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Abstract

Under investigation is the problem of finding the best approximation of a function in a Hilbert
space subject to convex constraints and prescribed nonlinear transformations. We show that in many
instances these prescriptions can be represented using firmly nonexpansive operators, even when the
original observation process is discontinuous. The proposed framework thus captures a large body of
classical and contemporary best approximation problems arising in areas such as harmonic analysis,
statistics, interpolation theory, and signal processing. The resulting problem is recast in terms of a
common fixed point problem and solved with a new block-iterative algorithm that features approximate
projections onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible
presence of affine constraints. A numerical application to signal recovery is demonstrated.
c⃝ 2021 Elsevier Inc. All rights reserved.

Keywords: Best approximation algorithm; Constrained interpolation; Firmly nonexpansive operator; Nonlinear signal
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1. Introduction

Let H be a real Hilbert space with scalar product ⟨· | ·⟩ and associated norm ∥ · ∥, let
x0 ∈ H, let U and V be closed vector subspaces of H with projection operators projU and
projV , respectively, and let p ∈ V . The basic best approximation problem

minimize ∥x − x0∥ subject to x ∈ U and projV x = p (1.1)
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covers a wide range of scenarios in areas such as harmonic analysis, signal processing,
interpolation theory, and optics [3,22,32,35,38,40,43,52,59]. In this setting, a function of
interest x ∈ H is known to lie in the subspace U and its projection p onto the subspace
V is known. The goal of (1.1) is then to find the best approximation to x0 that is compatible
with these two pieces of information. For example, band-limited extrapolation [49] aims at
recovering a minimum energy band-limited function x ∈ H = L2(R) from the knowledge of
its values on an interval A. This corresponds to the instance of (1.1) in which x0 = 0, V is
the subspace of functions vanishing outside of A, U is the subspace of functions with Fourier
transform supported by a compact interval around the origin, and p = 1Ax , where 1A denotes
the characteristic function of A. As shown in [59], if (1.1) is feasible (see [22] for necessary
and sufficient conditions), then the sequence (xn)n∈N constructed by iterating

(∀n ∈ N) xn+1 = p + projU xn − projV (projU xn) (1.2)

converges strongly to its solution. The extension of (1.1) to finitely many vector subspaces
(U j ) j∈J and (Vk)k∈K investigated in [22] is to

minimize ∥x −x0∥ subject to x ∈
⋂

j∈J

U j and (∀k ∈ K ) projVk
x = pk, where pk ∈ Vk,

(1.3)

and it can be solved using affine projection methods. In many applications, the constraint sets
[12±14,17,27,30,41,48] or the operators yielding the prescribed values (pk)k∈K [2,7,31,39,51,
57,58] may not be linear. Our objective is to extend the linear formulation (1.3) by employing
closed convex constraint subsets (C j ) j∈J , together with prescriptions (pk)k∈K resulting from
nonlinear operators (Fk)k∈K , i.e.,

minimize ∥x − x0∥ subject to x ∈
⋂

j∈J

C j and (∀k ∈ K ) Fk x = pk . (1.4)

In view of (1.3), projection operators onto closed convex sets constitute a natural class of
candidates for the operators (Fk)k∈K . For instance, in [51,54,58], Fk is the projection operator
onto a hypercube. However, many prescriptions (pk)k∈K found in the literature, in particular
those of [7,31,39,57], do not reduce to best approximations from closed convex sets, and a
more general formalism must be considered to represent them. A generalization of the notion
of a best approximation was proposed by Moreau [44], who called the proximal point of x ∈ H

relative to a proper lower semicontinuous convex function fk : H → ]−∞,+∞] the unique
minimizer pk ∈ H of the function

y ↦→ fk(y) +
1

2
∥x − y∥2, (1.5)

and wrote pk = prox fk
x . This mechanism defines the proximity operator prox fk

: H → H of
fk . The case of a projector onto a nonempty closed convex set Dk ⊂ H is recovered by letting
fk = ιDk

, where

(∀x ∈ H) ιDk
(x) =

{

0, if x ∈ Dk;

+∞, if x /∈ Dk

(1.6)

is the indicator function of Dk . Proximity operators were initially motivated by applications
in mechanics [9,45,47] and have become a central tool in the analysis and the numerical
solution of numerous data processing tasks [21,23]. We shall see later that they also model
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various nonlinear observation processes. The properties of proximity operators are detailed
in [5, Chapter 24], among which is the fact that the operator prox fk

can be expressed as the
resolvent of the subdifferential of fk , that is, prox fk

= (Id +∂ fk)−1, where

(∀x ∈ H) ∂ fk(x) =
{

u ∈ H
⏐

⏐ (∀y ∈ H) ⟨y − x | u⟩ + fk(x) ⩽ fk(y)
}

. (1.7)

As shown by Moreau [46], the set-valued operator Ak = ∂ fk is maximally monotone, i.e.,

(∀x ∈ H)(∀u ∈ H)
[

u ∈ Ak x ⇔ (∀y ∈ H)(∀v ∈ Ak y) ⟨x − y | u − v⟩ ⩾ 0
]

. (1.8)

This property prompted Rockafellar [53] to generalize the notion of a proximal point as follows:
given a maximally monotone set-valued operator Ak : H → 2H, the proximal point of x ∈ H

relative to Ak is the unique point pk ∈ H such that x − pk ∈ Ak pk , i.e., pk = JAk
x ,

where JAk
= (Id +Ak)−1 : H → H is the resolvent of Ak . As stated in [5, Corollary 23.9],

a remarkable consequence of Minty’s theorem [42] is that an operator Fk : H → H is
the resolvent of a maximally monotone operator Ak : H → 2H if and only if it is firmly

nonexpansive, meaning that

(∀x ∈ H)(∀y ∈ H) ∥Fk x − Fk y∥2 + ∥(Id −Fk)x − (Id −Fk)y∥2
⩽ ∥x − y∥2. (1.9)

In view of this equivalence, we call pk a proximal point of x ∈ H relative to a firmly
nonexpansive operator Fk : H → H if pk = Fk x . As we shall show in Section 2, firmly
nonexpansive operators constitute a powerful device to represent a variety of nonlinear
processes to generate the prescriptions (pk)k∈K in (1.4). In light of these considerations, we
propose to investigate the following nonlinear best approximation framework.

Problem 1.1. Let x0 ∈ H and let J and K be at most countable sets such that J ∩ K = ∅

and J ∪ K ̸= ∅. For every j ∈ J , let C j be a closed convex subset of H and, for every k ∈ K ,
let pk ∈ H and let Fk : H → H be a firmly nonexpansive operator. Suppose that there exists
x ∈

⋂

j∈J C j such that (∀k ∈ K ) Fk x = pk . The task is to

minimize ∥x − x0∥ subject to x ∈
⋂

j∈J

C j and (∀k ∈ K ) Fk x = pk . (1.10)

In Problem 1.1, the function of interest lies in the intersection of the sets (C j ) j∈J , and its
proximal points (pk)k∈K relative to firmly nonexpansive operators (Fk)k∈K are prescribed. The
objective is to obtain the best approximation to a function x0 ∈ H from the set of functions
which satisfy these properties.

As noted above, the numerical solution of the linear problem (1.3) is rather straightforward
with existing projection techniques, while characterizing the existence of solutions for any
choices of the prescribed values (pk)k∈K ± the so-called inverse best approximation property ±
is a more challenging task that was carried out in [22]. In the nonlinear setting, this property
is of limited interest since it fails in simple scenarios [22, Remark 1.2]. Our objectives in the
present paper are to demonstrate the far reach and the versatility of Problem 1.1, and to devise
an efficient and flexible numerical method to solve it.

The remainder of the paper consists of four sections. In Section 2, we show the ability of
our proximal point modeling to capture a variety of observation processes arising in practice,
including some which result from discontinuous operators. In Section 3, we propose a new
block-iterative algorithm to construct the best approximation to a reference point from a
countable intersection of closed convex sets. The algorithm features approximate projections
onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible
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presence of affine subspaces in the constraint sets (C j ) j∈J . In Section 4, Problem 1.1 is
rephrased in terms of a common fixed point problem and the algorithm of Section 3 is used to
solve it. A numerical illustration of our framework is presented in Section 5.

