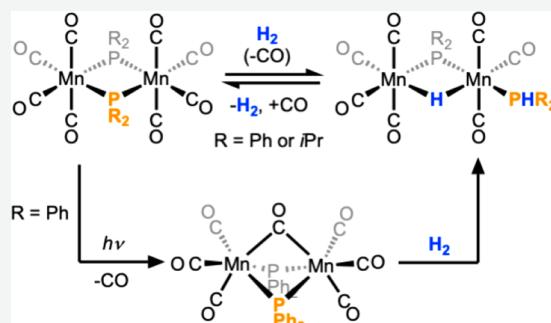


Activation of H₂ with Dinuclear Manganese(I)-Phosphido Complexes

Preshit Abhyankar, Samantha N. MacMillan, and David C. Lacy*

Cite This: *Organometallics* 2022, 41, 60–66

Read Online


ACCESS |

Metrics & More

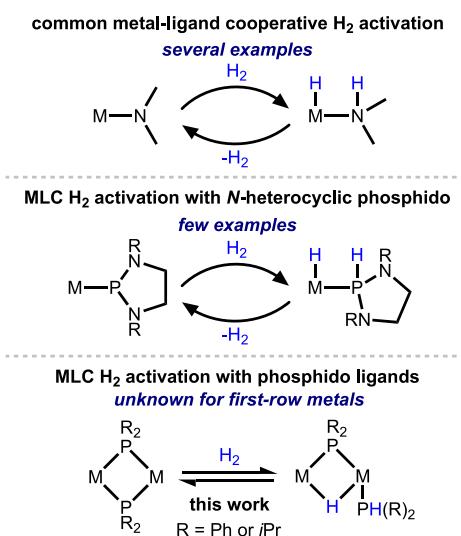
Article Recommendations

Supporting Information

ABSTRACT: There are few reports of activation of H₂ across metal–phosphido linkages, and all of the first-row metal examples use N-heterocyclic phosphido donors. In this report, we highlight the discovery of H₂ activation using first-row transition-metal phosphido complexes with alkyl and aryl substituents. The complex $[\text{Mn}(\text{CO})_4(\mu\text{-PPH}_2)]_2$ (**1**) was treated with H₂ (125 °C, 33 h), affording $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-H})(\mu\text{-PPH}_2)\{\text{Mn}(\text{CO})_3(\text{Ph}_2\text{PH})\}]$ (**2**). Treating **2** with Mn₂(CO)₁₀ leads to PH bond activation and formation of $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-H})(\mu\text{-PPH}_2)\{\text{Mn}(\text{CO})_4\}]$ (**3**). The interconversion of **1** to **3** is reversible, as indicated by the treatment of **3** with free Ph₂PH, giving **2** at 80 °C or **1** and H₂ at 120 °C. The isopropyl analogue of **1**, $[\text{Mn}(\text{CO})_4(\mu\text{-P}(i\text{Pr})_2)]_2$ (**5**), was synthesized by the oxidative addition of $[(i\text{Pr})_2\text{PP}(i\text{Pr})_2]$ (**4**) with Mn₂(CO)₁₀. The reactivity of **5** is analogous to that of **1**, forming $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-H})(\mu\text{-P}(i\text{Pr})_2)\{\text{Mn}(\text{CO})_3((i\text{Pr})_2\text{PH})\}]$ (**6**) on treatment with H₂, which in turn reacts with Mn₂(CO)₁₀, quantitatively affording $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-H})(\mu\text{-P}(i\text{Pr})_2)\{\text{Mn}(\text{CO})_4\}]$ (**7**). The chemistry diverges upon use of the *t*Bu substituent. Treating Na[Mn(CO)₅] with Cl(*t*Bu)₂P results in formation of the bis-(*t*Bu₂P) hexacarbonyl complex $[\text{Mn}(\text{CO})_3(\mu\text{-PtBu}_2)]_2$ (**8**), a dark green compound with a formal M–M double bond (2.5983(5) Å). **8** reacts sluggishly with H₂ to form free *t*Bu₂PH and $[\text{MnH}(\text{CO})_4(\text{HPtBu}_2)]$ (**10**). The activation of H₂ with **1** is incomplete even at high temperatures. In contrast, facile activation of H₂ occurs with $[\{\text{Mn}(\text{CO})_3(\mu\text{-PPH}_2)\}_2(\mu\text{-CO})]$ (**1**–CO) to yield **2** (84%, 70 °C, 10 h), implicating thermally demanding CO dissociation from **1** as the first step in the H₂ activation. PCl bond activation under hydrogenative conditions was also examined. The reactions between Mn₂(CO)₁₀ and ClPh₂P or Cl(*i*Pr)₂P under 1 atm of H₂ gave **3** (*R* = Ph) or **7** (*R* = *i*Pr) in 50–60% yield, indicating the intermediacy of bisphosphido compounds. When Cl(*t*Bu)₂P was used instead, the compounds *cis*- $[\text{Mn}(\text{CO})_4(\text{H})((t\text{Bu}_2\text{P})_2\text{H})]$ (**10**), $[\text{Mn}(\text{CO})_3(\text{H})((t\text{Bu}_2\text{P})_2\text{H})]$ (**11**), and *d**a**x**ial*- $[\text{Mn}(\text{CO})_4((t\text{Bu}_2\text{P})\text{H})]$ (**12**) were isolated, indicating PCl bond hydrogenation to phosphines using H₂ and Mn₂(CO)₁₀.

INTRODUCTION

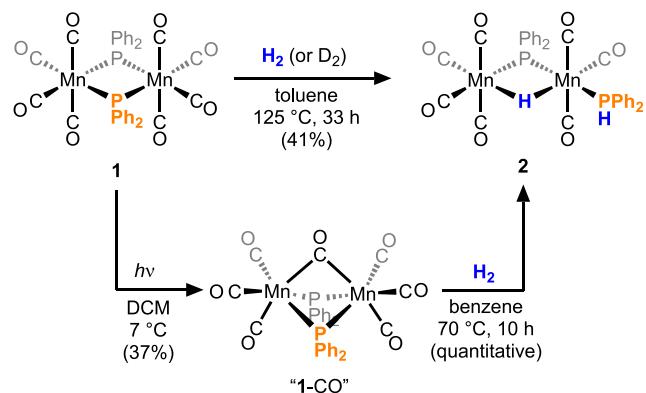
Metal–ligand cooperative (MLC) based dihydrogen activation is important for its utility in organic synthesis and implications in hydrogen storage.¹ A majority of transition-metal-based systems that use the MLC paradigm rely on H₂ activation across M–amido linkages (Figure 1, top), and only a handful of examples use M–phosphido linkages. The vast majority of these rely on second- and third-row transition metals (M = Zr,² Hf,³ Ru,^{4,5} Ir⁶) or alkali metals.⁷ Examples with first-row metals are even more rare,^{8–10} and so far, these have all relied on N-heterocyclic phosphido (NHP) donor groups. The NHP ligands temper the basicity of phosphido ligands (Figure 1, middle), but this strategy precludes readily available diaryl- and dialkylphosphido groups in MLC with first-row metals.


