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We study the three-boson bound-state mass and wave functions for ground and excited states within the
three-body relativistic framework with Kamada and Glocke boosted potentials in the limit of a zero-range
interaction. We adopt a nonrelativistic short-range separable potential, with Yamaguchi and Gaussian
form factors, and drive them towards the zero-range limit by letting the form factors’ momentum
scales go to large values while keeping the two-body binding fixed. We show that the three-boson

relativistic masses and wave functions are model-independent towards the zero-range limit, and the
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Thomas collapse is avoided, while the nonrelativistic limit kept the Efimov effect. Furthermore, the
stability in the zero-range limit is a result of the reduction of boosted potential with the increase of the
virtual pair center of mass momentum within the three-boson system. Finally, we compare the present
results with Light-Front and Euclidean calculations.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The interpretation of novel results for the spectrum of hadron
and multi-hadron states from Lattice Quantum Chromodynamics
(LQCD) simulations serves as a new motivation to address rela-
tivistic few-body systems.

In this context, it is known that two-body (2B) phase shifts
can be extracted from the volume dependence of the spectrum by
using the Liischer formula with two-particle quantization condi-
tion [1,2]. Beyond 2B, the spectra of multi-pion states in maximum
isospin levels were computed by the NPLQCD collaboration [3,4]
in a finite volume more than a decade ago, and more recently,
LQCD calculations were performed for the two- and three-pion
finite-volume spectra for isospin I =2 and 3, respectively [5]. The
I =3 spectrum was calculated within a unitary three-dimensional
framework for the two- and three-pion scattering amplitudes in
a finite-volume discretized with periodic boundary conditions [6]
(see also [7]). Furthermore, the finite-volume energy spectrum
of the K"K~ K~ system was also obtained from LQCD calcula-
tions [8].

A field theory on a four-dimensional (4D) lattice is defined with
periodic (anti-periodic) boundary conditions in the case of bosonic
(fermionic) fields, which includes the time direction as well (see
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e.g. [9]). In correspondence, the 4D finite-volume formulation of
the Faddeev-like equations in Euclidean space was recently imple-
mented [10] in the 4D three-boson Faddeev-Bethe-Salpeter (FBS)
equation for the contact interaction [11].

An important issue that permeates these continuum treatments
of the relativistic three-boson system are its stability in the limit
of a zero-range interaction, as it is known that the Thomas col-
lapse [12,13] is present in the nonrelativistic three-boson system
with contact potentials. The stability was shown by solving the
Light-Front (LF) reduction of the FBS equation truncated at the va-
lence state [14,15]. The stability of the three-boson system was
also shown by solving the 4D FBS equation for the contact interac-
tion in Euclidean space [16]. It was then confirmed the relative
importance of the implicit three-body interactions of relativistic
origin [17], which is missing in the formulation of the valence state
integral equation.

This context motivates us to study the stability of the three-
boson system in the limit of contact interactions within other
frameworks to formulate the relativistic Faddeev equations, for
example, using boosted potentials [18]. The boost concept comes
from the moving 2B subsystem in the rest frame of the three-
particle system. One approach for calculating 2B boosted T-
matrices is solving the relativistic Lippmann-Schwinger equation
for boosted 2B potentials. At the 2B level, the relativistic 2B po-
tentials are designed to preserve the 2B observables for bound

0370-2693/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by

SCOAP3.


https://doi.org/10.1016/j.physletb.2021.136773
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2021.136773&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kmohseni@ita.br
https://doi.org/10.1016/j.physletb.2021.136773
http://creativecommons.org/licenses/by/4.0/

K. Mohseni, A,J. Chaves, D.R. da Costa et al.

and scattering states. Kamada and Gloéckle have shown that rel-
ativistic and boosted potentials can be obtained directly from
nonrelativistic potentials by solving a quadratic equation using an
iterative scheme [18]. Once the boosted potential is obtained, the
2B T-matrix in the rest frame of the three-body system can be
computed as required for the kernel of the relativistic Faddeev
equations [19,20].

