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ABSTRACT: Previous work identified an anthropogenic fingerprint pattern in𝑇AC(𝑥, 𝑡), the ampli-
tude of the seasonal cycle of mid- to upper tropospheric temperature (TMT), but did not explicitly

consider whether fingerprint identification in satellite 𝑇AC(𝑥, 𝑡) data could have been influenced
by real-world multidecadal internal variability (MIV). We address this question here using large

ensembles (LEs) performed with five climate models. LEs provide many different sequences of

internal variability noise superimposed on an underlying forced signal. Despite differences in his-

torical external forcings, climate sensitivity, and MIV properties of the five models, their 𝑇AC(𝑥, 𝑡)
fingerprints are similar and statistically identifiable in 239 of the 240 LE realizations of historical

climate change. Comparing simulated and observed variability spectra reveals that consistent fin-

gerprint identification is unlikely to be biased by model underestimates of observed MIV. Even in

the presence of large (factor of 3-4) inter-model and inter-realization differences in the amplitude of

MIV, the anthropogenic fingerprints of seasonal cycle changes are robustly identifiable in models

and satellite data. This is primarily due to the fact that the distinctive, global-scale fingerprint

patterns are spatially dissimilar to the smaller-scale patterns of internal 𝑇AC(𝑥, 𝑡) variability as-
sociated with the Atlantic Multidecadal Oscillation and the El Niño~Southern Oscillation. The

robustness of the seasonal cycle D&A results shown here, taken together with the evidence from

idealized aquaplanet simulations, suggest that basic physical processes are dictating a common

pattern of forced 𝑇AC(𝑥, 𝑡) changes in observations and in the five LEs. The key processes involved
include GHG-induced expansion of the tropics, lapse-rate changes, land surface drying, and sea

ice decrease.
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1. Introduction46

Detection and attribution (“D&A”) studies seek to disentangle human and natural influences on47

Earth’s climate. This research made a significant contribution to the recent finding that human48

influence on climate is unequivocal (IPCC 2021). Pattern-based “fingerprint” methods are a key49

element of D&A research (Hasselmann 1979; North et al. 1995; Hegerl et al. 1996; Santer et al.50

1996; Tett et al. 1996; Stott et al. 2000; Barnett et al. 2005).51

The initial focus of fingerprint research was on changes in annual- or decadal-mean properties of52

surface temperature (Hegerl et al. 1996; Stott et al. 2000), atmospheric temperature (Santer et al.53

1996; Tett et al. 1996; Thorne et al. 2002; Santer et al. 2003), and ocean heat content (Barnett54

et al. 2005). Examination of the hydrological cycle, cryosphere, and atmospheric circulation55

followed, targeting surface specific humidity and water vapor (Willett et al. 2007; Santer et al.56

2009), rainfall (Zhang et al. 2007; Marvel and Bonfils 2013), salinity (Pierce et al. 2012), sea-level57

pressure (Gillett et al. 2003), and Arctic sea ice (Min et al. 2008). Model-predicted patterns of58

mean changes in these and many other variables were detectable in observations and attributable59

to human influences (Santer et al. 1995; Mitchell and Karoly 2001; Hegerl et al. 2007).60

After comprehensive interrogation of the causes of historical changes in average climate, the61

attention of D&A analysts shifted to aspects of climate change that are more directly relevant to62

societal impacts (Bindoff et al. 2013). Research began to examine extreme rainfall and heat (Min63

et al. 2009; Stott et al. 2016), the likelihood and severity of individual extreme events (Stott et al.64

2004; Risser and Wehner 2017), and the seasonality of precipitation (Marvel et al. 2017) and65

temperature (Santer et al. 2018; Duan et al. 2019).66

It is changes in the amplitude of the seasonal cycle that are of interest here. They have the67

potential to impact water availability, hydropower production, energy demand, agriculture, fire68

weather, vector-borne diseases, and many other aspects of society, the economy, and human health.69

Seasonality also influences animal and plant distributions and abundances (Parmesan and Yohe70

2003; Root et al. 2005; Cohen et al. 2018). It is critically important to understand how this seasonal71

pacemaker may have been modulated by historical changes in anthropogenic forcing – and how72

seasonality may change over the 21st century (Dwyer et al. 2012; Stine andHuybers 2012; Donohoe73

and Battisti 2013; Qian and Zhang 2015; Yettella and England 2018).74
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A previous study by Santer et al. (2018) reported that satellite temperature records contained a75

fingerprint of human-caused changes in𝑇AC(𝑥, 𝑡), the amplitude of the annual cycle of mid- to upper76

tropospheric temperature (TMT).i Related work showed that internal climate variability affected77

observed annual-mean TMT changes over the satellite era (Kamae et al. 2015; Suárez-Gutiérrez78

et al. 2017; Po-Chedley et al. 2021). The relationship between changes in annual-mean TMT and79

changes in 𝑇AC(𝑥, 𝑡) is unclear. It is conceivable, however, that multidecadal internal variability80

(MIV) may have influenced the identification of a human fingerprint in satellite 𝑇AC(𝑥, 𝑡) data.81

We explore this possibility here using output from large initial condition ensembles (LEs) per-82

formed with five different Earth System Models (ESMs; Deser et al. 2012; Fyfe et al. 2017, 2021;83

Tatebe et al. 2019; Rodgers et al. 2021). In total, these five LEs provide 240 different plausible re-84

alizations of historical climate change, each with a unique sequence of internal variability (“noise”)85

superimposed on the response to anthropogenic and natural external forcing (“signal”). With such86

information, we can assess how frequently fingerprint detection occurs in model realizations of87

𝑇AC(𝑥, 𝑡). If fingerprint detection is a robust result in the 240 realizations, despite differences in the88

forcings, climate sensitivity, andMIV properties of the five LEs, it suggests that positive fingerprint89

detection in real-world 𝑇AC(𝑥, 𝑡) data is unlikely to be due to the fortuitous phasing of MIV.90

Most fingerprint methods rely on model MIV estimates to assess whether the random action91

of internal variability could explain a “match” between observed climate change patterns and a92

model-predicted anthropogenic fingerprint. Concerns have been raised about the adequacy of93

model noise estimates, thus calling into question the reliability of fingerprint results (Curry and94

Webster 2011; O’Reilly et al. 2021). We address such concerns here by comparing simulated and95

observed spectra for three key modes of MIV: the Atlantic Multidecadal Oscillation (AMO), the96

El Niño/Southern Oscillation (ENSO), and the Interdecadal Pacific Oscillation (IPO).97

We use information from these spectra as the basis for a number of sensitivity studies. These98

studies explore whether the positive identification of annual cycle fingerprints in observations and99

model simulations is robust to largemodel differences in the amplitude of specificmodes of internal100

variability. A further sensitivity study considers whether fingerprint identification is hampered by101

removing all information regarding global-mean 𝑇AC(𝑥, 𝑡) changes.102

iFor each model and satellite data set, and at each grid-point 𝑥 and year 𝑡 , there are 12 monthly-mean values of TMT. We use these 12 values to
calculate the amplitude of the first harmonic – the annual cycle (Wilks 1995; Yettella and England 2018). Our focus in this study is solely on the
amplitude of the first harmonic. Here and throughout, 𝑥 is an index over the combined latitude and longitude dimensions of the spatial field and 𝑡
is an index over time in years.
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In addition to assessing the robustness of our fingerprint detection results for annual cycle changes,103

we also seek to improve understanding of the physical mechanisms driving these changes. Some104

insights are provided by novel aquaplanet simulations with realistic, seasonally varying insolation105

(Feldl et al. 2017). These experiments were performed under preindustrial and quadrupled CO2106

conditions with two climate models, each with a different representation of the effects of sea-ice107

on high-latitude climate processes. We compare the two sets of aquaplanet experiments with108

conventional (land+ocean+ice) ESM simulations to investigate how the annual temperature cycle109

is affected by the presence or absence of land.110

The structure of our paper is as follows. Section 2 introduces the observational and model data111

sets used here, with additional information available in the Supplementary Materials (SM) and112

in a previous paper (Santer et al. 2021). Section 3 introduces the spatial patterns of satellite-era113

𝑇AC(𝑥, 𝑡) trends in four observational data sets and in the average of the five LEs. As a prelude to114

the signal-to-noise (S/N) analysis of global patterns of annual cycle changes, Section 4 performs a115

local S/N analysis of 𝑇AC(𝑥, 𝑡) trends at individual grid-points in each LE. The fingerprint method116

applied to discriminate between forced and unforced annual cycle changes is introduced in Section117

5 and documented in detail in the SM. Section 6 discusses the S/N ratios and “baseline” fingerprint118

detection times obtained for the full global pattern of 𝑇AC(𝑥, 𝑡) changes. After using the five119

LEs to estimate and subtract signals of forced SST changes from individual LE realizations and120

observations, Section 7 compares the simulated and observed variability spectra for the AMO,121

Niño 3.4 SSTs, and the IPO. Section 8 uses information from the model spectra to repeat the122

“baseline” fingerprint analysis of Section 6 with subsets of the 240 realizations of internal 𝑇AC(𝑥, 𝑡)123

fluctuations. These subsets comprise realizations with low- and high-amplitude variability of the124

AMO and ENSO. Annual cycle changes in the aquaplanet simulations performed with two different125

climate models are analyzed in Section 9. We provide brief conclusions in Section 10.126

2. Observational data and model simulations127

a. Satellite and reanalysis data128

Our focus here is on 𝑇AC(𝑥, 𝑡) changes over the satellite era (January 1979 to December 2020).129

