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ABSTRACT: Previous work identified an anthropogenic fingerprint pattern in Tac(x,7), the ampli-
tude of the seasonal cycle of mid- to upper tropospheric temperature (TMT), but did not explicitly
consider whether fingerprint identification in satellite Tac(x,7) data could have been influenced
by real-world multidecadal internal variability (MIV). We address this question here using large
ensembles (LEs) performed with five climate models. LEs provide many different sequences of
internal variability noise superimposed on an underlying forced signal. Despite differences in his-
torical external forcings, climate sensitivity, and MIV properties of the five models, their Tac(x,?)
fingerprints are similar and statistically identifiable in 239 of the 240 LE realizations of historical
climate change. Comparing simulated and observed variability spectra reveals that consistent fin-
gerprint identification is unlikely to be biased by model underestimates of observed MIV. Even in
the presence of large (factor of 3-4) inter-model and inter-realization differences in the amplitude of
MIV, the anthropogenic fingerprints of seasonal cycle changes are robustly identifiable in models
and satellite data. This is primarily due to the fact that the distinctive, global-scale fingerprint
patterns are spatially dissimilar to the smaller-scale patterns of internal Txc(x,?) variability as-
sociated with the Atlantic Multidecadal Oscillation and the El Nifio~Southern Oscillation. The
robustness of the seasonal cycle D&A results shown here, taken together with the evidence from
idealized aquaplanet simulations, suggest that basic physical processes are dictating a common
pattern of forced Txc(x,7) changes in observations and in the five LEs. The key processes involved
include GHG-induced expansion of the tropics, lapse-rate changes, land surface drying, and sea

ice decrease.
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1. Introduction

Detection and attribution (“D&A”) studies seek to disentangle human and natural influences on
Earth’s climate. This research made a significant contribution to the recent finding that human
influence on climate is unequivocal (IPCC 2021). Pattern-based “fingerprint” methods are a key
element of D&A research (Hasselmann 1979; North et al. 1995; Hegerl et al. 1996; Santer et al.
1996; Tett et al. 1996; Stott et al. 2000; Barnett et al. 2005).

The initial focus of fingerprint research was on changes in annual- or decadal-mean properties of
surface temperature (Hegerl et al. 1996; Stott et al. 2000), atmospheric temperature (Santer et al.
1996; Tett et al. 1996; Thorne et al. 2002; Santer et al. 2003), and ocean heat content (Barnett
et al. 2005). Examination of the hydrological cycle, cryosphere, and atmospheric circulation
followed, targeting surface specific humidity and water vapor (Willett et al. 2007; Santer et al.
2009), rainfall (Zhang et al. 2007; Marvel and Bonfils 2013), salinity (Pierce et al. 2012), sea-level
pressure (Gillett et al. 2003), and Arctic sea ice (Min et al. 2008). Model-predicted patterns of
mean changes in these and many other variables were detectable in observations and attributable
to human influences (Santer et al. 1995; Mitchell and Karoly 2001; Hegerl et al. 2007).

After comprehensive interrogation of the causes of historical changes in average climate, the
attention of D&A analysts shifted to aspects of climate change that are more directly relevant to
societal impacts (Bindoff et al. 2013). Research began to examine extreme rainfall and heat (Min
et al. 2009; Stott et al. 2016), the likelihood and severity of individual extreme events (Stott et al.
2004; Risser and Wehner 2017), and the seasonality of precipitation (Marvel et al. 2017) and
temperature (Santer et al. 2018; Duan et al. 2019).

It is changes in the amplitude of the seasonal cycle that are of interest here. They have the
potential to impact water availability, hydropower production, energy demand, agriculture, fire
weather, vector-borne diseases, and many other aspects of society, the economy, and human health.
Seasonality also influences animal and plant distributions and abundances (Parmesan and Yohe
2003; Root et al. 2005; Cohen et al. 2018). Itis critically important to understand how this seasonal
pacemaker may have been modulated by historical changes in anthropogenic forcing — and how
seasonality may change over the 21st century (Dwyer et al. 2012; Stine and Huybers 2012; Donohoe
and Battisti 2013; Qian and Zhang 2015; Yettella and England 2018).
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A previous study by Santer et al. (2018) reported that satellite temperature records contained a
fingerprint of human-caused changes in Txc(x, 7), the amplitude of the annual cycle of mid- to upper
tropospheric temperature (TMT).! Related work showed that internal climate variability affected
observed annual-mean TMT changes over the satellite era (Kamae et al. 2015; Sudrez-Gutiérrez
et al. 2017; Po-Chedley et al. 2021). The relationship between changes in annual-mean TMT and
changes in Thc(x,?) is unclear. It is conceivable, however, that multidecadal internal variability
(MIV) may have influenced the identification of a human fingerprint in satellite Txc(x,?) data.

We explore this possibility here using output from large initial condition ensembles (LEs) per-
formed with five different Earth System Models (ESMs; Deser et al. 2012; Fyfe et al. 2017, 2021;
Tatebe et al. 2019; Rodgers et al. 2021). In total, these five LEs provide 240 different plausible re-
alizations of historical climate change, each with a unique sequence of internal variability (‘“noise”)
superimposed on the response to anthropogenic and natural external forcing (“signal”). With such
information, we can assess how frequently fingerprint detection occurs in model realizations of
Tac(x,1). If fingerprint detection is a robust result in the 240 realizations, despite differences in the
forcings, climate sensitivity, and MIV properties of the five LEs, it suggests that positive fingerprint
detection in real-world Txc(x,?) data is unlikely to be due to the fortuitous phasing of MIV.

Most fingerprint methods rely on model MIV estimates to assess whether the random action
of internal variability could explain a “match” between observed climate change patterns and a
model-predicted anthropogenic fingerprint. Concerns have been raised about the adequacy of
model noise estimates, thus calling into question the reliability of fingerprint results (Curry and
Webster 2011; O’Reilly et al. 2021). We address such concerns here by comparing simulated and
observed spectra for three key modes of MIV: the Atlantic Multidecadal Oscillation (AMO), the
El Nifio/Southern Oscillation (ENSO), and the Interdecadal Pacific Oscillation (IPO).

We use information from these spectra as the basis for a number of sensitivity studies. These
studies explore whether the positive identification of annual cycle fingerprints in observations and
model simulations is robust to large model differences in the amplitude of specific modes of internal
variability. A further sensitivity study considers whether fingerprint identification is hampered by

removing all information regarding global-mean Txc(x,?) changes.

iFor each model and satellite data set, and at each grid-point x and year 7, there are 12 monthly-mean values of TMT. We use these 12 values to
calculate the amplitude of the first harmonic — the annual cycle (Wilks 1995; Yettella and England 2018). Our focus in this study is solely on the
amplitude of the first harmonic. Here and throughout, x is an index over the combined latitude and longitude dimensions of the spatial field and 7
is an index over time in years.



103

104

105

106

107

108

109

110

111

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

In addition to assessing the robustness of our fingerprint detection results for annual cycle changes,
we also seek to improve understanding of the physical mechanisms driving these changes. Some
insights are provided by novel aquaplanet simulations with realistic, seasonally varying insolation
(Feldl et al. 2017). These experiments were performed under preindustrial and quadrupled CO;
conditions with two climate models, each with a different representation of the effects of sea-ice
on high-latitude climate processes. We compare the two sets of aquaplanet experiments with
conventional (land+ocean+ice) ESM simulations to investigate how the annual temperature cycle
is affected by the presence or absence of land.

The structure of our paper is as follows. Section 2 introduces the observational and model data
sets used here, with additional information available in the Supplementary Materials (SM) and
in a previous paper (Santer et al. 2021). Section 3 introduces the spatial patterns of satellite-era
Tac(x,t) trends in four observational data sets and in the average of the five LEs. As a prelude to
the signal-to-noise (S/N) analysis of global patterns of annual cycle changes, Section 4 performs a
local S/N analysis of Tac(x,?) trends at individual grid-points in each LE. The fingerprint method
applied to discriminate between forced and unforced annual cycle changes is introduced in Section
5 and documented in detail in the SM. Section 6 discusses the S/N ratios and “baseline” fingerprint
detection times obtained for the full global pattern of Thc(x,?) changes. After using the five
LEs to estimate and subtract signals of forced SST changes from individual LE realizations and
observations, Section 7 compares the simulated and observed variability spectra for the AMO,
Nifio 3.4 SSTs, and the IPO. Section 8 uses information from the model spectra to repeat the
“baseline” fingerprint analysis of Section 6 with subsets of the 240 realizations of internal Txc(x,?)
fluctuations. These subsets comprise realizations with low- and high-amplitude variability of the
AMO and ENSO. Annual cycle changes in the aquaplanet simulations performed with two different

climate models are analyzed in Section 9. We provide brief conclusions in Section 10.