Notation. H is a real Hilbert space with scalar product ⟨· | ·⟩, associated norm ∥·∥, and identity
operator Id. The family of all subsets of H is denoted by 2H. The expressions xn ⇀ x and
xn → x denote, respectively, the weak and the strong convergence of a sequence (xn)n∈N to
x in H. The distance function to a subset C of H is denoted by dC . Γ0(H) is the class of
all lower semicontinuous convex functions from H to ]−∞,+∞] which are proper in the
sense that they are not identically +∞. The conjugate of f ∈ Γ0(H) is denoted by f ∗ and
the infimal convolution operation by □ . The set of fixed points of an operator T : H → H is
Fix T =

{

x ∈ H
⏐

⏐ T x = x
}

. The Hilbert direct sum of a family of real Hilbert spaces (Hi )i∈I

is denoted by
⨁

i∈I Hi . For background on convex and nonlinear analysis, see [5].

2. Prescribed values as proximal points

We illustrate the fact that the proximal model adopted in Problem 1.1 captures a wealth of
scenarios encountered in various areas to represent information on the ideal underlying function
x ∈ H obtained through some observation process. We discuss firmly nonexpansive observation
processes in Section 2.1 and cocoercive ones in Section 2.2. In Section 2.3, we move to more
general models in which the operators need not be Lipschitzian or even continuous.

2.1. Prescriptions derived from firmly nonexpansive operators

We start with an instance of a proximal point prescription arising in a decomposition setting.

Proposition 2.1. Let (Hi )i∈I be an at most countable family of real Hilbert spaces, let H =
⨁

i∈I Hi , let x ∈ H, and let (xi )i∈I be its decomposition, i.e., (∀i ∈ I) xi ∈ Hi . For every i ∈ I,

let Fi : Hi → Hi be a firmly nonexpansive operator. If I is infinite, suppose that there exists

z = (zi )i∈I ∈ H such that
∑

i∈I ∥Fi zi − zi∥
2 < +∞. Set F : H → H : x = (xi )i∈I ↦→ (Fi xi )i∈I

and p = (Fi xi )i∈I. Then p is the proximal point of x relative to F.

Proof. If I is infinite, we have

(∀x ∈ H)
1

3

∑

i∈I

∥Fi xi∥
2
⩽

∑

i∈I

∥Fi xi − Fi zi∥
2 +

∑

i∈I

∥Fi zi − zi∥
2 +

∑

i∈I

∥zi∥
2

⩽
∑

i∈I

∥xi − zi∥
2 +

∑

i∈I

∥Fi zi − zi∥
2 + ∥z∥2

= ∥x − z∥2 +
∑

i∈I

∥Fi zi − zi∥
2 + ∥z∥2

< +∞. (2.1)
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This shows that, in all cases, F is well defined and p ∈ H. Furthermore,

(∀x ∈ H)(∀y ∈ H) ∥Fx − Fy∥2 =
∑

i∈I

∥Fi xi − Fi yi∥
2

⩽
∑

i∈I

∥xi − yi∥
2 −

∑

i∈I

∥(Id − Fi )xi − (Id − Fi )yi∥
2

= ∥x − y∥2 − ∥(Id −F)x − (Id −F)y∥2. (2.2)

Thus, F is firmly nonexpansive. □

Corollary 2.2. Let (Hi )i∈I be an at most countable family of real Hilbert spaces, let

H =
⨁

i∈I Hi , let x ∈ H, and let (xi )i∈I be its decomposition. For every i ∈ I, let fi ∈ Γ0(Hi )
and, if I is infinite, suppose that fi ⩾ 0 = fi (0). Then p = (proxfi

xi )i∈I is a proximal point of

x, namely, p = prox f x, where f : H → ]−∞,+∞] : x = (xi )i∈I ↦→
∑

i∈I fi (xi ).

Proof. We first note that f is proper since the functions (fi )i∈I are. Furthermore, we observe
that, for every i ∈ I, the function fi : H → ]−∞,+∞] : x ↦→ fi (xi ) lies in Γ0(H). We
therefore derive from [5, Corollary 9.4] that f =

∑

i∈I fi is lower semicontinuous and convex.
This shows that f ∈ Γ0(H) and consequently that prox f is well defined. For every i ∈ I,
let us introduce the firmly nonexpansive operator Fi = proxfi

. If I is infinite, since 0 is a
minimizer of each of the functions (fi )i∈I, we derive from [5, Proposition 12.29] that (∀i ∈ I)
proxfi

0 = 0. In turn, the condition
∑

i∈I ∥Fi zi − zi∥
2 < +∞ holds with (∀i ∈ I) zi = 0. In

view of Proposition 2.1, p is the proximal point of x relative to F : H → H : x ↦→ (proxfi
xi )i∈I.

Finally, since

f (prox f x) +
1

2
∥x − prox f x∥2 = min

y∈H

(

f (y) +
1

2
∥x − y∥2

)

= min
y∈H

∑

i∈I

(

fi (yi ) +
1

2
∥xi − yi∥

2

)

=
∑

i∈I

min
yi ∈Hi

(

fi (yi ) +
1

2
∥xi − yi∥

2

)

=
∑

i∈I

(

fi (proxfi
xi ) +

1

2
∥xi − proxfi

xi∥
2

)

= f (p) +
1

2
∥x − p∥2, (2.3)

we conclude that p = prox f x . □

Corollary 2.3. Suppose that H is separable, let (ei )i∈I be an orthonormal basis of H, and

let x ∈ H. For every i ∈ I, let βi ∈ ]0,+∞[ and let ϱi : R → R be increasing and 1/βi -

Lipschitzian. If I is infinite, suppose that (∀i ∈ I) ϱi (0) = 0. Then p =
∑

i∈I βiϱi (⟨x | ei ⟩)ei is

a proximal point of x.

Proof. For every i ∈ I, βiϱi is increasing and nonexpansive, hence firmly nonexpansive.
We then deduce from Proposition 2.1 that Φ : ℓ2(I) → ℓ2(I) : (ξi )i∈I ↦→ (βiϱi (ξi ))i∈I is firmly
nonexpansive. Now set L : H → ℓ2(I) : x ↦→ (⟨x | ei ⟩)i∈I and F = L∗◦Φ◦L . Since ∥L∥ = 1, it
follows from [5, Corollary 4.13] that F is firmly nonexpansive. This shows that p = L∗(Φ(Lx))
is the proximal point of x relative to F . □
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Example 2.4. In the context of Corollary 2.3, for every i ∈ I, let ωi ∈ [0, 1], let ηi ∈ ]0,+∞[,
let δi ∈ ]0,+∞[, and set ϱi : ξ ↦→ (2ωi/π )arctan(ηi ξ )+(1−ωi )sign(ξ )(1−exp(−δi |ξ |)). Then,
for every i ∈ I, ϱi is increasing and (2ωiηi/π + (1 − ωi )δi )-Lipschitzian with ϱi (0) = 0. The
resulting proximal point

p =
∑

i∈I

ϱi (⟨x | ei ⟩)

2ωiηi/π + (1 − ωi )δi

ei (2.4)

models a parallel distortion of the original signal x [56, Sections 10.6 & 13.5].

Example 2.5 (Shrinkage). In signal processing and statistics, a powerful idea is to decompose
a function x ∈ H in an orthonormal basis (ei )i∈I and to transform the coefficients of the
decomposition to construct nonlinear approximations with certain attributes such as sparsity
[11,20,23,25,26,28,55]. As noted in [23], a broad model in this context is

p =
∑

i∈I

(

proxφi
⟨x | ei ⟩

)

ei (2.5)

where, for every i ∈ I, the function φi ∈ Γ0(R) satisfies φi ⩾ 0 = φi (0) and models prior
information on the coefficient ⟨x | ei ⟩. The problem is then to reconstruct x given its shrunk
version p. For instance, in the classical work of [28], (ei )i∈I is a wavelet basis and (∀i ∈ I)
φi = ω| · |, with ω ∈ ]0,+∞[. This yields p =

∑

i∈I(sign(⟨x | ei ⟩) max{|⟨x | ei ⟩| − ω, 0})ei .
In general, to see that p in (2.5) is a proximal point of x , it suffices to apply Corollary 2.3
with, for every i ∈ I, βi = 1 and ϱi = proxφi

, whence ϱi (0) = 0 by [5, Proposition 12.29].
More precisely, [5, Proposition 24.16] entails that p is the proximal point of x relative to the
function f : H → ]−∞,+∞] : x ↦→

∑

i∈I φi (⟨x | ei ⟩).

