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We study the three-boson bound-state mass and wave functions for ground and excited states within the 
three-body relativistic framework with Kamada and Glöcke boosted potentials in the limit of a zero-range 
interaction. We adopt a nonrelativistic short-range separable potential, with Yamaguchi and Gaussian 
form factors, and drive them towards the zero-range limit by letting the form factors’ momentum 
scales go to large values while keeping the two-body binding fixed. We show that the three-boson 
relativistic masses and wave functions are model-independent towards the zero-range limit, and the 
Thomas collapse is avoided, while the nonrelativistic limit kept the Efimov effect. Furthermore, the 
stability in the zero-range limit is a result of the reduction of boosted potential with the increase of the 
virtual pair center of mass momentum within the three-boson system. Finally, we compare the present 
results with Light-Front and Euclidean calculations.

 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The interpretation of novel results for the spectrum of hadron 
and multi-hadron states from Lattice Quantum Chromodynamics 
(LQCD) simulations serves as a new motivation to address rela-
tivistic few-body systems.

In this context, it is known that two-body (2B) phase shifts 
can be extracted from the volume dependence of the spectrum by 
using the Lüscher formula with two-particle quantization condi-
tion [1,2]. Beyond 2B, the spectra of multi-pion states in maximum 
isospin levels were computed by the NPLQCD collaboration [3,4]
in a finite volume more than a decade ago, and more recently, 
LQCD calculations were performed for the two- and three-pion 
finite-volume spectra for isospin I = 2 and 3, respectively [5]. The 
I = 3 spectrum was calculated within a unitary three-dimensional 
framework for the two- and three-pion scattering amplitudes in 
a finite-volume discretized with periodic boundary conditions [6]
(see also [7]). Furthermore, the finite-volume energy spectrum 
of the K −K −K − system was also obtained from LQCD calcula-
tions [8].

A field theory on a four-dimensional (4D) lattice is defined with 
periodic (anti-periodic) boundary conditions in the case of bosonic 
(fermionic) fields, which includes the time direction as well (see 
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e.g. [9]). In correspondence, the 4D finite-volume formulation of 
the Faddeev-like equations in Euclidean space was recently imple-
mented [10] in the 4D three-boson Faddeev-Bethe-Salpeter (FBS) 
equation for the contact interaction [11].

An important issue that permeates these continuum treatments 
of the relativistic three-boson system are its stability in the limit 
of a zero-range interaction, as it is known that the Thomas col-
lapse [12,13] is present in the nonrelativistic three-boson system 
with contact potentials. The stability was shown by solving the 
Light-Front (LF) reduction of the FBS equation truncated at the va-
lence state [14,15]. The stability of the three-boson system was 
also shown by solving the 4D FBS equation for the contact interac-
tion in Euclidean space [16]. It was then confirmed the relative 
importance of the implicit three-body interactions of relativistic 
origin [17], which is missing in the formulation of the valence state 
integral equation.

This context motivates us to study the stability of the three-
boson system in the limit of contact interactions within other 
frameworks to formulate the relativistic Faddeev equations, for 
example, using boosted potentials [18]. The boost concept comes 
from the moving 2B subsystem in the rest frame of the three-
particle system. One approach for calculating 2B boosted T -
matrices is solving the relativistic Lippmann-Schwinger equation 
for boosted 2B potentials. At the 2B level, the relativistic 2B po-
tentials are designed to preserve the 2B observables for bound 
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and scattering states. Kamada and Glöckle have shown that rel-
ativistic and boosted potentials can be obtained directly from 
nonrelativistic potentials by solving a quadratic equation using an 
iterative scheme [18]. Once the boosted potential is obtained, the 
2B T -matrix in the rest frame of the three-body system can be 
computed as required for the kernel of the relativistic Faddeev 
equations [19,20].

The above formulation will be explored to study the three-
boson stability separable interactions (Yamaguchi-type and Gaus-
sian-type) driven to the zero-range limit. Our goal is to solve the 
relativistic Faddeev equations, and obtain both the binding en-
ergies and associated wave functions, and study their properties 
when the interaction range is driven towards zero.