We hypothesized that the use of highly electron deficient metal centers, or those substantially compensated with a plethora of electron-withdrawing supporting ligands, could stabilize phosphido groups enough to enable H₂ activation across M–P linkages. We recognized that dinuclear Mn(I) complexes bearing phosphido bridges such as $[\text{Mn}(\text{CO})_4(\mu\text{-PR}_2)]_2$ (**1**, R = Ph; **5**, R = *i*Pr) are well-suited to this end.

Such dinuclear Mn(I) phosphido complexes have been known for a long time now. For instance, **1** was prepared first in 1964 by Hayter by reacting Mn₂(CO)₁₀ with Ph₂P–PPH₂ or treating Na[Mn(CO)₅] with ClPh₂P,¹¹ and since then some alternative syntheses for **1** and related compounds have been discovered.^{12–14} Although some reactions surrounding the chemistry of **1** have been reported,¹⁵ its reaction with dihydrogen has not been studied. We therefore endeavored to test the hypothesis that **1** can activate H₂ in an MLC-type mode. We investigated the coordination and H₂ activation chemistry of **5**, the isopropyl analogue of **1**, and found it to be very similar. However, the bulkier *tert*-butyl phosphidos gave different results. For instance, a unique dinuclear compound with a formal Mn–Mn double bond (complex **8**) was isolated. In addition, we discovered that Mn₂(CO)₁₀ under an H₂

Received: October 21, 2021

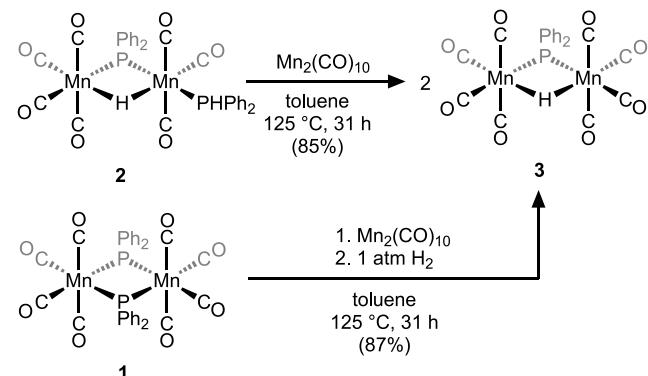
Published: December 29, 2021


Figure 1. (top) Conventional metal–ligand cooperative (MLC) activation occurs across M–amido linkages. (middle) First-row metals known to activate H₂ across M–P bonds rely on N-heterocyclic phosphido (NHP) ligands. (bottom) This work describes the first example of M–PR₂ MLC activation of H₂ where M = first-row metal and R = alkyl or aryl substituent.

atmosphere, will reduce P–Cl bonds in ClPR₂ (R = Ph, iPr, tBu) to form either bridging phosphido/hydrido complexes or complexes bearing reduced dialkylphosphine ligands. While other methods of PCl bond reduction use strong hydride donors (DIBAL-H, LiAlH₄, etc.),¹⁶ the reaction described herein uses molecular dihydrogen and commercially available Mn complexes.

RESULTS AND DISCUSSION

To test H₂ activation across Mn–P bonds, **1** was subjected to heating under 1 atm of H₂, which resulted in the formation of **2** in moderate yields (Scheme 1). The ¹H NMR spectrum of **2**


Scheme 1. H₂ Activation with a Dinuclear Mn/P System

contains a resonance at -16.17 ppm (1H , dd, $J_{\text{PH}} = 30, 30$ Hz). The ³¹P{¹H} NMR spectrum of **2** contains two resonances, one at 43.9 ppm (bs) corresponding to the L-type diphenylphosphine and another at 166.0 ppm (bs) corresponding to the bridging phosphido group. The ¹H NMR spectrum also contains a doublet at 6.78 ppm with a large coupling ($J_{\text{PH}} = 350$ Hz) indicative of a P–H bond. Since the ³¹P and ³¹P{¹H} spectra show broad singlets ($\Delta\omega_{1/2} = 100$ Hz), the $J_{\text{P–P}}$ coupling constants were not determined; similar

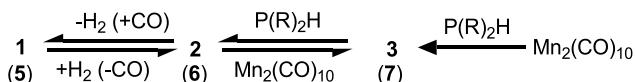
peak broadening induced by neighboring Mn nuclei ($I = 5/2$) is well-documented for related compounds.^{17,24} Collectively, along with the ATR-FTIR spectrum, the formulation of **2** is $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-H})(\mu\text{-PPh}_2)\{\text{Mn}(\text{CO})_3(\text{Ph}_2\text{PH})\}]$ (Scheme 2). The characterization data also match the spectroscopic

Scheme 2. PH Bond Activation with a Dinuclear Mn/P System

assignment for the same compound isolated by Mays as an intermediate during the photolytic reaction of $[(\text{Cp})(\text{CO})_2\text{Ru–Mn}(\text{CO})_5]$ with diphenylphosphine (Ph₂PH).¹⁸

To verify H₂ activation across the Mn–PPh₂ moiety in **1** (as opposed to adventitious water or other processes not involving dihydrogen), D₂ was used and the formation of $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-D})(\mu\text{-PPh}_2)\{\text{Mn}(\text{CO})_3(\text{Ph}_2\text{PD})\}]$ (**2^D**) was confirmed by ²H, ¹H, ³¹P, and ³¹P{¹H} NMR experiments (Figures S31–S33).

The moderate yield of the H₂ activation reaction with **1** is partially due to the insolubility of **1** in the reaction medium and also the reversibility of the reaction (*vide infra*). We also reasoned that a thermally difficult CO dissociation was the first step toward hydrogen activation, which dictated the harsh conditions required for H₂ activation with **1**. Therefore, we hypothesized that a coordinatively unsaturated version of **1**, such as $[\{\text{Mn}(\text{CO})_3(\mu\text{-PPh}_2)\}_2(\mu\text{-CO})]$ (**1-CO**), would open a path for H₂ activation under less forcing conditions. Hence, we synthesized the known heptacarbonyl complex **1-CO**¹⁹ via the CO photolysis of **1** and monitored its reaction with H₂ as a function of temperature. **1-CO** was essentially unreactive toward H₂ below 60 °C, but at 70 °C complete consumption of **1-CO** occurred (10 h) with formation of **2** (84%) and **1** (16%) (Figure S34 and Scheme 1). Under identical conditions there is no reaction between **1** and H₂. Overall, these results indicate a required vacant site for H₂ coordination and subsequent activation of the H₂ across the Mn–P bond in what can be considered a σ -complex-assisted metathesis (σ -CAM) reaction.²⁰

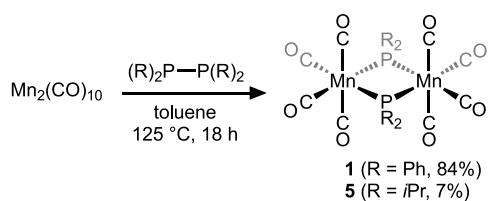

Since radical-based pathways involving Mn(I)-hydrides are known,²¹ we investigated whether the hydrogen activation observed was a result of H atom abstraction involving **1**. For example, heating a solution of **1** at 120 °C in the presence of an excess of 9,10-dihydroanthracene (10 equiv) or TEMPO-H (5 equiv) did not lead to the formation of **2** or **3**. These data strongly support a non-radical-based pathway.