Example 2.6 (Partitioning). Let (Ω ,F, µ) be a measure space and let (Ωi )i∈I be an at most
countable F-partition of Ω . Let us consider the instantiation of Proposition 2.1 in which
H = L2(Ω ,F, µ) and, for every i ∈ I, Hi = L2(Ωi ,Fi , µ), where Fi =

{

Ωi ∩ S
⏐

⏐ S ∈ F
}

. Let
x ∈ H and (∀i ∈ I) xi = x |Ωi

. Moreover, for every i ∈ I, φi is an even function in Γ0(R) such
that φi (0) = 0 and φi ̸= ι{0}, and we set ρi = max ∂φi (0). Then we derive from Corollary 2.2
and [8, Proposition 2.1] that the proximal point of x relative to f : x ↦→

∑

i∈I φi (∥xi∥) is

p =
(

(

proxφi
∥xi∥

)

uρi
(xi )

)

i∈I
, where

uρi
: Hi → Hi : xi ↦→

{

xi/∥xi∥, if ∥xi∥ > ρi ;

0, if ∥xi∥ ⩽ ρi .
(2.6)

For each i ∈ I, this process eliminates the i th block xi if its norm is less than ρi ∈ ]0,+∞[.

Example 2.7 (Group Shrinkage). In Example 2.6, suppose that Ω = {1, . . . , N }, F = 2Ω ,
and µ is the counting measure. Then H is the standard Euclidean space R

N , which is
decomposed in m factors as R

N = R
N1 × · · · × R

Nm , where
∑m

i=1 Ni = N . Now suppose
that (∀i ∈ I = {1, . . . ,m}) φi = ρi | · |, where ρi ∈ ]0,+∞[. Then it follows from
[5, Example 14.5] that the proximal point p of (2.6) is obtained by group-soft thresholding
the vector x = (x1, . . . , xm) ∈ R

N , that is [60],

p =

((

1 −
ρ1

max{∥x1∥, ρ1}

)

x1, . . . ,

(

1 −
ρm

max{∥xm∥, ρm}

)

xm

)

. (2.7)
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2.2. Prescriptions derived from cocoercive operators

Let us first recall that, given a real Hilbert space G and β ∈ ]0,+∞[, an operator Q : G → G

is β-cocoercive if

(∀x ∈ G)(∀y ∈ G) ⟨x − y | Qx − Qy⟩ ⩾ β∥Qx − Qy∥2, (2.8)

which means that βQ is firmly nonexpansive [5, Section 4.2]. In the following proposition, a
proximal point is constructed from a finite family of nonlinear observations (qi )i∈I of linear
transformations of the function x ∈ H, where the nonlinearities are modeled via cocoercive
operators. Item (ii) below shows that this proximal point contains the same information as the
observations (qi )i∈I.

Proposition 2.8. Let (Gi )i∈I be a finite family of real Hilbert spaces and let x ∈ H. For every

i ∈ I, let βi ∈ ]0,+∞[, let Qi : Gi → Gi be βi -cocoercive, let L i : H → Gi be a nonzero

bounded linear operator, and define qi = Qi (L i x). Set

β =
1

∑

i∈I

∥L i∥
2

βi

, p = β
∑

i∈I

L∗
i qi , and F = β

∑

i∈I

L∗
i ◦ Qi ◦ L i . (2.9)

Then the following hold:

(i) p is the proximal point of x relative to F.

(ii) (∀x ∈ H) Fx = p ⇔ (∀i ∈ I) Qi (L i x) = qi .

Proof. (i): It is clear that p = Fx . In addition, the firm nonexpansiveness of F follows from
[5, Proposition 4.12].

(ii): Take x ∈ H such that Fx = p. Then Fx = Fx and (2.8) yields

0 =
⟨Fx − Fx | x − x⟩

β

=
∑

i∈I

⟨Qi (L i x) − Qi (L i x) | L i x − L i x⟩

⩾
∑

i∈I

βi∥Qi (L i x) − Qi (L i x)∥2

=
∑

i∈I

βi∥Qi (L i x) − qi∥
2, (2.10)

and therefore (∀i ∈ I) Qi (L i x) = qi . The reverse implication is clear. □

Next, we consider the case when the observations (qi )i∈I in Proposition 2.8 are obtained
through proximity operators.

Proposition 2.9. Let (Gi )i∈I be a finite family of real Hilbert spaces and let x ∈ H. For

every i ∈ I, let gi ∈ Γ0(Gi ), let L i : H → Gi be a nonzero bounded linear operator, and

define qi = proxgi
(L i x). Suppose that β = 1/(

∑

i∈I ∥L i∥
2), and set p = β

∑

i∈I L∗
i qi and

F = β
∑

i∈I L∗
i ◦ proxgi

◦ L i . Then the following hold:

(i) p is the proximal point of x relative to F.

(ii) (∀x ∈ H) Fx = p ⇔ (∀i ∈ I) proxgi
(L i x) = qi .

7
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(iii) If β ⩾ 1, then

F = β prox f , where f =

(

∑

i∈I

(

g∗
i □

∥ · ∥2
Gi

2

)

◦ L i

)∗

−
∥ · ∥2

H

2
. (2.11)

Proof. (i)±(ii): Apply Proposition 2.8 with (∀i ∈ I) Qi = proxgi
and βi = 1.

(iii): This follows from [18, Proposition 3.9]. □

Example 2.10 (Scalar Observations). We specialize the setting of Proposition 2.9 by assuming
that, for some i ∈ I, Gi = R and L i = ⟨· | ai ⟩, where 0 ̸= ai ∈ H. Let us denote
by χi = proxgi

⟨x | ai ⟩ the resulting observation. This scenario allows us to recover various
nonlinear observation processes used in the literature.

(i) Set gi = ιD , where D is a nonempty closed interval in R with δ = inf D ∈ [−∞,+∞[
and δ = sup D ∈ ]−∞,+∞]. Then we obtain the hard clipping process

χi = projD⟨x | ai ⟩ =

⎧

⎪

⎨

⎪

⎩

δ, if ⟨x | ai ⟩ > δ;

⟨x | ai ⟩, if ⟨x | ai ⟩ ∈ D;

δ, if ⟨x | ai ⟩ < δ,

(2.12)

which shows up in several nonlinear data collection processes; see for instance
[2,31,54,58]. It models the inability of the sensors to record values above δ and below δ.

(ii) Let Ω be a nonempty closed interval of R and let softΩ be the associated soft
thresholder, i.e.,

softΩ : R → R : ξ ↦→

⎧

⎪

⎨

⎪

⎩

ξ − ω, if ξ > ω;

0, if ξ ∈ Ω;

ξ − ω, if ξ < ω,

with

{

ω = supΩ

ω = infΩ .
(2.13)

Further, let ψ ∈ Γ0(R) be differentiable at 0 with ψ ′(0) = 0, and set gi = ψ + σΩ ,
where σΩ is the support function of Ω . Then it follows from [20, Proposition 3.6] that

χi = proxψ
(

softΩ ⟨x | ai ⟩
)

=

⎧

⎪

⎨

⎪

⎩

proxψ (⟨x | ai ⟩ − ω), if ⟨x | ai ⟩ > ω;

0, if ⟨x | ai ⟩ ∈ Ω;

proxψ (⟨x | ai ⟩ − ω), if ⟨x | ai ⟩ < ω.

(2.14)

In particular, if Ω = [−ω,ω] and ψ = 0, we obtain the standard soft thresholding
operation

χi = sign(⟨x | ai ⟩) max{|⟨x | ai ⟩| − ω, 0} (2.15)

of [28]. On the other hand, if Ω = ]−∞, ω] and ψ = 0, we obtain a nonlinear sensor
model from [37].

(iii) In (ii) suppose that ψ = ιD , where D is as in (i) and contains 0 in its interior. Then
(2.14) becomes

χi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δ, if ⟨x | ai ⟩ ⩾ δ + ω;

⟨x | ai ⟩ − ω, if ω < ⟨x | ai ⟩ < δ + ω;

0, if ⟨x | ai ⟩ ∈ Ω;

⟨x | ai ⟩ − ω, if δ + ω < ⟨x | ai ⟩ < ω;

δ, if ⟨x | ai ⟩ ⩽ δ + ω.

