill < p;. (20

Upi: Hi—) HiIX,' > {
For each i € I, this process eliminates the ith block X; if its norm is less than p; € 10, +o0l.

Example 2.7 (Group Shrinkage). In Example 2.6, suppose that 2 = {1,..., N}, § = 29,
and p is the counting measure. Then H is the standard Euclidean space RY, which is
decomposed in m factors as RY = RN x ... x RV where >/ N; = N. Now suppose
that Vi € T = {1,...,m}) ¢; = p;|-|, where p; € ]0,4oco[. Then it follows from
[5, Example 14.5] that the proximal point p of (2.6) is obtained by group-soft thresholding
the vector X = (X, ..., X,,) € RY, that is [60],

L1 - Pm _
= l-— oo |1l ———— )X ). 2.7
P (( mem{uxlu,pl})x1 ( max{nxmu,pm})" ) @7
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2.2. Prescriptions derived from cocoercive operators

Let us first recall that, given a real Hilbert space G and 8 € ]0, +oo[, an operator Q: G — G
is B-cocoercive if

(Vx € G)(Vy €G) (x—y| Qx—Qy) > Bl0x — Oy’ 2.8)

which means that §Q is firmly nonexpansive [5, Section 4.2]. In the following proposition, a
proximal point is constructed from a finite family of nonlinear observations (g;);cy of linear
transformations of the function x € H, where the nonlinearities are modeled via cocoercive
operators. Item (ii) below shows that this proximal point contains the same information as the
observations (g;);ecI.

Proposition 2.8. Let (G;);c1 be a finite family of real Hilbert spaces and let x € H. For every
i €l let B; € 10,400, let Q;: Gi — G; be B;i-cocoercive, let L;: H — G; be a nonzero
bounded linear operator, and define q; = Q;(L;X). Set

1
ﬁ:w, p=BY Lig, and F=pY LioQ;olL;. (2.9)

o P
Then the following hold:

iel iel

(1) p is the proximal point of X relative to F.
(i) VxeH) Fx=p <& (Viel) Qi(Lix) =gq.

Proof. (i): It is clear that p = Fx. In addition, the firm nonexpansiveness of F' follows from
[5, Proposition 4.12].
(ii): Take x € H such that Fx = p. Then Fx = FXx and (2.8) yields
0— (Fx —Fx | x —X)

B
= > (Qi(Lix) — Qi(Li¥) | Lix — L;X)
iel
> BillQi(Lix) — Qi(LiX)|I?
iel
= Bill Qi(Lix) — g%, (2.10)
iel

and therefore (Vi € I) Q;(L;x) = ¢q;. The reverse implication is clear. [

Next, we consider the case when the observations (g;);cr in Proposition 2.8 are obtained
through proximity operators.

Proposition 2.9. Let (G;)ic1 be a finite family of real Hilbert spaces and let X € H. For
every i € I, let g € Iy(G;), let L;: H — G; be a nonzero bounded linear operator, and
define q; = prox, (L;X). Suppose that B = 1/(3 ;¢ IL:||*), and set p = BY ..y Liq; and
F =)L} oprox, oL; Then the following hold:

(i) p is the proximal point of X relative to F.
(i) (Vx € H) Fx = p & (Vi € I) prox, (L;x) = g;.

7
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(iii) If B > 1, then

I- 113, R
F = . wh = O i)oL; ) — — 2, 2.11
Bprox,, where f <Z<gl > ) o ) 5 (2.11)

iel

Proof. (i)—(ii): Apply Proposition 2.8 with (Vi € I) Q; = prox,, and B; = 1.
(iii): This follows from [18, Proposition 3.9]. [

Example 2.10 (Scalar Observations). We specialize the setting of Proposition 2.9 by assuming
that, for some i € I, G = R and L; = (- |a;), where 0 # a; € H. Let us denote
by xi = prox, (x | a;) the resulting observation. This scenario allows us to recover various
nonlinear observation processes used in the literature.

(1) Set 8 = tp, where D is a nonempty closed interval in R with § = inf D € [—o00, +00]
and § = sup D € ]—o0, +00]. Then we obtain the hard clipping process

s, if (x|a)>8;
Xi =projp(x |a;) = (x| a;), if (x|a;) € D; (2.12)
g, if (x|a;) <,

which shows up in several nonlinear data collection processes; see for instance
[2,31,54,58]. It models the inability of the sensors to record values above § and below s.

(ii) Let {2 be a nonempty closed interval of R and let soft;, be the associated soft
thresholder, i.e.,

E—w, if &> w; _ 0
=su
softg : R — R: £ > {0, if £ e with {75 (2.13)
. w = inf (2.
g -, if S < w, -
Further, let ¥ € IH(R) be differentiable at 0 with ¥/'(0) = 0, and set g; = ¥ + o,
where oy is the support function of (2. Then it follows from [20, Proposition 3.6] that

prox, ((x | a;) — @), if (x|a;) > @;
Xi = prox, (softo (¥ | a;)) = {0, if (x]a;)e 12 (2.14)
prox, ((x | a;) —w), if (x|a) <.
In particular, if 2 = [—w, w] and ¥ = 0, we obtain the standard soft thresholding
operation
Xi = sign((x | a;)) max{|(x | a;}| — w, O} (2.15)

of [28]. On the other hand, if {2 = ]—o00, w] and ¥ = 0, we obtain a nonlinear sensor
model from [37].

