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Key Points:

« Many CMIP5 models are able to capture the observed seasonal correlation between
summertime SAM and Antarctic sea ice extent

« The SAM, however, only explains 15% of the year-to-year SIE variability in the
fall, in both models and observations

e SAM trends, and ozone depletion, are not the primary drivers of the observed Antarc-

tic sea ice expansion in the last four decades
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Abstract

The expansion of Antarctic sea ice since 1979 in the presence of increasing greenhouse
gases remains one of the most puzzling features of current climate change. Some stud-
ies have proposed that the formation of the ozone hole, via the Southern Annular Mode,
might explain that expansion, and a recent study highlighted a robust causal link be-
tween summertime Southern Annular Mode (SAM) anomalies and sea ice anomalies in
the subsequent autumn. Here we show that many models are able to capture this rela-
tionship between the SAM and sea ice, but also emphasize that the SAM only explains
a small fraction of the year-to-year variability. Finally, examining multidecadal trends,
in models and observations, we confirm the findings of several previous studies and con-
clude that the SAM — and thus the ozone hole — are not the primary drivers of the sea

ice expansion around Antarctica in recent decades.

Plain Language Summary

Unlike its Arctic counterpart, sea ice around Antarctica has been growing since 1979,
even as the levels of carbon dioxide in the atmosphere have increased. Given that the
ozone hole formed over the South Pole around the same time, one is led to ask whether
the ozone hole may be responsible for the growth of Antarctic sea ice (recall that there
is no ozone hole over the North Pole). In this study, looking at both models and obser-
vations, we show that the ozone hole is capable of affecting the surface winds and these,
in turn, can make sea ice expand. However, the magnitude of this effect is small. Also
since the ozone hole started healing after the year 2000, while Antarctic sea ice kept ex-
panding, we conclude that ozone depletion is not the main reason for the expansion of

Antarctic sea ice in recent decades.

1 Introduction

The expansion of Antarctic sea ice over the last four decades (Turner et al., 2015;
Jones et al., 2016), while small and not linear (Handcock & Raphael, 2020), remains one
of the most surprising aspects of recent climate change, given the robust and monotonic
increase in the atmospheric concentration of anthropogenic greenhouse gases. As the Arc-
tic has rapidly warmed (Stroeve, Serreze, et al., 2012), the sea surface has cooled around
Antarctica, and this has been accompanied by an increasing area of sea ice (Fan et al.,
2014; Parkinson, 2019). Furthermore, while climate models are now able to capture the
strong melting of Arctic sea ice (Stroeve, Kattsov, et al., 2012; SIMIP, 2020), they re-
main unable to simulate the multidecadal expansion of Antarctic sea ice (Arzel et al.,

2006; Turner et al., 2013; Roach et al., 2020).
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In terms of climate forcings, one key difference between the two hemispheres is the
formation of the ozone hole over the South Pole in the late 20th century. This has had
profound impacts on many aspects of the Southern Hemisphere climate system (see Pre-
vidi & Polvani, 2014, for a comprehensive review), largely mediated by the Southern An-
nular Mode (SAM). It is now accepted that the positive trend in the summertime SAM
from 1960 to 2000 (approximately) was largely forced by stratospheric ozone depletion
(Thompson & Solomon, 2002; Gillett & Thompson, 2003; Polvani et al., 2011; Baner-
jee et al., 2020; Fogt & Marshall, 2020), although increasing greenhouse gases and in-
ternal variability have also likely contributed (Thomas et al., 2015).

Since positive interannual SAM anomalies induce (via Ekman drift) colder sea sur-
face temperatures and increased sea ice concentration (Hall & Visbeck, 2002; Liu et al.,
2004; Ciasto & Thompson, 2008; Simpkins et al., 2012), one is immediately led to ask
whether positive Antarctic sea ice extent (SIE) trends have been caused by ozone de-
pletion. Many studies have addressed this question reaching, unfortunately, often con-
tradictory conclusions. To help clarify a somewhat confused situation, we start with a

brief summary of the extant literature.