The above formulation will be explored to study the three-
boson stability separable interactions (Yamaguchi-type and Gaus-
sian-type) driven to the zero-range limit. Our goal is to solve the
relativistic Faddeev equations, and obtain both the binding en-
ergies and associated wave functions, and study their properties
when the interaction range is driven towards zero.

Before presenting our study in detail, we should remark that
the relativistic Faddeev approach with boosted interactions is not
based on field theory, but it uses a relativistic version of the phe-
nomenological 2B potential. It belongs to one of the three forms
of relativistic dynamics proposed by Dirac in 1949 [21]: the in-
stant form, the LF form, and the point form. The different forms
of dynamics are characterized by the number of kinematical and
dynamical boosts, in correspondence with the generators of the
Poincaré group. The most commonly used forms of dynamics are
the instant and LF forms, and we restrict ourselves to those ones.
The kinematical boosts keep the initial state hyper-surface invari-
ant and do not contain the interaction, while the dynamical ones
depend on the interaction. In the instant form, six out of ten
generators of the Poincaré group are kinematical, while four are
dynamical and contain the interaction. In the LF form, seven gen-
erators are kinematical, and three are dynamical. This form corre-
sponds to the one with a maximal number of kinematical genera-
tors (for a thorough discussion of this form of dynamics applied to
nuclear few-body systems, see e.g. Ref. [22]). The relativistic frame-
work developed by Kamada and Glockle is within the class of the
instant form dynamics. Their development applied to few-nucleon
systems was designed to keep the relativistic deuteron binding en-
ergy and nucleon-nucleon phase shifts unaltered from the results
obtained with the nonrelativistic calculations. Furthermore, it pro-
vides energy states with good angular momentum quantum num-
bers, as usual in the nonrelativistic frameworks. In this way, the
relativistic Faddeev approach with boosted potential can be viewed
as one possible and practical implementation of the instant form of
dynamics. We will also quantitatively illustrate the difference be-
tween the Kamada and Glockle instant form framework outcomes
and the results from LF and field theoretical models in the limit of
zero-range interactions.

Relativistic Faddeev approach with boosted interactions. The rela-
tivistic Faddeev equations for the bound state of three identical
particles were recently derived in momentum space as a func-
tion of relativistic Jacobi momentum vectors [19,20]. A partial wave
projection of relativistic Faddeev equation in an s-wave channel is
given by

Y (p, k)

[e'e] 1
=47 Gy(p, k) /dk’k’ZZ/dx/N(k,k’,x/) Te(p, 7€) y(m, k),
0 e

(1)

where p and k are the relativistic Jacobi momenta, Gj(p,k) =
[M; — wp(p) — Q(k)1~! is the relativistic free propagator, where
M; = E; 4+ 3m is the 3B mass eigenvalue, m is the mass of each
particle, wy(p) = v@?(p) +k2, w(p) = 2/p2+m2, and Qk) =
~/m2 +k2. The definitions of the shifted momentum 7 and 7,
and the remaining quantities are given in Appendix A. In the non-
relativistic limit where the momenta are much smaller than the
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masses, the Jacobian function N, given in Appendix A, reduces to
one. In addition, the relativistic Jacobi momenta p and k reduce
to the corresponding nonrelativistic Jacobi momenta, and similarly,
the shifted momentum arguments 77 and 7t reduce to the corre-
sponding nonrelativistic ones of Ref. [23]. The boosted 2B transi-
tion matrix Ty(p, p’; €) for 2B subsystem energies € = M; — Q(k)
is obtained from relativistic Lippmann-Schwinger equation as

Tk(p,p'; €)
Vi(p. p”
= Vi(p, p’) + 47 /dp//p//Z k(P;PB
€ —wy(p”)