We rely on satellite TMT data from three research groups: Remote Sensing Systems (RSS; Mears130

and Wentz 2017), the Center for Satellite Applications and Research (STAR; Zou et al. 2018), and131
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the University of Alabama at Huntsville (UAH; Spencer et al. 2017). All three groups analyze132

microwave emissions from oxygen molecules. Emissions are measured with Microwave Sounding133

Units (MSU) and Advanced Microwave Sounding Units (AMSU) and depend on the temperature134

of different broad atmospheric layers. Measurements at different microwave frequencies provide135

information on temperatures at different heights. In addition to TMT, we use measurements of the136

temperature of the lower stratosphere (TLS) to adjust TMT for the contribution it receives from137

stratospheric cooling (Fu et al. 2004; Fu and Johanson 2004; see SM).138

Our comparisons of simulated and observed 𝑇AC(𝑥, 𝑡) changes also make use of synthetic TMT139

data from version 5.1 of the state-of-the-art ERA reanalysis of the European Centre for Medium-140

Range Weather Forecasts (ECMWF; Hersbach et al. 2020; Simmons et al. 2020; see SM). Re-141

analyses are a retrospective analysis of many different types of observational data using a data142

assimilation system and numerical weather forecast model that do not change over time (Kalnay143

et al. 1996).144

b. SST data145

Section 7 considers three commonly-used indices of modes of SST variability. We use version 4146

of the data set developed jointly by the Hadley Centre and the Climatic Research Unit (HadCRUT4;147

Morice et al. 2012) to compute observational time series of the AMO, Niño 3.4 SSTs, and the IPO.148

Information regarding calculation of these indices is provided in the SM. Our focus in Section 7 is149

on the 852months from January 1950 to December 2020, a period unaffected by potential problems150

associated with SST measurements during World War II (Thompson et al. 2008).151

c. Model simulations152

We analyze 𝑇AC(𝑥, 𝑡) changes in five different large initial condition ensembles (LEs). Deser153

et al. (2020) provide a comprehensive introduction to LEs and their many scientific applications.154

An LE typically consists of between 30 to 100 individual members. The ensemble is generated155

by repeatedly running the same physical climate model with the same spatio-temporal changes in156

external forcings. Each ensemblemember commences fromdifferent initial states of the atmosphere157

and/or ocean. These are selected in various ways (see SM). Slight differences in initial states result158
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in different sequences of natural variability superimposed on the underlying forced response. The159

result is an envelope of plausible trajectories of historical and/or future climate change.160

Here, we use LEs to explore both the local (Section 4) and global (Sections 5, 6, and 8)161

S/N characteristics of simulated changes in annual cycle amplitude. Of particular interest is the162

information LEs provide regarding the robustness of fingerprint detection, the stochastic uncertainty163

in fingerprint detection time, estimates of externally forced signals in the AMO, Niño 3.4 SSTs,164

and the IPO, and uncertainties in the internal variability spectra of these three modes.165

The LEs considered here rely on both older and newer model versions and estimates of external166

forcings. Two LEs were generated with models participating in the older phase 5 of the Coupled167

Model Intercomparison Project (CMIP5; Taylor et al. 2012). The CMIP5 LEs were performed168

with version 1 of the Community Earth System Model (CESM1; Kay et al. 2015) and with version169

2 of the Canadian Earth SystemModel (CanESM2; Kirchmeier-Young et al. 2017; Fyfe et al. 2017;170

Swart et al. 2018). The CESM1 and CanESM2 LEs have 40 and 50 members, respectively. The171

three LEs produced with models taking part in the newer phase 6 of CMIP (CMIP6; Eyring et al.172

2016) relied on version 5 of CanESM (CanESM5; Swart et al. 2019; Fyfe et al. 2021), version 2 of173

CESM (CESM2; Rodgers et al. 2021), and version 6 of the Model for Interdisciplinary Research174

on Climate (MIROC6; Tatebe et al. 2019). Each CMIP6 LE had 50 ensemble members.ii175

The CMIP5 and CMIP6 historical simulations ended in 2005 and 2014, respectively. To fa-176

cilitate comparison with observational 𝑇AC(𝑥, 𝑡) changes over the full 42-year satellite era (1979177

to 2020), historical simulations were spliced with scenario integrations initiated from the end of178

each historical run. The scenario integrations are Representative Concentration Pathway 8.5 for179

CanESM2 and CESM1 (Meinshausen et al. 2011), Shared Socioeconomic Pathway 5-8.5 (SSP5)180

for CanESM5 and MIROC6, and SSP 3-7.0 for CESM2 (SSP3; Riahi et al. 2017). Further details181

of these scenarios are given in the SM.182

Our pattern-based fingerprinting method requires model estimates of natural internal variability.183

We obtain these estimates from two sources: 1) multi-model ensembles of preindustrial control184

simulations with no year-to-year changes in external forcings; and 2) the between-realization185

variability of each of the five LEs. In the former case, we use output from preindustrial control186

runs performed with 36 CMIP5 models and 30 CMIP6 models. In the latter case, we estimate the187

iiThe CESM2 LE described in Rodgers et al. (2021) has 100 ensemble members. The first 50 members were run with CMIP6 SSP 3-7.0 forcing;
the remaining 50 members have modified biomass forcing over recent decades (Fasullo et al. 2021). We analyze only the first 50 members here.
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between-realization variability in a single model’s LE by subtracting the ensemble-mean changes188

in 𝑇AC(𝑥, 𝑡) from each realization in the LE (see Section 5 and SM). Tables S1 and S2 of the SM189

identify the CMIP5 and CMIP6 models we relied on for our multi-model noise estimates.190

Section 9 examines changes in the amplitude of the annual cycle of TMT in aquaplanet simulations191

performed with two climate models. The first is version 2.1 of the Geophysical Fluid Dynamics192

Laboratory Atmospheric Model (GFDL-AM2.1). The model was run in a configuration with a193

30-meter fixed-depth slab ocean with no meridional ocean heat transport and a realistic seasonal194

cycle of insolation (Feldl et al. 2017). The simulations explore the impact of large differences in195

sea-ice albedo under preindustrial and quadrupled CO2 conditions.196

The second model relies on version 6 of the Community Atmospheric Model (CAM6; Rodgers197

et al. 2021). This is the atmospheric component of CESM2. Like GFDL-AM2.1, CESM2-CAM6198

was run with a 30-meter fixed-depth slab ocean, but with a symmetrical annual-mean ocean heat199

transport (an average of NH and SH conditions) diagnosed from the CESM2 pre-industrial control200

run. A significant difference in the two models is that GFDL-AM2.1 has no ice thermodynamics,201

while CESM2-CAM6 includes ice thermodynamics and uses a simple version of the Los Alamos202

sea-ice model (CICE5; Smith et al. 1992). As we show subsequently, model differences in sea-ice203

treatment yield different high-latitude changes in 𝑇AC(𝑥, 𝑡) in response to CO2 forcing.204

Both sets of aquaplanet simulations allow us to investigate whether large-scale features of the205

annual cycle fingerprints in full ESMs can be captured without representation of land surface206

processes and without hemispheric asymmetry in land distribution or land-ocean differences in207

heat capacity. Further details of the aquaplanet simulations are given in the SM.208

3. Changes in annual cycle amplitude in observations and the LE average209

Santer et al. (2018) analyzed observed spatial patterns of 𝑇AC(𝑥, 𝑡) trends over 1979 to 2016. It210

is useful to re-examine these patterns given four additional years of corrected TMT data, improved211

versions of satellite TMT data sets, and results from the state-of-the-art ERA5.1 reanalysis.212

Updates and improvements to satellite TMT data have not altered the basic features of the213

𝑇AC(𝑥, 𝑡) trends. These features include increases in annual cycle amplitude at mid-latitudes in214

both hemispheres (with larger increases in the NH than the SH), decreases in amplitude over the215

Arctic, and small changes of either sign in the tropics (Figs. 1a-c). ERA5.1 shows similiar behavior216
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(Fig. 1d). UAH differs from the other observational data sets at high latitudes in the SH: 𝑇AC(𝑥, 𝑡)217

trends are positive in UAH and negative in RSS, STAR, and ERA5.1. The anomalous UAH results218

appear to be related to the decisions made by the UAH group in merging information from MSU219

and AMSU during the period of overlap between these different instruments (Santer et al. 2018).220

A      RSS B      STAR

C      UAH D      ERA5.1

E      LE average

0.16 0.08 0.00 0.08 0.16

Trends in Annual Cycle Amplitude (TMT; 1979-2020)

C/decade

Fig. 1: Least-squares linear trends over 1979 to 2020 in 𝑇AC(𝑥, 𝑡), the amplitude of the annual
cycle of mid- to upper tropospheric temperature (TMT). (a-c) Satellite data from Remote Sensing
Systems (RSS), the Center for Satellite Applications and Research (STAR), and the University of
Alabama at Huntsville (UAH). (d) Version 5.1 of the reanalysis produced by the European Centre
for Medium-Range Weather Forecasts. (e) The average of the ensemble-mean trends in 𝑇AC(𝑥, 𝑡)
in the five LEs analyzed here (see Figs. 2a-e). TMT is adjusted for stratospheric cooling in all
satellite, reanalysis, and climate model data sets (see SM).