2. Observational data and model simulations

a. Satellite and reanalysis data

Our focus here is on Tac(x,7) changes over the satellite era (January 1979 to December 2020).
We rely on satellite TMT data from three research groups: Remote Sensing Systems (RSS; Mears
and Wentz 2017), the Center for Satellite Applications and Research (STAR; Zou et al. 2018), and



132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

the University of Alabama at Huntsville (UAH; Spencer et al. 2017). All three groups analyze
microwave emissions from oxygen molecules. Emissions are measured with Microwave Sounding
Units (MSU) and Advanced Microwave Sounding Units (AMSU) and depend on the temperature
of different broad atmospheric layers. Measurements at different microwave frequencies provide
information on temperatures at different heights. In addition to TMT, we use measurements of the
temperature of the lower stratosphere (TLS) to adjust TMT for the contribution it receives from
stratospheric cooling (Fu et al. 2004; Fu and Johanson 2004; see SM).

Our comparisons of simulated and observed Txc(x,?) changes also make use of synthetic TMT
data from version 5.1 of the state-of-the-art ERA reanalysis of the European Centre for Medium-
Range Weather Forecasts (ECMWF; Hersbach et al. 2020; Simmons et al. 2020; see SM). Re-
analyses are a retrospective analysis of many different types of observational data using a data
assimilation system and numerical weather forecast model that do not change over time (Kalnay

et al. 1996).

b. SST data

Section 7 considers three commonly-used indices of modes of SST variability. We use version 4
of the data set developed jointly by the Hadley Centre and the Climatic Research Unit (HadCRUT4;
Morice et al. 2012) to compute observational time series of the AMO, Nifio 3.4 SSTs, and the IPO.
Information regarding calculation of these indices is provided in the SM. Our focus in Section 7 is
on the 852 months from January 1950 to December 2020, a period unaffected by potential problems

associated with SST measurements during World War II (Thompson et al. 2008).

c. Model simulations

We analyze Tac(x,t) changes in five different large initial condition ensembles (LEs). Deser
et al. (2020) provide a comprehensive introduction to LEs and their many scientific applications.
An LE typically consists of between 30 to 100 individual members. The ensemble is generated
by repeatedly running the same physical climate model with the same spatio-temporal changes in
external forcings. Each ensemble member commences from different initial states of the atmosphere

and/or ocean. These are selected in various ways (see SM). Slight differences in initial states result
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in different sequences of natural variability superimposed on the underlying forced response. The
result is an envelope of plausible trajectories of historical and/or future climate change.

Here, we use LEs to explore both the local (Section 4) and global (Sections 5, 6, and 8)
S/N characteristics of simulated changes in annual cycle amplitude. Of particular interest is the
information LEs provide regarding the robustness of fingerprint detection, the stochastic uncertainty
in fingerprint detection time, estimates of externally forced signals in the AMO, Nifio 3.4 SSTs,
and the IPO, and uncertainties in the internal variability spectra of these three modes.

The LEs considered here rely on both older and newer model versions and estimates of external
forcings. Two LEs were generated with models participating in the older phase 5 of the Coupled
Model Intercomparison Project (CMIPS; Taylor et al. 2012). The CMIP5 LEs were performed
with version 1 of the Community Earth System Model (CESM1; Kay et al. 2015) and with version
2 of the Canadian Earth System Model (CanESM2; Kirchmeier-Young et al. 2017; Fyfe et al. 2017;
Swart et al. 2018). The CESM1 and CanESM?2 LEs have 40 and 50 members, respectively. The
three LEs produced with models taking part in the newer phase 6 of CMIP (CMIP6; Eyring et al.
2016) relied on version 5 of CanESM (CanESMS; Swart et al. 2019; Fyfe et al. 2021), version 2 of
CESM (CESM2; Rodgers et al. 2021), and version 6 of the Model for Interdisciplinary Research
on Climate (MIROCS6; Tatebe et al. 2019). Each CMIP6 LE had 50 ensemble members. '

The CMIPS and CMIP6 historical simulations ended in 2005 and 2014, respectively. To fa-
cilitate comparison with observational Txc(x,7) changes over the full 42-year satellite era (1979
to 2020), historical simulations were spliced with scenario integrations initiated from the end of
each historical run. The scenario integrations are Representative Concentration Pathway 8.5 for
CanESM?2 and CESM1 (Meinshausen et al. 2011), Shared Socioeconomic Pathway 5-8.5 (SSP5)
for CanESM5 and MIROCS6, and SSP 3-7.0 for CESM2 (SSP3; Riahi et al. 2017). Further details
of these scenarios are given in the SM.

Our pattern-based fingerprinting method requires model estimates of natural internal variability.
We obtain these estimates from two sources: 1) multi-model ensembles of preindustrial control
simulations with no year-to-year changes in external forcings; and 2) the between-realization
variability of each of the five LEs. In the former case, we use output from preindustrial control

runs performed with 36 CMIPS models and 30 CMIP6 models. In the latter case, we estimate the

iiThe CESM2 LE described in Rodgers et al. (2021) has 100 ensemble members. The first 50 members were run with CMIP6 SSP 3-7.0 forcing;
the remaining 50 members have modified biomass forcing over recent decades (Fasullo et al. 2021). We analyze only the first 50 members here.

7
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between-realization variability in a single model’s LE by subtracting the ensemble-mean changes
in Tac(x,7) from each realization in the LE (see Section 5 and SM). Tables S1 and S2 of the SM
identify the CMIP5 and CMIP6 models we relied on for our multi-model noise estimates.

Section 9 examines changes in the amplitude of the annual cycle of TMT in aquaplanet simulations
performed with two climate models. The first is version 2.1 of the Geophysical Fluid Dynamics
Laboratory Atmospheric Model (GFDL-AM2.1). The model was run in a configuration with a
30-meter fixed-depth slab ocean with no meridional ocean heat transport and a realistic seasonal
cycle of insolation (Feldl et al. 2017). The simulations explore the impact of large differences in
sea-ice albedo under preindustrial and quadrupled CO, conditions.

The second model relies on version 6 of the Community Atmospheric Model (CAM6; Rodgers
et al. 2021). This is the atmospheric component of CESM2. Like GFDL-AM?2.1, CESM2-CAM6
was run with a 30-meter fixed-depth slab ocean, but with a symmetrical annual-mean ocean heat
transport (an average of NH and SH conditions) diagnosed from the CESM2 pre-industrial control
run. A significant difference in the two models is that GFDL-AM?2.1 has no ice thermodynamics,
while CESM2-CAMB6 includes ice thermodynamics and uses a simple version of the Los Alamos
sea-ice model (CICES; Smith et al. 1992). As we show subsequently, model differences in sea-ice
treatment yield different high-latitude changes in Txc(x, ) in response to CO, forcing.

Both sets of aquaplanet simulations allow us to investigate whether large-scale features of the
annual cycle fingerprints in full ESMs can be captured without representation of land surface
processes and without hemispheric asymmetry in land distribution or land-ocean differences in

heat capacity. Further details of the aquaplanet simulations are given in the SM.

3. Changes in annual cycle amplitude in observations and the LE average

Santer et al. (2018) analyzed observed spatial patterns of Txc(x,7) trends over 1979 to 2016. It
is useful to re-examine these patterns given four additional years of corrected TMT data, improved
versions of satellite TMT data sets, and results from the state-of-the-art ERAS.1 reanalysis.

Updates and improvements to satellite TMT data have not altered the basic features of the
Tac(x,t) trends. These features include increases in annual cycle amplitude at mid-latitudes in
both hemispheres (with larger increases in the NH than the SH), decreases in amplitude over the

Arctic, and small changes of either sign in the tropics (Figs. 1a-c). ERAS.1 shows similiar behavior
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(Fig. 1d). UAH differs from the other observational data sets at high latitudes in the SH: Tac(x,?)
trends are positive in UAH and negative in RSS, STAR, and ERAS5.1. The anomalous UAH results
appear to be related to the decisions made by the UAH group in merging information from MSU

and AMSU during the period of overlap between these different instruments (Santer et al. 2018).

Trends in Annual Cycle Amplitude (TMT; 1979-2020)

A RSS ‘ B STAR

-0.16 -0.08 0.00 0.08 0.16

°C/decade

Fic. 1: Least-squares linear trends over 1979 to 2020 in Tac(x,t), the amplitude of the annual
cycle of mid- to upper tropospheric temperature (TMT). (a-c) Satellite data from Remote Sensing
Systems (RSS), the Center for Satellite Applications and Research (STAR), and the University of
Alabama at Huntsville (UAH). (d) Version 5.1 of the reanalysis produced by the European Centre
for Medium-Range Weather Forecasts. (e) The average of the ensemble-mean trends in Tac(x,?)
in the five LEs analyzed here (see Figs. 2a-e). TMT is adjusted for stratospheric cooling in all
satellite, reanalysis, and climate model data sets (see SM).

Figure 1e shows the average of the ensemble-mean Tac(x,?) trends in the five LEs. As expected,
simulated changes are smoother than in the observations (Santer et al. 2018; Po-Chedley et al. 2021).

This is because the model results have been averaged over individual realizations with different
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sequences of internal variability, and then averaged over models. Averaging over realizations and
models damps internal variability and reduces uncorrelated model biases, more clearly revealing the
underlying forced response. Despite the larger spatial noise in observations, there is correspondence
between the large-scale features of the simulated and observed Txc(x, ) changes in Fig. 1. Whether

this correspondence is statistically significant is considered in Section 6.