The matrix elements of boosted potential V| can be obtained di-
rectly from the nonrelativistic potential Vy,, by solving a quadratic
integral equation [18]

Ti(p", p's €). (2)

4
Vi(p, )+ ——— / dp”p"? Vi(p. p") V(0" P))
i (p) + wy(p’)

_ AmVu(p, p)
wk(p) + wi(p) ’

An important physical property of the boosted potential, clear in
Eq. (3), is the damping with the increase of the momentum of
the spectator particle k. This behavior corresponds in practice to
an effective three-body repulsive effect, working in the ultravio-
let region (UV), which balances the attraction at the short range.
We will illustrate these properties when studying the three-boson
bound state when driving the potential range to zero.

Results. In the following, we present our numerical results for
the solution of relativistic Faddeev integral equation (1) for boosted
potentials obtained from one-term separable nonrelativistic poten-
tials, which are generally defined as V- (p, p') = Anr 2(p) g(p"),
where A is the potential strength and g(p) is the form factor
in the momentum basis. In this work we use two models of sep-
arable potentials, Yamaguchi-type form factor g(p) = 1/(p? + %)
[24] and the Gaussian form factor g(p) = exp (—p2/A?) [25].

The inputs for the solution of relativistic Lippmann-Schwinger
equation (2) are the matrix elements of boosted potentials V. (p, p’)
which can be obtained directly from nonrelativistic interaction
Var(p, p') by solving the integral Eq. (3) using an iterative scheme
proposed by Kamada and Glockle [18] and successfully imple-
mented in a three-dimensional scheme [26,27]. The iteration starts
with the initial guess

3)

4m Ve (p, P/)
wi(p) + w(p)’

and continues to reach convergence in the matrix elements of the
boosted potential with a relative error of 10716 MeV fm3 at each
set points (p, p’). In Fig. 1, we show the diagonal matrix elements
of boosted potentials with different values of boost momentum
k calculated for a wide range of form factor parameters S for
Yamaguchi-type and A for the Gaussian potentials. As one can see,
the boosted potentials are getting smaller by increasing the boost
momentum k.

By having the matrix elements of boosted potentials Vi (p, p’),
we solve the relativistic Lippmann-Schwinger integral equation (2)
to calculate fully off-shell boosted T-matrices Ti(p, p’; €) for 2B
subsystem energies € = M; — (k) dictated by the boost momen-
tum k. Then, by solving the integral equation (1) with the Lanczos
technique (see Appendix C2 of Ref. [28]), we obtain relativistic 3B
binding energies E; and Faddeev components ¥ (p, k) for ground
and excited states. We use the Gauss-Legendre quadratures with
hyperbolic plus linear mapping for Jacobi momenta and linear
mapping for angle variables to discretize continuous momentum
and angle variables [26]. The cutoffs of Jacobi momenta and the

v2(p,p) = (4)
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Fig. 1. The diagonal matrix elements of nonrelativistic and boosted potentials calculated for a wide range of form factor parameters g for Yamaguchi-type (upper panel) and
A for the Gaussian potentials (lower panel) obtained with different boost momentum k.

Ot T T

— Yamaguchi
® Gaussian

1000 21600
B, A (fm )

3000

32F 77 ! T
’ — Yamaguchi
3f  * Gaussian
- LF
-- BS
2.81
Ist Excited
2.6
£
E"‘z 4
221
2r .
1.8
1 L I L I L L
1.7 175 1.8  1.85 1.9 195 2
M,/m

Fig. 2. Left panel: the ground and first excited state binding energies as a function of the form factor parameters S (solid line for Yamaguchi-type potential) and A (full
circles for the Gaussian potential) obtained for a fixed 2B binding energy of —2.225 MeV. The first excited state binding energies are multiplied by a factor of 50. Right
panel: the value of M3/m as a function of M,/m calculated from the three-body ground and first excited states obtained with form factor parameters g = A = 2000 fm™!
for Yamaguchi-type (solid lines) and Gaussian potentials (full circles). For comparison, our results with the Bethe-Salpeter (dashed line) and Light-Front (dash-dotted line)

zero-range calculations of Ref. [16] are added to the plot.

distribution of their mesh points strongly depend on the potential
form factor parameters 8 and A.