(2.16)

8
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This operation combines hard clipping and soft thresholding.
(iv) Set

gi : ξ ↦→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 + ξ ) ln(1 + ξ ) + (1 − ξ ) ln(1 − ξ ) − ξ 2

2
, if |ξ | < 1;

ln(2) − 1/2, if |ξ | = 1;

+∞, if |ξ | > 1.

(2.17)

Then it follows from [21, Example 2.12] that χi = tanh(⟨x | ai ⟩). This soft clipping
model is used in [2,29].

(v) Set

gi : ξ ↦→

⎧

⎨

⎩

−
2

π
ln

(

cos
(πξ

2

))

−
ξ 2

2
, if |ξ | < 1;

+∞, if |ξ | ⩾ 1.
(2.18)

Then it follows from [21, Example 2.11] that χi = (2/π ) arctan(⟨x | ai ⟩). This soft
clipping model appears in [2].

(vi) Set

gi : ξ ↦→

{

−|ξ | − ln(1 − |ξ |) − ξ 2/2, if |ξ | < 1;

+∞, if |ξ | ⩾ 1.
(2.19)

Then it follows from [21, Example 2.15] that χi = ⟨x | ai ⟩/(1 + |⟨x | ai ⟩|). This soft
clipping model is found in [29,39].

(vii) Set

gi : ξ ↦→

⎧

⎪

⎨

⎪

⎩

|ξ | + (1 − |ξ |) ln
⏐

⏐1 − |ξ |
⏐

⏐ − ξ 2/2, if |ξ | < 1;

1/2, if |ξ | = 1;

+∞, if |ξ | > 1.

(2.20)

For every ξ ∈ ]−1, 1[ = dom g′
i = ran proxgi

, we have ξ + g′
i (ξ ) = −sign(ξ ) ln(1 − |ξ |).

Hence,
(

Id +g′
i

)−1
= proxgi

: ξ ↦→ sign(ξ )
(

1 − exp(−|ξ |)
)

(2.21)

and, therefore, χi = sign(⟨x | ai ⟩)(1 − exp(−|⟨x | ai ⟩|)). This distortion model is found
in [56, Section 10.6.3].

(viii) Let ηi ∈ ]0,+∞[ and set

gi : ξ ↦→ ηiξ +

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ξ ln(ξ ) + (1 − ξ ) ln(1 − ξ ) − ξ 2/2, if ξ ∈ ]0, 1[ ;

0, if ξ = 0;

−1/2, if ξ = 1;

+∞, if ξ ∈ R∖ [0, 1].

(2.22)

Proceeding as in (vii), we obtain

χi =
1

1 + exp(ηi − ⟨x | ai ⟩)
, (2.23)

which is an encoding scheme used in [36].

Example 2.11. In Proposition 2.9 suppose that, for some i ∈ I, gi = φi ◦dDi
, where φi ∈ Γ0(R)

is even with φi (0) = 0, and Di ⊂ Gi is nonempty, closed, and convex. Then it follows from
[8, Proposition 2.1] that qi is the nonlinear observation defined as follows:

9
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(i) Suppose that φi = ι{0}. Then

qi = projDi
(L i x) (2.24)

captures several applications. Thus, if H = R
N and Di =

{

(ξi )1⩽i⩽N ∈ R
N

⏐

⏐ ξ1 ⩽ · · ·

⩽ ξN

}

, then qi is the best isotonic approximation to L i x [24]. On the other hand, if Di

is the closed ball with center 0 and radius ρi ∈ ]0,+∞[, then (2.24) reduces to the hard
saturation process

qi =

⎧

⎨

⎩

ρi

∥L i x∥
L i x, if ∥L i x∥ > ρi ;

L i x, if ∥L i x∥ ⩽ ρi ,
(2.25)

which can be viewed as an infinite dimensional version of Example 2.10(i).
(ii) Suppose that φi ̸= ι{0} and set ρi = max ∂φi (0). Then

qi =

⎧

⎪

⎨

⎪

⎩

L i x +
proxφ∗

i
dDi

(L i x)

dDi
(L i x)

(

projDi
(L i x) − L i x

)

, if dDi
(L i x) > ρi ;

projDi
(L i x), if dDi

(L i x) ⩽ ρi .

(2.26)

In particular, assume that Di = {0}. Then (2.26) reduces to the abstract soft thresholding
process

qi =

⎧

⎨

⎩

L i x −
proxφ∗

i
∥L i x∥

∥L i x∥
L i x, if ∥L i x∥ > ρi ;

0, if ∥L i x∥ ⩽ ρi ,

(2.27)

which cannot record inputs with norm below a certain value. Let us further specialize
to the setting in which φi = ρi | · | with ρi ∈ ]0,+∞[. Then φ∗

i = ι[−ρi ,ρi ], ∂φi (0) =

[−ρi , ρi ], and (2.27) becomes

qi =

⎧

⎨

⎩

(

1 −
ρi

∥L i x∥

)

L i x, if ∥L i x∥ > ρi ;

0, if ∥L i x∥ ⩽ ρi ,

(2.28)

which can be viewed as an infinite dimensional version of (2.15).

2.3. Prescriptions derived from non-cocoercive operators

Here, we exemplify observation processes which are not cocoercive, and possibly not
even continuous, but that can still be represented by proximal points relative to some firmly
nonexpansive operator, as required in Problem 1.1. The results in this section constructively
provide the proximal points and phrase the evaluation of each firmly nonexpansive operator in
terms of the nonlinearity in the observation process.

Example 2.12. In the spirit of the shrinkage ideas of Corollary 2.3 and Example 2.5, a
prescription involving more general transformations (ϱi )i∈I can be used to derive an equivalent
prescribed proximal point. Let us adopt the setting of Corollary 2.3, except that (ϱi )i∈I are now
arbitrary operators from R to R such that, for some δ ∈ ]0,+∞[, supi∈I |ϱi | ⩽ δ| · |. Since

∑

i∈I

⏐

⏐ϱi (⟨x | ei ⟩)
⏐

⏐

2
⩽ δ2

∑

i∈I

|⟨x | ei ⟩|
2 = δ2∥x∥2 < +∞, (2.29)

10
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the prescription q =
∑

i∈I ϱi (⟨x | ei ⟩)ei is well defined. While q is not a proximal point in
general, an equivalent proximal point p can be constructed from it in certain instances. To
illustrate this process, let us first compute (∀i ∈ I) χi = ⟨q | ei ⟩ = ϱi (⟨x | ei ⟩). In both examples
to follow, for every i ∈ I, we construct an operator σi : R → R such that ϕi = σi ◦ ϱi is firmly
nonexpansive, ϕi (0) = 0, and no information is lost when σi is applied to the prescription
χi = ϱi (⟨x | ei ⟩) in the sense that

(∀ξ ∈ R)
[

χi = ϱi (ξ ) ⇔ σi (χi ) = σi

(

ϱi (ξ )
)

= ϕi (ξ )
]

. (2.30)

Using Corollary 2.3 with the firmly nonexpansive operators (ϕi )i∈I, this implies that p =
∑

i∈I σi (χi )ei is a proximal point of x .

(i) Let i ∈ I, let ωi ∈ ]0,+∞[, and consider the non-Lipschitzian sampling operator [1,55]

ϱi : ξ ↦→

{

sign(ξ )
√

ξ 2 − ω2
i , if |ξ | > ωi ;

0, if |ξ | ⩽ ωi .
(2.31)

It is straightforward to verify that (2.30) holds with

σi : ξ ↦→ sign(ξ )

(

√

ξ 2 + ω2
i − ωi

)

, (2.32)

in which case ϕi = σi ◦ ϱi is the soft thresholder on [−ωi , ωi ] of (2.13).
(ii) Let i ∈ I, let ωi ∈ ]0,+∞[, and consider the discontinuous sampling operator [55]

ϱi = hard[−ωi ,ωi ] : ξ ↦→

{

ξ, if |ξ | > ωi ;

0, if |ξ | ⩽ ωi ,
(2.33)

which is also known as the hard thresholder on [−ωi , ωi ]. This operator is used as a
sensing model in [7] and as a compression model in [57]. Then (2.30) is satisfied with

σi : ξ ↦→ ξ − ωi sign(ξ ), (2.34)

in which case ϕi = σi ◦ ϱi turns out to be the soft thresholder on [−ωi , ωi ] of (2.13).

Next, we revisit Proposition 2.1 by relaxing the firm nonexpansiveness of the observa-
tion operators and constructing an equivalent proximal point via some transformation. This
equivalence is expressed in (iii) below.