(iii) In (ii) suppose that ¥ = ¢p, where D is as in (i) and contains O in its interior. Then
(2.14) becomes

s, if (¥]a;)>6+w;
Xla)y—w, fo<{X]|a) <6+,
xi =10, if (x|a;)e 2 (2.16)

xXla)—ow, féd+tw<({x]|a)<w;
g, if (X|a)<é+o.
8
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This operation combines hard clipping and soft thresholding.

@iv) Set
B ey g2
(148 In(1 +é)+(21 DA =58 e <1,
g E > @) - 1/2. if €] =1; 2.17)
oo, if |§] > 1.

Then it follows from [21, Example 2.12] that x; = tanh({x | a;)). This soft clipping
model is used in [2,29].
(v) Set

2 n§ g )
gii €~ _;ln<cos<7>> -5 <L (2.18)
+00, if [§] > 1.
Then it follows from [21, Example 2.11] that x; = (2/m)arctan({x | a;)). This soft
clipping model appears in [2].
(vi) Set
—|&] —In(1 — |§]) — €2/2, if |&] < I;

gi§— {—i—oo, it [E]> 1. (2.19)

Then it follows from [21, Example 2.15] that x; = (X | a;)/(1 + |{X | a;)|). This soft
clipping model is found in [29,39].

(vii) Set
El+ 1 —1EDIn |1 —1&I[ —&%/2, if §] < 15
gi: &> 11/2, if |€]=1; (2.20)
00, if |&] > 1.
For every £ € ]—1, 1[ = dom g; = ran prox, , we have & + g;(§) = —sign(§) In(1 — [&]).
Hence,
(1d +g;)71 = prox,, : & — sign(§)(1 — exp(—[£])) (2.21)

and, therefore, x; = sign((x | a;))(1 — exp(—|(X | a;)])). This distortion model is found
in [56, Section 10.6.3].
(viii) Let n; € 10, 4+o00[ and set
Eln(g)+ (1 —§)In(1 — &) —&%/2, if £ €]0,1[;
0, if £€=0;

it E—= &+ 2.22
SEEmET ) it & =1; (222
00, if £ eR~[O0,1].
Proceeding as in (vii), we obtain
1
Xi (2.23)

C I+exp — (¥ | @)
which is an encoding scheme used in [36].

Example 2.11. In Proposition 2.9 suppose that, for some i € I, g; = ¢;odp,, where ¢; € I'H(R)
is even with ¢;(0) = 0, and D; C G; is nonempty, closed, and convex. Then it follows from
[8, Proposition 2.1] that ¢g; is the nonlinear observation defined as follows:

9
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(i) Suppose that ¢; = tj0y. Then
gi = projp,(L;x) (2.24)

captures several applications. Thus, if H = R" and D; = {(&)1<i<y € RV | & < -+
< SN}, then g; is the best isotonic approximation to L;x [24]. On the other hand, if D;
is the closed ball with center 0 and radius p; € 0, +o00[, then (2.24) reduces to the hard
saturation process

Pi — . _
——L;x, if |L;X|| > p;;
gi = § ILxI ' l (2.25)
Lix, if |L;x]l < pi,

which can be viewed as an infinite dimensional version of Example 2.10(i).
(ii) Suppose that ¢; # (o) and set p; = max d¢;(0). Then

proxq)_*le.(Lif) ] _ _ ] _
———————(projp, (LiX) — LX), if dp,(LiX) > pi;

i

L5
g=1" " dp;(L;x) (2.26)
projp, (LX), if dp,(L;x) < p;.
In particular, assume that D; = {0}. Then (2.26) reduces to the abstract soft thresholding
process
L I
X — ————— L;Xx, 1 iXI|l = Pi;
g = L p 2.27)
0, it |L;x| < pi,

which cannot record inputs with norm below a certain value. Let us further specialize
to the setting in which ¢; = p;| - | with p; € 10, +00[. Then ¢ = ¢, 51, 3¢i(0) =
[—pi, pil, and (2.27) becomes

Pi _ . _
1 — —— |Lix, if |ILiX|| > pi;
qi = < ||Lix||)

0, if |LiX|l < pi,

(2.28)

which can be viewed as an infinite dimensional version of (2.15).
2.3. Prescriptions derived from non-cocoercive operators

Here, we exemplify observation processes which are not cocoercive, and possibly not
even continuous, but that can still be represented by proximal points relative to some firmly
nonexpansive operator, as required in Problem 1.1. The results in this section constructively
provide the proximal points and phrase the evaluation of each firmly nonexpansive operator in
terms of the nonlinearity in the observation process.