In the left panel of Fig. 2, we show three-boson ground and first
excited state binding energies as a function of the potential range
parameters B8 and A, for the Yamaguchi and Gaussian form fac-
tors, respectively, with a nonrelativistic 2B binding energy kept at
-2.225 MeV, namely, the deuteron binding energy. For 8 and A in-
creasing, the three-boson system follows the Thomas collapse, with
the binding energy o« —82% and o —AZ2, happening in our examples
up to values around 200 fm~! or corresponding to a momentum
of 0.4 GeV/c comparable to the nucleon mass. Then, the boost
effects take place and stabilize the system through an induced re-
pulsion that tends to counterbalance the singular behavior of the

collapse with the binding energy reaching a plateau, regardless
of the short-range potential model, suggesting that a well-defined
zero-range limit exists for the Glockle-Kamada boosted potentials
within the relativistic three-body framework.

In the right panel of Fig. 2, we present three-body and single-
particle mass ratio M3/m as a function of the 2B and single-
particle mass ratio M,/m, obtained for three-body ground and
first excited states using large form factor parameters 8 = A =
2000 fm~!. The plot presents the mass in units of the particle
mass, which can be compared with previous calculations using
the Bethe-Salpeter (BS) and Light-Front equations [16]. As one can
see in the right panel of Fig. 2, our results with large form fac-
tor parameters for both Yamaguchi-type and Gaussian potentials
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Fig. 3. Relativistic Faddeev components for three-body ground v (@ (p, k) and first excited v (V) (p, k) states calculated for Yamaguchi-type potential with form factor parameters
(lines) B =200, 2000 fm~! and Gaussian potential with form factor parameters (symbols) A =200, 2000 fm~'.

reveal a universal behavior. Our numerical results for three-boson
first excited bound state mass obtained from the boosted poten-
tials with large form factor parameters, i.e. 8 = 2000 fm~! and
A = 2000 fm~!, show a weaker attraction when compared to
the results obtained with the LF and BS frameworks [16]. First,
we observe that, in the 2B bound state region, both the LF and
BS approaches have an unphysical three-body ground state with
M% < 0, which are possible as the homogeneous integral equa-
tions, only depend on M% [16]. The physical “ground” state with
0 < M% < (m + M>)? from the solution of the LF and BS equations
are indeed an excited state, and in this way, they are denoted in
the right panel of the figure.

The difference between the LF and BS approaches is the at-
tractive three-body effective interactions appearing in the BS ap-
proach due to the implicit inclusion of an infinite set of LF Fock-
components, which is missing in the LF equation where the trun-
cation is made at the valence level [16]. What is noticeable is that
the boosted potential brings less attraction to the three-body sys-
tem, and furthermore in the UV region is much less attractive due
to the softening of the relativistic potential owing the boost com-
ing with the solution of Eq. (3). This effect can be appreciated
by noticing the slowest decrease of M3 by decreasing M, for the
boosted potential calculation with respect to BS and LF results. The
softening in the decrease of the three-body mass with the increase
of the 2B binding in the adopted relativistic framework, as seen in
the right panel of Fig. 2, suggests that the increase of the bind-
ing turns the three-body bound state more compact, which forces
the system to explore the UV region, where the boosted potential
becomes weak. On the other hand, the 2B amplitude considered
in the LF and BS equations is much less damped in the UV re-
gion, presenting a ~ 1/log(k) behavior (cf. Eq. (2) in Ref. [16]),
quite soft compared to the decrease of the boosted potential ma-
trix elements, with ~ 1/k, as the non-linear term is not relevant
for k >> m attaining very large values, as the driving term of
the iterative solution for the boosted potential, Eq. (4), follows
V,EO) (p, pP)lk>>m o 1/k. Thus, this discussion is indeed indicating

Table 1
Relativistic three-body ground and first excited state binding energies for Faddeev
components shown in Fig. 3. The 2B binding energy is —2.225 MeV.