Proposition 2.13. Let (Hi )i∈I be an at most countable family of real Hilbert spaces, let

H =
⨁

i∈I Hi , let x ∈ H, and let (xi )i∈I be its decomposition, i.e., (∀i ∈ I) xi ∈ Hi . In addition,

for every i ∈ I, let Qi : Hi → Hi and let qi = Qi xi . Suppose that there exist operators (Si )i∈I

from Hi to Hi such that the operators (Fi )i∈I = (Si ◦ Qi )i∈I satisfy the following:

(i) The operators (Fi )i∈I are firmly nonexpansive.

(ii) If I is infinite, there exists (zi )i∈I ∈ H such that
∑

i∈I ∥Fi zi − zi∥
2 < +∞.

(iii) (∀i ∈ I)(∀ xi ∈ Hi )
[

Fi xi = Si qi ⇔ Qi xi = qi

]

.

Then p = (Si qi )i∈I is the proximal point of x relative to F : H → H : (xi )i∈I ↦→ (Fi xi )i∈I.

Proof. This follows from Proposition 2.1. □

The following result illustrates the process described in Proposition 2.13, through a general-
ization of the discontinuous hard thresholding operator of Example 2.12(ii), which corresponds
to the case when Hi = R and Ci = {0} in (2.35) below.

11
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Proposition 2.14. Let (Hi )i∈I be an at most countable family of real Hilbert spaces, let

H =
⨁

i∈I Hi , let x ∈ H, and let (xi )i∈I be its decomposition. For every i ∈ I, let ωi ∈ ]0,+∞[,
let Ci be a nonempty closed convex subset of Hi , set

Qi : Hi → Hi : xi ↦→

{

xi , if dCi
(xi ) > ωi ;

projCi
xi , if dCi

(xi ) ⩽ ωi ,
(2.35)

and let qi = Qi xi be the associated prescription. If I is infinite, suppose that (∀i ∈ I) 0 ∈ Ci .

Further, for every i ∈ I, set

Si : Hi → Hi : xi ↦→

⎧

⎨

⎩

xi +
ωi

dCi
(xi )

(projCi
xi − xi ), if xi /∈ Ci ;

xi , if xi ∈ Ci

and

{

Fi = Si ◦ Qi

pi = Si qi .

(2.36)

Finally, set p = (pi )i∈I and f : H → ]−∞,+∞] : (xi )i∈I ↦→
∑

i∈I ωi dCi
(xi ). Then the

following hold:

(i) For every i ∈ I, Fi = proxωi dCi
.

(ii) p is the proximal point of x relative to f .

(iii) Let x = (xi )i∈I ∈ H. Then
[

(∀i ∈ I) Qi xi = qi

]

⇔ prox f x = p.

Proof. We derive from (2.35), (2.36), and [5, Proposition 3.21] that

(∀i ∈ I)(∀xi ∈ Hi ) Fi xi =
⎧

⎨

⎩

projCi
xi +

(

1 −
ωi

dCi
(xi )

)

(

xi − projCi
xi

)

/∈ Ci , if dCi
(xi ) > ωi ;

projCi
xi ∈ Ci , if dCi

(xi ) ⩽ ωi .

(2.37)

(i): This is a consequence of (2.37) and [5, Example 24.28].
(ii): If I is infinite, (∀i ∈ I) 0 ∈ Ci ⇒ dCi

(0) = 0 ⇒ Fi (0) = 0 by (2.37). In turn, the claim
follows from Corollary 2.2 and (i).

(iii): We first note that Corollary 2.2 and (i) imply that
(

Fi xi

)

i∈I
=

(

proxωi dCi
xi

)

i∈I
= prox f x . (2.38)

Now, suppose that (∀i ∈ I) Qi xi = qi . Then (∀i ∈ I) Fi xi = Si (Qi xi ) = Si qi = pi . In turn,
(2.38) yields prox f x = (Fi xi )i∈I = p. Conversely, suppose that prox f x = p and fix i ∈ I. We
derive from (2.38) and (2.36) that

Fi xi = pi = Si qi = Si (Qi xi ) = Fi xi . (2.39)

We must show that Qi xi = qi . It follows from (2.35), (2.37), and (2.39) that

dCi
(xi ) ⩽ ωi ⇔ Qi xi = projCi

xi = Fi xi = Fi xi ∈ Ci

⇒

{

dCi
(xi ) ⩽ ωi

Qi xi = projCi
xi = Qi xi = qi .

(2.40)

On the other hand, (2.35) yields

dCi
(xi ) > ωi ⇒ Qi xi = xi , (2.41)

12
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while (2.39) and (2.37) yield

dCi
(xi ) > ωi ⇒ pi = Fi xi = Fi xi

= projCi
xi +

(

1 −
ωi

dCi
(xi )

)

(

xi − projCi
xi

)

/∈ Ci (2.42)

⇒ Fi xi = projCi
xi +

(

1 −
ωi

dCi
(xi )

)

(

xi − projCi
xi

)

and

dCi
(xi ) > ωi (2.43)

⇒ qi = Qi xi = xi . (2.44)

Therefore, in view of (2.41), it remains to show that xi = xi . Set ri = projCi
pi . We deduce

from (2.42), (2.43), and [5, Proposition 3.21] that ri = projCi
xi = projCi

xi . Thus, (2.42) and
(2.43) yield

pi − ri =

(

1 −
ωi

∥xi − ri∥

)

(xi − ri ) =

(

1 −
ωi

∥xi − ri∥

)

(xi − ri ). (2.45)

Taking the norm of both sides yields ∥xi − ri∥ = ∥xi − ri∥ and hence xi = xi . □

3. A block-iterative extrapolated algorithm for best approximation

We propose a flexible algorithm to solve the following abstract best approximation problem.
This new algorithm, which is of interest in its own right, will be specialized in Section 4 to
the setting of Problem 1.1.

Problem 3.1. Let H be a real Hilbert space, let (Ci )i∈I be an at most countable family of
closed convex subsets of H with nonempty intersection C , and let x0 ∈ H. The goal is to find
projC x0, i.e., to

minimize ∥x − x0∥ subject to x ∈
⋂

i∈I

Ci . (3.1)

In 1968, Yves Haugazeau proposed in his unpublished thesis [34] an iterative method to
solve Problem 3.1 when I is finite. His algorithm proceeds by periodic projections onto the
individual sets.

Proposition 3.2 ([34, Théorème 3-2]). In Problem 3.1, suppose that I is finite, say I =

{0, . . . ,m − 1}, where 2 ⩽ m ∈ N. Given (s, t) ∈ H2 such that

D =
{

x ∈ H
⏐

⏐ ⟨x − s | x0 − s⟩ ⩽ 0 and ⟨x − t | s − t⟩ ⩽ 0
}

̸= ∅, (3.2)

set χ = ⟨x0 − s | s − t⟩, µ = ∥x0 − s∥2, ν = ∥s − t∥2, and ρ = µν − χ2, and define

Q(x0, s, t) = projD x0 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t, if ρ = 0 and χ ⩾ 0;

x0 +

(

1 +
χ

ν

)

(t − s), if ρ > 0 and χν ⩾ ρ;

s +
ν

ρ

(

χ (x0 − s) + µ(t − s)
)

, if ρ > 0 and χν < ρ.

(3.3)

13



P.L. Combettes and Z.C. Woodstock Journal of Approximation Theory 268 (2021) 105606

Construct a sequence (xn)n∈N by iterating

for n = 0, 1, . . .
⌊

tn = projCn(mod m)
xn

xn+1 = Q(x0, xn, tn).
(3.4)

Then xn → projC x0.

Haugazeau’s algorithm uses only one set at each iteration. The following variant due to Guy
Pierra uses all of them simultaneously.

Proposition 3.3 ([50, Théorème V.1]). In Problem 3.1, suppose that I is finite, let Q be as in

Proposition 3.2, set ω = 1/card I , and fix ε ∈ ]0, 1[. Construct a sequence (xn)n∈N by iterating

for n = 0, 1, . . .
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

for every i ∈ I
⌊

ai,n = projCi
xn

θi,n = ∥ai,n − xn∥
2

θn = ω
∑

i∈I θi,n

if θn = 0
⌊

tn = xn

else
⎢

⎢

⎢

⎢

⎢

⎣

dn = ω
∑

i∈I ai,n

yn = dn − xn

λn = θn/∥yn∥
2

tn = xn + λn yn

xn+1 = Q(x0, xn, tn).