Figure 1e shows the average of the ensemble-mean 𝑇AC(𝑥, 𝑡) trends in the five LEs. As expected,221

simulated changes are smoother than in the observations (Santer et al. 2018; Po-Chedley et al. 2021).222

This is because the model results have been averaged over individual realizations with different223
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sequences of internal variability, and then averaged over models. Averaging over realizations and224

models damps internal variability and reduces uncorrelatedmodel biases, more clearly revealing the225

underlying forced response. Despite the larger spatial noise in observations, there is correspondence226

between the large-scale features of the simulated and observed𝑇AC(𝑥, 𝑡) changes in Fig. 1. Whether227

this correspondence is statistically significant is considered in Section 6.228

4. Local signal-to-noise ratios229

Pattern-based fingerprinting utilizes the signal and noise properties of entire spatial fields (Hassel-230

mann 1979; Santer et al. 1994; Hegerl et al. 1996). It provides an efficient means of discriminating231

between externally forced climate changes and the complex noise of internal variability. An al-232

ternate form of S/N analysis considers forced and unforced climate changes at individual model233

grid-points (Hawkins and Sutton 2012; Mahlstein et al. 2012; Deser et al. 2014; Rodgers et al.234

2015). Local S/N information can help to inform and interpret results from pattern-based finger-235

printing (Santer et al. 2019). In this section, we briefly discuss a local S/N analysis before detailed236

consideration of our fingerprint results in Section 5.237

Figures 2a-e show the ensemble-mean 𝑇AC(𝑥, 𝑡) trends in the five LEs. Trends are calculated238

over the same 1979 to 2020 analysis period used for the observations in Fig. 1. Although there239

are pronounced differences between the LEs in the amplitude of the changes, there are also key240

common features in the trend patterns. These include the previously noted increases in annual241

cycle amplitude at mid-latitudes in both hemispheres (with larger increases in the NH than the242

SH), decreases in 𝑇AC(𝑥, 𝑡) at high latitudes in the SH, and small changes with differing signs in243

the tropics (see Section 3). At high latitudes in the NH, the observations and CanESM5 show244

pronounced decreases in 𝑇AC(𝑥, 𝑡). This feature is absent in the other LEs.245

The denominator of the local S/N ratio is the between-realization standard deviation of the 42-246

year trend in 𝑇AC(𝑥, 𝑡), calculated across all members of an ensemble. Patterns of this local noise247

are similar in the five LEs, with smallest values in the tropics and largest values at high latitudes in248

both hemispheres (Figs. 2f-j). There is some agreement across LEs in small-scale features of the249

noise patterns, such as the maxima over Greenland, the Himalayas, and East Antarctica. In all LEs,250

the local S/N ratio displays highest values at mid-latitudes in the NH, where increases in 𝑇AC(𝑥, 𝑡)251

are largest and noise is relatively low (Figs. 2k-o).252
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F      Noise G      Noise H      Noise I      Noise J      Noise

K      S/N ratio L      S/N ratio M      S/N ratio N      S/N ratio O      S/N ratio

0.3
0.2
0.1

0.0
0.1
0.2
0.3

0.01
0.04
0.07
0.10
0.13
0.16
0.19

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Signal, Noise, and S/N Ratios in Five Large Ensembles (TMT Annual Cycle; 1979-2020)
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CESM1 CESM2 CanESM2 CanESM5 MIROC6

Fig. 2: Local signal-to-noise (S/N) analysis of least-squares linear trends over 1979 to 2020 in
𝑇AC(𝑥, 𝑡). Results are from five different LEs (columns 1-5). (a-e) Ensemble-mean 𝑇AC(𝑥, 𝑡) trends.
(f-j) Local 1𝜎 standard deviation of the 42-year trends in 𝑇AC(𝑥, 𝑡) across all members in the LE.
(k-o) S/N ratio: the absolute value of the ensemble-mean trend in an LE (the signal) divided by the
local standard deviation of trends in the same LE (the noise). Stippling in the top row identifies
grid-points where the local S/N ratio for ensemble-mean trends exceeds 2.

It is of interest to compare the annual cycle changes for TMT with those obtained for surface253

temperature (TS). In the Arctic and Antarctic, there are large reductions in the amplitude of the254

annual cycle of TS (Figs. 3a-e). These reductions in annual cycle amplitude have been linked255

to sea-ice loss and associated seasonal feedbacks, ocean-atmosphere energy transfer, and changes256

in surface heat capacity (Serreze and Barry 2011; Donohoe and Battisti 2013; Bintanja and van257

der Linden 2013; Taylor et al. 2013; Santer et al. 2018; Feldl et al. 2020; Feldl and Merlis 2021).258

As for TMT, the amplitude of the annual cycle of TS increases at mid-latitudes in the NH, but259

TS increases there are smaller, without the well-defined zonal structure of the TMT amplitude260

increases. Even for TS, however, there are mid-latitude areas of the North Atlantic and North261

Pacific oceans displaying significant increases in annual cycle amplitude, suggesting that the TS262

changes are not driven by land surface processes alone. Information on some of the factors driving263

annual cycle changes in TS and atmospheric temperature is given in Donohoe and Battisti (2013).264

In addition to the sea ice changes mentioned above, these factors include the shortwave absorption265

associated with GHG-forced increases in upper tropospheric water vapor.266
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Fig. 3: As for Fig 2 but for the annual cycle of surface skin temperature. To facilitate comparison
with TMT results the colorbar ranges are identical to those in Fig. 2.

As expected, the between-realization variability of trends in annual cycle amplitude has a strong267

land-sea contrast component for TS but not for TMT (compare Figs. 3f-j and Figs. 2f-j). Because268

of the higher noise over land for TS, few land areas have S/N ratios > 2 for changes in the annual269

cycle of TS (Figs. 3k-o). A notable exception is the Mediterranean region (Yettella and England270

2018). Some of the most extensive areas of high S/N are in the regions of Arctic and Antarctic271

sea-ice decrease where TS signals are largest.272

5. Fingerprint method and results273

Next, we seek to determine whether the patterns of forced changes in 𝑇AC(𝑥, 𝑡) can be identified274

in observations and individual realizations of the LEs. The latter provide 240 different trajectories275

of climate change over the satellite era, each with a different estimate of MIV superimposed on the276

underlying response to forcing. The LEs allow us to estimate the stochastic uncertainty in 𝑡𝑑 , the277

time required to identify the searched-for fingerprints of forced change (Santer et al. 2019).278

We use a standard pattern-based fingerprint method to calculate 𝑡𝑑 (Hasselmann 1979). The279

method has been successfully employed to identify anthropogenic fingerprints in many different280

independently monitored aspects of climate change (Hegerl et al. 1996; Santer et al. 1996, 2009,281

12



2018; Marvel and Bonfils 2013; Bonfils et al. 2020; Sippel et al. 2020, 2021). The statistical282

methodology follows Santer et al. (2018); full details are provided in the SM. A brief description283

of the method is given below.284

In the present application, the fingerprint pattern 𝐹AC(𝑥) is an estimate of the response of the285

amplitude of the annual cycle of TMT to combined anthropogenic and natural forcing. Five286

different fingerprints are used here. Each is the leading Empirical Orthogonal Function (EOF) of287

ensemble-mean 𝑇AC(𝑥, 𝑡) in an LE, calculated over 1979 to 2020 (Figs. 4a-e). We assume that the288

spatial pattern of 𝐹AC(𝑥) does not change markedly over time. For changes in the annual cycle of289

TMT, this assumption has been tested elsewhere and found to be reasonable (see SM).290

The five LE estimates of 𝐹AC(𝑥) shown in Figs. 4a-e are searched for in sequences of time-varying291

𝑇AC(𝑥, 𝑡) patterns derived from satellite data, the ERA5.1 reanalysis, and individual realizations292

of an LE. In the latter case, a searched-for model fingerprint is always compared with individual293

realizations of 𝑇AC(𝑥, 𝑡) changes generated with the same model – e.g., the CESM1 fingerprint in294

Fig. 4a is compared with the 40 individual realizations of 𝑇AC(𝑥, 𝑡) changes in the CESM1 LE (see295

Fig. 5a and left box-and-whiskers bar in Figs. 6a,b). In searching for 𝐹AC(𝑥) in observations, each296

of the five model fingerprints is compared with each observational data set (Fig. 5f).297

These comparisons involve computing a measure of pattern similarity (an uncentered spatial co-298

variance). This yields the signal time series 𝑍 (𝑡). If the observations or individual LE realizations299

are exhibiting greater magnitude of 𝐹AC(𝑥) over time, 𝑍 (𝑡) will exhibit a trend. To determine300

whether this trend in 𝑍 (𝑡) is significant, we require null distributions of pattern similarity trends301

in which we know a priori that any changes in pattern similarity with time are due to the effects of302

natural variability only (see SM).303

We generate these null distributions by fitting trends to the noise time series 𝑁 (𝑡), which304

is calculated by measuring the pattern similarity between 𝐹AC(𝑥) and time-varying patterns of305

natural internal variability in 𝑇AC(𝑥, 𝑡). The latter are obtained from two sources: 1) multiple306

pre-industrial control runs performed with either CMIP5 or CMIP6 models; and 2) the between-307

realization variability of𝑇AC(𝑥, 𝑡) changes in eachLE.We refer to these subsequently asmulti-model308

and single-model noise estimates, respectively.309

In the multi-model noise case there are 𝑛𝑚 model control runs, each of length 150 years. These310

are concatenated into one data set (see SM). The single-model noise is computed by subtracting311
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the ensemble-mean 𝑇AC(𝑥, 𝑡) changes in an LE from each realization of the LE. Calculation of the312

ensemble mean and residuals is over the 42-year satellite era (1979 to 2020). The residuals are313

then concatenated and have the time dimension 42× 𝑛𝑟 , the number of years in the satellite era314

times the number of realizations in the LE. Differences between single-model and multi-model315

noise estimates are discussed in Section 6.316

Our detection time estimates are based on SN𝐿 , the S/N ratio between 𝑏𝐿 , an 𝐿-year trend in317