Potential parameter (fm~1) E}O’ (MeV) Ep) (MeV)
Yamaguchi-type potential

B =200 —454.1 —6.076

B =2000 —353.7 —4.891
Gaussian potential

A =200 —465.2 —6.176

A =2000 —357.7 —4.914

a weaker kernel of the Faddeev equation provided by the boosted
potential with respect to the LF and BS ones.

Finally, in Fig. 3, we show the Faddeev component of the wave
functions corresponding to the ground state, ¥ (@ (p, k), and first
excited one, ¥ (p, k), as a function of Jacobi momenta p and k,
for two sets of small and large potential form factor parameters 8
and A. The corresponding binding energies are listed in Table 1.
The first striking observation is the universality, i.e., the model
independence, of ¥ @ (p,k) and ¥ (p,k) up to momenta about
B or A. For larger momenta, both potential models clearly show
different decay behaviors, and the Gaussian model shows, as ex-
pected, the faster damping of the Faddeev component, while the
Yamaguchi one still seems a power-law behavior.

The interesting aspect seen in Fig. 3 is the model indepen-
dence of the power-law damping of the wave function happening
both for the third particle spectator momentum m < k < S(A),
and the two-particle relative one m < p < 8(A). Furthermore, the
power-law behavior in the region of momenta between ~ m and
~ B(A) is independent of the excitation state of the three-boson
system for both momenta. The fit of the power-law functions in
the region m < k < B(A), scales with ¥ ©@(p,k=0) ~ p~'2 and
YO (p=0,k) ~k37,

We should observe that the power-law property of the wave
function component in the relative momentum p is somewhat ex-
pected, as the relativistic propagator behavior dominates it at large
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p values. On the other hand, the power-law in k is in contrast with
the log-periodic behavior characteristic of the Thomas collapsed
states in the limit of the zero-range interaction for the nonrela-
tivistic three-boson system [29,30]. On the other hand, the Efimov
effect [31], when the 2B binding is let to zero, is kept by the Fad-
deev equations with boosted potentials.

Summary. In this work, we solved the relativistic three-boson
bound state problem within the Kamada and Glécke framework of
building the boosted potential in the limit of a zero-range inter-
action. The starting point is a nonrelativistic short-range separable
potential, with Yamaguchi and Gaussian form factors, which are
driven to the contact interaction by letting their momentum scales
to large values in comparison with the boson mass scale, while the
2B binding energy was kept fixed.

The solutions of the relativistic three-boson Faddeev equa-
tion with the boosted potentials are stable, and the three-boson
relativistic masses and wave functions are finite and model-
independent towards the limit of the zero-interaction. The Thomas
collapse is avoided, while the Efimov physics for large scattering
lengths are kept. The boosted potential provides an effective re-
pulsive short-range effect that decreases the interaction intensity
and guarantees the stability of the relativistic three-boson system
towards the zero-range limit.

We found that the Faddeev equation with the boosted potential
provides a much weaker attraction to bind the three-boson sys-
tem than to what was found by solving the LF and BS ones [16].
That effective weaker attraction can be partially traced back to the
more strong damping of the boosted potential, and equally well
the 2B T-matrix with the spectator momentum with a characteris-
tic behavior ~ 1/k, while within the LF and BS formulations, the 2B
amplitude is damped as ~ 1/logk, quite soft compared to the de-
crease of the boosted potential matrix elements. Furthermore, we
have confirmed that the stability of the three-boson system with
boosted potentials in the zero-range limit is accompanied by a uni-
versal power-law behavior of the wave function component when
the momenta are large. This is in contrast with the log-periodic
behavior characteristic of the Thomas collapsed states in the limit
of the zero-range interaction.