(3.5)

Then xn → projC x0.

Remark 3.4. An attractive feature of Pierra’s algorithm (3.5) is that, by convexity of ∥ · ∥2,
the relaxation parameter λn can extrapolate beyond 1, hence attaining large values that induce
fast convergence [17,50].

Propositions 3.2 and 3.3 were unified and extended in [15, Section 6.5] in the form of an
algorithm for solving Problem 3.1 which is block-iterative in the sense that, at iteration n ∈ N,
only a subfamily of sets (Ci )i∈In needs to be activated, as opposed to all of them in (3.5).
Block-iterative structures save time per iteration in two ways: firstly, they do not require that
every constraint be activated; secondly, at every n ∈ N, activation of each constraint indexed in
In can be performed in parallel and hence it is common to select card In equal to the number
of available processors. Furthermore, in [15, Section 6.5], the sets (Ci )i∈I were specified as
lower level sets of certain functions and were activated by projections onto supersets instead
of exact ones as in (3.4) and (3.5). Below, we propose an alternative block-iterative scheme
(Algorithm 3.9) which is more sophisticated in that it leverages the affine structure of some
sets (Ci )i∈I ′ to produce deeper relaxation steps, hence providing extra acceleration to the
algorithm. Such affine-convex extrapolation techniques were first discussed in [6], where a
weakly convergent method was designed to solve convex feasibility problems, i.e., to find an
unspecified point in the intersection of closed convex sets. Additionally, as will be seen in
Section 4, this new algorithm will be better suited to solve Problem 1.1 to the extent that it

14
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utilizes a fixed point model for the activation of the sets. The following notions and facts lay
the groundwork for developing our best approximation algorithm.

Definition 3.5 ([5, Section 4.1]). T is the class of firmly quasinonexpansive operators from
H to H, i.e.,

T =
{

T : H → H
⏐

⏐ (∀x ∈ H)(∀y ∈ Fix T ) ⟨y − T x | x − T x⟩ ⩽ 0
}

. (3.6)

Example 3.6 ([4,5]). Let T : H → H and set C = Fix T . Then T ∈ T in each of the following
cases:

(i) T is the projector onto a nonempty closed convex subset C of H.
(ii) T is the proximity operator of a function f ∈ Γ0(H). Then C = Argmin f .

(iii) T is the resolvent of a maximally monotone operator A : H → 2H. Then C =
{

x ∈ H
⏐

⏐ 0 ∈ Ax
}

is the set of zeros of A.
(iv) T is firmly nonexpansive.
(v) R = 2T − Id is quasinonexpansive: (∀x ∈ H)(∀y ∈ Fix R) ∥Rx − y∥ ⩽ ∥x − y∥. Then

C = Fix R.
(vi) T is a subgradient projector onto the lower level set C =

{

x ∈ H
⏐

⏐ f (x) ⩽ 0
}

̸= ∅ of a
continuous convex function f : H → R, that is, given a selection s of the subdifferential
of f ,

(∀x ∈ H) T x = sprojC x =

⎧

⎨

⎩

x −
f (x)

∥s(x)∥2
s(x), if f (x) > 0;

x, if f (x) ⩽ 0.
(3.7)

Lemma 3.7 ([4,5]). Let T : H → H. If T ∈ T, then Fix T is closed and convex. Conversely,

if C is a nonempty closed convex subset of H, then C = Fix T , where T = projC ∈ T.

Lemma 3.8. Let (Tn)n∈N be a sequence of operators in T such that ∅ ̸= C ⊂
⋂

n∈N Fix Tn ,

let x0 ∈ H, let Q be as in Proposition 3.2, and for every n ∈ N, set xn+1 = Q(x0, xn, Tn xn).
Then the following hold:

(i) (xn)n∈N is well defined.

(ii)
∑

n∈N ∥xn+1 − xn∥
2 < +∞.

(iii)
∑

n∈N ∥Tn xn − xn∥
2 < +∞.

(iv) xn → projC x0 if and only if all the weak sequential cluster points of (xn)n∈N lie in C.

Proof. In the case when ∅ ̸= C =
⋂

n∈N Fix Tn , the results are shown in [4, Proposition 3.4(v)
and Theorem 3.5]. However, an inspection of these proofs reveals that they remain true in our
context. □

We are now in a position to introduce our best approximation algorithm for solving
Problem 3.1. It incorporates ingredients of the best approximation method of [15, Section 6.5]
and of the convex feasibility method of [6].

Algorithm 3.9. Consider the setting of Problem 3.1 and denote by (Ci )i∈I ′ a subfamily
of (Ci )i∈I of closed affine subspaces the projectors onto which are easy to implement; this
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subfamily is assumed to be nonempty as H can be included in it. Let Q be as in Proposition 3.2,
fix ε ∈ ]0, 1[, and iterate

for n = 0, 1, . . .
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

take i(n) ∈ I ′

zn = projCi(n)
xn

take a nonempty finite set In ⊂ I

for every i ∈ In
⎢

⎢

⎢

⎣

take Ti,n ∈ T such that Fix Ti,n = Ci

ai,n = Ti,nzn

θi,n = ∥ai,n − zn∥
2

take jn ∈ In such that θ jn ,n = maxi∈Inθi,n

take {ωi,n}i∈In ⊂ [0, 1] such that
∑

i∈In
ωi,n = 1 and ω jn ,n ⩾ ε

I +
n =

{

i ∈ In

⏐

⏐ ωi,n > 0
}

θn =
∑

i∈I+
n
ωi,nθi,n

if θn = 0
⌊

tn = zn

else
⎢

⎢

⎢

⎢

⎢

⎣

dn =
∑

i∈I+
n
ωi,nai,n

yn = projCi(n)
dn − zn

take λn ∈
[

εθn/∥dn − zn∥
2, θn/∥yn∥

2
]

tn = zn + λn yn

xn+1 = Q(x0, xn, tn).

(3.8)

Remark 3.10. Let us highlight some special cases and features of Algorithm 3.9.

(i) If the only closed affine subspace is H then, for every n ∈ N, zn = xn , and the resulting
algorithm has a structure similar to that of [15, Section 6.5], except that the operators
(Ti,n)i∈In are chosen differently. In particular, this setting captures (3.4) and (3.5).

(ii) Suppose that the last step of the algorithm at iteration n ∈ N is replaced by xn+1 = tn .
Then we recover an instance of the (weakly convergent) convex feasibility algorithm
of [6] to find an unspecified point in C =

⋂

i∈I Ci .
(iii) At iteration n ∈ N, a block of sets (Ci )i∈In is selected and each of its elements is activated

via a firmly quasinonexpansive operator. Example 3.6 provides various options to choose
these operators, depending on the nature of the sets.

(iv) If nontrivial affine sets are present then, at iteration n ∈ N, we have zn ̸= xn in general.
Thus, as discussed in [10] and its references in the context of feasibility algorithms
(see (ii)), the resulting step tn is larger than when zn = xn , which typically yields
faster convergence. This point will be illustrated numerically for our best approximation
algorithm in Section 5.

We now establish the strong convergence of an arbitrary sequence (xn)n∈N generated by
Algorithm 3.9 to the solution to Problem 3.1. The last component of the proof relies on
Lemma 3.8(iv), i.e., showing that the weak sequential cluster points of (xn)n∈N lie in C . The
same property is required in [6, Theorem 3.3] to show the weak convergence of the variant
described in Remark 3.10(ii). This parallels the weak-to-strong convergence principle of [4],
namely the transformation of weakly convergent feasibility methods into strongly convergent
best approximation methods.

16



P.L. Combettes and Z.C. Woodstock Journal of Approximation Theory 268 (2021) 105606

Theorem 3.11. In the setting of Problem 3.1, let (xn)n∈N be generated by Algorithm 3.9.

Suppose that the following hold:

[a] There exist strictly positive integers (Mi )i∈I such that

(∀i ∈ I )(∀n ∈ N) i ∈

n+Mi −1
⋃

l=n

{i(l)} ∪ Il . (3.9)

[b] For every i ∈ I ∖ I ′, every x ∈ H, and every strictly increasing sequence (rn)n∈N in N,
⎧

⎪

⎨

⎪

⎩

i ∈
⋂

n∈N Irn

projCi(rn )
xrn ⇀ x

Ti,rn

(

projCi(rn )
xrn

)

− projCi(rn )
xrn → 0

⇒ x ∈ Ci . (3.10)

Then xn → projC x0.