𝑍 (𝑡), and 𝜎𝐿 , the standard deviation of the sampling distribution of 𝐿-year trends in 𝑁 (𝑡). Here,318

𝐿 varies from 10, 11, . . . 42 years. A key aspect of our analysis is that trends in 𝑍 (𝑡) and 𝑁 (𝑡) are319

always compared on the same timescale. Explicit consideration of the timescale-dependence of320

S/N ratios is important because noise patterns and amplitude vary as a function of timescale (Tett321

et al. 1997; Stouffer et al. 2000).322

For 𝐿 = 10 years, for example, 𝑏𝐿 is calculated over 1979 to 1988 and 𝜎𝐿 is computed from the323

sampling distribution of overlapping 10-year trends in 𝑁 (𝑡). For 𝐿 = 11 years, 𝑏𝐿 is the trend in324

𝑍 (𝑡) over the first 11 years (1979 to 1989) and 𝜎𝐿 is calculated from the sampling distribution of325

overlapping 11-year trends in 𝑁 (𝑡). The full satellite era (1979 to 2020) is the 𝐿 = 42 case. The326

detection time 𝑡𝑑 is defined as the final year of the 𝐿-year period at which SN𝐿 first exceeds some327

stipulated significance level (generally 5% here) and then remains continuously above this level328

for all larger values of 𝐿. The null hypothesis we are testing is that trends in 𝑍 (𝑡) are consistent329

with internal variability alone and SN𝐿 values are not statistically unusual relative to an assumed330

Gaussian distribution (see SM for further details).331

Before considering 𝑡𝑑 results, it is useful to first examine the 𝐹AC(𝑥) patterns and dominant modes332

of between-realization variability in the five LEs. The fingerprints are spatially similar across the333

LEs (Figs. 4a-e) and capture the zonally coherentmean changes in annual cycle amplitude described334

in the local S/N analysis (Section 4). In contrast, the dominant noise modes are characterized by335

variability at smaller spatial scales. The leading noise EOF displays ENSO-like features (Po-336

Chedley et al. 2021) which are similar across the five LEs (Figs. 4f-j). The second noise EOF is337

also similar in the LEs, capturing anticorrelated variability in 𝑇AC(𝑥, 𝑡) between North America,338

Northern Eurasia, and the Indian subcontinent (Figs. 4k-o). The spatial dissimilarityiii between339

iiiThe centered (spatial mean removed) pattern correlation between the fingerprint and leading noise mode in each LE is very small, ranging from
close to zero for CanESM2 to 0.15 for CanESM5.
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Fig. 4: Leading modes of response to external forcing and natural internal climate variability for
changes in the amplitude of the annual cycle of TMT. (a-e) Fingerprints of changes in 𝑇AC(𝑥, 𝑡) in
five LEs. The fingerprints are the leading EOF of changes in ensemble-mean 𝑇AC(𝑥, 𝑡) over the
42-year period from 1979 to 2020. (f-j) First EOF of natural internal climate variability of𝑇AC(𝑥, 𝑡),
estimated from the between-realization variability of each LE. (k-o) Second EOF of natural internal
variability. The total variance explained by each EOF is listed. The grey shaded regions poleward
of 80◦ arise because of regridding to a 10◦×10◦ grid and masking model simulation output with
observational TMT coverage (see SM).

the large-scale, zonally distinctive fingerprints and the smaller-scale noise patterns is important in340

explaining the fingerprint detection results described in the next section.341

6. Fingerprint detection times in LEs and observationally based data342

Values of SN𝐿 used for calculating 𝑡𝑑 are given in Fig. 5. The 1991 Pinatubo eruption has a clear343

effect on simulated and observed annual cycle amplitude (Santer et al. 2018), resulting in an initial344

dip in SN𝐿 for analysis periods ending between 1991 and 1994. Thereafter, SN𝐿 increases linearly345

with increasing 𝐿, except in CESM2 and in observational data, where SN𝐿 exhibits relatively little346

change or decreases for 𝐿-year trends ending after ca. 2012 (Figs. 5d,f).347
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Fig. 5: Signal-to-noise ratio SN𝐿 as a function of the trend length 𝐿. (a-e) SN𝐿 for the strength of the
model 𝐹AC(𝑥) fingerprints in individual realizations of 𝑇AC(𝑥, 𝑡) (thin grey lines) and in ensemble-
mean 𝑇AC(𝑥, 𝑡) changes (dark grey lines). Results are from five different LEs. Model fingerprints
used in panels a-e are shown in the top row of Fig. 4. For CanESM2 and CESM1 (which are
both CMIP5 models), the denominator of SN𝐿 was estimated with the unforced variability from
36 different CMIP5 pre-industrial control runs. For the CMIP6 LEs (CanESM5, CESM2, and
MIROC6), the denominator of SN𝐿 was computed with the internally generated variability from
30 different CMIP6 control integrations. (f) SN𝐿 ratios for the strength of model fingerprints in
satellite and reanalysis 𝑇AC(𝑥, 𝑡) data. There are five lines for each observational data set. Each line
corresponds to use of a different LE for estimating the fingerprint and noise (see Fig. 4 and SM).
SN𝐿 is always plotted on the final year of the 𝐿-year analysis period, which is given in red in the
upper 𝑥-axis. The trend length 𝐿 is given in blue in the lower 𝑥-axis. The first analysis period is
over 1979 to 1988; the final analysis period is over 1979 to 2020. The dashed horizontal magenta
line is the stipulated 5% significance level used for calculating the 𝑡𝑑 values shown in Fig. 6a.
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The individual LE realizations cross the stipulated 5% significance threshold at a wide range of348

𝐿 values. When multi-model noise estimates are used to compute the denominator of SN𝐿 , the349

median detection time in the five LEs, 𝑡𝑑{med}, ranges from 1994 for CanESM5 to 2005 for CESM1350

(Fig. 6a). A similar range of 𝑡𝑑{med} results is obtained by calculating the denominator of SN𝐿 with351

the between-realization variability of an individual LE (Fig. 6b).352
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Detection Times in Five Large Ensembles, Satellite, and Reanalysis Data (5% significance)

A B

Fig. 6: Stochastic uncertainty in fingerprint detection time in model LEs (box-and-whiskers plots)
and actual fingerprint detection time in satellite data (colored symbols). Detection time 𝑡𝑑 is defined
as the time at which the ratio SN𝐿 first exceeds a stipulated significance threshold (in this case, 𝑝
= 0.05) and then remains continuously above this threshold as the analysis period 𝐿 increases. (a)
Values of 𝑡𝑑 estimated with fingerprints from five different LEs (see first row in Fig. 4) and using
the multi-model noise from concatenated pre-industrial control runs performed with 36 CMIP5
models and 30 CMIP6 models. For details of the multi-model noise, refer to Fig. 5 and SM. (b)
Fingerprints calculated as in (a), but with noise estimated using the between-realization variability
of each LE. In the box-and-whisker plots in both panels, the red horizontal line is the median 𝑡𝑑
value in the individual realizations of 𝑇AC (𝑥, 𝑡). The box size represents the interquartile 𝑡𝑑 range;
the whiskers span the full range of detection times in the ensemble.

For each LE, we tested whether the between-realization variability is significantly larger than353

the multi-model variability. Tests were performed on timescales of 10, 20, 30, and 40 years (see354

SM for significance test details). There were only two cases in which the between-realization355
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variability was significantly larger at the 5% level: CanESM5 and MIROC6 (for 20- and 40-year356

timescales, respectively). In these two LEs, the larger single-model noise in Fig. 6b yields slightly357

later values of 𝑡𝑑{med} relative to the corresponding results in Fig. 6a. Single-model noise also358

exceeds multi-model noise in CESM1, but is not significantly larger at the 5% level on the four359

timescales we examined. The single-model variability in the CanESM2 and CESM2 LEs is similar360

in amplitude to the CMIP5 and CMIP6 multi-model variability (respectively). Averaged across the361

five LEs, the median detection time is 1998.3 for the multi-model noise in Fig. 6a and 1999 for the362

between-realization variability in Fig. 6b.363

There are two key findings from Fig. 6. First, despite model differences in external forcings,364

equilibrium climate sensitivity (ECS), and the amplitude of MIV (Andrews et al. 2012; Zelinka365

et al. 2014, 2020; Pallotta and Santer 2020; Fyfe et al. 2021; Po-Chedley et al. 2021), the 𝐹AC(𝑥)366

patterns in the five LEs are robustly identifiable at the 5% significance level in individual model367

realizations of satellite-era annual cycle changes. Positive detection occurs in 239 out of 240 cases368

if multi-model noise is used to calculate the denominator of SN𝐿 and in the same number of cases369

if single-model noise is employed.iv370

The second key finding is that the model-predicted 𝐹AC(𝑥) fingerprints are identifiable at the 5%371

level in 16 out of 20 different combinations of the 5 fingerprints (derived from the 5 LEs) and the 4372

observational data sets. This holds for both the multi-model noise in Fig. 6a and the single-model373

noise in Fig. 6b. The null results in Figs. 6a and b are for the UAH data set. All five fingerprints374

yield S/N ratios in UAH 𝑇AC(𝑥, 𝑡) data that initially exceed the stipulated 5% significance threshold375

on timescales of ≈ 35 years, but then fall below this threshold for UAH S/N ratios calculated over376

the full satellite era (except in the case of the CESM2 fingerprint; see Fig. 5f).377