We want to add that the adopted framework may find applica-
tions beyond hadron physics due to the renewed interest in few-
body complexes in condensed matter, motivated by the recently
synthesized two dimensional materials (see, e.g., [32]). For exam-
ple, in the case of monolayers of gapped honeycomb materials like
Transition Metal Dichalcogenides [33], anisotropic 2D semiconduc-
tors [34] and hexagon Boron Nitride [35], the dispersion relation is
hyperbolic [36,37], thus allowing the use of relativistic frameworks
in 2D, but requiring the consideration of the spinor property of the
quasi-particles [38]. These possible applications are left for future
studies.
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Appendix A. Definitions
The definitions and notation shown in this appendix follow

Refs. [19,20]. The shifted momentum arguments appearing in
Eq. (1) are given by

- 1
T = \/z_l C2(k, k', xk2 +k'2 + C(k, k', X kk'x', (A1)
1
T = \/kz + ZCZ(k’, k,x)k'2 + C(K', k, xkk'x’, (A.2)
where the permutation coefficients C(k, k', x') are defined as
Q) — QK
ClK.X)=1+ (k) — R) . (A3)

Q) + QK) + \/ (QK) + Q(K))* — k2

As a note, permutation coefficients C reduce to one in the nonrel-
ativistic limit. The Jacobian function N(k, k', x") is defined as

[N

Nk, k', x') = 49(’;/)9(16)
\/<Q(k’) + Q(K)) — k2 (Q(k’) + Q(IC))
-
" 4Q(k)Q(K) ’
J(ow+000) -2 (w400
(A4)
where K = k% +k'2 + 2kk'x'.
References

[1] M. Lischer, Commun. Math. Phys. 105 (1986) 153, https://doi.org/10.1007/
BF01211097.

[2] M. Lischer, Nucl. Phys. B 354 (1991) 531, https://doi.org/10.1016/0550-
3213(91)90366-6.

[3] S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.]. Savage, A. Torok, NPLQCD
Collaboration, Phys. Rev. Lett. 100 (2008) 082004, https://doi.org/10.1103/
physrevlett.100.082004.

[4] W. Detmold, M. Savage, A. Torok, S.R. Beane, T.C. Luu, K. Orginos, A. Parrefio,
NPLQCD Collaboration, Phys. Rev. D 78 (2008) 014507, https://doi.org/10.1103/
PhysRevD.78.014507.

[5] B. Horz, A. Hanlon, Phys. Rev. Lett. 123 (2019) 142002, https://doi.org/10.1103/
PhysRevLett.123.142002.

[6] T.D. Blanton, F. Romero-Lépez, S.R. Sharpe, Phys. Rev. Lett. 124 (2020) 032001,
https://doi.org/10.1103/PhysRevLett.124.032001.

[7] M. Mai, M. Déring, Phys. Rev. Lett. 122 (2019) 062503, https://doi.org/10.1103/
PhysRevLett.122.062503.

[8] A. Alexandru, R. Brett, C. Culver, M. Déring, D. Guo, EX. Lee, M. Mai, Phys. Rev.
D 102 (2020) 114523, https://doi.org/10.1103/PhysRevD.102.114523.

[9] C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lattice, vol. 788,
Springer, Berlin, 2010.

[10] T. Frederico, E. Ydrefors, Few-Body Syst. 62 (2021) 8, https://doi.org/10.1007/
s00601-021-01594-4.

[11] T. Frederico, Phys. Lett. B 282 (1992) 409, https://doi.org/10.1016/0370-
2693(92)90661-M.

[12] L.H. Thomas, Phys. Rev. 47 (1935) 903, https://doi.org/10.1103/PhysRev.47.903.

[13] EA.B. Coutinho, J.F. Perez, W.F. Wreszinski, Math. Phys. 36 (1995) 1625, https://
doi.org/10.1063/1.531074.