Before presenting our study in detail, we should remark that 
the relativistic Faddeev approach with boosted interactions is not 
based on field theory, but it uses a relativistic version of the phe-
nomenological 2B potential. It belongs to one of the three forms 
of relativistic dynamics proposed by Dirac in 1949 [21]: the in-
stant form, the LF form, and the point form. The different forms 
of dynamics are characterized by the number of kinematical and 
dynamical boosts, in correspondence with the generators of the 
Poincaré group. The most commonly used forms of dynamics are 
the instant and LF forms, and we restrict ourselves to those ones. 
The kinematical boosts keep the initial state hyper-surface invari-
ant and do not contain the interaction, while the dynamical ones 
depend on the interaction. In the instant form, six out of ten 
generators of the Poincaré group are kinematical, while four are 
dynamical and contain the interaction. In the LF form, seven gen-
erators are kinematical, and three are dynamical. This form corre-
sponds to the one with a maximal number of kinematical genera-
tors (for a thorough discussion of this form of dynamics applied to 
nuclear few-body systems, see e.g. Ref. [22]). The relativistic frame-
work developed by Kamada and Glöckle is within the class of the 
instant form dynamics. Their development applied to few-nucleon 
systems was designed to keep the relativistic deuteron binding en-
ergy and nucleon-nucleon phase shifts unaltered from the results 
obtained with the nonrelativistic calculations. Furthermore, it pro-
vides energy states with good angular momentum quantum num-
bers, as usual in the nonrelativistic frameworks. In this way, the 
relativistic Faddeev approach with boosted potential can be viewed 
as one possible and practical implementation of the instant form of 
dynamics. We will also quantitatively illustrate the difference be-
tween the Kamada and Glöckle instant form framework outcomes 
and the results from LF and field theoretical models in the limit of 
zero-range interactions.

Relativistic Faddeev approach with boosted interactions. The rela-
tivistic Faddeev equations for the bound state of three identical 
particles were recently derived in momentum space as a func-
tion of relativistic Jacobi momentum vectors [19,20]. A partial wave 
projection of relativistic Faddeev equation in an s-wave channel is 
given by

ψ(p,k)

= 4π Gr
0(p,k)

∞∫

0

dk′k′
2

2
1∫

−1

dx′ N(k,k′, x′) Tk(p, π̃ ;ε) ψ(π ,k′),

(1)

where p and k are the relativistic Jacobi momenta, Gr
0(p, k) =

[Mt − ωk(p) − %(k)]−1 is the relativistic free propagator, where 
Mt = Et + 3m is the 3B mass eigenvalue, m is the mass of each 
particle, ωk(p) =

√
ω2(p) + k2, ω(p) = 2

√
p2 + m2, and %(k) =√

m2 + k2. The definitions of the shifted momentum π and π̃ , 
and the remaining quantities are given in Appendix A. In the non-
relativistic limit where the momenta are much smaller than the 

masses, the Jacobian function N , given in Appendix A, reduces to 
one. In addition, the relativistic Jacobi momenta p and k reduce 
to the corresponding nonrelativistic Jacobi momenta, and similarly, 
the shifted momentum arguments π̃ and π reduce to the corre-
sponding nonrelativistic ones of Ref. [23]. The boosted 2B transi-
tion matrix Tk(p, p′; ε) for 2B subsystem energies ε = Mt − %(k)

is obtained from relativistic Lippmann-Schwinger equation as

Tk(p, p′;ε)

= Vk(p, p′) + 4π

∫
dp′′p′′2 Vk(p, p′′)

ε − ωk(p′′)
Tk(p′′, p′;ε). (2)

The matrix elements of boosted potential Vk can be obtained di-
rectly from the nonrelativistic potential Vnr , by solving a quadratic 
integral equation [18]

Vk(p, p′) + 4π

ωk(p) + ωk(p′)

∫
dp′′p′′2 Vk(p, p′′) Vk(p′′, p′)

= 4m Vnr(p, p′)
ωk(p) + ωk(p′)

. (3)

An important physical property of the boosted potential, clear in 
Eq. (3), is the damping with the increase of the momentum of 
the spectator particle k. This behavior corresponds in practice to 
an effective three-body repulsive effect, working in the ultravio-
let region (UV), which balances the attraction at the short range. 
We will illustrate these properties when studying the three-boson 
bound state when driving the potential range to zero.