4. Local signal-to-noise ratios

Pattern-based fingerprinting utilizes the signal and noise properties of entire spatial fields (Hassel-
mann 1979; Santer et al. 1994; Hegerl et al. 1996). It provides an efficient means of discriminating
between externally forced climate changes and the complex noise of internal variability. An al-
ternate form of S/N analysis considers forced and unforced climate changes at individual model
grid-points (Hawkins and Sutton 2012; Mahlstein et al. 2012; Deser et al. 2014; Rodgers et al.
2015). Local S/N information can help to inform and interpret results from pattern-based finger-
printing (Santer et al. 2019). In this section, we briefly discuss a local S/N analysis before detailed
consideration of our fingerprint results in Section 5.

Figures 2a-e show the ensemble-mean Thc(x,?) trends in the five LEs. Trends are calculated
over the same 1979 to 2020 analysis period used for the observations in Fig. 1. Although there
are pronounced differences between the LEs in the amplitude of the changes, there are also key
common features in the trend patterns. These include the previously noted increases in annual
cycle amplitude at mid-latitudes in both hemispheres (with larger increases in the NH than the
SH), decreases in Tac(x,t) at high latitudes in the SH, and small changes with differing signs in
the tropics (see Section 3). At high latitudes in the NH, the observations and CanESMS5 show
pronounced decreases in Txc(x,?). This feature is absent in the other LEs.

The denominator of the local S/N ratio is the between-realization standard deviation of the 42-
year trend in Txc(x,?), calculated across all members of an ensemble. Patterns of this local noise
are similar in the five LEs, with smallest values in the tropics and largest values at high latitudes in
both hemispheres (Figs. 2f-j). There is some agreement across LEs in small-scale features of the
noise patterns, such as the maxima over Greenland, the Himalayas, and East Antarctica. In all LEs,
the local S/N ratio displays highest values at mid-latitudes in the NH, where increases in Tac(x,?)

are largest and noise is relatively low (Figs. 2k-0).

10



253

254

255

256

257

258

259

260

261

262

263

264

265

266

Signal, Noise, and S/N Ratios in Five Large Ensembles (TMT Annual Cycle; 1979-2020)

CESM1 CESM2 CanESM2 CanESM5 MIROC6
A Signal B Signal C  Signal D Signal E

=}
=}
°C/decade

°C/decade

S/N ratio

Fic. 2: Local signal-to-noise (S/N) analysis of least-squares linear trends over 1979 to 2020 in
Tac(x,1). Results are from five different LEs (columns 1-5). (a-¢) Ensemble-mean Txc(x, ) trends.
(f-j) Local 1o standard deviation of the 42-year trends in Txc(x,) across all members in the LE.
(k-0) S/N ratio: the absolute value of the ensemble-mean trend in an LE (the signal) divided by the
local standard deviation of trends in the same LE (the noise). Stippling in the top row identifies
grid-points where the local S/N ratio for ensemble-mean trends exceeds 2.

It is of interest to compare the annual cycle changes for TMT with those obtained for surface
temperature (TS). In the Arctic and Antarctic, there are large reductions in the amplitude of the
annual cycle of TS (Figs. 3a-e). These reductions in annual cycle amplitude have been linked
to sea-ice loss and associated seasonal feedbacks, ocean-atmosphere energy transfer, and changes
in surface heat capacity (Serreze and Barry 2011; Donohoe and Battisti 2013; Bintanja and van
der Linden 2013; Taylor et al. 2013; Santer et al. 2018; Feldl et al. 2020; Feldl and Merlis 2021).
As for TMT, the amplitude of the annual cycle of TS increases at mid-latitudes in the NH, but
TS increases there are smaller, without the well-defined zonal structure of the TMT amplitude
increases. Even for TS, however, there are mid-latitude areas of the North Atlantic and North
Pacific oceans displaying significant increases in annual cycle amplitude, suggesting that the TS
changes are not driven by land surface processes alone. Information on some of the factors driving
annual cycle changes in TS and atmospheric temperature is given in Donohoe and Battisti (2013).
In addition to the sea ice changes mentioned above, these factors include the shortwave absorption

associated with GHG-forced increases in upper tropospheric water vapor.

11
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Signal, Noise, and S/N Ratios in Five Large Ensembles (TS Annual Cycle; 1979-2020)
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FiG. 3: As for Fig 2 but for the annual cycle of surface skin temperature. To facilitate comparison
with TMT results the colorbar ranges are identical to those in Fig. 2.

As expected, the between-realization variability of trends in annual cycle amplitude has a strong
land-sea contrast component for TS but not for TMT (compare Figs. 3f-j and Figs. 2f-j). Because
of the higher noise over land for TS, few land areas have S/N ratios > 2 for changes in the annual
cycle of TS (Figs. 3k-0). A notable exception is the Mediterranean region (Yettella and England
2018). Some of the most extensive areas of high S/N are in the regions of Arctic and Antarctic

sea-ice decrease where TS signals are largest.

5. Fingerprint method and results

Next, we seek to determine whether the patterns of forced changes in Txc(x,7) can be identified
in observations and individual realizations of the LEs. The latter provide 240 different trajectories
of climate change over the satellite era, each with a different estimate of MIV superimposed on the
underlying response to forcing. The LEs allow us to estimate the stochastic uncertainty in ¢4, the
time required to identify the searched-for fingerprints of forced change (Santer et al. 2019).

We use a standard pattern-based fingerprint method to calculate 7, (Hasselmann 1979). The
method has been successfully employed to identify anthropogenic fingerprints in many different

independently monitored aspects of climate change (Hegerl et al. 1996; Santer et al. 1996, 2009,

12
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2018; Marvel and Bonfils 2013; Bonfils et al. 2020; Sippel et al. 2020, 2021). The statistical
methodology follows Santer et al. (2018); full details are provided in the SM. A brief description
of the method is given below.

In the present application, the fingerprint pattern Fac(x) is an estimate of the response of the
amplitude of the annual cycle of TMT to combined anthropogenic and natural forcing. Five
different fingerprints are used here. Each is the leading Empirical Orthogonal Function (EOF) of
ensemble-mean Txc(x,7) in an LE, calculated over 1979 to 2020 (Figs. 4a-e). We assume that the
spatial pattern of Fac(x) does not change markedly over time. For changes in the annual cycle of
TMT, this assumption has been tested elsewhere and found to be reasonable (see SM).

The five LE estimates of Fac(x) shown in Figs. 4a-e are searched for in sequences of time-varying
Tac(x,t) patterns derived from satellite data, the ERAS.1 reanalysis, and individual realizations
of an LE. In the latter case, a searched-for model fingerprint is always compared with individual
realizations of Txc(x,?) changes generated with the same model — e.g., the CESM1 fingerprint in
Fig. 4a is compared with the 40 individual realizations of Txc(x,?) changes in the CESM1 LE (see
Fig. 5a and left box-and-whiskers bar in Figs. 6a,b). In searching for Fc(x) in observations, each
of the five model fingerprints is compared with each observational data set (Fig. 5f).

These comparisons involve computing a measure of pattern similarity (an uncentered spatial co-
variance). This yields the signal time series Z(t). If the observations or individual LE realizations
are exhibiting greater magnitude of Fac(x) over time, Z(¢) will exhibit a trend. To determine
whether this trend in Z(¢) is significant, we require null distributions of pattern similarity trends
in which we know a priori that any changes in pattern similarity with time are due to the effects of
natural variability only (see SM).

We generate these null distributions by fitting trends to the noise time series N (), which
is calculated by measuring the pattern similarity between Fac(x) and time-varying patterns of
natural internal variability in Tac(x,?). The latter are obtained from two sources: 1) multiple
pre-industrial control runs performed with either CMIPS or CMIP6 models; and 2) the between-
realization variability of Txc (x, 1) changes in each LE. We refer to these subsequently as multi-model
and single-model noise estimates, respectively.

In the multi-model noise case there are n,, model control runs, each of length 150 years. These

are concatenated into one data set (see SM). The single-model noise is computed by subtracting
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the ensemble-mean Tc(x,?) changes in an LE from each realization of the LE. Calculation of the
ensemble mean and residuals is over the 42-year satellite era (1979 to 2020). The residuals are
then concatenated and have the time dimension 42 X n,, the number of years in the satellite era
times the number of realizations in the LE. Differences between single-model and multi-model
noise estimates are discussed in Section 6.

Our detection time estimates are based on SNy, the S/N ratio between by, an L-year trend in
Z(t), and o7, the standard deviation of the sampling distribution of L-year trends in N(z). Here,
L varies from 10, 11, ... 42 years. A key aspect of our analysis is that trends in Z(¢) and N(z) are
always compared on the same timescale. Explicit consideration of the timescale-dependence of
S/N ratios is important because noise patterns and amplitude vary as a function of timescale (Tett
et al. 1997, Stouffer et al. 2000).