A few early studies (Goosse et al., 2009; Turner et al., 2009) using simplified model
configurations suggested that, indeed, ozone via the SAM might explain the observed
positive SIE trends. However, several subsequent studies with comprehensive earth-system
models (Sigmond & Fyfe, 2010; Smith et al., 2012; Bitz & Polvani, 2012; Sigmond & Fyfe,
2014; A. Solomon et al., 2015) found the opposite: they demonstrated that ozone deple-
tion in the second half of the 20th century causes a robust melting of Antarctic sea ice.
However, since these studies were based on models, and since current-generation mod-

els are unable to simulate the multidecadal growth of Antarctic SIE, doubts lingered.

A new modeling approach was proposed by Ferreira et al. (2015). They advocated

studying the response to ozone depletion using an idealized “step-like” ozone forcing, rather

than to a transient and realistic historical ozone forcing, in order to obtain the so-called

Climate Response Function (CRF, as detailed in Marshall et al., 2014). That method

emphasized that, over the Southern Ocean, the SST response occurs in two distinct phases:

a “fast” cooling phase, dominated by Ekman transport of cold waters away from the Antarc-

tic continent, and a “slow” warming phase, caused by the upwelling of warmer water from
below. This approach was pursued in a number of subsequent studies (Kostov et al., 2017;
Seviour et al., 2016; Holland et al., 2017), who examined a large number of climate mod-
els and found that SSTs over the Southern Ocean do indeed respond with a early cool-

ing and later warming phase. However, the cooling phase was not found in the response
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of Antarctic sea ice in models subjected to impulsive ozone forcing: all CMIP-class' mod-
els showed a continuous melting of sea ice following the impulsive ozone forcing (see Fig. 9

of Seviour et al., 2019).

Although the modeling evidence showing that ozone depletion melts Antarctic sea
ice is now overwhelming, the possibility that ozone — forcing SAM trends — could nonethe-
less be responsible for the observed expansion of Antarctic sea ice has remained tanta-
lizing, because the seasonal cooling phase of the SST response to the SAM rests on a well-
tested physical mechanism which was shown to be operative in observations. Specifically,
confirming earlier studies (Liu et al., 2004; Simpkins et al., 2012), Doddridge and Mar-
shall (2017, hereafter DM17) recently analyzed the observed interannual relationship be-
tween SAM and SIE over the period 1979-2017, and demonstrated how positive summer-
time SAM anomalies are followed by colder sea surface temperatures (SST) leading to
anomalous SIE in the fall, with the largest effect occurring in April. Since the largest
SAM trends over that period are observed in the summer, DM17 conclude that “The re-
sults presented in this paper suggest that anthropogenic ozone depletion, by forcing the
atmosphere toward a positive SAM state in DJF, may have contributed to a seasonal
cooling of SST near Antarctica and an increase in Antarctic sea ice extent during the

austral autumn.”

The goal of the present study is to determine whether this suggestion is actually
borne out in reality. Building on the findings of DM17, we here address two simple ques-

tions:

1. Are climate models able to simulate the observed interannual lagged relationship
between summer SAM and fall SIE?
2. Given the SAM trends, does this interannual relationship explain the multidecadal

fall STE trends, in the models and in the observations?

After a brief exposition of the models and the methods used herein, we show that
the answer to the first question is “yes”, and to the second question is “no”. We con-
clude with a discussion on the implications of these findings for the role of ozone deple-

tion on Antarctic SIE.

1 The only exception was the MITgcm, which showed a 20-year-long initial phase of Antarctic sea ice
growth, before the sea ice melting phase appears. It should be noted that MITgcm is not a CMIP-class
model: it consists of an idealized “double-Drake” ocean model, coupled to a 5-level aqua-planet atmo-
spheric model with highly simplified physical parameterizations, and a purely thermodynamic sea ice

component. See the Appendix of Ferreira et al. (2015).