Example 2.12. In the spirit of the shrinkage ideas of Corollary 2.3 and Example 2.5, a
prescription involving more general transformations (o;);cr can be used to derive an equivalent
prescribed proximal point. Let us adopt the setting of Corollary 2.3, except that (g;);cr are now
arbitrary operators from R to R such that, for some § € J0, +o00l, sup;;|0i| < 8| - |. Since

S leilF len] <82 1T 1 e = 87|12 < +oo, (2.29)
iel iel
10
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the prescription ¢ = Y, ; 0i((x | ¢;))e; is well defined. While ¢ is not a proximal point in
general, an equivalent proximal point p can be constructed from it in certain instances. To
illustrate this process, let us first compute (Vi € I) x; = (g | e;) = 0;({X | ¢;)). In both examples
to follow, for every i € I, we construct an operator o;: R — R such that ¢; = 0; 0 g; is firmly
nonexpansive, ¢;(0) = 0, and no information is lost when o; is applied to the prescription
Xxi = 0;({(x | €;)) in the sense that

VEeR) [xi=a®) & o) =o0(e®)=w®] (2.30)
Using Corollary 2.3 with the firmly nonexpansive operators (¢;);cr, this implies that p =
> ;e 0i(xi)e; is a proximal point of Xx.

@) Leti €I, let w; € ]0, +00[, and consider the non-Lipschitzian sampling operator [1,55]

Qi: E — Slgn(s) E Cl)l ’ lf |§.| > i (231)
0, if [§] < o;.
It is straightforward to verify that (2.30) holds with

o1 & > sign() (\/m - w,-) , 2:32)

in which case ¢; = 0; o g; is the soft thresholder on [—w;, w;] of (2.13).
(i) Let i € [, let w; € ]0, +o0[, and consider the discontinuous sampling operator [55]

g, if [§] > wis

! 2.33)
O» if |é| < i,

0i = hardi_,, o, : § — {
which is also known as the hard thresholder on [—w;, w;]. This operator is used as a
sensing model in [7] and as a compression model in [57]. Then (2.30) is satisfied with

0i: & > & — wisign(§), (2.34)
in which case ¢; = g; o 9; turns out to be the soft thresholder on [—w;, w;] of (2.13).

Next, we revisit Proposition 2.1 by relaxing the firm nonexpansiveness of the observa-
tion operators and constructing an equivalent proximal point via some transformation. This
equivalence is expressed in (iii) below.

Proposition 2.13.  Let (H;);c1 be an at most countable family of real Hilbert spaces, let
H =D, Hi, let X € H, and let (X;);e1 be its decomposition, i.e., (Vi € I) X; € H;. In addition,
foreveryi €1, let Q;: H;i — H; and let q; = Q;X;. Suppose that there exist operators (S;);c1
from H; to H; such that the operators (F;);c1 = (S; o Q;);c1 satisfy the following:

(1) The operators (F;);c1 are firmly nonexpansive.
(ii) If 1 is infinite, there exists (Z;)ic1 € H such that y_
(i) (Vi e D(Vx; € H) [Fix; = S;q; & Qixi = q; |-

ier IFizi — Zi||* < 4o0.

Then p = (S;Q;)ic1 is the proximal point of X relative to F: H — H: X;)ier = (FiXi)iel

Proof. This follows from Proposition 2.1. [

The following result illustrates the process described in Proposition 2.13, through a general-
ization of the discontinuous hard thresholding operator of Example 2.12(ii), which corresponds
to the case when H; = R and C; = {0} in (2.35) below.

11
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Proposition 2.14. Let (H;);c1 be an at most countable family of real Hilbert spaces, let
H =P, Hi, let X € H, and let (X;);c1 be its decomposition. For every i € 1, let w; € 10, +00],
let C; be a nonempty closed convex subset of H;, set

Xi, lf dC,-(Xi) > w;;

2.35
projg, Xi,  if dc;(Xi) < i, (235)

Q:H; — Hi:x; —> {
and let q; = Q;X; be the associated prescription. If 1 is infinite, suppose that (Vi € ) 0 € C;.
Further, for every i €1, set

i

Xi + L(projoixi =X, if X ¢ Ci;

S;:H, - H:x; — dc, (X;) and
Xi, if xi € Ci (2.36)
Fi=S8ioQ;
!pi = 5;q;.

Finally, set p = (Pi)ier and f: H — ]—00, +00]: (X;)iet +> Y ;qwidc,(X;). Then the
following hold:

(i) Foreveryi €l, F; = ProX,, 4 -
(1) p is the proximal point of X relative to f.

(iii) Let x = (X;)ic1 € H. Then [ (Vi € I) QiX; = q; | < prox x = p.

Proof. We derive from (2.35), (2.36), and [5, Proposition 3.21] that

(Vi € I)(VX; € H,) FiX,' =

wi

rojc. Xi + | 1 — ) X; — projo, X;) ¢ C;, if dg, (X;) > w;;
projc, ( o, () ( projc, X;) ¢
projg. X; € G, if do, (%) < w;.

(i): This is a consequence of (2.37) and [5, Example 24.28].