[14] ]. Carbonell, V.A. Karmanov, Phys. Rev. C 67 (2003) 037001, https://doi.org/10.
1103/PhysRevC.67.037001.

[15] V.A. Karmanov, ]. Carbonell, Few-Body Syst. 34 (2004) 85, https://doi.org/10.
1007/s00601-004-0027-5.


https://doi.org/10.1007/BF01211097
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1103/physrevlett.100.082004
https://doi.org/10.1103/physrevlett.100.082004
https://doi.org/10.1103/PhysRevD.78.014507
https://doi.org/10.1103/PhysRevD.78.014507
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevD.102.114523
http://refhub.elsevier.com/S0370-2693(21)00713-9/bib6A4DD213D143E9A97CAB06D6F21373D6s1
http://refhub.elsevier.com/S0370-2693(21)00713-9/bib6A4DD213D143E9A97CAB06D6F21373D6s1
https://doi.org/10.1007/s00601-021-01594-4
https://doi.org/10.1007/s00601-021-01594-4
https://doi.org/10.1016/0370-2693(92)90661-M
https://doi.org/10.1016/0370-2693(92)90661-M
https://doi.org/10.1103/PhysRev.47.903
https://doi.org/10.1063/1.531074
https://doi.org/10.1063/1.531074
https://doi.org/10.1103/PhysRevC.67.037001
https://doi.org/10.1103/PhysRevC.67.037001
https://doi.org/10.1007/s00601-004-0027-5
https://doi.org/10.1007/s00601-004-0027-5

K. Mohseni, A.J. Chaves, D.R. da Costa et al.

[16] E. Ydrefors, J.H. Alvarenga Nogueira, V. Gigante, T. Frederico, V.A. Karmanov,
Phys. Lett. B 770 (2017) 131, https://doi.org/10.1016/j.physletb.2017.04.035.

[17] V.A. Karmanov, P. Maris, Few-Body Syst. 46 (2009) 95, https://doi.org/10.1007/
s00601-009-0054-3.

[18] H. Kamada, W. Glockle, Phys. Lett. B 655 (2007) 119, https://doi.org/10.1016/j.
physletb.2007.07.071.

[19] M.R. Hadizadeh, Ch. Elster, W.N. Polyzou, Phys. Rev. C 90 (2014) 054002,
https://doi.org/10.1103/PhysRev(.90.054002.

[20] M.R. Hadizadeh, M. Radin, K. Mohseni, Sci. Rep. 10 (2020) 1949, https://doi.
org/10.1038/s41598-020-58577-4.

[21] PA.M. Dirac, Rev. Mod. Phys. 21 (1949) 392, https://doi.org/10.1103/
RevModPhys.21.392.

[22] J. Carbonell, B. Desplanques, V.A. Karmanov, J.-F. Mathiot, Phys. Rep. 300 (1998)
215, https://doi.org/10.1016/S0370-1573(97)00090-2.

[23] Ch. Elster, W. Schadow, A. Nogga, W. Glockle, Few-Body Syst. 27 (1999) 83,
https://doi.org/10.1007/s006010050124.

[24] Y. Yamaguchi, Phys. Rev. 95 (1954) 1628, https://doi.org/10.1103/PhysRev.95.
1628.

[25] A. Deltuva, R. Lazauskas, L. Platter, Few-Body Syst. 51 (2011) 235, https://doi.
org/10.1007/s00601-011-0227-8.

[26] M.R. Hadizadeh, M. Radin, Eur. Phys. J. A 53 (2017) 18, https://doi.org/10.1140/
epjafi2017-12209-6.

[27] M.R. Hadizadeh, M. Radin, M. Nazari, Sci. Rep. 11 (2021) 17550, https://doi.org/
10.1038/s41598-021-96924-1.