For L =10 years, for example, by is calculated over 1979 to 1988 and o, is computed from the
sampling distribution of overlapping 10-year trends in N(z). For L = 11 years, by is the trend in
Z(t) over the first 11 years (1979 to 1989) and o is calculated from the sampling distribution of
overlapping 11-year trends in N(z). The full satellite era (1979 to 2020) is the L = 42 case. The
detection time ¢ is defined as the final year of the L-year period at which SN first exceeds some
stipulated significance level (generally 5% here) and then remains continuously above this level
for all larger values of L. The null hypothesis we are testing is that trends in Z(¢) are consistent
with internal variability alone and SNy, values are not statistically unusual relative to an assumed
Gaussian distribution (see SM for further details).

Before considering 7, results, it is useful to first examine the Fac(x) patterns and dominant modes
of between-realization variability in the five LEs. The fingerprints are spatially similar across the
LEs (Figs. 4a-e) and capture the zonally coherent mean changes in annual cycle amplitude described
in the local S/N analysis (Section 4). In contrast, the dominant noise modes are characterized by
variability at smaller spatial scales. The leading noise EOF displays ENSO-like features (Po-
Chedley et al. 2021) which are similar across the five LEs (Figs. 4f-j). The second noise EOF is
also similar in the LEs, capturing anticorrelated variability in Txc(x,7) between North America,
i

Northern Eurasia, and the Indian subcontinent (Figs. 4k-0). The spatial dissimilarity"" between

iiiThe centered (spatial mean removed) pattern correlation between the fingerprint and leading noise mode in each LE is very small, ranging from
close to zero for CanESM2 to 0.15 for CanESMS.
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Leading Signal and Noise EOFs in Five Large Ensembles (TMT, Annual Cycle; 1979-2020)
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Fic. 4: Leading modes of response to external forcing and natural internal climate variability for
changes in the amplitude of the annual cycle of TMT. (a-e) Fingerprints of changes in Txc(x,?) in
five LEs. The fingerprints are the leading EOF of changes in ensemble-mean Tac(x,?) over the
42-year period from 1979 to 2020. (f-j) First EOF of natural internal climate variability of Txc(x,1),
estimated from the between-realization variability of each LE. (k-0) Second EOF of natural internal
variability. The total variance explained by each EOF is listed. The grey shaded regions poleward
of 80° arise because of regridding to a 10°x10° grid and masking model simulation output with
observational TMT coverage (see SM).

the large-scale, zonally distinctive fingerprints and the smaller-scale noise patterns is important in

explaining the fingerprint detection results described in the next section.

6. Fingerprint detection times in LEs and observationally based data

Values of SN used for calculating 74 are given in Fig. 5. The 1991 Pinatubo eruption has a clear
effect on simulated and observed annual cycle amplitude (Santer et al. 2018), resulting in an initial
dip in SN, for analysis periods ending between 1991 and 1994. Thereafter, SN increases linearly
with increasing L, except in CESM2 and in observational data, where SNy, exhibits relatively little

change or decreases for L-year trends ending after ca. 2012 (Figs. 5d,1).
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S/N Ratios in Five Large Ensembles and Observations (TMT Annual Cycle)
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FiG. 5: Signal-to-noise ratio SN, as a function of the trend length L. (a-e) SN, for the strength of the
model Fac(x) fingerprints in individual realizations of Txc(x,?) (thin grey lines) and in ensemble-
mean Tac(x,7) changes (dark grey lines). Results are from five different LEs. Model fingerprints
used in panels a-e are shown in the top row of Fig. 4. For CanESM2 and CESM1 (which are
both CMIP5 models), the denominator of SN; was estimated with the unforced variability from
36 different CMIPS pre-industrial control runs. For the CMIP6 LEs (CanESMS5, CESM2, and
MIROC6), the denominator of SN; was computed with the internally generated variability from
30 different CMIP6 control integrations. (f) SN, ratios for the strength of model fingerprints in
satellite and reanalysis Txc(x,?) data. There are five lines for each observational data set. Each line
corresponds to use of a different LE for estimating the fingerprint and noise (see Fig. 4 and SM).
SN is always plotted on the final year of the L-year analysis period, which is given in red in the
upper x-axis. The trend length L is given in blue in the lower x-axis. The first analysis period is
over 1979 to 1988; the final analysis period is over 1979 to 2020. The dashed horizontal magenta
line is the stipulated 5% significance level used for calculating the 7, values shown in Fig. 6a.
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The individual LE realizations cross the stipulated 5% significance threshold at a wide range of
L values. When multi-model noise estimates are used to compute the denominator of SNy, the
median detection time in the five LES, #4{meq), ranges from 1994 for CanESMS to 2005 for CESM1
(Fig. 6a). A similar range of 7;(cq) results is obtained by calculating the denominator of SN;, with

the between-realization variability of an individual LE (Fig. 6b).

Detection Times in Five Large Ensembles, Satellite, and Reanalysis Data (5% significance)
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FiG. 6: Stochastic uncertainty in fingerprint detection time in model LEs (box-and-whiskers plots)
and actual fingerprint detection time in satellite data (colored symbols). Detection time ¢, is defined
as the time at which the ratio SN first exceeds a stipulated significance threshold (in this case, p
= (0.05) and then remains continuously above this threshold as the analysis period L increases. (a)
Values of 7, estimated with fingerprints from five different LEs (see first row in Fig. 4) and using
the multi-model noise from concatenated pre-industrial control runs performed with 36 CMIP5
models and 30 CMIP6 models. For details of the multi-model noise, refer to Fig. 5 and SM. (b)
Fingerprints calculated as in (a), but with noise estimated using the between-realization variability
of each LE. In the box-and-whisker plots in both panels, the red horizontal line is the median ¢,
value in the individual realizations of Txc (x,). The box size represents the interquartile 7, range;
the whiskers span the full range of detection times in the ensemble.

For each LE, we tested whether the between-realization variability is significantly larger than
the multi-model variability. Tests were performed on timescales of 10, 20, 30, and 40 years (see

SM for significance test details). There were only two cases in which the between-realization
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variability was significantly larger at the 5% level: CanESMS and MIROCS6 (for 20- and 40-year
timescales, respectively). In these two LEs, the larger single-model noise in Fig. 6b yields slightly
later values of 74(neqy relative to the corresponding results in Fig. 6a. Single-model noise also
exceeds multi-model noise in CESM1, but is not significantly larger at the 5% level on the four
timescales we examined. The single-model variability in the CanESM2 and CESM2 LEs is similar
in amplitude to the CMIPS and CMIP6 multi-model variability (respectively). Averaged across the
five LEs, the median detection time is 1998.3 for the multi-model noise in Fig. 6a and 1999 for the
between-realization variability in Fig. 6b.

There are two key findings from Fig. 6. First, despite model differences in external forcings,
equilibrium climate sensitivity (ECS), and the amplitude of MIV (Andrews et al. 2012; Zelinka
et al. 2014, 2020; Pallotta and Santer 2020; Fyfe et al. 2021; Po-Chedley et al. 2021), the Fac(x)
patterns in the five LEs are robustly identifiable at the 5% significance level in individual model
realizations of satellite-era annual cycle changes. Positive detection occurs in 239 out of 240 cases
if multi-model noise is used to calculate the denominator of SN, and in the same number of cases
if single-model noise is employed.'’

The second key finding is that the model-predicted Fac(x) fingerprints are identifiable at the 5%
level in 16 out of 20 different combinations of the 5 fingerprints (derived from the 5 LEs) and the 4
observational data sets. This holds for both the multi-model noise in Fig. 6a and the single-model
noise in Fig. 6b. The null results in Figs. 6a and b are for the UAH data set. All five fingerprints
yield S/N ratios in UAH Txc(x, ) data that initially exceed the stipulated 5% significance threshold
on timescales of ~ 35 years, but then fall below this threshold for UAH S/N ratios calculated over
the full satellite era (except in the case of the CESM2 fingerprint; see Fig. 5f).

Finally, we note that removal of all global-mean information from our S/N analysis, as described
in Santer et al. (2018), has minimal impact on the detection time results in Fig 6. This illustrates
that the identification of model-predicted Fac(x) patterns in observational data and in individual
LE realizations is not solely driven by global-mean changes in annual cycle amplitude — it primarily
reflects similarity of large-scale pattern information (see Fig. S1 and Section 5b of SM).

In the following, we refer to the ¢, results in Fig. 6b as the “baseline” case. In Section 8, we
report on tests which explore the sensitivity of the baseline detection times to use of low- and high-

variability subsets of the single-model noise used in Fig. 6b. These subsets of the 240 realizations

¥The realization in which the fingerprint cannot be detected is from the MIROC6 LE.
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of internal Txc(x, ) variability are selected based on the power spectral density (PSD) of the model

AMO and Nifio 3.4 SST time series.