(ii): If T is infinite, (Vi € I) 0 € C; = dc,(0) = 0 = F;(0) = 0 by (2.37). In turn, the claim
follows from Corollary 2.2 and (i).

(iii): We first note that Corollary 2.2 and (i) imply that

(2.37)

(Fixi), o = (proxwidct_ Xi),o; = PIOX /X. (2.38)

Now, suppose that (Vi € I) Q;x; = q;. Then (Vi € I) F;x; = S;(Q;x;) = S;q; = p;. In turn,
(2.38) yields prox ;x = (F;X;)ic1 = p. Conversely, suppose that prox .x = p and fix i € I. We
derive from (2.38) and (2.36) that

Fixi = pi = S;q; = S;(Q;X;) = F;X;. (2.39)
We must show that Q;x; = q;. It follows from (2.35), (2.37), and (2.39) that
do, (X)) < w; & QiX; = projg,X; = Fix; = FiX; € G;
dc, (X)) < w;
Q;x; = proj¢,X; = Q;X; = q;.
On the other hand, (2.35) yields
de,(x)) > wi = Qix; =X, (2.41)

(2.40)
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while (2.39) and (2.37) yield

dc,(x;) > w; = p; = F:X; = Fix;

oy
=proje. X; + (1 — ! X; — Proje. X; C,’ (242)
prele, ( dc,.(x»)( prole;i) ¢
w,
= F;X; = projs. X; + (1 — - ) X; — proje.X;) and
projg, 6.0 (Xi — projg,Xi)

dC,' (il) > Wi (243)

= Q= QX; =X;. (2.44)

Therefore, in view of (2.41), it remains to show that X; = X;. Set r; = projcl_ p:- We deduce
from (2.42), (2.43), and [5, Proposition 3.21] that r; = projcii,- = projCl_ X;. Thus, (2.42) and
(2.43) yield

wj
i—n=(1- m=(1- -2 )& 1. 2.45
Pt ( % —r ||>( ) ( ||x—r||>( ) (249

Taking the norm of both sides yields ||X; — r;|| = [IX; — r;|| and hence X; = x;. O

3. A block-iterative extrapolated algorithm for best approximation

We propose a flexible algorithm to solve the following abstract best approximation problem.
This new algorithm, which is of interest in its own right, will be specialized in Section 4 to
the setting of Problem 1.1.

Problem 3.1. Let H be a real Hilbert space, let (C;);c; be an at most countable family of
closed convex subsets of H with nonempty intersection C, and let xo € H. The goal is to find
proj.xo, i.e., to

minimize |x — xg|| subjectto x € ﬂ C;. 3.1
iel
In 1968, Yves Haugazeau proposed in his unpublished thesis [34] an iterative method to
solve Problem 3.1 when [ is finite. His algorithm proceeds by periodic projections onto the
individual sets.

Proposition 3.2 ([54, Théoréme 3-2]). In Problem 3.1, suppose that I is finite, say I =
{0,...,m — 1}, where 2 < m € N. Given (s, t) € H?* such that

D={x€7—[‘(x—s|x0—s) 0Oand (x —t]|s—1t) < }#@ 3.2)
set x =(xg—s|s—1), p=|x0—s|%v=Is—tl|% and p = uv — x?2 and define
t, if p=0and x = 0;
O(xo, 5, 1) = projpxg = | X0 + (1+§><t—s>, if p>0 and xv > p;
+%(X(X0—S)+,u(t—s)), if p>0and xv < p.

(3.3)
13
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Construct a sequence (x,),en by iterating

for n=0,1,...
\\ t” = projcn(modm)xn (34)
Xn+l = Q(XO’ Xns tn)~

Then x, — ProjcXo.
Haugazeau’s algorithm uses only one set at each iteration. The following variant due to Guy

Pierra uses all of them simultaneously.

Proposition 3.3 (/50, Théoreme V.1]). In Problem 3.1, suppose that I is finite, let Q be as in
Proposition 3.2, set w = 1/card I, and fix ¢ € 10, 1[. Construct a sequence (x,),en by iterating

for n=0,1,...
for every i €1
{ Qi = PIOjc, Xn
'91',11 = ”ai,n - xn||2
0" = wZiel eiq"
if6, =0
| =% (3.5)
else
dn =w Ziel Ain
Yn = dn — Xn
Ap = ‘9n/||yn||2
ty = Xp + )‘nyn
L Xn+1 = O(x0, Xn, tn).

Then x, — Pprojqxo.

Remark 3.4. An attractive feature of Pierra’s algorithm (3.5) is that, by convexity of || - ||2,
the relaxation parameter X, can extrapolate beyond 1, hence attaining large values that induce
fast convergence [17,50].