Results. In the following, we present our numerical results for 
the solution of relativistic Faddeev integral equation (1) for boosted 
potentials obtained from one-term separable nonrelativistic poten-
tials, which are generally defined as Vnr(p, p′) = λnr g(p) g(p′), 
where λnr is the potential strength and g(p) is the form factor 
in the momentum basis. In this work we use two models of sep-
arable potentials, Yamaguchi-type form factor g(p) = 1/(p2 + β2)
[24] and the Gaussian form factor g(p) = exp (−p2/(2) [25].

The inputs for the solution of relativistic Lippmann–Schwinger 
equation (2) are the matrix elements of boosted potentials Vk(p, p′)
which can be obtained directly from nonrelativistic interaction 
Vnr(p, p′) by solving the integral Eq. (3) using an iterative scheme 
proposed by Kamada and Glöckle [18] and successfully imple-
mented in a three-dimensional scheme [26,27]. The iteration starts 
with the initial guess

V (0)
k (p, p′) = 4m Vnr(p, p′)

ωk(p) + ωk(p′)
, (4)

and continues to reach convergence in the matrix elements of the 
boosted potential with a relative error of 10−16 MeV fm3 at each 
set points (p, p′). In Fig. 1, we show the diagonal matrix elements 
of boosted potentials with different values of boost momentum 
k calculated for a wide range of form factor parameters β for 
Yamaguchi-type and ( for the Gaussian potentials. As one can see, 
the boosted potentials are getting smaller by increasing the boost 
momentum k.

By having the matrix elements of boosted potentials Vk(p, p′), 
we solve the relativistic Lippmann-Schwinger integral equation (2)
to calculate fully off-shell boosted T -matrices Tk(p, p′; ε) for 2B 
subsystem energies ε = Mt − %(k) dictated by the boost momen-
tum k. Then, by solving the integral equation (1) with the Lanczos 
technique (see Appendix C2 of Ref. [28]), we obtain relativistic 3B 
binding energies Et and Faddeev components ψ(p, k) for ground 
and excited states. We use the Gauss-Legendre quadratures with 
hyperbolic plus linear mapping for Jacobi momenta and linear 
mapping for angle variables to discretize continuous momentum 
and angle variables [26]. The cutoffs of Jacobi momenta and the 
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Fig. 1. The diagonal matrix elements of nonrelativistic and boosted potentials calculated for a wide range of form factor parameters β for Yamaguchi-type (upper panel) and 
( for the Gaussian potentials (lower panel) obtained with different boost momentum k.

Fig. 2. Left panel: the ground and first excited state binding energies as a function of the form factor parameters β (solid line for Yamaguchi-type potential) and ( (full 
circles for the Gaussian potential) obtained for a fixed 2B binding energy of −2.225 MeV. The first excited state binding energies are multiplied by a factor of 50. Right 
panel: the value of M3/m as a function of M2/m calculated from the three-body ground and first excited states obtained with form factor parameters β = ( = 2000 fm−1

for Yamaguchi-type (solid lines) and Gaussian potentials (full circles). For comparison, our results with the Bethe-Salpeter (dashed line) and Light-Front (dash-dotted line) 
zero-range calculations of Ref. [16] are added to the plot.

distribution of their mesh points strongly depend on the potential 
form factor parameters β and (.