126 2 Methods

127 Since this paper is a direct follow-up of DM17, all methods are identical to theirs,
128 except where explicitly noted. In addition to the observations, we here analyze two sets
120 of climate models. The first set is the CMIP5 multimodel ensemble: we here combine

130 the Historical and RCP8.5 integrations, analyzing all the available runs from 25 differ-

131 ent models, for a total of 55 members. The second set is Community Earth System Model
132 “Large Ensemble” (Kay et al., 2015, hereafter CESM-LE), for which 40 members are avail-
133 able. All runs are forced identically as, per the CMIP5 protocol. The CMIP5 ensemble

134 allows us to estimate the robustness of the correlations across many models; the CESM

135 ensemble allows us estimate how internal variability might affect the conclusions. All fields
136 are regridded to a common resolution of 1° longitude by 0.5° latitude resolution before

137 performing any analysis.

138 Updating the study of DM17, we here analyze the entire 1979-2020 period, and ex-

130 plore the correlation between the time series of the December-February (DJF) SAM and
140 both SST and SIE in the subsequent months. The DJF months are chosen because it

14 is in the summer that SAM trends have been the largest and statistically significant (see,
142 e.g., Swart & Fyfe, 2012) and, as many modeling studies have shown, those summer trends
143 are due primarily to stratospheric ozone depletion.

144 The DJF SAM index is computed as the difference between zonal mean, seasonal

15 mean (DJF) and standardized sea level pressures at 45°S and 60°S: the standardization

146 period is 1971- 2000 following Marshall (2003). For the observations, we obtain DJF-average,
147 standardized zonal mean sea level pressure at 45°S and 60°S based on station-based mea-

148 surements from British Antarctic Survey (https://legacy.bas.ac.uk/met/gjma/sam.html).

149 For the model output, we use the variables “psl” for CMIP5, and “PSL” for CESM-LE.

150 The results presented below are nearly identical if the observed SAM from station data
151 is replaced by a SAM computed from zonal means using ERA5 reanalyses (not shown).
152 Finally, monthly Antarctic SIE time series are computed as follows. For the ob-

153 servations, we employ a satellite-based data set for sea ice concentration available at the

154 National Snow and Ice Data Center (NSDIC, Fetterer et al., 2017). For the models, SIE
155 is calculated from sea ice concentration (using the variables “sic” in CMIP5 and “ICE-

156 FRAC” in CESM-LE), as the total area of cells with a sea ice cover greater than 15%.

157 Following DM 17, the timeseries of the DJF SAM index and monthly SIE are de-
158 trended by simply removing the linear trend, and the SAM-SIE relationship is then in-
159 vestigated over the period 1979-2020. For clarity, we index the data corresponding to the
160 SIE values, so the first year is 1980 (corresponding to a SAM in December 1979, and Jan-
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uary and February 1980) and the last year is 2020; this gives a total of 41 years. We also
perform a regression of the detrended DJF SAM timeseries versus the following year’s
detrended values of SST and SIE for every calendar month (e.g.the 2000-2001 DJF SAM
is regressed against the 2001 monthly SST and SIE values).

3 Results

We start by validating the key observational finding of DM17, shown by the black
line in Figure la: positive summer SAM anomalies result in increased Antarctic SIE in
the following fall, with the maximum occurring in April, when an additional 0.18 mil-
lion km? of sea ice is observed after one unit increase the summer SAM index. Next, in
Figure 1b, we demonstrate that the CESM-LE model is capable of simulating this re-
lationship: nearly all CESM-LE runs show increased fall SIE following positive summer

SAM anomalies (the ensemble mean is shown in panel a).