Propositions 3.2 and 3.3 were unified and extended in [15, Section 6.5] in the form of an
algorithm for solving Problem 3.1 which is block-iterative in the sense that, at iteration n € N,
only a subfamily of sets (C;);c;, needs to be activated, as opposed to all of them in (3.5).
Block-iterative structures save time per iteration in two ways: firstly, they do not require that
every constraint be activated; secondly, at every n € N, activation of each constraint indexed in
I,, can be performed in parallel and hence it is common to select card I, equal to the number
of available processors. Furthermore, in [15, Section 6.5], the sets (C;);c; were specified as
lower level sets of certain functions and were activated by projections onto supersets instead
of exact ones as in (3.4) and (3.5). Below, we propose an alternative block-iterative scheme
(Algorithm 3.9) which is more sophisticated in that it leverages the affine structure of some
sets (C;);e;r to produce deeper relaxation steps, hence providing extra acceleration to the
algorithm. Such affine-convex extrapolation techniques were first discussed in [6], where a
weakly convergent method was designed to solve convex feasibility problems, i.e., to find an
unspecified point in the intersection of closed convex sets. Additionally, as will be seen in
Section 4, this new algorithm will be better suited to solve Problem 1.1 to the extent that it

14
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utilizes a fixed point model for the activation of the sets. The following notions and facts lay
the groundwork for developing our best approximation algorithm.

Definition 3.5 (/5, Section 4.1]). ¥ is the class of firmly quasinonexpansive operators from
H to H, ie.,

T={T:H—>H | (¥x e H)(Vy €FixT) (y — Tx | x — Tx) < 0}. (3.6)

Example 3.6 (/4,5]). Let T: H — H and set C = Fix T. Then T' € ¥ in each of the following
cases:

(1) T is the projector onto a nonempty closed convex subset C of H.

(ii) T is the proximity operator of a function f € [h(H). Then C = Argminf.

(iii) 7 is the resolvent of a maximally monotone operator A: # — 2%. Then C =
{x eH | 0e Ax} is the set of zeros of A.

(iv) T is firmly nonexpansive.

(v) R =2T —1d is quasinonexpansive: (Vx € H)(Vy € FixR) ||Rx — y|| < |lx — y||. Then
C =Fix R.

(vi) T is a subgradient projector onto the lower level set C = {x eH ‘ fx) < O} #*Jofa
continuous convex function f: H — R, that is, given a selection s of the subdifferential

of f,

) | ,
(Vx € H) Tx = sprojor = 4~ s />0 37

X, if f(x) <O0.

Lemma 3.7 ([4,5]). Let T: H — H. If T € X, then Fix T is closed and convex. Conversely,
if C is a nonempty closed convex subset of H, then C = FixT, where T = proj. € ‘€.

Lemma 3.8. Let (T),),en be a sequence of operators in ¥ such that @ # C C ﬂnEN Fix T,
let xg € H, let Q be as in Proposition 3.2, and for every n € N, set x,11 = Q(xo, Xn, T, x,).
Then the following hold:

(1) (xp)nen is well defined.
(H) ZneN ”le-H - xn||2 < +oQ.
(ii1) ZneN | Tnx, — xn”2 < +00.
(iv) x, — projcxo if and only if all the weak sequential cluster points of (xp)nen lie in C.

Proof. In the case when @ # C = (1), Fix 7,, the results are shown in [4, Proposition 3.4(v)
and Theorem 3.5]. However, an inspection of these proofs reveals that they remain true in our
context. [J

We are now in a position to introduce our best approximation algorithm for solving
Problem 3.1. It incorporates ingredients of the best approximation method of [15, Section 6.5]
and of the convex feasibility method of [6].

Algorithm 3.9. Consider the setting of Problem 3.1 and denote by (C;);c;r a subfamily
of (C;)ier of closed affine subspaces the projectors onto which are easy to implement; this

15
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subfamily is assumed to be nonempty as #H can be included in it. Let Q be as in Proposition 3.2,
fix ¢ € ]0, 1], and iterate

for n=0,1,...

take i(n) € I’

in = projCi(")xn

take a nonempty finite set [, C [

for every i € I,
take 7;, € ¥ such that Fix7;, = C;
ain = Ti,nzn
ei,n = ”ai,n —Zn

take j, € I, such that 6;, , = max;cs,6;,

take {w; n}ics, C [0, 1] such that Zie]n wi,=1and w; , >¢

I

Ir=liel | wn>0) 3.8)
Gn - Z,’e];' wi,nei,n

if 6, =0

L Iy = Zn

else

dy, = Ziel,f Wi,ndi,n

Yo = Prolcy, dn — 2

take A, € Egen/”dn - Zn||2a en/”yn”z]
th = Zn + AnYn

X1 = Q(XOs Xns tn)-

Remark 3.10. Let us highlight some special cases and features of Algorithm 3.9.

(i) If the only closed affine subspace is H then, for every n € N, z,, = x,,, and the resulting
algorithm has a structure similar to that of [15, Section 6.5], except that the operators
(T; n)iei, are chosen differently. In particular, this setting captures (3.4) and (3.5).

(i1) Suppose that the last step of the algorithm at iteration n € N is replaced by x,+; = t,.
Then we recover an instance of the (weakly convergent) convex feasibility algorithm
of [6] to find an unspecified point in C = ﬂie ; Ci.

(iii) Atiteration n € N, a block of sets (C;);¢y, 1s selected and each of its elements is activated
via a firmly quasinonexpansive operator. Example 3.6 provides various options to choose
these operators, depending on the nature of the sets.