Finally, we note that removal of all global-mean information from our S/N analysis, as described378

in Santer et al. (2018), has minimal impact on the detection time results in Fig 6. This illustrates379

that the identification of model-predicted 𝐹AC(𝑥) patterns in observational data and in individual380

LE realizations is not solely driven by global-mean changes in annual cycle amplitude – it primarily381

reflects similarity of large-scale pattern information (see Fig. S1 and Section 5b of SM).382

In the following, we refer to the 𝑡𝑑 results in Fig. 6b as the “baseline” case. In Section 8, we383

report on tests which explore the sensitivity of the baseline detection times to use of low- and high-384

variability subsets of the single-model noise used in Fig. 6b. These subsets of the 240 realizations385

ivThe realization in which the fingerprint cannot be detected is from the MIROC6 LE.
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of internal 𝑇AC(𝑥, 𝑡) variability are selected based on the power spectral density (PSD) of the model386

AMO and Niño 3.4 SST time series.387

7. Comparison of simulated and observed internal variability spectra388

The robust detection of model-predicted 𝐹AC(𝑥) fingerprints in observations and in individual389

LE realizations has multiple interpretations. Under one interpretation, large-scale forcing by390

greenhouse gases drives large-scale physical processes that are common to observations and climate391

models. These processes include summertime drying of mid-latitude continental interiors (Manabe392

et al. 1981; Wetherald and Manabe 1995; Douville and Plazzotta 2017), expansion of the tropics393

(Seidel and Randel 2007; Hu and Fu 2007; Quan et al. 2014), and lapse-rate changes (Frierson394

2006; Donohoe and Battisti 2013). In contrast, modes of MIV are characterized by smaller-scale395

patterns of anticorrelated variability that do not project well onto the coherent 𝐹AC(𝑥) patterns (see396

Fig. 4). This basic difference in the spatial scales of the forced response and MIV favors signal397

detection (Santer et al. 1994).398

A second possible interpretation is that robust detection of model 𝐹AC(𝑥) fingerprints is biased by399

errors in model representation of MIV (Curry and Webster 2011; O’Reilly et al. 2021). Under this400

interpretation, models systematically underestimate “observed” MIV, thereby spuriously inflating401

SN𝐿 and leading to incorrect fingerprint detection claims. This “biased variability” argument is402

challenging to address because there are large uncertainties in separating externally forced signals403

from MIV in the single occurrence of signal and noise available in observations (Frankcombe404

et al. 2015; Kravtsov 2017; Cheung et al. 2017; Kajtar et al. 2019; Pallotta and Santer 2020). This405

introduces uncertainty in determining the size and significance of model MIV errors.406

These two interpretations are not mutually exclusive. We have already shown credible evidence407

that the first interpretation – dissimilarity of signal and noise patterns – contributes to our high408

success rate in identifying model 𝐹AC(𝑥) fingerprints in individual LE realizations (see Figs. 4 and409

6). In the current section, we consider the plausibility of the second interpretation of our results. In410

doing so, we make use of the fact that the climate change signals in LEs can be reliably estimated411

by averaging over many realizations.412

We assume that these well-estimated signals, obtained from LEs generated using models with413

different ECS, MIV, and historical external forcings, encapsulate a significant portion of the true414
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uncertainty in the amplitude and time evolution of forced changes in real-world climate. We apply415

a regression-based approach (see below) to remove these LE-derived signals from observed time416

series of three major modes of MIV – the AMO, ENSO, and IPO. Regression-based signal removal417

is not required in model LEs. The ensemble-mean signal of a given LE is a reasonable estimate of418

forced changes in that LE, and is simply subtracted from each realization of the LE.419

Signal removal in theLEs and observations allows us to isolate the internally generated component420

of variability in the AMO, ENSO, and IPO time series. We calculate PSD from the “signal421

removed” residual time series, thus facilitating the direct comparison of simulated and observed422

MIV. We seek to determine whether there is evidence that the five LEs analyzed here significantly423

underestimate the observed MIV of the AMO, ENSO, and IPO (Kajtar et al. 2019). Such an error424

could provide support for the second interpretation of our fingerprint detection results – particularly425

if the detection time for 𝐹AC(𝑥) fingerprints is sensitive to large inter-model and inter-realization426

differences in the amplitude of AMO and ENSO variability. Whether such sensitivity exists is427

explored in Section 8.428

Consider results for the AMO first. The amplitude and time evolution of ensemble-mean SST429

changes in the AMO region varies markedly across the five LEs (Figs. 7a-e). This is unsurprising430

given model differences in ECS and in direct and indirect anthropogenic aerosol forcings (Zelinka431

et al. 2014, 2020; Santer et al. 2019).v All five ensemble-mean signals show overall SST increases in432

the AMO region, punctuated by recovery from surface cooling caused by major volcanic eruptions.433

The SST increases are temporally complex and poorly captured by a linear trend.434

Inter-model differences in the median detection time for 𝐹AC(𝑥) fingerprints (Fig. 6) show some435

correspondence with inter-model differences in the ensemble-mean AMO signal time series in436

Fig. 7. CanESM5, for example, which has the earliest 𝑡𝑑{med} values in Fig. 6, also has the largest437

and most rapid SST increase in the AMO region (Fig. 7b). Similarly, the smaller and more gradual438

SST increase in the CESM1 AMO signal appears to be related to the later 𝑡𝑑{med} values in CESM1439

(compare Figs. 7c and 6).440

Removing the ensemble-mean forced SST signals from individual realizations of an LE yields441

residual AMOvariability that is smallest in amplitude in CESM1 and largest in CanESM5 (Figs. 8a-442

e). Subtracting the unscaled ensemble-mean model signals from observed HadCRUT4 data can443

produce residuals with large low-frequency variability, primarily because of mismatches between444

vECS is 3.7◦C and 5.6◦C in CanESM2 and CanESM5, 4.0◦C and 5.1◦C in CESM1 and CESM2, and 2.6◦C in MIROC6.
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model ECS and the true (but uncertain) real-world ECS (Frankcombe et al. 2015). Model forcing445

errors also contribute to this large residual variability, thus inflating estimates of “observed” MIV446

associated with the AMO.447
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Raw AMO Time Series in Five Large Ensembles and Observations
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Fig. 7: Simulated and observed time series of theAtlanticMultidecadal Oscillation (AMO). Results
are for SST changes spatially averaged over 0◦–60◦N and 80◦W–0◦ (see Enfield et al. 2001, and
SM). (a-e) AMO time series calculated from individual realizations (light grey) and multi-model
averages (dark grey) of five LEs. (f) Raw (red) and filtered (dark red) AMO time series calculated
from HadCRUT4 SST data. A Savitzky-Golay filter was applied to smooth the observations. The
filter used a window width of 141 months and a third-order polynomial. The vertical magenta lines
denote the eruption dates of El Chichón in March 1982 and Pinatubo in June 1991.

21



We therefore subtract scaled model AMO signals from observations (Frankcombe et al. 2015;448

Steinman et al. 2015). Scaling involves𝑌 (𝑡) = 𝑎+𝑏𝑋 (𝑡) +𝜖 (𝑡), the regression between the observed449

AMO time series, 𝑌 (𝑡), and 𝑋 (𝑡), the ensemble-mean AMO time series for an individual LE. The450

residual 𝜖 (𝑡) is the “signal removed” AMO time series. Subtraction of 𝑏𝑋 (𝑡) from the HadCRUT4451

AMO time series markedly damps the residual low-frequency variability (Figure 8f). For example,452

at 284months (23.7 years), regression-based removal of scaledAMOsignals decreases the observed453

PSD range by 92% relative to the range obtained with unscaled signal subtraction (not shown).454
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Fig. 8: Simulated and observed time series of the Atlantic Multidecadal Oscillation (AMO) after
removing externally forced SST signals. (a-e) “Signal removed” AMO time series (thin grey lines)
after subtracting ensemble-mean AMO SST changes in a given LE from each realization of the
LE. The blue line is the “signal removed” time series for the last realization in the LE. (f) Observed
“signal removed” time series. The five ensemble-mean AMO signal time series in Figs. 7a-e were
each subtracted from the HadCRUT4 AMO time series using regression-based scaling.
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Simulated and observed “signal removed” spectra for AMO SSTs are shown in Fig. 9. While the455

observed spectrum and the spectra for both CanESM models are well-described by simple power456

law fits, the CESM models and MIROC6 exhibit more complex spectral shape, with noticeable457

flattening of PSD at periods greater than 100 months. Of greatest interest here is the comparison458

of 𝑃LOW, the PSD at 284 months. This is the longest period that can be usefully resolved from459

the 852 months (71 years) of the observed AMO and Niño 3.4 SST time series. Systematic model460

underestimation of observed 𝑃LOW has the potential to spuriously inflate the signal-to-noise ratio461

SN𝐿 , thereby biasing fingerprint detection times towards earlier and more ubiquitous detection.462

We compare simulated and observed 𝑃LOW in two ways. First, we determine the total number of463

model realizations in the five LEs with 𝑃LOW values exceeding the smallest of the observed 𝑃LOW464

values in Fig. 9f (see bottom edge of red bands). Second, for each LE, we determine the number465

of realizations in that LE with 𝑃LOW values exceeding the corresponding observed 𝑃LOW value.vi466

We refer to these two comparisons subsequently as Method 1 and Method 2 (respectively). They467

are simple measures of the consistency between simulated and observed low-frequency PSD.vii468

For the AMO, Method 1 and Method 2 yield 56 and 50 realizations exceeding observed 𝑃LOW469

(23% and 21% of the total number of realizations).viii We conclude from this that the five model470

LEs analyzed here show evidence of underestimating the amplitude of observed low-frequency471