Unfortunately, not all CMIP5 runs are able to capture the observed impact of the
summer SAM onto the fall SIE. We examine each individual model run, and test whether
the observed SAM-SIE connection is present. For simplicity we separate the CMIP5 model
runs in two sets, based on the correlation r between the SAM-SIE relationship in the model
and in the observations. Runs which accurately simulate the annual pattern of SIE re-
sponse to the SAM (r > 0.5) are shown in Figure lc, and those with a poor simulation
(r < 0.5) in Figure 1d. Interestingly, for a few models, some runs fall in one category
and some in the other. For reference, 35 of the 40 CESM-LE runs show a good corre-
lation with observations. The ensemble mean of the CMIP5 runs with 7 > 0.5 is shown
in green in Figure 1la, for direct comparison with observations. The key point of that fig-
ure is that many CMIP5 model runs are able to capture the observed impact of the sum-

mer SAM on Antarctic SIE in the following months, with the largest impact in the fall.

At this point, therefore, we are ready to answer the first question posed in the In-
troduction: many CMIP5 historical runs (roughly one third of the CMIP5 historical runs,
and nearly all the CESM-LE runs) are indeed capable of capturing the “short-time” scale
response of Antarctic sea ice to the summertime SAM, in the terminology of Ferreira et
al. (2015), most notably the peak response in the fall. Notice however, that the relation-
ship between these two quantities is somewhat tenuous because, as one can see in Fig-

ures 1c and d, for several model runs can be found in both panels.

Nonetheless, we are now ready to turn our attention to the second question: does
the physical mechanism connecting the DJF SAM to the fall sea ice extent operate on

multidecadal time scales, and help us explain the long-term trends? To answer that ques-
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tion, let us start by considering the amount of monthly SIE variance that is explained

by the preceding DJF SAM. This is shown in Figure 2, for the observations, the CMIP5
models, and the CESM-LE, respectively. Notice first the good agreement across the three
panels: all agree the strongest linkage in MAM, and are quantitatively close (between
0.10 and 0.15). This confirms that many models are capturing the physics of the SAM-
SIE relationship correctly. The CESM-LE (panel) Figure 2¢, provides an excellent ex-

ample.

Next, however, consider the actual values on the ordinate axis: the largest values,
which are found in MAM, are very small. The peak, in April, is a mere 0.15. This means
that the bulk (i.e. 85%) of the interannual variability in fall SIE around Antarctica is

not due to SAM anomalies in the preceding summer.

Given the small variance explained by the SAM on a year-to-year basis, even in the
peak months (i.e. in MAM), it is difficult to imagine how the SAM would be able to ex-
plain the long-term trends. This is illustrated in Fig. 3 where, in each panel, the SAM-
regressed SIE trends in MAM are plotted against the corresponding actual SIE trends
in MAM, both for the model runs and for the observations (the SAM in DJF is used to
compute the SAM-regressed SIE trends in each month). In each panel, the one-to-one

line is shown, for reference, by the dashed blue line.

Let us first discuss the modeled trends, shown by the colored dots. One might start
by naively computing linear trends over the entire 1980-2020 period, shown in Fig. 3a.
It is immediately clear that the actual modeled trends are much larger (in magnitude)
than the SAM-regressed trends, by nearly an order of magnitude (note the different scales
on the ordinate and the abscissa). This is to be expected, as the SAM only explains 15%
of the variance, as we have just shown, and suggests that other drivers or longer-period

variability dominate the modeled trends over this timescale.

However, taking linear trends at Southern high latitudes over the entire 1980-2020
period is highly problematic. It has now been well-established that the formation of the
ozone hole was the main driver of SAM trends in DJF in the late 20th century (Polvani
et al., 2011). Moreover, since the onset of ozone recovery as a consequence of the Mon-
treal Protocol (S. Solomon et al., 2016) SAM trends in DJF are no longer increasing, as
reported in Banerjee et al. (2020). This is illustrated in Fig. 4: note how the SAM (red
line) was increasing until the year 2000, but has been relatively constant since (we read-

ily admit that the interannual variability is very large).

Thus, to account for the non-monotonic forcing from stratospheric ozone (the main

driver of SAM trends in DJF prior to 2000), it is more meaningful to separate the 1980-
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2020 period into an ozone depletion period (1980-2000) and an ozone recovery period
(2000-2020), and then compute separate linear trends (as, e.g., in Banerjee et al., 2020).
The actual and SAM-regressed trends in these earlier and later periods are plotted in

Fig. 3b and c, respectively.