(iv) If nontrivial affine sets are present then, at iteration n € N, we have z, # x, in general.
Thus, as discussed in [10] and its references in the context of feasibility algorithms
(see (ii)), the resulting step #, is larger than when z, = x,, which typically yields
faster convergence. This point will be illustrated numerically for our best approximation
algorithm in Section 5.

We now establish the strong convergence of an arbitrary sequence (x,),cn generated by
Algorithm 3.9 to the solution to Problem 3.1. The last component of the proof relies on
Lemma 3.8(iv), i.e., showing that the weak sequential cluster points of (x;,),cn lie in C. The
same property is required in [6, Theorem 3.3] to show the weak convergence of the variant
described in Remark 3.10(ii). This parallels the weak-to-strong convergence principle of [4],
namely the transformation of weakly convergent feasibility methods into strongly convergent
best approximation methods.

16
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Theorem 3.11. In the setting of Problem 3.1, let (x,),en be generated by Algorithm 3.9.
Suppose that the following hold:
[a] There exist strictly positive integers (M;);c; such that

n+M;—1
VieDvneN) ie ] tmu. (3.9)

I=n

[b] For everyi € I \ I, every x € H, and every strictly increasing sequence (rp)nen in N,

S mneN Ir,,
projCi(rn)x,n — X = xe€d(. (3.10)
]},rn (projci(,n)xrn) - projci(,")xrn - O

Then x, — projcxo.

Proof. Let us fix n € N temporarily. Define

2
X:iefr @i n | Tinz — 2|l )
: 7o Af 2 ¢ (Nigyr Gt

LH:H—)R:ZH || Ziel,?’ wi,nTi,nZ_Z| (3]])
1, ifzeﬂid;rci
and
St H—>’H:zn—>z+Ln(z)<Z a),-,,,T,-,nz—z). (3.12)
ielf

We derive from [16, Proposition 2.4] that S, € ¥ and Fix S, = ﬂiel,,* FixT;, = ﬂie[,f C;. We
also observe that

=0 & Sz, =2 ¢ 2, €[ )C =Fix$,. (3.13)
el
Now define
Ki,:H—>R:x+—
|, (proic,,, x) — proicy, x|

27 lf pl‘O]Ci(n)x ¢ miel,}*' Cl’

Hprojci(m (S (projci(n)x)) — projci(n)x| (3.14)
1, if proje,, x € Niest Ci
and
T,:H—>H: x> projci(n)x + yn(x)(projci(n> (S,, (projci(n)x)> — projci(n)x),
where y,(x) € [e, K,(x)]. (3.15)
Then it follows from [6, Theorem 2.8] that 7,, € ¥ and
@ # C C CigyN [ ] Ci = Ciy NFix S, = Fix T,,. (3.16)

iel

17
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If 6, # 0, using (3.8), (3.12), and the fact that projcm is an affine operator
[5, Corollary 3.22(ii)], we obtain

prOjCi(n) (Sn (projCi(n)xn)> - projCi(n)xn = prOjCi(n)(SnZn) — Zn
= prOjCi(n) ((1 - Ln(Zn))Zn + Ln(Zn)dn> —Zn

= (1 - Ln(Zn))Pfojci(n)Zn + Ln(Zn)PTOjci(,,)dn —n
= Ly(z)(proicy, dn — zn)

= Ln(z0)¥n (3.17)
and, therefore,
Iproic,,,, (Saza) = za | = Luz)lIyall- (3.18)
Hence, (3.14) and (3.12) yield
Snrz_n2 Lnndn_n2 dn_n2
||' (zn) — zall 2:II (i)( Zz)” _ Z2I|’ if 6, 0.
K,(x,) = ||pr0JCi(n) (S,,zn) — Zn “ Il Ln(Zn) Yl ll vl
1, if 6, =0.
(3.19)
At the same time, we derive from (3.11), (3.8), and (3.13) that
n if 6, #0
5, W00y )
Ly(zn) = { ldn — zall? (3.20)
1, if 6, =0.
Altogether, it results from (3.15), (3.19), and (3.20) that, if 6, # 0,
Yu(xn)Ln(zn) € [SLn(Zn)a Kn(xn)Ln(Zn)] = [Een/”dn - Zn”z’ 9n/||yn||2] (3.21)

and, in view of (3.8), we can therefore set A, = y,(x,)L,(z,). Thus, it follows from (3.8) and
(3.17) that

On 70 = 1y = 2n + AnYn
= 2Zn + V() Ln(Zn)yn
= projc,,, % + v(xa) (proic, (S (Proic,, %)) = proic,, %)
= Tpx,. (3.22)
On the other hand, (3.8) and (3.13) yield
0, =0 = t, =2, = Sp20 = Ty Xn. (3.23)
Combining (3.22) and (3.23), we obtain
Xnt1 = Q(x0, Xn, Tnxy). (3.24)
Turning back to (3.15) and (3.8), we deduce from [5, Corollary 3.22(i)] that
1T = %12 = |20 = % + ¥ ) (Projicy, (Sa20) — 2a) |