AMO variability (Kajtar et al. 2019), but that this underestimate is not statistically significant at472

the 5% level. If it were, we would expect a smaller fraction of model exceedances of observed473

𝑃LOW (5% or less).474

Qualitatively and quantitatively different results are obtained for SST variability in the Niño475

3.4 region of the tropical Pacific (Fig. 10). SST changes in this region are a common proxy for476

ENSO variability. Fluctuations in ENSO have substantial impact on global surface temperature477

(Kosaka andXie 2013), tropospheric temperature (Po-Chedley et al. 2021), andmany other climatic478

variables (Bonfils et al. 2015).479

SST variability in the Niño 3.4 region is markedly larger than in the AMO region (c.f. Figs. 10480

and 7), so that even with ensemble sizes of 40 to 50 realizations, there is still substantial residual481

noise in the ensemble-mean Niño 3.4 SST time series (Figs. 10a-e). This noise displays power at482

viFor example, if 𝑃LOW in CanESM2 is being evaluated, we compare 𝑃LOW values in individual CanESM2 realizations with the observed
𝑃LOW estimated by subtraction of the ensemble-mean CanESM2 AMO signal from the HadCRUT4 AMO time series.
viiSee Pallotta and Santer (2020) for more sophisticated PSD comparisons.
viiiFor both methods, most of the model realizations exceeding 𝑃LOW are from CanESM5, CESM2, and MIROC6 (see Figs. 9b,d,e).
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AMO Power Spectra in Five Large Ensembles and Observations (1950-2020)
Model AMO signals removed from observations by regression
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C     CESM1
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D     CESM2
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Fig. 9: Power spectral density (PSD) in simulated and observed AMO time series. (a-e) PSD
in individual realizations (grey lines) of “signal removed” AMO time series shown in Figs. 8a-e.
(f) PSD in five “signal removed” observed AMO time series. The (scaled) forced component of
AMO SST changes for each LE was subtracted from the HadCRUT4 AMO time series. Individual
observed “signal removed” AMO time series in panel f are also plotted in panels a-e for their
corresponding LE (i.e., for the LE used to estimate and subtract an AMO signal from observations).
The red horizontal band delimits the lowest and highest values of PSD at a period of 284 months in
the five “signal removed” observational spectra. The vertical dotted purple line at the left of each
panel corresponds to this 284-month period (see SM for further technical details).

a period of 12 months, most clearly in MIROC6 (Figs. 11a-e). This residual power is consistent483

with a change over the satellite era in the seasonal cycle of Niño 3.4 SSTs.484

All five LEs have small positive warming trends in their ensemble-mean Niño 3.4 time series.485

Observed warming in this region is more muted (Fig. 10f), partly due to the phasing of ENSO and486
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IPO variability over 1950 to 2020 (Kosaka and Xie 2013; Trenberth 2015; Meehl et al. 2011, 2016;487

England et al. 2014; Fyfe et al. 2016; Po-Chedley et al. 2021).488

Because of the relatively small externally forced component in simulated Niño 3.4 SST changes489

and the large residual noise in this component, model ensemble-mean Niño 3.4 SST time series490

are only weakly correlated with the raw observed Niño 3.4 SST time series, with 𝑟 ranging from491

0.02 in MIROC6 to 0.17 in CESM1.ix Scaling and subtraction of these Niño 3.4 SST signals from492

observations has only small impact on the original observed Niño SST time series, yielding the493

spectra shown in Fig. 11f.494
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Raw Niño 3.4 Time Series in Five Large Ensembles and Observations

A     CanESM2

C     CESM1

E     MIROC6

B     CanESM5

D     CESM2

F     Observations

Fig. 10: As for Fig. 7 but for simulated and observed time series of SST spatially averaged over
the Niño 3.4 region (5◦N-5◦S, 120◦W-170◦W).

ixFor the corresponding calculation with AMO SST time series, 𝑟 ranges from 0.78 for CESM1 to 0.81 for CESM2.
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All simulated and observed Niño 3.4 SST spectra in Fig. 11 have a discrete peak within the495

canonical 3- to 7-year range of ENSO variability (AchutaRao and Sperber 2002). This peak is496

more narrowly defined in MIROC6 than in the other LEs or observations. Simulated Niño 3.4497

spectra show a noticeable decrease in PSD for periods longer than approximately 7 years. This498

PSD decrease is less pronounced in observations. In contrast to the AMO results, Methods 1 and 2499

yield 185 and 178 exceedances of observed 𝑃LOW – i.e., 77% and 74% of the LE realizations have500

power at 284 months that is higher than in observations. There is no evidence from our analysis,501

therefore, that the LEs examined here systematically underestimate the observed low-frequency502

variability of ENSO. This is consistent with other findings (Lienert et al. 2011).503
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Fig. 11: As for Fig. 9 but for spectra of simulated and observed “signal removed” Niño 3.4 SST
time series.
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An analysis of the IPO (not shown) leads to a similar conclusion. Unlike Niño 3.4 SSTs, the504

IPO is influenced by both the tropical and extratropical variability of Pacific SSTs (Meehl et al.505

2016; Trenberth 2015; Henley et al. 2015, 2017). For the IPO, we find 116 and 101 exceedances506

of observed 𝑃LOW for Methods 1 and 2, corresponding to 48% and 42% of LE realizations with507

low-frequency PSD that is larger than in the “signal removed” observations (Kajtar et al. 2019).508

Possible implications of such simulated and observed 𝑃LOW differences for fingerprint detection509

time are explored in the next section.510

8. Detection time sensitivity tests511

Other previously published studies considered the links between fingerprint detection and model512

performance in simulating observed global-scale variability (Hegerl et al. 1996; Allen and Tett513

1999) or investigated the sensitivity of D&A results to large inter-model differences in variability514

(Santer et al. 2009; Sippel et al. 2021). There have, however, been few studies of links between515

detection time results and the behavior of individual modes of MIV.516

We explore these links here using sensitivity tests (Fig. 12). We repeat the “baseline” S/N analysis517

shown in Fig. 6b with two 50-member subsets of the 240 individual samples of between-realization518

𝑇AC(𝑥, 𝑡) variability. These two 50-member subsetsx correspond to low- and high-amplitude519

variability of a specific mode of MIV at a specific timescale. The mode amplitude is estimated520

from the spectra of “signal removed” time series (see Figs. 9a-e and Figs. 11a-e). There are four521

separate sensitivity tests, one for each mode (the AMO and ENSO) and each timescale of interest522

(284 months and 70 months). The procedure for conducting these sensitivity tests is described in523

detail in the SM.524

Recall that the internal variability of 𝑇AC(𝑥, 𝑡) is used to calculate the denominator of our S/N525

ratios, which in turn are used to estimate fingerprint detection times (Section 6). Comparing526

detection times obtained for 𝑇AC(𝑥, 𝑡) subsets – with subsetting based on the low and high PSD527

values of key modes of MIV – allows us to explore possible links between the simulated mode528

amplitude and our D&A results.529

Our analysis timescales of 284 months and 70 months (23.7 and 5.8 years, respectively) were530

selected for the following reasons. Detection of a slowly-evolving externally forced fingerprint531

requires information on the background noise of MIV. Given 852-month (71-year) record lengths532

xFor each subset, there are 10 members from each LE. This reduces the impact on the sensitivity test of MIV biases in a single LE.
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Sensitivity Tests for Fingerprint Detection Times (5% significance)

Fig. 12: Stochastic uncertainty in fingerprint detection time 𝑡𝑑 in model LEs (box-and-whiskers
plots) and actual fingerprint detection time in satellite data (colored symbols). Results are for
sensitivity tests involving the selection of 50-member subsets from the 240 realizations of unforced
𝑇AC(𝑥, 𝑡) variability. (a-b) Partitioning of internal𝑇AC(𝑥, 𝑡) variability into low- and high-variability
subsets is based on the PSDvalues at 284 and 70months in spectra calculated from“signal removed”
AMO time series (panels a and b, respectively). (c-d) As for panels a and b but for the use of
spectra from simulated “signal removed” Niño 3.4 SST time series. See Section 8 and SM for
further information on sensitivity tests. The caption of Fig. 6 provides details of box-and-whiskers
plots. The shaded bars in each panel display 𝑡𝑑 results for high-variability subsets of 𝑇AC(𝑥, 𝑡).
Unshaded bars show 𝑡𝑑 for low-variability 𝑇AC(𝑥, 𝑡) subsets.

for the AMO and Niño 3.4 SST time series, the longest noise timescale we can usefully resolve is533

284 months. The choice of the shorter 70-month timescale was driven by the presence of a spectral534

peak close to this period in the “signal removed” MIROC6 AMO and Niño 3.4 SST time series535

(see Figs. 9e and 11e).536
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On both of timescales considered here, and for both theAMOandNiño 3.4 SSTs, the average PSD537

is typically a factor of 3-4 larger in the high-variability subset of spectra than in the low-variability538

subset. This indicates that for each mode and timescale, the amplitude differences between the539

high- and low-variability subsets are sufficiently large to justify investigating the implications of540

these differences for unforced 𝑇AC(𝑥, 𝑡) variability and fingerprint detection time.541

Our sensitivity tests yield three main results (Fig. 12). First, in each sensitivity test and for each542

LE, the “low PSD” and “high PSD” subsets of unforced 𝑇AC(𝑥, 𝑡) variability yield similar values of543

the median detection time 𝑡𝑑{med}, with 𝑡𝑑{med} differences < 1 year. Second, the “baseline” 𝑡𝑑{med}544

results in Fig. 6b are relatively unaffected by repeating the D&A analysis with “low PSD” and545