7. Comparison of simulated and observed internal variability spectra

The robust detection of model-predicted Fac(x) fingerprints in observations and in individual
LE realizations has multiple interpretations. Under one interpretation, large-scale forcing by
greenhouse gases drives large-scale physical processes that are common to observations and climate
models. These processes include summertime drying of mid-latitude continental interiors (Manabe
et al. 1981; Wetherald and Manabe 1995; Douville and Plazzotta 2017), expansion of the tropics
(Seidel and Randel 2007; Hu and Fu 2007; Quan et al. 2014), and lapse-rate changes (Frierson
2006; Donohoe and Battisti 2013). In contrast, modes of MIV are characterized by smaller-scale
patterns of anticorrelated variability that do not project well onto the coherent Fac(x) patterns (see
Fig. 4). This basic difference in the spatial scales of the forced response and MIV favors signal
detection (Santer et al. 1994).

A second possible interpretation is that robust detection of model Fac(x) fingerprints is biased by
errors in model representation of MIV (Curry and Webster 2011; O’Reilly et al. 2021). Under this
interpretation, models systematically underestimate “observed” MIV, thereby spuriously inflating
SN and leading to incorrect fingerprint detection claims. This “biased variability” argument is
challenging to address because there are large uncertainties in separating externally forced signals
from MIV in the single occurrence of signal and noise available in observations (Frankcombe
et al. 2015; Kravtsov 2017; Cheung et al. 2017; Kajtar et al. 2019; Pallotta and Santer 2020). This
introduces uncertainty in determining the size and significance of model MIV errors.

These two interpretations are not mutually exclusive. We have already shown credible evidence
that the first interpretation — dissimilarity of signal and noise patterns — contributes to our high
success rate in identifying model Fac(x) fingerprints in individual LE realizations (see Figs. 4 and
6). In the current section, we consider the plausibility of the second interpretation of our results. In
doing so, we make use of the fact that the climate change signals in LEs can be reliably estimated
by averaging over many realizations.

We assume that these well-estimated signals, obtained from LEs generated using models with

different ECS, MIV, and historical external forcings, encapsulate a significant portion of the true
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uncertainty in the amplitude and time evolution of forced changes in real-world climate. We apply
a regression-based approach (see below) to remove these LE-derived signals from observed time
series of three major modes of MIV —the AMO, ENSO, and [PO. Regression-based signal removal
is not required in model LEs. The ensemble-mean signal of a given LE is a reasonable estimate of
forced changes in that LE, and is simply subtracted from each realization of the LE.

Signal removal in the LEs and observations allows us to isolate the internally generated component
of variability in the AMO, ENSO, and IPO time series. We calculate PSD from the “signal
removed” residual time series, thus facilitating the direct comparison of simulated and observed
MIV. We seek to determine whether there is evidence that the five LEs analyzed here significantly
underestimate the observed MIV of the AMO, ENSO, and IPO (Kajtar et al. 2019). Such an error
could provide support for the second interpretation of our fingerprint detection results — particularly
if the detection time for Fc(x) fingerprints is sensitive to large inter-model and inter-realization
differences in the amplitude of AMO and ENSO variability. Whether such sensitivity exists is
explored in Section 8.

Consider results for the AMO first. The amplitude and time evolution of ensemble-mean SST
changes in the AMO region varies markedly across the five LEs (Figs. 7a-e). This is unsurprising
given model differences in ECS and in direct and indirect anthropogenic aerosol forcings (Zelinka
etal. 2014,2020; Santer et al. 2019).Y All five ensemble-mean signals show overall SST increases in
the AMO region, punctuated by recovery from surface cooling caused by major volcanic eruptions.
The SST increases are temporally complex and poorly captured by a linear trend.

Inter-model differences in the median detection time for Fc(x) fingerprints (Fig. 6) show some
correspondence with inter-model differences in the ensemble-mean AMO signal time series in
Fig. 7. CanESMS5, for example, which has the earliest #;{meq) values in Fig. 6, also has the largest
and most rapid SST increase in the AMO region (Fig. 7b). Similarly, the smaller and more gradual
SST increase in the CESM1 AMO signal appears to be related to the later 7;(y.qy values in CESM1
(compare Figs. 7c and 6).

Removing the ensemble-mean forced SST signals from individual realizations of an LE yields
residual AMO variability that is smallest in amplitude in CESM1 and largest in CanESMS (Figs. 8a-
e). Subtracting the unscaled ensemble-mean model signals from observed HadCRUT4 data can

produce residuals with large low-frequency variability, primarily because of mismatches between

VECS is 3.7°C and 5.6°C in CanESM2 and CanESMS, 4.0°C and 5.1°C in CESM1 and CESM2, and 2.6°C in MIROC6.
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«s model ECS and the true (but uncertain) real-world ECS (Frankcombe et al. 2015). Model forcing
«s errors also contribute to this large residual variability, thus inflating estimates of “observed” MIV

w7 associated with the AMO.

Raw AMO Time Series in Five Large Ensembles and Observations
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Fic. 7: Simulated and observed time series of the Atlantic Multidecadal Oscillation (AMO). Results
are for SST changes spatially averaged over 0°-60°N and 80°W-0° (see Enfield et al. 2001, and
SM). (a-e) AMO time series calculated from individual realizations (light grey) and multi-model
averages (dark grey) of five LEs. (f) Raw (red) and filtered (dark red) AMO time series calculated
from HadCRUT4 SST data. A Savitzky-Golay filter was applied to smooth the observations. The
filter used a window width of 141 months and a third-order polynomial. The vertical magenta lines
denote the eruption dates of El Chich6n in March 1982 and Pinatubo in June 1991.
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We therefore subtract scaled model AMO signals from observations (Frankcombe et al. 2015;
Steinman et al. 2015). Scaling involves Y (1) = a+bX () +€(t), the regression between the observed
AMO time series, Y (), and X (1), the ensemble-mean AMO time series for an individual LE. The
residual () is the “signal removed” AMO time series. Subtraction of bX (¢) from the HadCRUT4
AMO time series markedly damps the residual low-frequency variability (Figure 8f). For example,
at 284 months (23.7 years), regression-based removal of scaled AMO signals decreases the observed

PSD range by 92% relative to the range obtained with unscaled signal subtraction (not shown).

AMO Time Series in Five Large Ensembles and Observations (Raw-LE Signal)
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Fic. 8: Simulated and observed time series of the Atlantic Multidecadal Oscillation (AMO) after
removing externally forced SST signals. (a-e) “Signal removed” AMO time series (thin grey lines)
after subtracting ensemble-mean AMO SST changes in a given LE from each realization of the
LE. The blue line is the “signal removed” time series for the last realization in the LE. (f) Observed
“signal removed” time series. The five ensemble-mean AMO signal time series in Figs. 7a-e were
each subtracted from the HadCRUT4 AMO time series using regression-based scaling.
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Simulated and observed “signal removed” spectra for AMO SSTs are shown in Fig. 9. While the
observed spectrum and the spectra for both CanESM models are well-described by simple power
law fits, the CESM models and MIROC6 exhibit more complex spectral shape, with noticeable
flattening of PSD at periods greater than 100 months. Of greatest interest here is the comparison
of PLow, the PSD at 284 months. This is the longest period that can be usefully resolved from
the 852 months (71 years) of the observed AMO and Nifio 3.4 SST time series. Systematic model
underestimation of observed Ppow has the potential to spuriously inflate the signal-to-noise ratio
SN, thereby biasing fingerprint detection times towards earlier and more ubiquitous detection.

We compare simulated and observed Py ow in two ways. First, we determine the total number of
model realizations in the five LEs with Py ow values exceeding the smallest of the observed P ow
values in Fig. 9f (see bottom edge of red bands). Second, for each LE, we determine the number
of realizations in that LE with P ow values exceeding the corresponding observed Py ow value. V!
We refer to these two comparisons subsequently as Method 1 and Method 2 (respectively). They
are simple measures of the consistency between simulated and observed low-frequency PSD. "1

For the AMO, Method 1 and Method 2 yield 56 and 50 realizations exceeding observed Py ow
(23% and 21% of the total number of realizations)." We conclude from this that the five model
LEs analyzed here show evidence of underestimating the amplitude of observed low-frequency
AMO variability (Kajtar et al. 2019), but that this underestimate is not statistically significant at
the 5% level. If it were, we would expect a smaller fraction of model exceedances of observed
Piow (5% or less).

Qualitatively and quantitatively different results are obtained for SST variability in the Nifio
3.4 region of the tropical Pacific (Fig. 10). SST changes in this region are a common proxy for
ENSO variability. Fluctuations in ENSO have substantial impact on global surface temperature
(Kosaka and Xie 2013), tropospheric temperature (Po-Chedley et al. 2021), and many other climatic
variables (Bonfils et al. 2015).