The monodentate phosphine in **2** can be further carried on in useful chemistry (Scheme 2). For instance, the known complex $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-H})(\mu\text{-PPh}_2)\{\text{Mn}(\text{CO})_4\}]$ (**3**) is typically prepared by reacting Mn₂(CO)₁₀ with diphenylphos-

phine (Ph_2PH).²² To demonstrate the utility of **2** as a phosphine synthon, **2** was allowed to react with $\text{Mn}_2(\text{CO})_{10}$ and the product was **3**, isolated in 85% yield. Likewise, a mixture of **1**, $\text{Mn}_2(\text{CO})_{10}$, and H_2 resulted in the direct formation of **3** in 87% yield (Scheme 2).

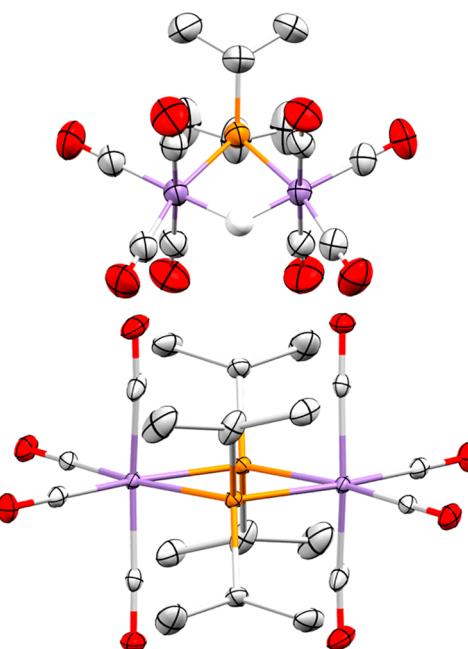
As was noted earlier, the formation of **2** from **1** and dihydrogen does not go to completion and some possible reasons include the poor solubility of **1** and the sluggish loss of CO. In addition, there also appears to be reversibility that precludes complete conversion (Scheme 3). To test the

Scheme 3. Observed Reversibility of Mn-P/H₂ Activation



reversibility, we examined the reverse transformation of **3** into **2** with loss of H_2 . When **3** is treated with 1 equiv of free diphenylphosphine (Ph_2PH) at 80 °C, clean and near-quantitative conversion to **2** is observed (Figure S38). When the reaction is carried out at 120 °C instead, **1** is detected as the major product along with **2** and H_2 (Figures S39 and S40).

This reversibility is akin to what has been observed for a somewhat related osmium-phosphido/phosphine complex.²³ However, the closely related cyclohexyl analogue of **2** appears not to exhibit reversibility.²⁴ Thus, we suspect reversible P–H/ H_2 bond activation with Mn-phosphidios is likely controlled by the steric bulk of the phosphorus substituents (*vide infra*).


To further test this hypothesis, we sought to prepare bulkier analogues of **1** using *iPr* and *tBu* substituents instead of Ph. By a procedure analogous to that used to prepare **1**, oxidative addition of tetraisopropylbisphosphide [$(\text{iPr})_2\text{P}=\text{P}(\text{iPr})_2$] (**4**) across $\text{Mn}_2(\text{CO})_{10}$ shows the formation of **5** but only in low

Scheme 4. Preparation of Bisphosphido Complexes

yields (Scheme 4). Complex **5** was characterized using ^1H and $^{31}\text{P}\{\text{H}\}$ NMR spectra and ATR-FTIR (Figure S14–S16), and an XRD analysis of crystals suitable for diffraction (Figure 2) confirms the assigned structure.

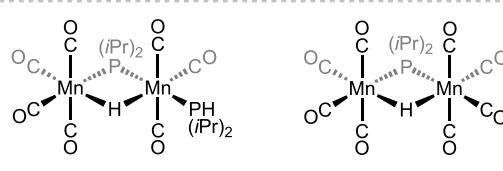
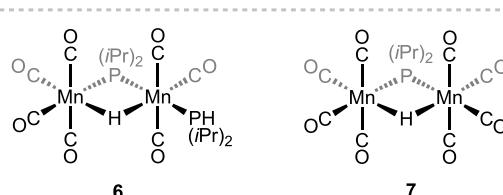
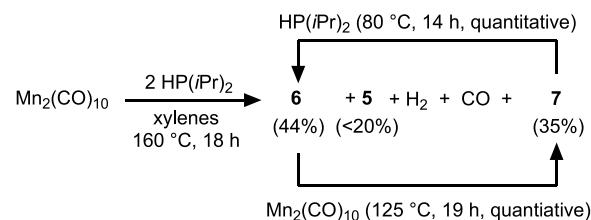
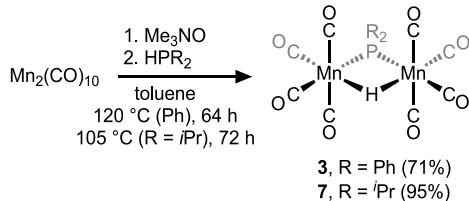



Although **5** is a thermally stable species, it proved relatively difficult to synthesize in comparison to the phenyl analogue **1**. For instance, when **5** was prepared by treating $\text{Na}[\text{Mn}(\text{CO})_5]$ and $\text{Cl}(\text{iPr})_2\text{P}$, by procedures similar to those for $[\text{Mn}(\text{CO})_4(\mu-\text{PR}_2)]_2$ ($\text{R} = \text{Ph, Me}$),¹¹ **5** was only a minor product and instead **4** was the major product (Figure S41). We suspect that **5** is the initial product but that it reductively eliminates **4**. We also attempted to synthesize **5** via a P–H bond activation method, akin to the route used to prepare $[\text{Mn}(\text{CO})_4(\mu-\text{PCy}_2)]_2$.²⁵ Heating a mixture of $\text{Mn}_2(\text{CO})_{10}$ and 2 equiv of diisopropylphosphine (iPr_2PH) in xylene resulted in a mixture of $[\{\text{Mn}(\text{CO})_4\}(\mu-\text{H})(\mu-\text{P}(\text{iPr})_2)\{\text{Mn}(\text{CO})_3\}(\text{iPr}_2\text{PH})]$ (**6**) and $[\{\text{Mn}(\text{CO})_4\}(\mu-\text{H})(\mu-\text{P}(\text{iPr})_2)\{\text{Mn}(\text{CO})_4\}]$ (**7**) and minor quantities of **5** (Scheme 5). A GC analysis of the