“high PSD” subsets of the original 240 realizations of unforced 𝑇AC(𝑥, 𝑡) variability. All sensitivity546

tests preserve the relative differences in 𝑡𝑑{med} found in the “baseline” case – e.g., the earliest547

fingerprint detection is still in CanESM5 and the latest detection is still in CESM1. Third, the548

model-predicted 𝐹AC(𝑥) fingerprints are statistically identifiable in 75% of the 160 sensitivity tests549

in Fig. 12 that involve satellite and reanalysis data.xi550

Figure S2 in the SM shows SN𝐿 for one of the four sensitivity tests: selecting subsets of unforced551

𝑇AC(𝑥, 𝑡) variability based on PSD at 284 months in the simulated AMO spectra (Figs. 9a-e). In552

all five LEs, the “low PSD” subset yields larger S/N ratios (relative to the “high PSD” subset) for553

analysis periods longer than ≈ 25-30 years (Figs. S2a-e). This means that low-amplitude AMO554

variability at 284 months tends to correspond to lower-amplitude multidecadal 𝑇AC(𝑥, 𝑡) variability,555

which damps the denominator of S/N and increases S/N ratios. Conversely, high-amplitude AMO556

variability at 284months tends to correspond to higher-amplitudemultidecadal𝑇AC(𝑥, 𝑡) variability,557

thereby decreasing S/N ratios. Qualitatively similar “low PSD-versus-high PSD” differences in558

SN𝐿 are also found for the other three sensitivity tests (not shown).559

The results in Fig 12 and in Fig. S2 raise several questions. The first question is why the “low560

PSD-versus-high PSD” S/N differences in Figs. S2a-e have relatively small impact on 𝑡𝑑{med}. The561

answer is that these S/N differences are small for 𝐿 <≈ 25-30 years. This explains why the median562

detection times in Fig. 12a are so similar in the “low PSD” and “high PSD” cases, particularly563

for CanESM2, CanESM5, and CESM2. In these three models, the S/N ratios for almost all564

individual realizations exceed the 5% significance threshold in less than 30 years, well before the565

“low PSD-versus-high PSD” S/N differences become pronounced.566

xi160 = 4 satellite data sets × 5 different fingerprints × 2 variability subsets (low PSD and high PSD) × 4 sensitivity tests.
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The second question iswhy are our “baseline” fingerprint detection times are robust to partitioning567

the original 240 realizations of unforced 𝑇AC(𝑥, 𝑡) variability into “low PSD” and “high PSD”568

subsets. Recall that the annual cycle fingerprints in the five LEs are spatially uncorrelated with the569

dominant𝑇AC(𝑥, 𝑡) noisemodes (Fig. 4). This was true for both themulti-model CMIP5 and CMIP6570

noise and for the single-model between-realization variability in each LE. Quasi-orthogonality of571

fingerprint and noise patterns also applies to the noise subsets in all of our “low PSD” and “high572

PSD” sensitivity tests. Because fingerprint and leading noise patterns are so dissimilar, differences573

in the amplitude of unforced 𝑇AC(𝑥, 𝑡) variability associated with low- and high-amplitude behavior574

of the AMO and ENSO have relatively small impact on 𝑡𝑑{med}.575

Put differently, our fingerprint analysis reveals coherent, global-scale externally forced responses576

common to all five LEs. Examples include decreases in 𝑇AC(𝑥, 𝑡) over the Arctic and mid-latitude577

𝑇AC(𝑥, 𝑡) increases in NH continental interiors (Figs. 4a-e). These distinctive features are absent578

in patterns of unforced 𝑇AC(𝑥, 𝑡) fluctuations associated with the AMO, ENSO, and other modes,579

which are characterized by variability at smaller spatial scales (Figs. 4f-o). This mismatch between580

the spatial scales of fingerprint and noise helps to explain why inter-model and inter-realization581

differences in the amplitude of key modes of MIV have limited impact on 𝑡𝑑{med}.582

9. Annual cycle changes in aquaplanet simulations583

Santer et al. (2018) discussed some of the possible physical mechanisms involved in producing584

the distinctive patterns of observed and simulated𝑇AC(𝑥, 𝑡) changes shown in Fig. 1. They noted that585

there are pronounced hemispheric asymmetries in both the climatological mean state of 𝑇AC(𝑥, 𝑡)586

and in its satellite-era trends. Climatological asymmetries in 𝑇AC(𝑥, 𝑡) are related to NH-versus-SH587

differences in land fraction, heat capacity (through the differences in land fraction), and sea ice588

coverage. Hemispheric asymmetries in the 𝑇AC(𝑥, 𝑡) trends over 1979 to 2020 are influenced not589

only by these factors, but also by hemispherically asymmetric external forcings. Examples of the590

latter include anthropogenic aerosol forcing (Bonfils et al. 2020; Kang et al. 2021) and the forcing591

and circulation response associated with stratospheric ozone depletion (see Fig. S3 and Gillett592

et al. 2004; Thompson et al. 2011; Bandoro et al. 2014; Randel et al. 2017; Solomon et al. 2017).593

Low-frequency changes in modes of internal variability may also contribute to variations in the594

Hadley circulation (Mantsis and Clement 2009) and are another possible influence on 𝑇AC(𝑥, 𝑡).595
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Oneof themost prominent aspects of the patterns in Fig. 1 is the increase in annual cycle amplitude596

at mid-latitudes in both hemispheres, with larger increases in the NH than the SH. These “ridges”597

in 𝑇AC(𝑥, 𝑡) trends arise from larger tropospheric warming in the summer hemisphere (Santer et al.598

2018). Possible causes of these features include changes in the meridional temperature gradient599

or in atmospheric SW absorption that result in seasonally-dependent changes in stability (Frierson600

2006; Donohoe and Battisti 2013; Santer et al. 2018), poleward expansion of the Hadley circulation601

and the tropics (Held 2000; Fu et al. 2006; Seidel and Randel 2007; Frierson et al. 2007; Kang and602

Liu 2012; Quan et al. 2014), lapse-rate changes unrelated to tropical expansion (Brogli et al. 2019),603

and summertime drying of the land surface (Manabe et al. 1981; Wetherald and Manabe 1995;604

Douville and Plazzotta 2017). Other factors may also be relevant, such as the response to land-sea605

warming contrast, the direct radiative effects of CO2, and SST trend patterns (He and Soden 2017).606

These explanations are not mutually exclusive.607

To explore the influence of land and ice albedo on 𝑇AC(𝑥, 𝑡) changes, we analyzed existing608

aquaplanet simulations performed with GFDL-AM2.1 (Feldl et al. 2017) and new simulations with609

CESM2-CAM6. These numerical experiments involve running an atmosphericmodel in aquaplanet610

configuration with a realistic seasonal cycle of insolation, a 30-meter fixed-depth slab ocean, and611

quadrupled CO2. A key difference is that CESM2-CAM6 includes sea-ice thermodynamics;612

GFDL-AM2.1 does not. In both sets of simulations, parameters influencing ice albedo were613

systematically varied in order to evaluate the effect of sea-ice changes on atmospheric heat transport614

and feedback strength. We show results for one selected value of these parameters. Results for615

other values are qualitatively similar (see SM and Figs. S4 and S5).616

In GFDL-AM2.1, annual-mean TMT changes between the 4×CO2 and control simulations are617

largest in the tropics (Fig. 13a), where the net feedback in the simulations is positive and large618

(Feldl et al. 2017). The largest annual-mean TMT changes in CESM2-CAM6 occur in high-latitude619

regions of pronounced sea ice extent decrease (Fig. 13c). In terms of annual cycle changes, the620

most salient feature of Figs. 13b,d is that even without land and land-ocean warming contrasts,621

the aquaplanet simulations capture the mid-latitude increases in 𝑇AC(𝑥, 𝑡) evident in satellite data622

and in ESMs with realistic geography (Fig. 1). Unlike the observations and ESMs, however, these623

mid-latitude “ridges” are more hemispherically symmetric in the aquaplanet runs. Relative to624

GFDL-AM2.1, mid-latitude 𝑇AC(𝑥, 𝑡) increases are larger and further poleward in CESM2-CAM6.625
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Fig. 13: Changes in uncorrected TMT (◦C) in aquaplanet simulations. (a-b) Simulations with
GFDL-AM2.1 (Feldl et al. 2017). (c-d) Simulations with CESM2-CAM6. (left column) Annual-
mean TMT changes. (right column) Changes in the amplitude of the annual cycle of TMT. In
GFDL-AM2.1, ocean albedo was set to values of 0.45 at grid-points where the surface temperature
was less than 270K. In CESM2-CAM6, the parameter used for tuning snow albedo, r_snw, was
set to 0.7. Changes in the annual mean and annual cycle of TMT were calculated by differencing
climatologies computed from averages of a 4×CO2 experiment and a control run with pre-industrial
atmospheric CO2. The climatologies are of length 30 years for GFDL-AM2.1 and 100 years for
CESM2-CAM6 (see SM).