In the left panel of Fig. 2, we show three-boson ground and first 
excited state binding energies as a function of the potential range 
parameters β and (, for the Yamaguchi and Gaussian form fac-
tors, respectively, with a nonrelativistic 2B binding energy kept at 
-2.225 MeV, namely, the deuteron binding energy. For β and ( in-
creasing, the three-boson system follows the Thomas collapse, with 
the binding energy ∝ −β2 and ∝ −(2, happening in our examples 
up to values around 200 fm−1 or corresponding to a momentum 
of 0.4 GeV/c comparable to the nucleon mass. Then, the boost 
effects take place and stabilize the system through an induced re-
pulsion that tends to counterbalance the singular behavior of the 

collapse with the binding energy reaching a plateau, regardless 
of the short-range potential model, suggesting that a well-defined 
zero-range limit exists for the Glöckle-Kamada boosted potentials 
within the relativistic three-body framework.

In the right panel of Fig. 2, we present three-body and single-
particle mass ratio M3/m as a function of the 2B and single-
particle mass ratio M2/m, obtained for three-body ground and 
first excited states using large form factor parameters β = ( =
2000 fm−1. The plot presents the mass in units of the particle 
mass, which can be compared with previous calculations using 
the Bethe-Salpeter (BS) and Light-Front equations [16]. As one can 
see in the right panel of Fig. 2, our results with large form fac-
tor parameters for both Yamaguchi-type and Gaussian potentials 
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Fig. 3. Relativistic Faddeev components for three-body ground ψ (0)(p, k) and first excited ψ (1)(p, k) states calculated for Yamaguchi-type potential with form factor parameters 
(lines) β = 200, 2000 fm−1 and Gaussian potential with form factor parameters (symbols) ( = 200, 2000 fm−1.

reveal a universal behavior. Our numerical results for three-boson 
first excited bound state mass obtained from the boosted poten-
tials with large form factor parameters, i.e. β = 2000 fm−1 and 
( = 2000 fm−1, show a weaker attraction when compared to 
the results obtained with the LF and BS frameworks [16]. First, 
we observe that, in the 2B bound state region, both the LF and 
BS approaches have an unphysical three-body ground state with 
M2

3 < 0, which are possible as the homogeneous integral equa-
tions, only depend on M2

3 [16]. The physical “ground” state with 
0 < M2

3 < (m + M2)
2 from the solution of the LF and BS equations 

are indeed an excited state, and in this way, they are denoted in 
the right panel of the figure.

The difference between the LF and BS approaches is the at-
tractive three-body effective interactions appearing in the BS ap-
proach due to the implicit inclusion of an infinite set of LF Fock-
components, which is missing in the LF equation where the trun-
cation is made at the valence level [16]. What is noticeable is that 
the boosted potential brings less attraction to the three-body sys-
tem, and furthermore in the UV region is much less attractive due 
to the softening of the relativistic potential owing the boost com-
ing with the solution of Eq. (3). This effect can be appreciated 
by noticing the slowest decrease of M3 by decreasing M2 for the 
boosted potential calculation with respect to BS and LF results. The 
softening in the decrease of the three-body mass with the increase 
of the 2B binding in the adopted relativistic framework, as seen in 
the right panel of Fig. 2, suggests that the increase of the bind-
ing turns the three-body bound state more compact, which forces 
the system to explore the UV region, where the boosted potential 
becomes weak. On the other hand, the 2B amplitude considered 
in the LF and BS equations is much less damped in the UV re-
gion, presenting a ∼ 1/ log(k) behavior (cf. Eq. (2) in Ref. [16]), 
quite soft compared to the decrease of the boosted potential ma-
trix elements, with ∼ 1/k, as the non-linear term is not relevant 
for k >> m attaining very large values, as the driving term of 
the iterative solution for the boosted potential, Eq. (4), follows 
V (0)

k (p, p′)|k>>m ∝ 1/k. Thus, this discussion is indeed indicating 

Table 1
Relativistic three-body ground and first excited state binding energies for Faddeev 
components shown in Fig. 3. The 2B binding energy is −2.225 MeV.