= llzn = Xall* + 2¥2(xa){projc, , Xa — %n | Proicy, (Sazn) — Proje,,, ¥a)
18
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(SnZn) —Zn ”2

= llzn = Xl + [ya (i) [ Projcs,, (Snza) — za®

+ lya (eI proje,

. 2
> llzn = xall® + €| proje, , (Snza) — za | (3.25)
Since (3.16) implies that
@ # C C [ |FixT,, (3.26)

neN

we derive from (3.24) and Lemma 3.8(i) that (x,),cn is well defined. Furthermore, (3.25) and
Lemma 3.8(iii) guarantee that

D llzn = xal® < 400 (3.27)
neN

and
> lIproje,, (Sazn) — zall* < +oe. (3.28)
neN

Finally, in view of (3.26) and Lemma 3.8(iv), to conclude the proof, it is enough to show that
all the weak sequential cluster points of (x,),ey lie in C. Since we have at our disposal [a],
[b], (3.27), and (3.28), showing this inclusion can be done by following the same steps as in
the proof of [6, Theorem 3.3(vi)]. O

Remark 3.12. Condition [a] in Theorem 3.11 states that, for each i € I, the set C; should
be involved at least once every M; iterations. Condition [b] in Theorem 3.11 is discussed in
[6, Section 3.4], where concrete scenarios that satisfy it are described.

4. Fixed point model and algorithm for Problem 1.1

To solve Problem 1.1, we are going to reformulate it as an instance of Problem 3.1. To this
end, let us set

(Vk e K) Ci={xeH|Fx=p} and Ty =pi+1d—F. 4.1)
Then it follows from (1.9) that
(Vk € K) Ty is firmly nonexpansive and Fix T, = Cy. “4.2)

We therefore deduce from Lemma 3.7 that (Cy)recg are closed convex subsets of . Thus, upon
setting I = J U K, we recast Problem 1.1 is an instantiation of Problem 3.1. This leads us to
the following solution method based on Algorithm 3.9.

Proposition 4.1. In the setting of Problem 1.1, let Q be as in Proposition 3.2, fix ¢ € 10, 1],
and denote by (C;)iep a subfamily of (C;)icy of closed affine subspaces the projectors onto
which are easy to implement; this subfamily is assumed to be nonempty as H can be included
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in it. Iterate
for n=0,1,...
take i(n) € I’
in = pIOjCi(n)Xn
take a nonempty finite set I, C J UK
for every i € I,

ifield
take T;, € ¥ such that FixT; , = C;
ain = Tinzn
ifiek
I_ ain = Pi + 2z, — Fizn
ei,n = ”ai,n - Zn||2
take j, € I, such that 0;, , = max;cy,6; 4.3)

take {win}ier, C [0, 11 such that Ziel,, wip, =1 and wj, , > ¢
I;:{ie[n|w,-,,,>0}
O = Ziel,f @; nBin

ife, =0
L Iy = Zn
else

d, = Ziejlj' Wi nGin
Yo = PrOjcy, dn — 2
take Ay € [66,/1dy — 2012 60/ InI?]
t, =2, + )‘nyn
L Xn+1 = Q(an Xn, ).

Suppose that condition [a] in Theorem 3.11 holds with I = J U K, as well as the following:

[c] For every i € J NI, every x € H, and every strictly increasing sequence (rp)pen in N,
(3.10) holds.

Then (x,)nen converges strongly to the solution to Problem 1.1.

Proof. Let us bring into play (4.1) and (4.2). As discussed above, Problem 1.1 is an instance
of Problem 3.1, where I = J U K. Now set

(Vk e K)(Vn € N) Tk,n =T, = Dk + Id — F;. (44)

Then (3.8) reduces to (4.3) and, in view of condition [c] above, to conclude via Theorem 3.11,
it suffices to check that condition [b] in Theorem 3.11 holds for every k € K. Towards this goal,
let us fix k € K and a strictly increasing sequence (r,),en in N such that k € ), en Ir,» and
let us set (Vn € N) u,, = projci(rn)x,n. Suppose that u, — x € H and that Ty, u, — u, — 0.
Then (4.4) yields Tru, — u, — 0 and, since T; is nonexpansive by (4.2), it follows from
Browder’s demiclosedness principle [5, Corollary 4.28] that x € Fix Ty = Cy, which concludes

the proof. [

As was mentioned in Remark 3.10(iv) and will be illustrated in Section 5, exploiting
the presence of affine subspaces typically leads to faster convergence. Problem 1.1 can
nonetheless be solved without taking the affine subspaces into account. Formally, this amounts
to considering that (C;);c;r consists solely of 7, in which case Proposition 4.1 leads to the
following implementation.
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Corollary 4.2. In the setting of Problem 1.1, let Q be as in Proposition 3.2, and fix € € 10, 1[.
Iterate
for n=0,1,...
take a nonempty finite set I, C J UK
for every i € I,
ifield
\‘ take T;, € T such that FixT; , = C;
ajpn = Ti,nxn

ifiekK
L ain = pi +x, — Fix,
ei,n = ”ai,n - )Cn”2
take j, € I, such that 0;, , = max,cy,0;
take {w;n}icr, C [0, 11 such that Zie],, win, =1 and wj, , > ¢ 4.5)

I;‘:{ie[n ’a)m>0}
Gn = Zie],;*’ wi,nei,n

ife, =0
L I, = X
else

Yn = Z,‘e[’j' Wi nQin — Xp

take ry € [£6,/11yall*, 6a/11yall?]
th =Xp + )"nyn

L Xny1 = O(xo, X, ).