Again, focusing on the modeled trends in those panels, we see that the SAM-regressed
trends in MAM are much smaller than the actual SIE trends in that season, indicating
that the summer SAM trends have very little predictive power over the modeled SIE in
the subsequent fall over decadal timescales. Also, note that the models runs that cap-
ture the internannual SAM/SIE relationship (green and purple) do not show a superior
relationship between the long-term SAM-regressed and actual SIE trends than the mod-
els that do not capture the internannual SAM/SIE relationship (orange), again demon-
strating that the SAM is not the major driver of the modeled SIE trends. Nonetheless,
contrasting panels b and c, one can see that models runs which capture the internan-
nual SAM/SIE relationship show slightly positive trends over the ozone-depletion pe-
riod (panel b), and that these disappear in the ozone-recovery period (panel ¢: compare

the means, shown in the larger dots).

More worrisome, however, is the fact that in the same ozone-depletion period, when
one might expect the SAM to have the largest impact, SIE trends in the models are mostly
negative, unlike the positive trends in the observations. It is important to appreciate that
the CMIP5 model capture well the observed SAM trends in DJF (see, for instance, Fig
9 of Holland et al., 2017). However, the models warm excessively, resulting in substan-
tial sea ice loss, not seen in the observations (Arzel et al., 2006; Turner et al., 2013; Zunz
et al., 2013; Roach et al., 2020). Many ideas have been proposed to explain the cause
of the models’ bias: the introductory section of Sun and Eisenman (2021) succinctly re-

views the relevant literature (see also Chemke & Polvani, 2020, not in included there).

So, let us now leave the model simulations aside, and turn our attention to the ob-
served SIE trends. Focusing uniquely on prescribed periods is problematic, as the large
internal variability makes such trends highly sensitive to the endpoints. For instance, the
observed and SAM-regressed SIE trends in MAM over the entire 1980-2020 period (shown
by the black cross in Fig. 3a), appear to fall close to the one-to-one line, and might lead
one to believe that the SAM is a good predictor of SIE (the SAM-regressed trends is 63%
of observed trend). However, as on can see in Fig. 3b and ¢, the observations are not close
to the one-to-one line in either of the two sub-periods. So, one is easily deceived by such

trend computations with fixed endpoints.
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It is more instructive to examine the entire 1980-2020 time series of SAM (in DJF)
and SIE (in MAM), shown by the red and blue lines, respectively, in Fig. 4. While there
is some correlation between the two time series (0.44), one would be hard pressed to claim
that the SAM in DJF is the dominant driver of SIE in MAM. In the ozone-depletion pe-
riod the regression analysis indicates that the SAM explains 40% of the observed trends
over that period. However, that result is based on having detrended the SAM index us-
ing the entire 1980-2020 period (see Methods), which was done to be consistent with DM17.
If, in contrast, one detrends the two periods separately, as one should to be consistent
with the ozone forcing, only 14% of the observed SIE trend over the ozone depletion pe-
riod is explained by the corresponding SAM trends in DJF, in good agreement with the
interannual regression in Fig. 2 (which shows values between 10% and 15% in MAM).

But even that is only a correlation: note how SAM basically stops trending after the year
2000 (as ozone depletion was largely halted by the Montreal Protocol) whereas SIE keeps
growing until 2016 (when a strong and sudden reduction occurred; see, e.g., Turner et

al., 2017; Stuecker et al., 2017). Why would the SIE keep growing past the year 2000 if
it were driven by the SAM via Ekman transport?