Potential parameter (fm−1) E(0)
t (MeV) E(1)

t (MeV)

Yamaguchi-type potential
β = 200 −454.1 −6.076
β = 2000 −353.7 −4.891

Gaussian potential
( = 200 −465.2 −6.176
( = 2000 −357.7 −4.914

a weaker kernel of the Faddeev equation provided by the boosted 
potential with respect to the LF and BS ones.

Finally, in Fig. 3, we show the Faddeev component of the wave 
functions corresponding to the ground state, ψ (0)(p, k), and first 
excited one, ψ (1)(p, k), as a function of Jacobi momenta p and k, 
for two sets of small and large potential form factor parameters β
and (. The corresponding binding energies are listed in Table 1. 
The first striking observation is the universality, i.e., the model 
independence, of ψ (0)(p, k) and ψ (1)(p, k) up to momenta about 
β or (. For larger momenta, both potential models clearly show 
different decay behaviors, and the Gaussian model shows, as ex-
pected, the faster damping of the Faddeev component, while the 
Yamaguchi one still seems a power-law behavior.

The interesting aspect seen in Fig. 3 is the model indepen-
dence of the power-law damping of the wave function happening 
both for the third particle spectator momentum m < k < β((), 
and the two-particle relative one m < p < β((). Furthermore, the 
power-law behavior in the region of momenta between ∼ m and 
∼ β(() is independent of the excitation state of the three-boson 
system for both momenta. The fit of the power-law functions in 
the region m < k < β((), scales with ψ (0)(p, k = 0) ∼ p−1.9 and 
ψ (0)(p = 0, k) ∼ k−3.7.

We should observe that the power-law property of the wave 
function component in the relative momentum p is somewhat ex-
pected, as the relativistic propagator behavior dominates it at large 
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p values. On the other hand, the power-law in k is in contrast with 
the log-periodic behavior characteristic of the Thomas collapsed 
states in the limit of the zero-range interaction for the nonrela-
tivistic three-boson system [29,30]. On the other hand, the Efimov 
effect [31], when the 2B binding is let to zero, is kept by the Fad-
deev equations with boosted potentials.

Summary. In this work, we solved the relativistic three-boson 
bound state problem within the Kamada and Glöcke framework of 
building the boosted potential in the limit of a zero-range inter-
action. The starting point is a nonrelativistic short-range separable 
potential, with Yamaguchi and Gaussian form factors, which are 
driven to the contact interaction by letting their momentum scales 
to large values in comparison with the boson mass scale, while the 
2B binding energy was kept fixed.

The solutions of the relativistic three-boson Faddeev equa-
tion with the boosted potentials are stable, and the three-boson 
relativistic masses and wave functions are finite and model-
independent towards the limit of the zero-interaction. The Thomas 
collapse is avoided, while the Efimov physics for large scattering 
lengths are kept. The boosted potential provides an effective re-
pulsive short-range effect that decreases the interaction intensity 
and guarantees the stability of the relativistic three-boson system 
towards the zero-range limit.

We found that the Faddeev equation with the boosted potential 
provides a much weaker attraction to bind the three-boson sys-
tem than to what was found by solving the LF and BS ones [16]. 
That effective weaker attraction can be partially traced back to the 
more strong damping of the boosted potential, and equally well 
the 2B T-matrix with the spectator momentum with a characteris-
tic behavior ∼ 1/k, while within the LF and BS formulations, the 2B 
amplitude is damped as ∼ 1/ log k, quite soft compared to the de-
crease of the boosted potential matrix elements. Furthermore, we 
have confirmed that the stability of the three-boson system with 
boosted potentials in the zero-range limit is accompanied by a uni-
versal power-law behavior of the wave function component when 
the momenta are large. This is in contrast with the log-periodic 
behavior characteristic of the Thomas collapsed states in the limit 
of the zero-range interaction.