We draw three inferences from these results. First, they suggest that in observations and ESMs,626

the zonal structure of mid-latitude increases in 𝑇AC(𝑥, 𝑡) is partly driven by GHG-induced changes627

in static stability and Hadley circulation that are superimposed on the climatological seasonal cycle628

of the thermal equator, ITCZ location, and Hadley cell poleward edge (Frierson 2006; Kang and629

Liu 2012; Donohoe and Battisti 2013). Second, Fig. 13 (right column) implies that the presence630

of realistic geography contributes to the observed and ESM-simulated hemispheric asymmetry in631

mid-latitude 𝑇AC(𝑥, 𝑡) trends, likely through the combined effect of summertime drying over land632

(Manabe et al. 1981; Wetherald and Manabe 1995; Douville and Plazzotta 2017) and hemispheric633

differences in land fraction and heat capacity. Third, relative to the observations and ESMs,634
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larger changes in annual mean TMT in the aquaplanet simulations yield proportionately smaller635

mid-latitude increases in annual cycle amplitude. The reasons for this are unclear.636
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Fig. 14: Scaled seasonal changes (dimensionless) in uncorrected TMT in LEs and two aquaplanet
simulations. (a-e) Scaled total linear changes in zonal-mean TMT over 1979 to 2020 in five LEs.
Total linear changes are calculated separately for each month from the ensemble-average monthly-
mean temperatures of the LE. Scaling is with the global-mean annual-mean total linear change in
each LE. (f) Scaled zonally-averaged differences in uncorrected TMT between the 30-year averages
of an aquaplanet perturbation experiment and control run performedwith the GFDL-AM2.1model.
Ocean albedo 𝛼 is set to 0.45 in the simulation shown here. (g) As for panel f but for 4×CO2 and
CTL simulations performed with the CESM2-CAM6 model and for differences between 100-year
climatologies. The parameter used for tuning snow albedo, r_snw, has been set to 0.7. The
scaling in panels f and g is with the global-mean annual-mean temperature change between the
time averages of the perturbation experiment and CTL.
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We consider next the seasonality that drives the𝑇AC(𝑥, 𝑡) changes in the ESMs and the aquaplanet637

simulations. To compare the magnitude of seasonal changes in different types of simulation638

(transient and quadrupled CO2) with very different radiative forcing, we scale results by global-639

mean annual-mean TMT changes. In the ESMs, zonal-mean warming over 1979 to 2020 occurs in640

every month and at every latitude, except poleward of 60◦S during austral summer (Figs. 14a-e).641

This high-latitude SH seasonal cooling signal arises from the temperature and circulation changes642

caused by Antarctic stratospheric ozone depletion (Solomon et al. 2012; Eyring et al. 2013). In643

the aquaplanet simulations, the equilibrium response to CO2 quadrupling is also characterized by644

warming at all latitudes and in all months, with largest warming in the tropics in GFDL-AM2.1645

and poleward of 70◦ in CESM2-CAM6 (Figs. 14f and g, respectively).646

To more easily discern the seasonality of TMT changes, we express the monthly changes as647

departures from annual-mean changes at each latitude band (Fig. 15). This reveals that the five648

ESMs have seasonal trends in zonal-mean TMT similar to those found in the CMIP5 multi-model649

average (Santer et al. 2018), with maximum mid-latitude warming in NH summertime (Fig. 15a-650

e). This summertime warming signal is the primary driver of the increase in the amplitude of the651

annual cycle of NH mid-latitude tropospheric temperature.652

As in the ESMs, the aquaplanet simulations display strong seasonality in mid-latitude TMT653

changes, with larger warming in late summer and fall in both summer hemispheres (Figs. 15f,g).654

Maximum mid-latitude warming is delayed by several months relative to the ESMs. This phase655

lag is likely due to the absence of land and to the fact that the 30-meter slab oceans have larger heat656

capacity compared to land.657

The amplitude of annual cycle changes over the Arctic and Antarctic is markedly smaller in658

GFDL-AM2.1 than in CESM2-CAM6 (compare Figs. 15f,g). This difference is due to the absence659

of sea-ice thermodynamics in the GFDL-AM2.1 aquaplanet simulation and to the substantial660

impact of sea-ice thermodynamics on the high-latitude seasonal cycle.xii With thermodynamic sea661

ice in CESM2-CAM6, there is greater seasonality in ice extent in the 1×CO2 climate compared662

to the GFDL-AM2.1 “albedo-only” representation of sea ice effects. The larger amplitude of663

the control run seasonal cycle yields larger high-latitude 𝑇AC(𝑥, 𝑡) changes in CESM2-CAM6 in664

xiiIn the GFDL-AM2.1 aquaplanet integrations, sea ice is represented as a temperature-dependent surface albedo following classic energy-balance
model theory. In the CESM2-CAM6 simulations, sea ice is modeled as a slab of ice that conducts heat vertically through the ice assuming a linear
temperature profile. Snow can accumulate on top of the ice. The treatment of sea ice in the CESM2-CAM6 aquaplanet integrations is still somewhat
simplified compared to the most comprehensive ice models, which include multiple layers of ice and brine pockets within the ice.

34



response to the quadrupling of CO2 and the complete loss of sea ice. Greater initial sea-ice coverage665

in CESM2-CAM6 (and a more equatorward ice edge) may also explain some of the differences666

between the mid-latitude 𝑇AC(𝑥, 𝑡) changes in the CESM2-CAM6 and GFDL-AM2.1 aquaplanet667

runs (Figs. 15f,g).668
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Fig. 15: As for Fig. 14 but with results expressed as monthly-mean departures from annual-mean
changes. The scalings in each panel are identical to those used in Fig. 14.

10. Conclusions669

There will always be some irreducible uncertainty in partitioning observed climate records into670

multidecadal internal variability (MIV) and forced responses (Frankcombe et al. 2015; Kravtsov671
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2017; Cheung et al. 2017; Kajtar et al. 2019; Pallotta and Santer 2020). Partitioning difficulties672

arise from multiple sources. One source is in the model-predicted signals that are removed from673

observations to isolate MIV (Section 7). These signals are affected by uncertainties and errors674

in estimates of historical external forcings (Solomon et al. 2011, 2012; Fyfe et al. 2021) and in675

the simulated responses to external forcings (Fyfe et al. 2021). Forced modulation of internal676

variability is an additional complication in separating signal and noise (Maher et al. 2015), along677

with structural uncertainties and residual errors in the observations (Mears et al. 2011; Mears and678

Wentz 2017; Zou and Wang 2011; Po-Chedley et al. 2015).679

In the real world, for example, there are uncertainties in the amplitude and patterns of MIV and680

in our quantitative understanding of low-frequency changes in net anthropogenic aerosol forcing681

(Mann and Emanuel 2006; Carslaw et al. 2013). This complicates separation of MIV from the682

response to aerosol forcing. In consequence, there is uncertainty in estimating the contribution of683

MIV to the positive detection of an anthropogenic fingerprint in observed 𝑇AC(𝑥, 𝑡) changes.684

It is conceivable, therefore, that fortuitous phasing of modes of Pacific and Atlantic MIV may685

have favored the positive detection of a seasonal cycle fingerprint in satellite 𝑇AC(𝑥, 𝑡) data (Santer686

et al. 2018). Large initial condition ensembles (LEs) are a valuable virtual laboratory for exploring687

this possibility. The five LEs analyzed here span a wide range of phase space in equilibrium climate688

sensitivity (from 2.6◦C to 5.6◦C), the amplitude of MIV, and the size of net anthropogenic aerosol689

forcing (Zelinka et al. 2014, 2020). Despite this wide phase space, and despite differences in the690

phasing of MIV in the 240 realizations of historical 𝑇AC(𝑥, 𝑡) changes examined here, our D&A691

results are remarkably robust. We obtain positive detection of model seasonal cycle fingerprints in692

239 of the 240 realizations (Fig. 6).693

We also used LEs to investigate concerns regarding the reliability of modelMIV estimates (Curry694

and Webster 2011; O’Reilly et al. 2021). For the AMO, between 21% and 23% of the model LE695

realizations have values of 𝑃LOW (the spectral density at ≈ 24 years) that exceed 𝑃LOW in the “signal696

removed” HadCRUT4 SST data. Model-data agreement in low-frequency variability is closer697

for the IPO and Niño 3.4 SSTs. We find no evidence that the LEs analyzed here significantly698

underestimate the observed low-frequency power of major modes of internal variability.699

More importantly, our sensitivity studies (Section 8) explicitly show that even in the presence700

of large (factor of 3-4) inter-model and inter-realization differences in the amplitude of AMO and701
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ENSO variability, the seasonal cycle fingerprints shown in Figs. 4a-e are robustly identifiable in702

models and satellite data. This is primarily due to the fact that the fingerprint patterns are spatially703

dissimilar to the patterns of internal 𝑇AC(𝑥, 𝑡) variability associated with the AMO and ENSO.704

The robustness of the seasonal cycle D&A results shown here, taken together with the evidence705

from the aquaplanet simulations (Section 9), suggests that basic physical processes are dictating706

a common pattern of forced 𝑇AC(𝑥, 𝑡) response in observations and in the five LEs. The key707

processes involved are likely to include GHG-induced expansion of the tropics, lapse-rate changes,708

land surface drying, and sea ice decrease (Manabe et al. 1981; Wetherald and Manabe 1995; Held709

2000; Fu et al. 2006; Frierson 2006; Frierson et al. 2007; Seidel and Randel 2007; Kang and Liu710

2012; Donohoe and Battisti 2013; Quan et al. 2014; Douville and Plazzotta 2017; Feldl et al. 2017).711

Our study clearly illustrates that the analysis of multiple LEs provides diagnostic benefits for712

D&A research, enabling analysts to explore the robustness of fingerprint detection results in novel713

ways. Additional diagnostic benefit arises through comparisons of idealized aquaplanet simulations714

with results from full Earth System Models – and through comparing aquaplanet simulations with715

very different representation of climate processes associated with sea ice (Feldl et al. 2017, 2020;716

Feldl and Merlis 2021). Such comparisons may help to improve understanding of the physical717

mechanisms influencing seasonal cycle fingerprints and of the expected seasonal cycle changes718

over the 21st century.719
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