Figure 2. Molecular structures of **7** (top) and **5** (bottom) with H atoms (except the bridging hydride) omitted for clarity. Thermal ellipsoids are shown at 50% probability. Color scheme: white, H; gray, C; red, O; orange, P; purple, Mn. Selected distances (Å) and angles (deg) for **7**: $\text{Mn}\cdots\text{Mn} = 2.9378(5)$; $\text{Mn}_1-\text{P} = 2.2991(5)$; $\text{Mn}_2-\text{P} = 2.2994(6)$; $\text{Mn}_1-\text{P}-\text{Mn}_2 = 79.41(2)$. Selected distances (Å) and angles (deg) for **5**: $\text{Mn}\cdots\text{Mn} = 3.838(2)$; $\text{Mn}-\text{P} = 2.401(2)$; $\text{P}-\text{P} = 2.695(3)$; $\text{Mn}-\text{P}-\text{Mn} = 109.9(1)$; $\text{P}-\text{Mn}-\text{P} = 70.13(9)$.

reaction headspace shows the presence of CO and H_2 (Figure S44), indicative of the formation of **5** from **6** via H₂ elimination.

Scheme 5. Reversibility of H₂ and PH Activation with *iPr* Phosphido Ligands

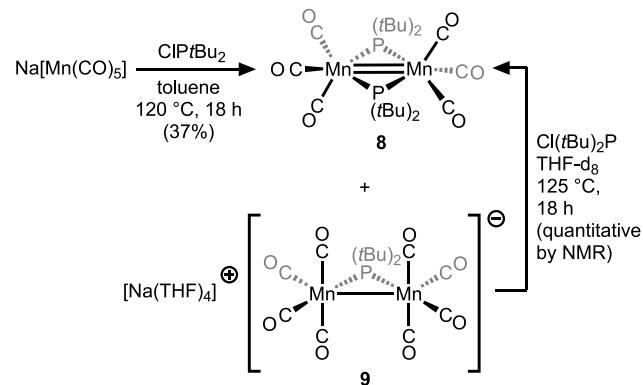


Independent hydrogen activation with **5** was also investigated. In a reaction analogous to **1**, heating a solution of **5** under an H_2 atmosphere led to activation across the Mn–P bond, resulting in the formation of **6** (Figure S35). Overall, this and the reactivity of the *iPr*-substituted compounds are consistent with the reversible H₂ and P–H bond activation chemistry associated with **1** (Scheme 3).

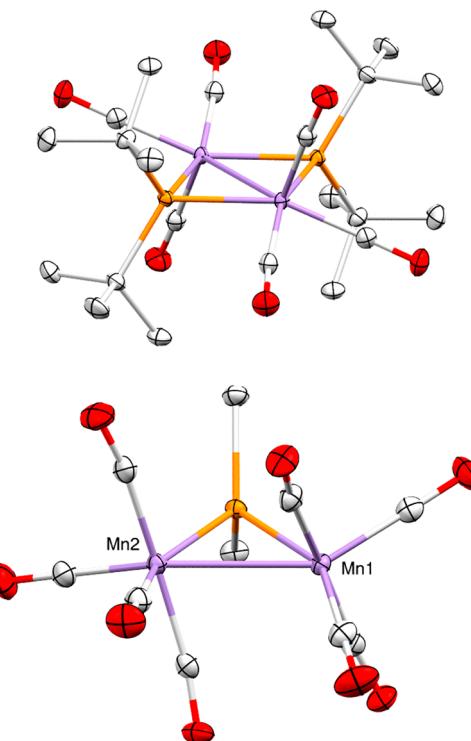
To confirm the identity of **6** and **7**, we synthesized these new complexes independently. Complex **7** was prepared in high

yield by the direct P–H activation of $(i\text{Pr})_2\text{PH}$ across $\text{Mn}_2(\text{CO})_{10}$ with Me_3NO as a promoter (Scheme 6). The

Scheme 6. Independent Synthesis of 3 and 7



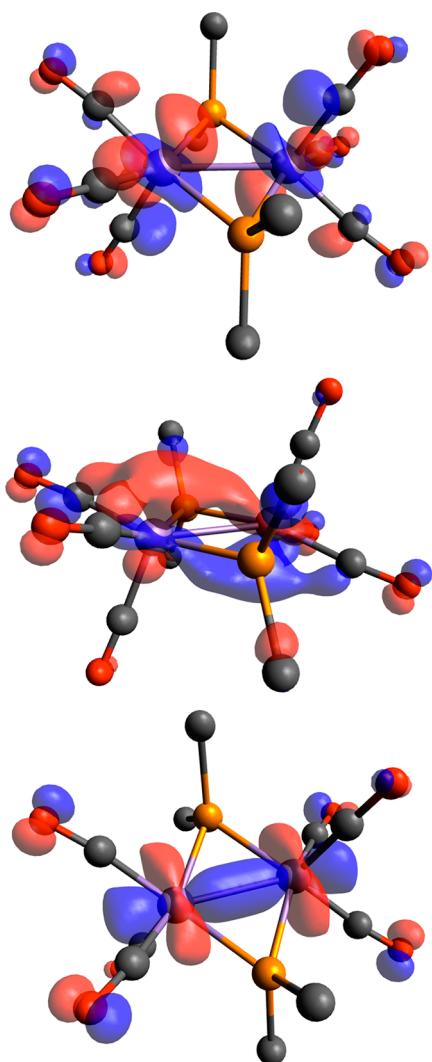
presence of a bridging hydride in 7 was confirmed by a doublet at -16.76 ppm ($J_{\text{P}-\text{H}} = 30$ Hz) in the ^1H NMR, and the bridging phosphido group shows a downfield resonance at 190.5 ppm in the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum (Figures S22 and S23), consistent overall with the known analogues and 3.^{24,26} Additionally, the structure was confirmed using single-crystal XRD (Figure 2, top). Both Mn(I) centers are hexacoordinated with a $\text{Mn}\cdots\text{Mn}$ distance of 2.94 Å, which is comparable to the $\text{Mn}\cdots\text{Mn}$ distance reported for 3 (2.95 Å) and other dialkylphosphido-bridged analogues.^{19,27} However, this short distance is not a M–M bond but a three-center–two-electron bond in the usual formalism for bridging hydride ligands.