Proof. Let us fix n ∈ N temporarily. Define

Ln : H → R : z ↦→

⎧

⎪

⎨

⎪

⎩

∑

i∈I+
n
ωi,n∥Ti,nz − z∥2





∑

i∈I+
n
ωi,nTi,nz − z





2
, if z /∈

⋂

i∈I+
n

Ci ;

1, if z ∈
⋂

i∈I+
n

Ci

(3.11)

and

Sn : H → H : z ↦→ z + Ln(z)

(

∑

i∈I+
n

ωi,nTi,nz − z

)

. (3.12)

We derive from [16, Proposition 2.4] that Sn ∈ T and Fix Sn =
⋂

i∈I+
n

Fix Ti,n =
⋂

i∈I+
n

Ci . We
also observe that

θn = 0 ⇔ Snzn = zn ⇔ zn ∈
⋂

i∈I+
n

Ci = Fix Sn. (3.13)

Now define

Kn : H → R : x ↦→
⎧

⎪

⎪

⎨

⎪

⎪

⎩



Sn

(

projCi(n)
x
)

− projCi(n)
x




2



projCi(n)

(

Sn

(

projCi(n)
x
))

− projCi(n)
x




2
, if projCi(n)

x /∈
⋂

i∈I+
n

Ci ;

1, if projCi(n)
x ∈

⋂

i∈I+
n

Ci

(3.14)

and

Tn : H → H : x ↦→ projCi(n)
x + γn(x)

(

projCi(n)

(

Sn

(

projCi(n)
x
)

)

− projCi(n)
x
)

,

where γn(x) ∈ [ε, Kn(x)] . (3.15)

Then it follows from [6, Theorem 2.8] that Tn ∈ T and

∅ ̸= C ⊂ Ci(n) ∩
⋂

i∈I+
n

Ci = Ci(n) ∩ Fix Sn = Fix Tn. (3.16)

17
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If θn ̸= 0, using (3.8), (3.12), and the fact that projCi(n)
is an affine operator

[5, Corollary 3.22(ii)], we obtain

projCi(n)

(

Sn

(

projCi(n)
xn

)

)

− projCi(n)
xn = projCi(n)

(Snzn) − zn

= projCi(n)

(

(

1 − Ln(zn)
)

zn + Ln(zn)dn

)

− zn

=
(

1 − Ln(zn)
)

projCi(n)
zn + Ln(zn)projCi(n)

dn − zn

= Ln(zn)
(

projCi(n)
dn − zn

)

= Ln(zn)yn (3.17)

and, therefore,


projCi(n)
(Snzn) − zn



 = Ln(zn)∥yn∥. (3.18)

Hence, (3.14) and (3.12) yield

Kn(xn) =

⎧

⎪

⎨

⎪

⎩

∥Sn(zn) − zn∥
2



projCi(n)

(

Snzn

)

− zn





2
=

∥Ln(zn)(dn − zn)∥2

∥Ln(zn)yn∥2
=

∥dn − zn∥
2

∥yn∥2
, if θn ̸= 0;

1, if θn = 0.

(3.19)

At the same time, we derive from (3.11), (3.8), and (3.13) that

Ln(zn) =

⎧

⎨

⎩

θn

∥dn − zn∥2
, if θn ̸= 0;

1, if θn = 0.
(3.20)

Altogether, it results from (3.15), (3.19), and (3.20) that, if θn ̸= 0,

γn(xn)Ln(zn) ∈
[

εLn(zn), Kn(xn)Ln(zn)
]

=
[

εθn/∥dn − zn∥
2, θn/∥yn∥

2
]

(3.21)

and, in view of (3.8), we can therefore set λn = γn(xn)Ln(zn). Thus, it follows from (3.8) and
(3.17) that

θn ̸= 0 ⇒ tn = zn + λn yn

= zn + γn(xn)Ln(zn)yn

= projCi(n)
xn + γn(xn)

(

projCi(n)

(

Sn

(

projCi(n)
xn

))

− projCi(n)
xn

)

= Tn xn. (3.22)

On the other hand, (3.8) and (3.13) yield

θn = 0 ⇒ tn = zn = Snzn = Tn xn. (3.23)

Combining (3.22) and (3.23), we obtain

xn+1 = Q(x0, xn, Tn xn). (3.24)

Turning back to (3.15) and (3.8), we deduce from [5, Corollary 3.22(i)] that

∥Tn xn − xn∥
2 =



zn − xn + γn(xn)
(

projCi(n)
(Snzn) − zn

)



2

= ∥zn − xn∥
2 + 2γn(xn)⟨projCi(n)

xn − xn | projCi(n)
(Snzn) − projCi(n)

xn⟩

18
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+ |γn(xn)|2


projCi(n)
(Snzn) − zn





2

= ∥zn − xn∥
2 + |γn(xn)|2



projCi(n)
(Snzn) − zn





2

⩾ ∥zn − xn∥
2 + ε2



projCi(n)
(Snzn) − zn





2
. (3.25)

Since (3.16) implies that

∅ ̸= C ⊂
⋂

n∈N

Fix Tn, (3.26)

we derive from (3.24) and Lemma 3.8(i) that (xn)n∈N is well defined. Furthermore, (3.25) and
Lemma 3.8(iii) guarantee that

∑

n∈N

∥zn − xn∥
2 < +∞ (3.27)

and
∑

n∈N

∥projCi(n)
(Snzn) − zn∥

2 < +∞. (3.28)

Finally, in view of (3.26) and Lemma 3.8(iv), to conclude the proof, it is enough to show that
all the weak sequential cluster points of (xn)n∈N lie in C . Since we have at our disposal [a],
[b], (3.27), and (3.28), showing this inclusion can be done by following the same steps as in
the proof of [6, Theorem 3.3(vi)]. □

Remark 3.12. Condition [a] in Theorem 3.11 states that, for each i ∈ I , the set Ci should
be involved at least once every Mi iterations. Condition [b] in Theorem 3.11 is discussed in
[6, Section 3.4], where concrete scenarios that satisfy it are described.

4. Fixed point model and algorithm for Problem 1.1

To solve Problem 1.1, we are going to reformulate it as an instance of Problem 3.1. To this
end, let us set

(∀k ∈ K ) Ck =
{

x ∈ H
⏐

⏐ Fk x = pk

}

and Tk = pk + Id −Fk . (4.1)

Then it follows from (1.9) that

(∀k ∈ K ) Tk is firmly nonexpansive and Fix Tk = Ck . (4.2)

We therefore deduce from Lemma 3.7 that (Ck)k∈K are closed convex subsets of H. Thus, upon
setting I = J ∪ K , we recast Problem 1.1 is an instantiation of Problem 3.1. This leads us to
the following solution method based on Algorithm 3.9.

Proposition 4.1. In the setting of Problem 1.1, let Q be as in Proposition 3.2, fix ε ∈ ]0, 1[,
and denote by (Ci )i∈I ′ a subfamily of (Ci )i∈J of closed affine subspaces the projectors onto

which are easy to implement; this subfamily is assumed to be nonempty as H can be included
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in it. Iterate

for n = 0, 1, . . .
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

take i(n) ∈ I ′

zn = projCi(n)
xn

take a nonempty finite set In ⊂ J ∪ K

for every i ∈ In
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

if i ∈ J
⌊

take Ti,n ∈ T such that Fix Ti,n = Ci

ai,n = Ti,nzn

if i ∈ K
⌊

ai,n = pi + zn − Fi zn

θi,n = ∥ai,n − zn∥
2

take jn ∈ In such that θ jn ,n = maxi∈Inθi,n

take {ωi,n}i∈In ⊂ [0, 1] such that
∑

i∈In
ωi,n = 1 and ω jn ,n ⩾ ε

I +
n =

{

i ∈ In

⏐

⏐ ωi,n > 0
}

θn =
∑

i∈I+
n
ωi,nθi,n

if θn = 0
⌊

tn = zn

else
⎢

⎢

⎢

⎢

⎢

⎣

dn =
∑

i∈I+
n
ωi,nai,n

yn = projCi(n)
dn − zn

take λn ∈
[

εθn/∥dn − zn∥
2, θn/∥yn∥

2
]

tn = zn + λn yn

xn+1 = Q(x0, xn, tn).