SST variability in the Nifio 3.4 region is markedly larger than in the AMO region (c.f. Figs. 10
and 7), so that even with ensemble sizes of 40 to 50 realizations, there is still substantial residual

noise in the ensemble-mean Nifio 3.4 SST time series (Figs. 10a-e). This noise displays power at

ViFor example, if P gy in CanESM2 is being evaluated, we compare Py gy values in individual CanESM2 realizations with the observed
P1 ow estimated by subtraction of the ensemble-mean CanESM2 AMO signal from the HadCRUT4 AMO time series.
viiSee Pallotta and Santer (2020) for more sophisticated PSD comparisons.
ViliFor both methods, most of the model realizations exceeding Py gy are from CanESMS5, CESM2, and MIROCS6 (see Figs. 9b.d.e).
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AMO Power Spectra in Five Large Ensembles and Observations (1950-2020)
Model AMO signals removed from observations by regression
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FiG. 9: Power spectral density (PSD) in simulated and observed AMO time series. (a-e) PSD
in individual realizations (grey lines) of “signal removed” AMO time series shown in Figs. 8a-e.
(f) PSD in five “signal removed” observed AMO time series. The (scaled) forced component of
AMO SST changes for each LE was subtracted from the HadCRUT4 AMO time series. Individual
observed “signal removed” AMO time series in panel f are also plotted in panels a-e for their
corresponding LE (i.e., for the LE used to estimate and subtract an AMO signal from observations).
The red horizontal band delimits the lowest and highest values of PSD at a period of 284 months in
the five “signal removed” observational spectra. The vertical dotted purple line at the left of each
panel corresponds to this 284-month period (see SM for further technical details).

a period of 12 months, most clearly in MIROC6 (Figs. 11a-e). This residual power is consistent
with a change over the satellite era in the seasonal cycle of Nifio 3.4 SSTs.
All five LEs have small positive warming trends in their ensemble-mean Nifio 3.4 time series.

Observed warming in this region is more muted (Fig. 10f), partly due to the phasing of ENSO and
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IPO variability over 1950 to 2020 (Kosaka and Xie 2013; Trenberth 2015; Meehl et al. 2011, 2016;
England et al. 2014; Fyfe et al. 2016; Po-Chedley et al. 2021).

Because of the relatively small externally forced component in simulated Nifio 3.4 SST changes
and the large residual noise in this component, model ensemble-mean Nifio 3.4 SST time series
are only weakly correlated with the raw observed Nifio 3.4 SST time series, with r ranging from
0.02 in MIROC6 to 0.17 in CESM1.** Scaling and subtraction of these Nifio 3.4 SST signals from
observations has only small impact on the original observed Nifio SST time series, yielding the

spectra shown in Fig. 11f.

Raw Niflo 3.4 Time Series in Five Large Ensembles and Observations
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Fic. 10: As for Fig. 7 but for simulated and observed time series of SST spatially averaged over
the Nifio 3.4 region (5°N-5°S, 120°W-170°W).

XFor the corresponding calculation with AMO SST time series, r ranges from 0.78 for CESM1 to 0.81 for CESM2.
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All simulated and observed Nifio 3.4 SST spectra in Fig. 11 have a discrete peak within the
canonical 3- to 7-year range of ENSO variability (AchutaRao and Sperber 2002). This peak is
more narrowly defined in MIROC6 than in the other LEs or observations. Simulated Nifio 3.4
spectra show a noticeable decrease in PSD for periods longer than approximately 7 years. This
PSD decrease is less pronounced in observations. In contrast to the AMO results, Methods 1 and 2
yield 185 and 178 exceedances of observed P ow — 1.€., 77% and 74% of the LE realizations have
power at 284 months that is higher than in observations. There is no evidence from our analysis,
therefore, that the LEs examined here systematically underestimate the observed low-frequency

variability of ENSO. This is consistent with other findings (Lienert et al. 2011).

Power Spectra for Nifio 3.4 SSTs in Five Large Ensembles and Observations (1950-2020)
Model Nifio 3.4 SST signals removed from observations by regression
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Fic. 11: As for Fig. 9 but for spectra of simulated and observed ‘“‘signal removed” Nifio 3.4 SST
time series.
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An analysis of the IPO (not shown) leads to a similar conclusion. Unlike Nifio 3.4 SSTs, the
IPO is influenced by both the tropical and extratropical variability of Pacific SSTs (Meehl et al.
2016; Trenberth 2015; Henley et al. 2015, 2017). For the IPO, we find 116 and 101 exceedances
of observed P ow for Methods 1 and 2, corresponding to 48% and 42% of LE realizations with
low-frequency PSD that is larger than in the “signal removed” observations (Kajtar et al. 2019).
Possible implications of such simulated and observed Ppow differences for fingerprint detection

time are explored in the next section.

8. Detection time sensitivity tests

Other previously published studies considered the links between fingerprint detection and model
performance in simulating observed global-scale variability (Hegerl et al. 1996; Allen and Tett
1999) or investigated the sensitivity of D&A results to large inter-model differences in variability
(Santer et al. 2009; Sippel et al. 2021). There have, however, been few studies of links between
detection time results and the behavior of individual modes of MIV.

We explore these links here using sensitivity tests (Fig. 12). We repeat the “baseline” S/N analysis
shown in Fig. 6b with two 50-member subsets of the 240 individual samples of between-realization
Tac(x,t) variability. These two 50-member subsets® correspond to low- and high-amplitude
variability of a specific mode of MIV at a specific timescale. The mode amplitude is estimated
from the spectra of “signal removed” time series (see Figs. 9a-e and Figs. 11a-e). There are four
separate sensitivity tests, one for each mode (the AMO and ENSO) and each timescale of interest
(284 months and 70 months). The procedure for conducting these sensitivity tests is described in
detail in the SM.

Recall that the internal variability of Tac(x,?) is used to calculate the denominator of our S/N
ratios, which in turn are used to estimate fingerprint detection times (Section 6). Comparing
detection times obtained for Txc(x,7) subsets — with subsetting based on the low and high PSD
values of key modes of MIV — allows us to explore possible links between the simulated mode
amplitude and our D&A results.

Our analysis timescales of 284 months and 70 months (23.7 and 5.8 years, respectively) were
selected for the following reasons. Detection of a slowly-evolving externally forced fingerprint

requires information on the background noise of MIV. Given 852-month (71-year) record lengths

*For each subset, there are 10 members from each LE. This reduces the impact on the sensitivity test of MIV biases in a single LE.
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Sensitivity Tests for Fingerprint Detection Times (5% significance)

A 'AMO (254 months) i i B' AMO (Zl months)
] y 1 ] ”
20181 * » 2018 .
20141 » 20141
[J] 1 [ (0] 7
£ 20101 * * , * x E 20101 * * & x
S 2006 S 2006
E 2002 | g 2002 {
A 19981 % A 19981 %
1994 1 » 1994
1990 1 » 1990 1
J &) 2 U © U &) \Z J ©
g & & & & S & & & &L
&S ¢ < & &S ¢ ¢ &
'C Niﬁg 3.4 SSTs (284 nywonths)' i D Niﬁp 3.4 SSTs (71 months) i
1 [ b X
2018 *ox » 2018 *
20141 » 2014
[J] 1 [ (0] 7
£ 20107 * * s« * £ 20104 * * 4 4 x
S 2006 S 2006
E 2002 1 E 2002
A 19981 A 19981
1994 | » 1994 |
1990 1 » 1990 1
’1/‘ <’>‘ ’\/‘ ”l/‘ b‘ ] ’ O \e) \Z J ©
& & © & & g & ¢ & &
(}’Q 0«\ C C N (;o“ (J,bo C C N

® RSS A STAR x  UAH * ERA5.1 1 Low HIGH

FiG. 12: Stochastic uncertainty in fingerprint detection time 7, in model LEs (box-and-whiskers
plots) and actual fingerprint detection time in satellite data (colored symbols). Results are for
sensitivity tests involving the selection of 50-member subsets from the 240 realizations of unforced
Tac(x,t) variability. (a-b) Partitioning of internal Tac(x, ¢) variability into low- and high-variability
subsets is based on the PSD values at 284 and 70 months in spectra calculated from ““signal removed”
AMO time series (panels a and b, respectively). (c-d) As for panels a and b but for the use of
spectra from simulated “signal removed” Nifio 3.4 SST time series. See Section 8 and SM for
further information on sensitivity tests. The caption of Fig. 6 provides details of box-and-whiskers
plots. The shaded bars in each panel display 7, results for high-variability subsets of Tac(x,?).
Unshaded bars show 7, for low-variability Tc(x,?) subsets.

for the AMO and Nifio 3.4 SST time series, the longest noise timescale we can usefully resolve is
284 months. The choice of the shorter 70-month timescale was driven by the presence of a spectral
peak close to this period in the “signal removed” MIROC6 AMO and Nifio 3.4 SST time series
(see Figs. 9e and 1le).
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On both of timescales considered here, and for both the AMO and Nifio 3.4 SSTs, the average PSD
is typically a factor of 3-4 larger in the high-variability subset of spectra than in the low-variability
subset. This indicates that for each mode and timescale, the amplitude differences between the
high- and low-variability subsets are sufficiently large to justify investigating the implications of
these differences for unforced Txc(x,#) variability and fingerprint detection time.