Treatment of 7 with 1 equiv of $(i\text{Pr})_2\text{PH}$ at 80°C leads to the near-quantitative formation of the new complex 6 (Scheme 5, top arrow) (Figures S17–S21). Complexes 6 and 7 behave similarly to 2 and 3 (see Schemes 1–3), except that attempts to convert 7 into 5 (analogous to conversion of 3 to 1) give a significantly lower yield (Figures S45 and S46).

The even bulkier phosphine $\text{Cl}(t\text{Bu})_2\text{P}$ was used in attempts to prepare the *t*Bu derivative of 1 and 5. However, the hexacarbonyl complex $[\text{Mn}(\text{CO})_3(\mu\text{-PtBu}_2)]_2$ (8) and the octacarbonyl complex $[\text{Na}(\text{THF})_4][\{\text{Mn}(\text{CO})_4\}_2(\mu\text{-PtBu}_2)]$ (9) formed instead (Scheme 7). A closer inspection of the *i*Pr

Scheme 7. Synthesis of 8 and 9

groups in 5 makes it obvious that there is no more room to accommodate the extra methyl groups in a *t*Bu derivative, and we therefore suspect that the disparity in products is solely a result of steric bulk. Dark green crystals of 8 suitable for diffraction were obtained, and the XRD analysis (Figure 3, top) was consistent with its spectroscopic characterization (Figures S25–S28). 9 was also characterized spectroscopically (Figures S29 and S30), and the structure was corroborated with XRD analysis (Figure 3, bottom). 9 reacts with equimolar

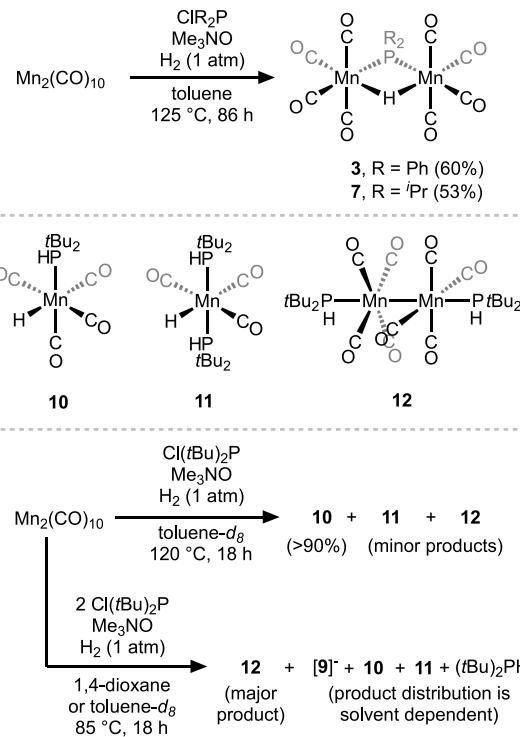

Figure 3. Molecular structures of 8 (top) and 9 (bottom) with H atoms, $[\text{Na}(\text{THF})_4]$ counterion, and disordered toluene molecule omitted for clarity. The *tert*-butyl methyl carbons in 9 have been removed for clarity. Thermal ellipsoids are shown at 50% probability. Color scheme: white, H; gray, C; red, O; orange, P; purple, Mn. Selected distances (Å) and angles (deg) for 8: $\text{Mn–Mn} = 2.5983(5)$; $\text{Mn–P} = 2.2706(4)$; $\text{Mn–P–Mn} = 69.80$; $\text{P–Mn–P} = 110.20$. Selected distances (Å) and angles (deg) for 9: $\text{Mn1–Mn2} = 2.7793(6)$; $\text{Mn1–P} = 2.3099(7)$; $\text{Mn2–P} = 2.3070(7)$; $\text{Mn1–P–Mn2} = 74.03(2)$.

$\text{Cl}(t\text{Bu})_2\text{P}$ to form 8, among other products (Figures S54 and S55).

Complex 8 is surprisingly air stable, despite the fact that it contains two coordinatively unsaturated Mn centers. Furthermore, the octacarbonyl complexes (and essentially most other formally monovalent Mn complexes in this report) are yellow to orange. However, 8 is a deep green and has a dramatically shortened $\text{Mn}\cdots\text{Mn}$ distance of $2.5983(5)$ Å. On the basis of electron-counting formalism, 8 contains a rare formal double Mn–Mn bond having two d^6 centers.^{28,29}

The $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of 8 contains a very downfield resonance at 404.3 ppm, which is indicative of M–M bond character as discussed by Riera and co-workers.³⁰ An inspection of the canonical MOs obtained from a single-point calculation at the PBE0/def2-TZVPP level reveals a M–M σ bond (HOMO-6) and M–M π bond (HOMO). Gas-phase TD-DFT calculations at the def2-SVP level predict a band at 576 nm with a major contribution (79%) from the HOMO to the LUMO. On the basis of the canonical MOs the transition is qualitatively a Mn–Mn π to Mn–Mn π^* transition (Figure 4). An experimental candidate for this predicted transition is at 694 nm ($\epsilon = 4600 \text{ M}^{-1} \text{ cm}^{-1}$) (Figure S28). This band does not shift upon a change in solvent, indicating that it is not a charge transfer band, and we assign this to the same Mn–Mn π to Mn–Mn π^* transition.

The activation of H_2 with 8 required forcing conditions and did not go to completion (20% at 120°C for 48 h). The

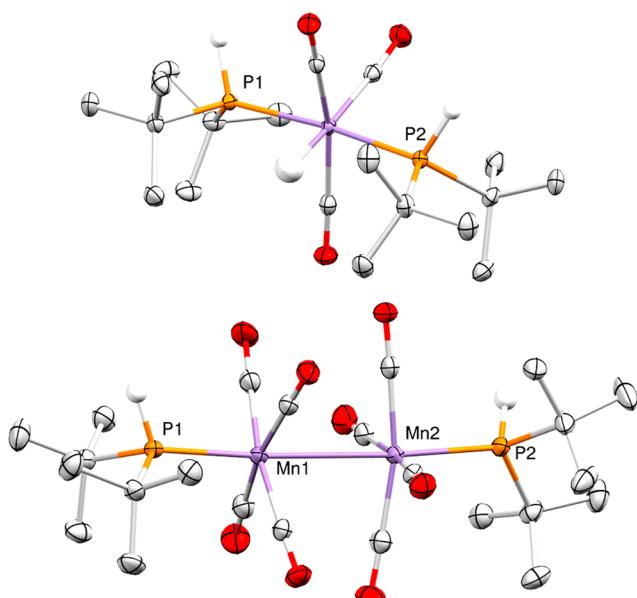

Figure 4. Selected MOs of **8** at the PBE0/def2-TZVPP level with hydrogens omitted for clarity (isovalue 0.05): (bottom) Mn–Mn σ bond, HOMO-6; (middle) Mn–Mn π bond, HOMO; (top) Mn–Mn π^* , LUMO. Color scheme: Mn, purple; C, gray; P, orange; O, red. The TD-DFT electronic transition at 576 nm is predominantly HOMO to LUMO.

products were identified as free $(t\text{Bu})_2\text{PH}$ (20% yield) and [*cis*- $\text{MnH}(\text{CO})_4((t\text{Bu}_2)\text{PH})$] (**10**) (<1%) (see below for description) (Figure S36).