We want to add that the adopted framework may find applica-
tions beyond hadron physics due to the renewed interest in few-
body complexes in condensed matter, motivated by the recently 
synthesized two dimensional materials (see, e.g., [32]). For exam-
ple, in the case of monolayers of gapped honeycomb materials like 
Transition Metal Dichalcogenides [33], anisotropic 2D semiconduc-
tors [34] and hexagon Boron Nitride [35], the dispersion relation is 
hyperbolic [36,37], thus allowing the use of relativistic frameworks 
in 2D, but requiring the consideration of the spinor property of the 
quasi-particles [38]. These possible applications are left for future 
studies.
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Appendix A. Definitions

The definitions and notation shown in this appendix follow 
Refs. [19,20]. The shifted momentum arguments appearing in 
Eq. (1) are given by

π̃ =
√

1
4

C2(k,k′, x′)k2 + k′2 + C(k,k′, x′)kk′x′, (A.1)

π =
√

k2 + 1
4

C2(k′,k, x′)k′2 + C(k′,k, x′)kk′x′, (A.2)

where the permutation coefficients C(k, k′, x′) are defined as

C(k,k′, x′) = 1 + %(k′) − %(K)

%(k′) + %(K) +
√(

%(k′) + %(K)
)2 − k2

. (A.3)

As a note, permutation coefficients C reduce to one in the nonrel-
ativistic limit. The Jacobian function N(k, k′, x′) is defined as

N(k,k′, x′) =




4%(k′)%(K)

√(
%(k′) + %(K)

)2

− k2

(
%(k′) + %(K)

)





− 1
2

×




4%(k)%(K)

√(
%(k) + %(K)

)2

− k′2

(
%(k) + %(K)

)





− 1
2

,

(A.4)

where K =
√

k2 + k′ 2 + 2kk′x′ .

References

[1] M. Lüscher, Commun. Math. Phys. 105 (1986) 153, https://doi .org /10 .1007 /
BF01211097.

[2] M. Lüscher, Nucl. Phys. B 354 (1991) 531, https://doi .org /10 .1016 /0550 -
3213(91 )90366 -6.

[3] S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.J. Savage, A. Torok, NPLQCD 
Collaboration, Phys. Rev. Lett. 100 (2008) 082004, https://doi .org /10 .1103 /
physrevlett .100 .082004.

[4] W. Detmold, M.J. Savage, A. Torok, S.R. Beane, T.C. Luu, K. Orginos, A. Parreño, 
NPLQCD Collaboration, Phys. Rev. D 78 (2008) 014507, https://doi .org /10 .1103 /
PhysRevD .78 .014507.

[5] B. Hörz, A. Hanlon, Phys. Rev. Lett. 123 (2019) 142002, https://doi .org /10 .1103 /
PhysRevLett .123 .142002.

[6] T.D. Blanton, F. Romero-López, S.R. Sharpe, Phys. Rev. Lett. 124 (2020) 032001, 
https://doi .org /10 .1103 /PhysRevLett .124 .032001.

[7] M. Mai, M. Döring, Phys. Rev. Lett. 122 (2019) 062503, https://doi .org /10 .1103 /
PhysRevLett .122 .062503.

[8] A. Alexandru, R. Brett, C. Culver, M. Döring, D. Guo, F.X. Lee, M. Mai, Phys. Rev. 
D 102 (2020) 114523, https://doi .org /10 .1103 /PhysRevD .102 .114523.

[9] C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lattice, vol. 788, 
Springer, Berlin, 2010.

[10] T. Frederico, E. Ydrefors, Few-Body Syst. 62 (2021) 8, https://doi .org /10 .1007 /
s00601 -021 -01594 -4.

[11] T. Frederico, Phys. Lett. B 282 (1992) 409, https://doi .org /10 .1016 /0370 -
2693(92 )90661 -M.