Our sensitivity tests yield three main results (Fig. 12). First, in each sensitivity test and for each
LE, the “low PSD” and “high PSD” subsets of unforced Txc(x,¢) variability yield similar values of
the median detection time 74{meq}, With 74(meq) differences < 1 year. Second, the “baseline” 7;(meq)
results in Fig. 6b are relatively unaffected by repeating the D&A analysis with “low PSD” and
“high PSD” subsets of the original 240 realizations of unforced Txc(x,?) variability. All sensitivity
tests preserve the relative differences in 74yeqy found in the “baseline” case — e.g., the earliest
fingerprint detection is still in CanESMS and the latest detection is still in CESM1. Third, the
model-predicted Fac(x) fingerprints are statistically identifiable in 75% of the 160 sensitivity tests
in Fig. 12 that involve satellite and reanalysis data.*

Figure S2 in the SM shows SN, for one of the four sensitivity tests: selecting subsets of unforced
Tac(x,t) variability based on PSD at 284 months in the simulated AMO spectra (Figs. 9a-e). In
all five LEs, the “low PSD” subset yields larger S/N ratios (relative to the “high PSD” subset) for
analysis periods longer than ~ 25-30 years (Figs. S2a-e). This means that low-amplitude AMO
variability at 284 months tends to correspond to lower-amplitude multidecadal Txc(x, ?) variability,
which damps the denominator of S/N and increases S/N ratios. Conversely, high-amplitude AMO
variability at 284 months tends to correspond to higher-amplitude multidecadal Txc (x, #) variability,
thereby decreasing S/N ratios. Qualitatively similar “low PSD-versus-high PSD” differences in
SN, are also found for the other three sensitivity tests (not shown).

The results in Fig 12 and in Fig. S2 raise several questions. The first question is why the “low
PSD-versus-high PSD” S/N differences in Figs. S2a-e have relatively small impact on #4{meq}. The
answer is that these S/N differences are small for L <~ 25-30 years. This explains why the median
detection times in Fig. 12a are so similar in the “low PSD” and “high PSD” cases, particularly
for CanESM2, CanESMS5, and CESM2. In these three models, the S/N ratios for almost all
individual realizations exceed the 5% significance threshold in less than 30 years, well before the

“low PSD-versus-high PSD” S/N differences become pronounced.

X160 = 4 satellite data sets x 5 different fingerprints X 2 variability subsets (low PSD and high PSD) x 4 sensitivity tests.
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The second question is why are our “baseline” fingerprint detection times are robust to partitioning
the original 240 realizations of unforced Tac(x,?) variability into “low PSD” and “high PSD”
subsets. Recall that the annual cycle fingerprints in the five LEs are spatially uncorrelated with the
dominant Txc(x, ) noise modes (Fig. 4). This was true for both the multi-model CMIP5 and CMIP6
noise and for the single-model between-realization variability in each LE. Quasi-orthogonality of
fingerprint and noise patterns also applies to the noise subsets in all of our “low PSD” and “high
PSD” sensitivity tests. Because fingerprint and leading noise patterns are so dissimilar, differences
in the amplitude of unforced Tac(x, ) variability associated with low- and high-amplitude behavior
of the AMO and ENSO have relatively small impact on #,{meq; -

Put differently, our fingerprint analysis reveals coherent, global-scale externally forced responses
common to all five LEs. Examples include decreases in Txc(x,?) over the Arctic and mid-latitude
Tac(x,t) increases in NH continental interiors (Figs. 4a-e). These distinctive features are absent
in patterns of unforced Txc(x,?) fluctuations associated with the AMO, ENSO, and other modes,
which are characterized by variability at smaller spatial scales (Figs. 4f-0). This mismatch between
the spatial scales of fingerprint and noise helps to explain why inter-model and inter-realization

differences in the amplitude of key modes of MIV have limited impact on #4{meq;} -

9. Annual cycle changes in aquaplanet simulations

Santer et al. (2018) discussed some of the possible physical mechanisms involved in producing
the distinctive patterns of observed and simulated Txc (x,#) changes shown in Fig. 1. They noted that
there are pronounced hemispheric asymmetries in both the climatological mean state of Tac(x,?)
and in its satellite-era trends. Climatological asymmetries in Txc(x,?) are related to NH-versus-SH
differences in land fraction, heat capacity (through the differences in land fraction), and sea ice
coverage. Hemispheric asymmetries in the Tac(x,?) trends over 1979 to 2020 are influenced not
only by these factors, but also by hemispherically asymmetric external forcings. Examples of the
latter include anthropogenic aerosol forcing (Bonfils et al. 2020; Kang et al. 2021) and the forcing
and circulation response associated with stratospheric ozone depletion (see Fig. S3 and Gillett
et al. 2004; Thompson et al. 2011; Bandoro et al. 2014; Randel et al. 2017; Solomon et al. 2017).
Low-frequency changes in modes of internal variability may also contribute to variations in the

Hadley circulation (Mantsis and Clement 2009) and are another possible influence on Tac(x,1).
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One of the most prominent aspects of the patterns in Fig. 1 is the increase in annual cycle amplitude
at mid-latitudes in both hemispheres, with larger increases in the NH than the SH. These “ridges”
in Tac(x,t) trends arise from larger tropospheric warming in the summer hemisphere (Santer et al.
2018). Possible causes of these features include changes in the meridional temperature gradient
or in atmospheric SW absorption that result in seasonally-dependent changes in stability (Frierson
2006; Donohoe and Battisti 2013; Santer et al. 2018), poleward expansion of the Hadley circulation
and the tropics (Held 2000; Fu et al. 2006; Seidel and Randel 2007; Frierson et al. 2007; Kang and
Liu 2012; Quan et al. 2014), lapse-rate changes unrelated to tropical expansion (Brogli et al. 2019),
and summertime drying of the land surface (Manabe et al. 1981; Wetherald and Manabe 1995;
Douville and Plazzotta 2017). Other factors may also be relevant, such as the response to land-sea
warming contrast, the direct radiative effects of CO,, and SST trend patterns (He and Soden 2017).
These explanations are not mutually exclusive.

To explore the influence of land and ice albedo on Tac(x,7) changes, we analyzed existing
aquaplanet simulations performed with GFDL-AM?2.1 (Feldl et al. 2017) and new simulations with
CESM2-CAMS6. These numerical experiments involve running an atmospheric model in aquaplanet
configuration with a realistic seasonal cycle of insolation, a 30-meter fixed-depth slab ocean, and
quadrupled CO,. A key difference is that CESM2-CAMS6 includes sea-ice thermodynamics;
GFDL-AM?2.1 does not. In both sets of simulations, parameters influencing ice albedo were
systematically varied in order to evaluate the effect of sea-ice changes on atmospheric heat transport
and feedback strength. We show results for one selected value of these parameters. Results for
other values are qualitatively similar (see SM and Figs. S4 and S5).

In GFDL-AM2.1, annual-mean TMT changes between the 4xCO, and control simulations are
largest in the tropics (Fig. 13a), where the net feedback in the simulations is positive and large
(Feldl etal. 2017). The largest annual-mean TMT changes in CESM2-CAMG6 occur in high-latitude
regions of pronounced sea ice extent decrease (Fig. 13c). In terms of annual cycle changes, the
most salient feature of Figs. 13b,d is that even without land and land-ocean warming contrasts,
the aquaplanet simulations capture the mid-latitude increases in Txc(x,?) evident in satellite data
and in ESMs with realistic geography (Fig. 1). Unlike the observations and ESMs, however, these
mid-latitude “ridges” are more hemispherically symmetric in the aquaplanet runs. Relative to

GFDL-AM2.1, mid-latitude Tac(x, ) increases are larger and further poleward in CESM2-CAMG6.
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Changes in Annual Mean and Annual Cycle of TMT in Aquaplanet Simulations

Annual mean Annual cycle
A GFDL-AM2.1 ~ B GFDL-AM2.1
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°C °C

Fic. 13: Changes in uncorrected TMT (°C) in aquaplanet simulations. (a-b) Simulations with
GFDL-AM2.1 (Feldl et al. 2017). (c-d) Simulations with CESM2-CAMG6. (left column) Annual-
mean TMT changes. (right column) Changes in the amplitude of the annual cycle of TMT. In
GFDL-AM2.1, ocean albedo was set to values of 0.45 at grid-points where the surface temperature
was less than 270K. In CESM2-CAMG6, the parameter used for tuning snow albedo, r_snw, was
set to 0.7. Changes in the annual mean and annual cycle of TMT were calculated by differencing
climatologies computed from averages of a 4xXCO, experiment and a control run with pre-industrial
atmospheric CO;. The climatologies are of length 30 years for GFDL-AM2.1 and 100 years for
CESM2-CAMBS6 (see SM).

We draw three inferences from these results. First, they suggest that in observations and ESMs,
the zonal structure of mid-latitude increases in Txc(x,?) is partly driven by GHG-induced changes
in static stability and Hadley circulation that are superimposed on the climatological seasonal cycle
of the thermal equator, ITCZ location, and Hadley cell poleward edge (Frierson 2006; Kang and
Liu 2012; Donohoe and Battisti 2013). Second, Fig. 13 (right column) implies that the presence
of realistic geography contributes to the observed and ESM-simulated hemispheric asymmetry in
mid-latitude Tac(x,?) trends, likely through the combined effect of summertime drying over land
(Manabe et al. 1981; Wetherald and Manabe 1995; Douville and Plazzotta 2017) and hemispheric

differences in land fraction and heat capacity. Third, relative to the observations and ESMs,
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s larger changes in annual mean TMT in the aquaplanet simulations yield proportionately smaller

s mid-latitude increases in annual cycle amplitude. The reasons for this are unclear.