In contrast, **5** is fully consumed with H_2 , forming **6** ($120\text{ }^\circ\text{C}$, 18 h), indicating that the H_2 activation across Mn–P bonds is not unique to phenyl-substituted phosphines (Figure S35). The lack of reactivity of H_2 with **8**, in contrast to **1** and **5**, and the milder conditions required for **1-CO** together point to a mechanism where a vacant site is required for H_2 activation on a heptacarbonyl intermediate. **8**, however, having only six carbonyl ligands, forms two M–M bonds and is effectively rendered inert toward H_2 until forcing conditions are achieved.

We also tested the ability of $\text{Mn}_2(\text{CO})_{10}$ to activate P–Cl bonds (Scheme 8, top). Chlorodiphenylphosphine (ClPh_2P) does not react with $\text{Mn}_2(\text{CO})_{10}$ at temperatures lower than $90\text{ }^\circ\text{C}$. Exceeding $90\text{ }^\circ\text{C}$ results in paramagnetic broadening of the ^1H NMR spectrum, and at $125\text{ }^\circ\text{C}$ complete consumption of the ClPh_2P and formation of **1** as the major product results (isolated yield, 25% based on $\text{Mn}_2(\text{CO})_{10}$). In contrast,

Scheme 8. P–Cl Bond Reduction with H_2 and $\text{Mn}_2(\text{CO})_{10}$


repeating the same experiment but with H_2 ($125\text{ }^\circ\text{C}$) leads to the formation of **3** in 60% yield along with other yellow byproducts, including **1** (<5%); no unreacted chlorophosphine remained. Similar results were obtained with $\text{Cl}(i\text{Pr})_2\text{P}$ and H_2 , yielding **7** (53%). The source of the H atom was confirmed to arise from H_2 by repeating the experiment with D_2 , yielding $[\{\text{Mn}(\text{CO})_4\}(\mu\text{-D})(\mu\text{-PPh}_2)\{\text{Mn}(\text{CO})_4\}]$ (**3^D**) (Figures S51–S53).

Using $\text{Cl}(t\text{Bu})_2\text{P}$ instead gives a different set of results. Heating $\text{Mn}_2(\text{CO})_{10}$ with 1 equiv of $\text{Cl}(t\text{Bu})_2\text{P}$ at $120\text{ }^\circ\text{C}$ under H_2 (1 atm) leads to the formation of **10** (>90%). The formulation of **10** as [*cis*- $\text{MnH}(\text{CO})_4((t\text{Bu}_2)\text{PH})$] is based on the ^1H NMR spectrum, which contained a Mn–H resonance at -7.88 ppm (d , $J_{\text{P}-\text{H}} = 36\text{ Hz}$), a P–H resonance at 3.84 ppm (d , $J_{\text{P}-\text{H}} = 321\text{ Hz}$), and a ^{31}P resonance at 85.1 ppm (d , $J_{\text{P}-\text{H}} = 322\text{ Hz}$) (Figures S56 and S57); the *cis* confirmation and mononuclear assignment are consistent with these data. The data are also consistent with those of analogous compounds reported elsewhere.³¹

Using 2 equiv of $\text{Cl}(t\text{Bu})_2\text{P}$ leads to a mixture of **10**, [$\text{Mn}(\text{H})(\text{CO})_3((t\text{Bu}_2)\text{PH})_2$] (**11**), and *diaxial*-[$\text{Mn}(\text{CO})_4((t\text{Bu}_2)\text{PH})_2$] (**12**) (Scheme 8, bottom). Crystals of **11** and **12** suitable for diffraction were retrieved from the mixture, and an X-ray analysis confirmed their structure (Figure 5). A ^1H and $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopic analysis of the solution agrees with the assigned structure (Figures S59 and S60); the separation of these products was not pursued. These reactions unambiguously demonstrate the reduction of P–Cl bonds, but the variation in products obtained is heavily dictated by steric factors.

CONCLUSION

To summarize, we demonstrated herein the first example of H_2 activation in first-row transition-metal dialkyl- and diarylphosphido complexes. We confirmed this using simple Mn

Figure 5. Molecular structures for **11** (top) and **12** (bottom). All H atoms except those directly bound to P and Mn atoms are omitted for clarity. Thermal ellipsoids are shown at 50% probability. Color scheme: white, H; gray, C; red, O; orange, P; purple, Mn. Selected distances (Å) and angles (deg) for **11**: Mn–P1 = 2.2935(4); Mn–P2 = 2.2873(4); P2–Mn–P1 = 172.15(2). Selected distances (Å) and angles (deg) for **12**: Mn1–Mn2 = 2.9333(7); P1–Mn1 = 2.2949(9); P2–Mn2 = 2.2941(9); P1–Mn1–P2 = 175.71(3); Mn1–Mn2–P2 = 176.33(3).

and phosphine starting materials, showing that NHPs are not necessary to engender the stability required for H₂ activation using first-row metal phosphido groups. The reaction mechanism between **1** and H₂ is consistent overall with CO dissociation followed by σ-CAM, affording **2**. The coordinated phosphine that results from H₂ activation can be further activated (P–H bond activation) by treatment with Mn₂(CO)₁₀, yielding the octacarbonyl μ-phosphido μ-hydrido complexes. The chemistry discussed herein is heavily influenced by steric properties, as indicated from studies with bulkier substituents, such as *i*Pr and *t*Bu. The *i*Pr substituent behaved similarly to Ph, but the *t*Bu substituent resulted in the formation of an unsaturated hexacarbonyl dimer with a M=M bond exhibiting substantially slower and different H₂ activation chemistry. Additionally, P–Cl reduction was affected by the substituents on phosphorus. Ph- and *i*Pr-disubstituted Cl(R)₂P substrates were reduced to μ-phosphido μ-hydrido complexes, implicating bis-phosphido intermediates resulting from thermally induced P–Cl bond activation by Mn₂(CO)₁₀, but no PH bonds were formed. In contrast, *t*Bu₂PCl hydrogenation to *t*Bu₂PH was accomplished using H₂ (1 atm) and Mn₂(CO)₁₀.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.organomet.1c00603>.