(4.3)

Suppose that condition [a] in Theorem 3.11 holds with I = J ∪ K , as well as the following:

[c] For every i ∈ J ∖ I ′, every x ∈ H, and every strictly increasing sequence (rn)n∈N in N,

(3.10) holds.

Then (xn)n∈N converges strongly to the solution to Problem 1.1.

Proof. Let us bring into play (4.1) and (4.2). As discussed above, Problem 1.1 is an instance
of Problem 3.1, where I = J ∪ K . Now set

(∀k ∈ K )(∀n ∈ N) Tk,n = Tk = pk + Id −Fk . (4.4)

Then (3.8) reduces to (4.3) and, in view of condition [c] above, to conclude via Theorem 3.11,
it suffices to check that condition [b] in Theorem 3.11 holds for every k ∈ K . Towards this goal,
let us fix k ∈ K and a strictly increasing sequence (rn)n∈N in N such that k ∈

⋂

n∈N Irn , and
let us set (∀n ∈ N) un = projCi(rn )

xrn . Suppose that un ⇀ x ∈ H and that Tk,rn un − un → 0.
Then (4.4) yields Tkun − un → 0 and, since Tk is nonexpansive by (4.2), it follows from
Browder’s demiclosedness principle [5, Corollary 4.28] that x ∈ Fix Tk = Ck , which concludes
the proof. □

As was mentioned in Remark 3.10(iv) and will be illustrated in Section 5, exploiting
the presence of affine subspaces typically leads to faster convergence. Problem 1.1 can
nonetheless be solved without taking the affine subspaces into account. Formally, this amounts
to considering that (Ci )i∈I ′ consists solely of H, in which case Proposition 4.1 leads to the
following implementation.
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Corollary 4.2. In the setting of Problem 1.1, let Q be as in Proposition 3.2, and fix ε ∈ ]0, 1[.
Iterate

for n = 0, 1, . . .
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

take a nonempty finite set In ⊂ J ∪ K

for every i ∈ In
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

if i ∈ J
⌊

take Ti,n ∈ T such that Fix Ti,n = Ci

ai,n = Ti,n xn

if i ∈ K
⌊

ai,n = pi + xn − Fi xn

θi,n = ∥ai,n − xn∥
2

take jn ∈ In such that θ jn ,n = maxi∈Inθi,n

take {ωi,n}i∈In ⊂ [0, 1] such that
∑

i∈In
ωi,n = 1 and ω jn ,n ⩾ ε

I +
n =

{

i ∈ In

⏐

⏐ ωi,n > 0
}

θn =
∑

i∈I+
n
ωi,nθi,n

if θn = 0
⌊

tn = xn

else
⎢

⎢

⎢

⎣

yn =
∑

i∈I+
n
ωi,nai,n − xn

take λn ∈
[

εθn/∥yn∥
2, θn/∥yn∥

2
]

tn = xn + λn yn

xn+1 = Q(x0, xn, tn).

(4.5)

Suppose that the following hold:

[d] There exist strictly positive integers (Mi )i∈J∪K such that (∀i ∈ J ∪ K )(∀n ∈ N)
i ∈

⋃n+Mi −1
l=n Il .

[e] For every i ∈ J , every x ∈ H, and every strictly increasing sequence (rn)n∈N in N,
[

i ∈
⋂

n∈N

Irn , xrn ⇀ x, and Ti,rn xrn − xrn → 0

]

⇒ x ∈ Ci . (4.6)

Then (xn)n∈N converges strongly to the solution to Problem 1.1.

5. Numerical illustration

Let H be the standard Euclidean space R
N , where N = 1024. The goal is to recover the

original form of the signal x ∈ H shown in Fig. 1 from the following:

(i) x resides in the subspace C1 of signals which are band-limited in the sense that their
discrete Fourier transform vanishes outside of the 103 lowest frequency components.

(ii) Let tv : H → R : x = (ξi )1⩽i⩽N ↦→
∑

1⩽i⩽N−1 |ξi+1 − ξi | be the total variation function.
An upper bound γ ∈ ]0,+∞[ on tv (x) is available. The associated constraint set is
C2 =

{

x ∈ H
⏐

⏐ tv (x) − γ ⩽ 0
}

. For this experiment, γ = 1.5tv (x).
(iii) 25 observations (qk)k∈K are available where, for every k ∈ K = {3, . . . , 27}, qk is the iso-

tonic regression of the coefficients of x in a dictionary (ek, j )1⩽ j⩽10 of vectors in H. More
precisely (see Example 2.11(i)), set G = R

10 and D =
{

(ξ j )1⩽ j⩽10 ∈ G
⏐

⏐ ξ1 ⩽ · · · ⩽ ξ10
}

.
Then, for every k ∈ K , qk = projD(Lk x), where Lk : H → G : x ↦→ (⟨x | ek, j ⟩)1⩽ j⩽10.
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Fig. 1. Original signal x .

Fig. 2. Solution x∞ to (5.1).

We seek the minimal-energy signal consistent with the information above, i.e., we seek to

minimize ∥x∥ subject to x ∈ C1 ∩ C2 and (∀k ∈ K ) projD(Lk x) = qk . (5.1)

Let us set x0 = 0, J = {1, 2}, and, for every k ∈ K , pk = ∥Lk∥
−2L∗

kqk , and Fk =

∥Lk∥
−2L∗

k ◦ projD ◦ Lk . For every k ∈ K , applying Proposition 2.8 with I = {k}, Gk = G,
βk = 1, and Qk = projD shows that pk is the proximal point of x relative to Fk and, for every
x ∈ H, Fk x = pk ⇔ projD(Lk x) = qk . We therefore arrive at an instance of Problem 1.1
which is equivalent to (5.1), namely

minimize ∥x∥ subject to x ∈ C1 ∩ C2 and (∀k ∈ K ) Fk x = pk . (5.2)

With an eye towards algorithm (4.3), since C1 is an affine subspace with a straightforward
projector [59], set I ′ = {1}. At iteration n ∈ N, the constraint (ii) is activated by the subgradient
projector T2,n = sprojC2

of (3.7) (see [19] for its computation) since the direct projector is
hard to implement. The fact that condition [c] in Proposition 4.1 is satisfied follows from
[5, Proposition 29.41(vi)(a)]. We solve (5.2) with algorithm (4.3) to obtain the solution x∞

shown in Fig. 2 (see [33, Algorithm 8.1.1] for the computation of projD).
To demonstrate the benefits of exploiting the presence of affine subspaces in algorithm (4.3),

we show in Fig. 3 the approximate solution it generates after 1000 iterations. For the sake of
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Fig. 3. Solution x∞ (red) and the approximate recovery obtained with 1000 iterations of algorithm (4.3), which
exploits affine constraints (blue). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Solution x∞ (red) and the approximate recovery obtained with 1000 iterations of algorithm (4.5), which
does not exploit affine constraints (green). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

comparison, we display in Fig. 4 the approximate solution generated by algorithm (4.5) after
1000 iterations. The following parameters are used:

• Algorithm (4.3): For every n ∈ N, i(n) = 1, and whenever θn ̸= 0,

λn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

θn

2∥yn∥2
, if n ≡ 0 mod 3;

θn

∥yn∥2
, if n ̸≡ 0 mod 3.

(5.3)

Additionally, In is selected to activate C2 at every iteration and periodically sweep
through one entry of K per iteration, hence satisfying condition [a] in Theorem 3.11
with M1 = M2 = 1, and, for every k ∈ K , Mk = 25. Moreover, for every i ∈ In ,
ωi,n = 1/2.

• Algorithm (4.5): Iteration n ∈ N is executed with the same relaxation scheme (5.3) as in
algorithm (4.3), and the same choice of the activation set In , with the exception that In

also activates C1 at every iteration. In addition, for every i ∈ In , ωi,n = 1/3.

23



P.L. Combettes and Z.C. Woodstock Journal of Approximation Theory 268 (2021) 105606

Fig. 5. Normalized error ∥xn − x∞∥/∥x0 − x∞∥ versus iteration count n ∈ {0, . . . , 1000} for algorithm (4.3) (blue)
and algorithm (4.5) (green). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

While both approaches are equivalent means of solving (5.2), Figs. 3 and 4 demonstrate
qualitatively that algorithm (4.3) yields faster convergence to the solution x∞ than algorithm
(4.5). This is confirmed quantitatively by the error plots of Fig. 5.
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