[12] L.H. Thomas, Phys. Rev. 47 (1935) 903, https://doi .org /10 .1103 /PhysRev.47.903.
[13] F.A.B. Coutinho, J.F. Perez, W.F. Wreszinski, Math. Phys. 36 (1995) 1625, https://

doi .org /10 .1063 /1.531074.
[14] J. Carbonell, V.A. Karmanov, Phys. Rev. C 67 (2003) 037001, https://doi .org /10 .

1103 /PhysRevC .67.037001.
[15] V.A. Karmanov, J. Carbonell, Few-Body Syst. 34 (2004) 85, https://doi .org /10 .

1007 /s00601 -004 -0027 -5.

5

https://doi.org/10.1007/BF01211097
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1103/physrevlett.100.082004
https://doi.org/10.1103/physrevlett.100.082004
https://doi.org/10.1103/PhysRevD.78.014507
https://doi.org/10.1103/PhysRevD.78.014507
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevD.102.114523
http://refhub.elsevier.com/S0370-2693(21)00713-9/bib6A4DD213D143E9A97CAB06D6F21373D6s1
http://refhub.elsevier.com/S0370-2693(21)00713-9/bib6A4DD213D143E9A97CAB06D6F21373D6s1
https://doi.org/10.1007/s00601-021-01594-4
https://doi.org/10.1007/s00601-021-01594-4
https://doi.org/10.1016/0370-2693(92)90661-M
https://doi.org/10.1016/0370-2693(92)90661-M
https://doi.org/10.1103/PhysRev.47.903
https://doi.org/10.1063/1.531074
https://doi.org/10.1063/1.531074
https://doi.org/10.1103/PhysRevC.67.037001
https://doi.org/10.1103/PhysRevC.67.037001
https://doi.org/10.1007/s00601-004-0027-5
https://doi.org/10.1007/s00601-004-0027-5


K. Mohseni, A.J. Chaves, D.R. da Costa et al. Physics Letters B 823 (2021) 136773

[16] E. Ydrefors, J.H. Alvarenga Nogueira, V. Gigante, T. Frederico, V.A. Karmanov, 
Phys. Lett. B 770 (2017) 131, https://doi .org /10 .1016 /j .physletb .2017.04 .035.

[17] V.A. Karmanov, P. Maris, Few-Body Syst. 46 (2009) 95, https://doi .org /10 .1007 /
s00601 -009 -0054 -3.

[18] H. Kamada, W. Glöckle, Phys. Lett. B 655 (2007) 119, https://doi .org /10 .1016 /j .
physletb .2007.07.071.

[19] M.R. Hadizadeh, Ch. Elster, W.N. Polyzou, Phys. Rev. C 90 (2014) 054002, 
https://doi .org /10 .1103 /PhysRevC .90 .054002.

[20] M.R. Hadizadeh, M. Radin, K. Mohseni, Sci. Rep. 10 (2020) 1949, https://doi .
org /10 .1038 /s41598 -020 -58577 -4.

[21] P.A.M. Dirac, Rev. Mod. Phys. 21 (1949) 392, https://doi .org /10 .1103 /
RevModPhys .21.392.

[22] J. Carbonell, B. Desplanques, V.A. Karmanov, J.-F. Mathiot, Phys. Rep. 300 (1998) 
215, https://doi .org /10 .1016 /S0370 -1573(97 )00090 -2.

[23] Ch. Elster, W. Schadow, A. Nogga, W. Glöckle, Few-Body Syst. 27 (1999) 83, 
https://doi .org /10 .1007 /s006010050124.

[24] Y. Yamaguchi, Phys. Rev. 95 (1954) 1628, https://doi .org /10 .1103 /PhysRev.95 .
1628.

[25] A. Deltuva, R. Lazauskas, L. Platter, Few-Body Syst. 51 (2011) 235, https://doi .
org /10 .1007 /s00601 -011 -0227 -8.

[26] M.R. Hadizadeh, M. Radin, Eur. Phys. J. A 53 (2017) 18, https://doi .org /10 .1140 /
epja /i2017 -12209 -6.

[27] M.R. Hadizadeh, M. Radin, M. Nazari, Sci. Rep. 11 (2021) 17550, https://doi .org /
10 .1038 /s41598 -021 -96924 -1.