Procedures and characterization data for novel compounds (PDF)

Accession Codes

CCDC 2091720 and 2114649–2114653 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/

cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

David C. Lacy – Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States; Email: DCLacy@Buffalo.edu

Authors

Preshit Abhyankar – Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States; orcid.org/0000-0002-2283-7122

Samantha N. MacMillan – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0001-6516-1823

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acs.organomet.1c00603>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the University at Buffalo (UB) and funds provided by the NSF (award 1847933). FT-ICR data (S10 RR029517) were collected at the UB Chemistry Instrument Center (CIC). The Bruker Ascend-500 NMR spectrometer at the UB Magnetic Resonance Center was obtained through funds provided by the NSF (award 2018160). The authors acknowledge the support of Dr. Valerie Frerichs and Eric Jensen at the UB CIC. DFT calculations were performed using the resources at the UB Center of Computational Research (CCR). P.A. also acknowledges Dr. Sutirtha N. Chowdhury for useful discussions regarding TD-DFT calculations.

REFERENCES

- Selected reviews: (a) Khusnutdinova, J. R.; Milstein, D. Metal-Ligand Cooperation. *Angew. Chem., Int. Ed.* **2015**, *54*, 12236–12273. (b) Crabtree, R. H. Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis. *Chem. Rev.* **2017**, *117*, 9228. (c) Elsby, M. R.; Baker, R. T. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. *Chem. Soc. Rev.* **2020**, *49*, 8933–8987.
- Normand, A. T.; Daniliuc, C. G.; Wibbeling, B.; Kehr, G.; Le Gendre, P.; Erker, G. Phosphido- and Amido-zirconocene Cation-Based Frustrated Lewis Pair Chemistry. *J. Am. Chem. Soc.* **2015**, *137*, 10796–10808.
- Roddick, D. M.; Santarsiero, B. D.; Bercaw, J. E. Synthesis and reactivity of cyclopentadienylhafnium phosphido complexes. Hydrogenolysis and carbon monoxide insertion for Hf-PR₂ bonds. *J. Am. Chem. Soc.* **1985**, *107*, 4670–4678.
- Lugan, N.; Lavigne, G.; Bonnet, J. J.; Réau, R.; Neibecker, D.; Tkatchenko, I. Evidence for the lability of a bridging phosphido ligand under hydrogen atmosphere. Reactions of the cluster complex Ru₃(μ³-P(C₆H₅)(C₅H₄N)))(μ³-P(C₆H₅)₂)(CO)₈. *J. Am. Chem. Soc.* **1988**, *110*, 5369–5376.
- Hoyle, M. A. M.; Pantazis, D. A.; Burton, H. M.; McDonald, R.; Rosenberg, L. Benzonitrile Adducts of Terminal Diarylphosphido Complexes: Preparative Sources of “Ru = PR₂. *Organometallics* **2011**, *30*, 6458–6465.

(6) Fryzuk, M. D.; Bhangu, K. Activation of dihydrogen by organoiridium-phosphido complexes. Evidence for hydrogen abstraction by a terminal phosphide ligand. *J. Am. Chem. Soc.* **1988**, *110*, 961–963.

(7) Xu, M.; Jupp, A. R.; Qu, Z.-W.; Stephan, D. W. Alkali Metal Species in the Reversible Activation of H₂. *Angew. Chem., Int. Ed.* **2018**, *57*, 11050–11054.

(8) Poitras, A. M.; Knight, S. E.; Bezpaliko, M. W.; Foxman, B. M.; Thomas, C. M. Addition of H₂ Across a Cobalt–Phosphorus Bond. *Angew. Chem., Int. Ed.* **2018**, *57*, 1497–1500.

(9) Birchall, N.; Feil, C. M.; Gediga, M.; Nieger, M.; Gudat, D. Reversible cooperative dihydrogen binding and transfer with a bisphosphenium complex of chromium. *Chem. Sci.* **2020**, *11*, 9571–9576.

(10) (a) Gediga, M.; Feil, C. M.; Schlinwein, S. H.; Bender, J.; Nieger, M.; Gudat, D. N-Heterocyclic Phosphonium Complex of Manganese: Synthesis and Catalytic Activity in Ammonia Borane Dehydrogenation. *Chem. - Eur. J.* **2017**, *23*, 11560–11569. (b) Gediga, M.; Schlinwein, S. H.; Bender, J.; Nieger, M.; Gudat, D. Variable Reactivity of a N-Heterocyclic Phosphonium Complex: P–C Bond Activation or “Abnormal” Deprotonation. *Angew. Chem., Int. Ed.* **2017**, *56*, 15718–15722.

(11) Hayter, R. G. Phosphorus- and Arsenic-Bridged Complexes of Metal Carbonyls. III. Cobalt and Manganese Complexes². *J. Am. Chem. Soc.* **1964**, *86*, 823–828.

(12) Kabir, S. E.; Ahmed, F.; Ghosh, S.; et al. Reactions of rhenium and manganese carbonyl complexes with 1,8-bis(diphenylphosphino)-naphthalene: Ligand chelation, C–H and C–P bond-cleavage reactions. *J. Organomet. Chem.* **2008**, *693*, 2657–2665.

(13) Mede, R.; Blohm, S.; Görts, H.; Westerhausen, M. Synthesis and Characterization of Manganese(I) Carbonyl Complexes of the Type [(OC)₄Mn{μ-P(R)Arly}]₂. *Z. Anorg. Allg. Chem.* **2016**, *642*, 508–514.

(14) Decken, A.; Neil, M. A.; Bottomley, F. Synthesis and characterization of manganese complexes of the dibenzophospholyl ligand. *Can. J. Chem.* **2001**, *79*, 1321–1329.

(15) (15) Manojlović-Muir, L.; Mays, M. J.; Muir, K. W.; Woulfe, K. W. Reactions of bis(phosphido)-bridged dimanganese complexes with alkynes and allene. *J. Chem. Soc., Dalton Trans.* **1992**, 1531–1538.

(15) Braga, D.; Caffyn, A. J. M.; Jennings, M. C.; Mays, M. J.; Manojlović-Muir, L.; Raithby, P. R.; Sabatino, P.; Woulfe, K. W. J. Co-ordinated phospholes from the coupling of alkynes with bridging phosphido ligands: the crystal and molecular structures of [Co₂{μ-η²:η²-C₄(CO₂Me)₄PPh₂}]{μ-PPh₂(CO)₄}, [Mn₂(η⁴-C₄H₄PPh₂){μ-PPh₂(CO)₆}], and [Mn₂(μ-η⁵-C₄H₄PPh₂){μ-PPh₂(CO)₅}]. *J. Chem. Soc., Chem. Commun.* **1989**, 1401–1403.