Seasonal Temperature Changes in Large Ensembles and Aquaplanet Simulations
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Fic. 14: Scaled seasonal changes (dimensionless) in uncorrected TMT in LEs and two aquaplanet
simulations. (a-e) Scaled total linear changes in zonal-mean TMT over 1979 to 2020 in five LEs.
Total linear changes are calculated separately for each month from the ensemble-average monthly-
mean temperatures of the LE. Scaling is with the global-mean annual-mean total linear change in
each LE. (f) Scaled zonally-averaged differences in uncorrected TMT between the 30-year averages
of an aquaplanet perturbation experiment and control run performed with the GFDL-AM2.1 model.
Ocean albedo « is set to 0.45 in the simulation shown here. (g) As for panel f but for 4xCO; and
CTL simulations performed with the CESM2-CAM6 model and for differences between 100-year
climatologies. The parameter used for tuning snow albedo, r_snw, has been set to 0.7. The
scaling in panels f and g is with the global-mean annual-mean temperature change between the
time averages of the perturbation experiment and CTL.
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We consider next the seasonality that drives the Tac (x,7) changes in the ESMs and the aquaplanet
simulations. To compare the magnitude of seasonal changes in different types of simulation
(transient and quadrupled CO;) with very different radiative forcing, we scale results by global-
mean annual-mean TMT changes. In the ESMs, zonal-mean warming over 1979 to 2020 occurs in
every month and at every latitude, except poleward of 60°S during austral summer (Figs. 14a-e).
This high-latitude SH seasonal cooling signal arises from the temperature and circulation changes
caused by Antarctic stratospheric ozone depletion (Solomon et al. 2012; Eyring et al. 2013). In
the aquaplanet simulations, the equilibrium response to CO; quadrupling is also characterized by
warming at all latitudes and in all months, with largest warming in the tropics in GFDL-AM2.1
and poleward of 70° in CESM2-CAMBS6 (Figs. 14f and g, respectively).

To more easily discern the seasonality of TMT changes, we express the monthly changes as
departures from annual-mean changes at each latitude band (Fig. 15). This reveals that the five
ESMs have seasonal trends in zonal-mean TMT similar to those found in the CMIPS multi-model
average (Santer et al. 2018), with maximum mid-latitude warming in NH summertime (Fig. 15a-
e). This summertime warming signal is the primary driver of the increase in the amplitude of the
annual cycle of NH mid-latitude tropospheric temperature.

As in the ESMs, the aquaplanet simulations display strong seasonality in mid-latitude TMT
changes, with larger warming in late summer and fall in both summer hemispheres (Figs. 15f,g).
Maximum mid-latitude warming is delayed by several months relative to the ESMs. This phase
lag is likely due to the absence of land and to the fact that the 30-meter slab oceans have larger heat
capacity compared to land.

The amplitude of annual cycle changes over the Arctic and Antarctic is markedly smaller in
GFDL-AM2.1 than in CESM2-CAMG6 (compare Figs. 15f,g). This difference is due to the absence
of sea-ice thermodynamics in the GFDL-AM2.1 aquaplanet simulation and to the substantial
impact of sea-ice thermodynamics on the high-latitude seasonal cycle.X! With thermodynamic sea
ice in CESM2-CAMG, there is greater seasonality in ice extent in the 1xXCO, climate compared
to the GFDL-AM?2.1 “albedo-only” representation of sea ice effects. The larger amplitude of
the control run seasonal cycle yields larger high-latitude Tac(x,?) changes in CESM2-CAMS6 in

XiiTy the GFDL-AM2.1 aquaplanet integrations, sea ice is represented as a temperature-dependent surface albedo following classic energy-balance
model theory. In the CESM2-CAMG6 simulations, sea ice is modeled as a slab of ice that conducts heat vertically through the ice assuming a linear
temperature profile. Snow can accumulate on top of the ice. The treatment of sea ice in the CESM2-CAM®6 aquaplanet integrations is still somewhat
simplified compared to the most comprehensive ice models, which include multiple layers of ice and brine pockets within the ice.
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response to the quadrupling of CO; and the complete loss of seaice. Greater initial sea-ice coverage

in CESM2-CAMG6 (and a more equatorward ice edge) may also explain some of the differences

between the mid-latitude Tac(x,?) changes in the CESM2-CAM6 and GFDL-AM2.1 aquaplanet

runs (Figs. 15f,g).

Seasonal Temperature Changes in Large Ensembles and Aquaplanet Simulations
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Fic. 15: As for Fig. 14 but with results expressed as monthly-mean departures from annual-mean
changes. The scalings in each panel are identical to those used in Fig. 14.

There will always be some irreducible uncertainty in partitioning observed climate records into

multidecadal internal variability (MIV) and forced responses (Frankcombe et al. 2015; Kravtsov

35



672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

2017; Cheung et al. 2017; Kajtar et al. 2019; Pallotta and Santer 2020). Partitioning difficulties
arise from multiple sources. One source is in the model-predicted signals that are removed from
observations to isolate MIV (Section 7). These signals are affected by uncertainties and errors
in estimates of historical external forcings (Solomon et al. 2011, 2012; Fyfe et al. 2021) and in
the simulated responses to external forcings (Fyfe et al. 2021). Forced modulation of internal
variability is an additional complication in separating signal and noise (Maher et al. 2015), along
with structural uncertainties and residual errors in the observations (Mears et al. 2011; Mears and
Wentz 2017; Zou and Wang 2011; Po-Chedley et al. 2015).

In the real world, for example, there are uncertainties in the amplitude and patterns of MIV and
in our quantitative understanding of low-frequency changes in net anthropogenic aerosol forcing
(Mann and Emanuel 2006; Carslaw et al. 2013). This complicates separation of MIV from the
response to aerosol forcing. In consequence, there is uncertainty in estimating the contribution of
MIV to the positive detection of an anthropogenic fingerprint in observed Tac(x,) changes.

It is conceivable, therefore, that fortuitous phasing of modes of Pacific and Atlantic MIV may
have favored the positive detection of a seasonal cycle fingerprint in satellite Tac(x,?) data (Santer
etal. 2018). Large initial condition ensembles (LEs) are a valuable virtual laboratory for exploring
this possibility. The five LEs analyzed here span a wide range of phase space in equilibrium climate
sensitivity (from 2.6°C to 5.6°C), the amplitude of MIV, and the size of net anthropogenic aerosol
forcing (Zelinka et al. 2014, 2020). Despite this wide phase space, and despite differences in the
phasing of MIV in the 240 realizations of historical Txc(x,7) changes examined here, our D&A
results are remarkably robust. We obtain positive detection of model seasonal cycle fingerprints in
239 of the 240 realizations (Fig. 6).

We also used LEs to investigate concerns regarding the reliability of model MIV estimates (Curry
and Webster 2011; O’Reilly et al. 2021). For the AMO, between 21% and 23% of the model LE
realizations have values of Py ow (the spectral density at ~ 24 years) that exceed P ow in the “signal
removed” HadCRUT4 SST data. Model-data agreement in low-frequency variability is closer
for the IPO and Nino 3.4 SSTs. We find no evidence that the LEs analyzed here significantly
underestimate the observed low-frequency power of major modes of internal variability.

More importantly, our sensitivity studies (Section 8) explicitly show that even in the presence

of large (factor of 3-4) inter-model and inter-realization differences in the amplitude of AMO and
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ENSO variability, the seasonal cycle fingerprints shown in Figs. 4a-e are robustly identifiable in
models and satellite data. This is primarily due to the fact that the fingerprint patterns are spatially
dissimilar to the patterns of internal Txc(x,?) variability associated with the AMO and ENSO.
The robustness of the seasonal cycle D&A results shown here, taken together with the evidence
from the aquaplanet simulations (Section 9), suggests that basic physical processes are dictating
a common pattern of forced Txc(x,7) response in observations and in the five LEs. The key
processes involved are likely to include GHG-induced expansion of the tropics, lapse-rate changes,
land surface drying, and sea ice decrease (Manabe et al. 1981; Wetherald and Manabe 1995; Held
2000; Fu et al. 2006; Frierson 2006; Frierson et al. 2007; Seidel and Randel 2007; Kang and Liu
2012; Donohoe and Battisti 2013; Quan et al. 2014; Douville and Plazzotta 2017; Feldl et al. 2017).
Our study clearly illustrates that the analysis of multiple LEs provides diagnostic benefits for
D&A research, enabling analysts to explore the robustness of fingerprint detection results in novel
ways. Additional diagnostic benefit arises through comparisons of idealized aquaplanet simulations
with results from full Earth System Models — and through comparing aquaplanet simulations with
very different representation of climate processes associated with sea ice (Feldl et al. 2017, 2020;
Feldl and Merlis 2021). Such comparisons may help to improve understanding of the physical
mechanisms influencing seasonal cycle fingerprints and of the expected seasonal cycle changes

over the 21st century.
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