Suppose that the following hold:
[d] There exist strictly positive integers (M;)icjux such that Vi € J U K)(Vn € N)

. M;—1
1 e U?:n ! 1.
[e] For every i € J, every x € H, and every strictly increasing sequence (rp)pen in N,
[i e (L. %, — x. and Ti,,x,, — x,, — 0] = xeC. (4.6)
neN

Then (x,),en converges strongly to the solution to Problem 1.1.

5. Numerical illustration

Let H be the standard Euclidean space RY, where N = 1024. The goal is to recover the
original form of the signal X € ‘H shown in Fig. 1 from the following:

(i) x resides in the subspace C; of signals which are band-limited in the sense that their
discrete Fourier transform vanishes outside of the 103 lowest frequency components.

(i) Lettv: H — R: x = (&) icisy ZKKA_1 |1 — &;| be the total variation function.
An upper bound y € ]0, 4oo[ on tv(x) is available. The associated constraint set is
C, = {x eH | tv(x) —y < O}. For this experiment, y = 1.5tv (x).

(iii) 25 observations (gx)rcx are available where, for every k € K = {3, ..., 27}, gy is the iso-
tonic regression of the coefficients of X in a dictionary (e, ;)i<j<10 of vectors in . More
precisely (see Example 2.11(i)), set G = R!? and D = {(Ej)]gjglo eg | & <o < 510}.
Then, for every k € K, q; = proj, (LX), where Li: H — G: x — ({x | e j))i<j<10-
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Fig. 1. Original signal x.
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Fig. 2. Solution xo to (5.1).

We seek the minimal-energy signal consistent with the information above, i.e., we seek to
minimize |x|| subjectto x € C;NCy and (Vk € K) projyp(Lix) = gx. (GR))

Let us set xo = 0, J = {1,2}, and, for every k € K, py = ||Lk||’2L7;qk, and F;, =
| Ll 72L} o projp o L. For every k € K, applying Proposition 2.8 with I = {k}, G, = G,
Br = 1, and Q; = proj, shows that p; is the proximal point of X relative to F; and, for every
x € H, Frx = pr & projp(Lix) = qr. We therefore arrive at an instance of Problem 1.1
which is equivalent to (5.1), namely

minimize ||x| subjectto x € C;NC, and (ke K) Fix = py. 5.2)

With an eye towards algorithm (4.3), since C; is an affine subspace with a straightforward
projector [59], set I’ = {1}. Atiteration n € N, the constraint (ii) is activated by the subgradient
projector >, = sprojc, of (3.7) (see [19] for its computation) since the direct projector is
hard to implement. The fact that condition [c] in Proposition 4.1 is satisfied follows from
[5, Proposition 29.41(vi)(a)]. We solve (5.2) with algorithm (4.3) to obtain the solution x
shown in Fig. 2 (see [33, Algorithm 8.1.1] for the computation of proj).

To demonstrate the benefits of exploiting the presence of affine subspaces in algorithm (4.3),
we show in Fig. 3 the approximate solution it generates after 1000 iterations. For the sake of
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Fig. 3. Solution x (red) and the approximate recovery obtained with 1000 iterations of algorithm (4.3), which
exploits affine constraints (blue). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 4. Solution x, (red) and the approximate recovery obtained with 1000 iterations of algorithm (4.5), which
does not exploit affine constraints (green). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

comparison, we display in Fig. 4 the approximate solution generated by algorithm (4.5) after
1000 iterations. The following parameters are used:

e Algorithm (4.3): For every n € N, i(n) = 1, and whenever 6, # 0,

O .
TR if n=0 mod 3;
——, ifn#0 mod3.
[l yall

Additionally, I, is selected to activate C, at every iteration and periodically sweep
through one entry of K per iteration, hence satisfying condition [a] in Theorem 3.11
with M| = M, = 1, and, for every k € K, M; = 25. Moreover, for every i € I,,
Wi, =1/2.

e Algorithm (4.5): Iteration n € N is executed with the same relaxation scheme (5.3) as in
algorithm (4.3), and the same choice of the activation set I,, with the exception that I,
also activates C at every iteration. In addition, for every i € I,,, w;, = 1/3.
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While both approaches are equivalent means of solving (5.2), Figs. 3 and 4 demonstrate
qualitatively that algorithm (4.3) yields faster convergence to the solution x,, than algorithm
(4.5). This is confirmed quantitatively by the error plots of Fig. 5.
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