[28] M.R. Hadizadeh, M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Phys. Rev. A 
85 (2012) 023610, https://doi .org /10 .1103 /PhysRevA.85 .023610.

[29] G.V. Skornyakov, K.A. Ter-Martirosyan, Sov. Phys. JETP 4 (1956) 648.
[30] G.S. Danilov, Sov. Phys. JETP 13 (1961) 349.
[31] V. Efimov, Phys. Lett. B 33 (1970) 563, https://doi .org /10 .1016 /0370 -2693(70 )

90349 -7.
[32] T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88 (2013) 045318, 

https://doi .org /10 .1103 /PhysRevB .88 .045318.
[33] G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Ur-

baszek, Rev. Mod. Phys. 90 (2018) 021001, https://doi .org /10 .1103 /RevModPhys .
90 .021001.

[34] L.S.R. Cavalcante, D.R. da Costa, G.A. Farias, D.R. Reichman, A. Chaves, Phys. Rev. 
B 98 (2018) 245309, https://doi .org /10 .1103 /PhysRevB .98 .245309.

[35] K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, J. Mater. Chem. C 46 (2017) 11992, 
https://doi .org /10 .1039 /C7TC04300G.

[36] A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, 
V. Fal’ko, 2D Mater. 2 (2015) 022001, https://doi .org /10 .1088 /2053 -1583 /2 /4 /
049501.

[37] F. Ferreira, A.J. Chaves, N.M.R. Peres, R.M. Ribeiro, J. Opt. Soc. Am. B 36 (2019) 
674, https://doi .org /10 .1364 /JOSAB .36 .000674.

[38] A.J. Chaves, R.M. Ribeiro, T. Frederico, N.M.R. Peres, 2D Mater. 4 (2017) 025086, 
https://doi .org /10 .1088 /2053 -1583 /aa6b72.

6

https://doi.org/10.1016/j.physletb.2017.04.035
https://doi.org/10.1007/s00601-009-0054-3
https://doi.org/10.1007/s00601-009-0054-3
https://doi.org/10.1016/j.physletb.2007.07.071
https://doi.org/10.1016/j.physletb.2007.07.071
https://doi.org/10.1103/PhysRevC.90.054002
https://doi.org/10.1038/s41598-020-58577-4
https://doi.org/10.1038/s41598-020-58577-4
https://doi.org/10.1103/RevModPhys.21.392
https://doi.org/10.1103/RevModPhys.21.392
https://doi.org/10.1016/S0370-1573(97)00090-2
https://doi.org/10.1007/s006010050124
https://doi.org/10.1103/PhysRev.95.1628
https://doi.org/10.1103/PhysRev.95.1628
https://doi.org/10.1007/s00601-011-0227-8
https://doi.org/10.1007/s00601-011-0227-8
https://doi.org/10.1140/epja/i2017-12209-6
https://doi.org/10.1140/epja/i2017-12209-6
https://doi.org/10.1038/s41598-021-96924-1
https://doi.org/10.1038/s41598-021-96924-1
https://doi.org/10.1103/PhysRevA.85.023610
http://refhub.elsevier.com/S0370-2693(21)00713-9/bibE0B1BAB6FEE64B2B52C354A61C858503s1
http://refhub.elsevier.com/S0370-2693(21)00713-9/bibB7F32325A41042D8E2A0738F7C641795s1
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1103/PhysRevB.88.045318
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1103/PhysRevB.98.245309
https://doi.org/10.1039/C7TC04300G
https://doi.org/10.1088/2053-1583/2/4/049501
https://doi.org/10.1088/2053-1583/2/4/049501
https://doi.org/10.1364/JOSAB.36.000674
https://doi.org/10.1088/2053-1583/aa6b72

	Three-boson stability for boosted interactions towards the zero-range limit
	Declaration of competing interest
	Acknowledgements
	Appendix A Definitions
	References