One might also be tempted to ascribe the strong 2017 reduction to the SAM, as
suggested in DM17. Note, however the following year showed a strong positive SAM while
SIE remained very low. This, coupled with the small interannual SIE variance explained
by the SAM (see above) indicates that the concurrent 2017 minimum in SAM and SIE
is likely to be a coincidence. Other major mismatches can be seen, such as the year 1999
which show the peak SAM in the time series while the SIE that year was unremarkable,
or the period 1983 and 1985 where the SAM was at its lowest values but with no cor-
responding minima in SIE. In the end, we submit, upon simple inspection of the two time
series in Fig. 4 one would be hard pressed to conclude that the DJF SAM is the primary
driver SIE in MAM, both interannually and multidecadally.

4 Summary and Discussion

Building on the observational study of DM17, we have here explored whether the
Ekman mechanism whereby positive SAM anomalies in summer (DJF) cause positive
SIE anomalies in the fall (MAM) is actually captured by state-of-the-art coupled climate
models; the rational is that the potential lack of such a mechanism in models may be
responsible for the poor agreement between modeled and observed SIE over the last four
decades. Our analysis has revealed that many (though not most) models are able to sim-
ulate the observed interannual SAM/SIE relationship. However, it has also shown that

their ability to capture that relationship has basically no influence of a model’s ability
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to capture the observed trends, as most models show sea ice melting over the last four

decades, irrespective of whether or not the SAM/SIE relationship is accurately modeled.

The reason for this, which is also a major finding of our analysis, is that the SAM/SIE
relationship is tenuous. It explains a mere 15% of the year-to-year SIE variability in the
fall. Splitting the last four decades into two halves — an ozone depletion and an ozone
recovery period — one finds that the SAM may be able to explain as much as 14% of the
trends during the earlier period. Even that, however, may be partially accidental, as the
SIE trends appear mismatched from the SAM trends: SIE kept growing until 2016, whereas
the SAM stopped increasing after the year 2000. Our study, therefore, largely confirms
the findings of several earlier observational studies (Liu et al., 2004; Lefebvre et al., 2004;
Simpkins et al., 2012; Kohyama & Hartmann, 2016) which also concluded that the SAM

is not the primary driver of sea ice trends around Antarctica.

Further evidence in support of this conclusion is offered by the strong longitudi-
nal asymmetry of the recent Antarctic sea ice trends. It is widely appreciated that the
polar-cap-averaged SIE trends discussed above are relatively small compared to the re-
gional trends, owing to large cancellations between different sectors, notably the Ross,
Amundsen-Bellingshausen, and Weddell seas (Turner et al., 2015; Parkinson, 2019). Be-
cause the SAM is, by definition annular, one would expect its impact to be similar at
all longitudes. Thus, the simple fact that trends of opposite sign are observed at differ-
ent longitudes is a strong indication that the SAM is unlikely to be the main driver of
those trends. We stress that this argument is based solely on observational evidence, and

does not suffer from any potential or actual model deficiencies.

Our findings have implications for the role of ozone depletion on Antarctic sea ice.
Contradictory claims are found in the literature, with some studies suggesting that ozone
depletion may be responsible for positive trends in SIE (e.g., Turner et al., 2009; Fer-
reira et al., 2015), and others arguing that ozone depletion leads to negative SIE trends
(e.g., Sigmond & Fyfe, 2014; Landrum et al., 2017). The results presented here lead us
to conclude that stratospheric ozone depletion has not been the primary driver of SIE
trends although, acting via the SAM, it may have contributed a fraction of the SIE trends
before the year 2000. That fraction, however, may not be very large, if one keeps in mind
that the observed SAM trends are not due to ozone depletion alone, but also to increas-

ing greenhouse gases and, very likely, to internal variability (Thomas et al., 2015).