(16) Some pertinent references: (a) Rinehart, N. I.; Kendall, A. J.; Tyler, D. R. A Universally Applicable Methodology for the Gram-Scale Synthesis of Primary, Secondary, and Tertiary Phosphines. *Organometallics* **2018**, *37*, 182–190. (b) Kendall, A. J.; Seidenkranz, D. T.; Tyler, D. R. Improved Synthetic Route to Heteroleptic Alkylphosphine Oxides. *Organometallics* **2017**, *36*, 2412–2417. (c) Geeson, M. B.; Cummins, C. C. Phosphoric acid as a precursor to chemicals traditionally synthesized from white phosphorus. *Science* **2018**, *359*, 1383–1385. (d) Geeson, M. B.; Cummins, C. C. Let’s make white phosphorus obsolete. *ACS Cent. Sci.* **2020**, *6*, 848–860.

(17) Binder, J. F.; Kosnik, S. C.; MacDonald, C. L. B. Assessing the Ligand Properties of NHC-Stabilised Phosphorus(I) Cations. *Chem. - Eur. J.* **2018**, *24*, 3556–3565.

(18) Caffyn, A. J. M.; Mays, M. J.; Raithby, P. R. Synthesis of phosphido-bridged ruthenium–manganese complexes; X-ray crystal structures of [RuMn(μ-H){μ-PPh₂}(η⁵-C₅H₅)(CO)₅], [Ru₂(μ-H){μ-PPh₂}(η⁵-C₅H₅)₂(CO)₂] and [RuMn₂(μ-H){μ-PPh₂}(η⁵-C₅H₅)(CO)₉]. *J. Chem. Soc., Dalton Trans.* **1991**, 2349–2356.

(19) Kawamura, T.; Sowa, T.; Yonezawa, T.; et al. Photochemical decarbonylation of Mn₂(μ-PPh₂)₂(CO)₈ to form Mn₂(μ-PPh₂)₂(μ-CO)(CO)₆ with a semi-bridging carbonyl. *J. Organomet. Chem.* **1984**, *217*, C10–C12.

(20) Perutz, R. N.; Sabo-Etienne, S. The σ-CAM Mechanism: σ-Complexes as the Basis of σ-Bond Metathesis at Late-Transition-Metal Centers. *Angew. Chem., Int. Ed.* **2007**, *46*, 2578–2592.

(21) (a) Wassink, B.; Thomas, M. J.; Wright, S. C.; Gillis, J. J.; Baird, M. C. Mechanisms of the hydrometalation (insertion) and stoichiometric hydrogenation reactions of conjugated dienes effected by manganese pentacarbonyl hydride: processes involving the radical pair mechanism. *J. Am. Chem. Soc.* **1987**, *109*, 1995–2002. (b) Sweany, R.; Butler, S. C.; Halpern, J. Hydrogenation of α-methylstyrene by hydridopentacarbonylmanganese (I). Evidence for a free-radical mechanism. *J. Am. Chem. Soc.* **1977**, *99*, 8335–8337.

(22) Iggo, J. A.; Mays, M. J.; Raithby, P. R.; Hendrick, K. Substitution and insertion reactions of the dinuclear manganese μ-hydride complex [M₂(μ-H)(μ-PPh₂)(CO)₈]; crystal structures of the complexes [Mn₂(μ-σ:η²-CH = CH₂)(μ-PPh₂)(CO)₇] and [Mn₂(μ-H)(μ-PPh₂)(CO)₆(CNBu^t)₂]. *J. Chem. Soc., Dalton Trans.* **1983**, 205–215.

(23) Rosenberg, S.; Geoffroy, G. L.; Rheingold, A. L. Reactivity of bridging phosphido ligands in WOs binuclear complexes. Crystal and molecular structure of (CO)₅W(μ-PPh₂)Os(H)(CO)₂(PMePh₂)-(PPh₂H). *Organometallics* **1985**, *4*, 1184–1189.

(24) Arif, A. M.; Jones, R. A.; Schwab, S. T. Synthesis and ligand substitution chemistry of dinuclear, phosphido-bridged complexes of manganese. X-ray crystal structures of Mn₂(μ-H)(μ-Cy₂P)-(CO)₇(PCy₂H)(1) and Mn₂(μ-H)(μ-Cy₂P)(CO)₆(PMe₃)₂. *J. Organomet. Chem.* **1986**, *307*, 219–229.

(25) Flörke, U.; Haupt, H. J. Dimanganese octacarbonyl complexes with bridging phosphanido ligands. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1993**, *C49*, 533–535.

(26) Haupt, H. J.; Schwefer, M.; Flörke, U. Reactivity of Deprotonated Mn₂(μ-H)(μ-PCyH)(CO)₈: Valence Isomerization and Rearrangement of Mn₂(AuPR₃)₂(μ₄-PCy)(CO)₈ and Mn₂(μ-AuPR₃)(μ₃-PCy(AuPR₃))(CO)₈ (R = Ph, p-C₆H₄F, p-C₆H₄OMe, Cy, Et, (CH₂)₂CN). *Inorg. Chem.* **1995**, *34*, 292–297.

(27) Flörke, U.; Haupt, H. J. Octacarbonyl-1κ⁴C₂κ⁴C-μ₃-[cyclohexylphosphanido(2-)]-μ-hydrido-1:2κ²H-tricyclohexylphosphine-3κP-gold-dimanganese(Mn–Mn). *Acta Crystallogr.* **1995**, *C51*, S73–S75.

(28) Baus, J. A.; Poater, J.; Bickelhaupt, F. M.; Tacke, R. Silylene-Induced Reduction of [Mn₂(CO)₁₀]: Formation of a Five-Coordinate Silicon(IV) Complex with an O-Bound [(OC)₄Mn = Mn(CO)₄]²⁻ Ligand. *Eur. J. Inorg. Chem.* **2017**, *2017*, 186–191.

(29) Liu, X.-Y.; Riera, V.; Ruiz, M. A. [Mn₂(CO)₆(μ-Ph₂PCH₂PPh₂)₂](Mn–Mn), a Nucleophilic Unsaturated Binuclear Anion. *Organometallics* **1994**, *13*, 2925–2927.

(30) Liu, X.-Y.; Riera, V.; Ruiz, M. A.; Tiripicchio, A.; Tiripicchio-Camellini, M. *Organometallics* **1996**, *15*, 974–983.

(31) (a) Brown, T. L.; Sullivan, R. J. Photochemical reaction of dinuclear manganese carbonyl compounds with tributyltin hydride and with silanes. *J. Am. Chem. Soc.* **1991**, *113*, 9155–9161. (b) Ruszczyk, R. J.; Huang, B.-L.; Atwood, J. D. Carbonylation and hydrogenation of *cis*-CH₃Mn(CO)₄L, substitutional reactivity of *cis*-HMn(CO)₄L, and binuclear elimination between *cis*-CH₃Mn(CO)₄P(OPh)₃ and *cis*-HMn(CO)₄P(OPh)₃ (L = CO, PPh₃, P(OPh)₃, PBu₃ and P(OMe)₃). *J. Organomet. Chem.* **1986**, *299*, 205.