Physics Letters B 823 (2021) 136773

[28] M.R. Hadizadeh, M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Phys. Rev. A
85 (2012) 023610, https://doi.org/10.1103/PhysRevA.85.023610.

[29] G.V. Skornyakov, K.A. Ter-Martirosyan, Sov. Phys. JETP 4 (1956) 648.

[30] G.S. Danilov, Sov. Phys. JETP 13 (1961) 349.

[31] V. Efimov, Phys. Lett. B 33 (1970) 563, https://doi.org/10.1016/0370-2693(70)
90349-7.

[32] T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88 (2013) 045318,
https://doi.org/10.1103/PhysRevB.88.045318.

[33] G. Wang, A. Chernikov, M.M. Glazov, TF. Heinz, X. Marie, T. Amand, B. Ur-
baszek, Rev. Mod. Phys. 90 (2018) 021001, https://doi.org/10.1103/RevModPhys.
90.021001.

[34] LS.R. Cavalcante, D.R. da Costa, G.A. Farias, D.R. Reichman, A. Chaves, Phys. Rev.
B 98 (2018) 245309, https://doi.org/10.1103/PhysRevB.98.245309.

[35] K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, ]. Mater. Chem. C 46 (2017) 11992,
https://doi.org/10.1039/C7TC04300G.

[36] A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zélyomi, N.D. Drummond,
V. Fal'’ko, 2D Mater. 2 (2015) 022001, https://doi.org/10.1088/2053-1583/2/4/
049501.

[37] F. Ferreira, AJ. Chaves, N.M.R. Peres, R.M. Ribeiro, J. Opt. Soc. Am. B 36 (2019)
674, https://doi.org/10.1364/JOSAB.36.000674.

[38] AJ. Chaves, R.M. Ribeiro, T. Frederico, N.M.R. Peres, 2D Mater. 4 (2017) 025086,
https://doi.org/10.1088/2053-1583/aa6b72.


https://doi.org/10.1016/j.physletb.2017.04.035
https://doi.org/10.1007/s00601-009-0054-3
https://doi.org/10.1007/s00601-009-0054-3
https://doi.org/10.1016/j.physletb.2007.07.071
https://doi.org/10.1016/j.physletb.2007.07.071
https://doi.org/10.1103/PhysRevC.90.054002
https://doi.org/10.1038/s41598-020-58577-4
https://doi.org/10.1038/s41598-020-58577-4
https://doi.org/10.1103/RevModPhys.21.392
https://doi.org/10.1103/RevModPhys.21.392
https://doi.org/10.1016/S0370-1573(97)00090-2
https://doi.org/10.1007/s006010050124
https://doi.org/10.1103/PhysRev.95.1628
https://doi.org/10.1103/PhysRev.95.1628
https://doi.org/10.1007/s00601-011-0227-8
https://doi.org/10.1007/s00601-011-0227-8
https://doi.org/10.1140/epja/i2017-12209-6
https://doi.org/10.1140/epja/i2017-12209-6
https://doi.org/10.1038/s41598-021-96924-1
https://doi.org/10.1038/s41598-021-96924-1
https://doi.org/10.1103/PhysRevA.85.023610
http://refhub.elsevier.com/S0370-2693(21)00713-9/bibE0B1BAB6FEE64B2B52C354A61C858503s1
http://refhub.elsevier.com/S0370-2693(21)00713-9/bibB7F32325A41042D8E2A0738F7C641795s1
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1103/PhysRevB.88.045318
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1103/PhysRevB.98.245309
https://doi.org/10.1039/C7TC04300G
https://doi.org/10.1088/2053-1583/2/4/049501
https://doi.org/10.1088/2053-1583/2/4/049501
https://doi.org/10.1364/JOSAB.36.000674
https://doi.org/10.1088/2053-1583/aa6b72

	Three-boson stability for boosted interactions towards the zero-range limit
	Declaration of competing interest
	Acknowledgements
	Appendix A Definitions
	References