In fact, the idea that multidecadal internal variability may suffice to explain the
growth of SIE around Antarctica was proposed by Polvani and Smith (2013), and inde-
pendently suggested by Zunz et al. (2013), with additional evidence later provided by

—10-
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Gagné et al. (2015) and Singh et al. (2019). As to the source of variability, the tropical
Pacific has been highlighted in several studies (see, e.g., Schneider et al., 2012, 2015; Purich
et al., 2016; Meehl et al., 2016, among others). More importantly, however, we draw the
reader’s attention to the entirely observational study of Fan et al. (2014), who noted that
trends at high Southern latitudes in several variables — sea ice extent, sea surface tem-
perature, zonal wind, sea level pressure and surface atmospheric temperature — changed
sign simultaneously around 1978-1979: this clearly points to internal variability, as no
anthropogenic or natural forcing is known to have reversed trends so as to cause surface

cooling and sea ice growth after those years.

A number of other studies have also explored the possibility that freshwater influx
from the retreat of the Antarctic ice sheet might be the cause of sea ice increase around
the Antarctic continent. The early work of Bintanja et al. (2013) suggested a consider-
able effect of ice-shelf melt on sea ice growth, and more recently Rye et al. (2020) have
shown that inclusion of meltwater helps brings models closer to observations. Unfortu-
nately these results were not confirmed by other modeling studies (Swart & Fyfe, 2012;
Pauling et al., 2016), who found the meltwater contribution to be too small to explain
the observed trends. Hence the role freshwater flux remains an open question, and the

inclusion of interactive ice-shelf models into climate models remains to be explored.

Finally, returning to the formation of the ozone hole and the resulting SAM trends,
we wish to emphasize that stratospheric ozone depletion was accompanied by increas-
ing levels of ozone-depleting substances in the troposphere. These are potent — and well-
mixed — greenhouse gases, which act to warm the ocean and thus melt sea ice not just
in the Antarctic (A. Solomon et al., 2015), but also in the Arctic (Polvani et al., 2020):
as such, ozone-depleting substances cannot possibly have contributed to the observed
expansion of Antarctic sea ice since 1979. Indeed, whatever is responsible for the expan-
sion must have been able overcome not only the increasing atmospheric concentrations
of carbon dioxide, but also increasing concentrations of ozone-depleting substances. Ul-
timately, given these anthropogenic forcing, the surprising trends in Antarctic sea ice in
the last four decades remain mysterious, as the attractive and physically-based mech-
anism linking ozone depletion to positive SAM anomalies to northward Ekman drift to

increased SIE is, at this point, clearly unable to account for the observed trends.
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Figure 1. Monthly anomalies in Antarctic sea ice extent (SIE), in millions of km?, following
one unit of DJF SAM anomaly, from the detrended regression analysis. (a) The observations
(black), the multi-model CMIP5 ensemble mean (green, from the runs in panel c), and the
CESM-LE ensemble mean (purple); the shading indicates the 1-o spread across the respective
ensembles. (b) The 40 members of the CESM-LE. (c¢) The 20 CMIP5 runs with good correlation
with the observations (r > 0.5), and (d) the 35 CMIP5 runs with poor correlation (r < 0.5). In
panels ¢ and d, the numbers in parentheses next to each model’s name in the legend indicate the

number of runs with that models in the corresponding panel.
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Figure 2. Monthly variance (R?) in SIE explained by the SAM in the previous DJF months

for (a) the observations, (b) the CMIP5 model runs shown in Fig. 1lc, and (c¢) the CESM-LE

runs.
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Figure 3. SAM-regressed vs actual SIE in MAM trends for (a) the entire 1980-2020 period,
(b) the ozone depletion period 1980-2000, and (c) the ozone recovery period 2000-2020, in mil-
lions of km? per decade. The large encircled dots show the model average, by color, as indicated

in the legend. The one-to-one line is in blue (dashed). The back crosses show the observations.

The SAM-regressed SIE trends are computed using the SAM trends in DJF.
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Figure 4. Time series of the observed SAM (in DJF, red) and SIE (in MAM, blue) from 1980
to 2020. The SAM values are shifted by one year from the convention adopted in DM17; e.g.

the SAM value for the three month average December 1980, January 1981 and February 1981 is
shown at the 1981 value on the abscissa, together with the SIE in MAM of 1981. The solid red

lines are linear trends before and after the year 2000.
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