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ABSTRACT: This study investigates the OTT Pluvio2 weighing precipitation gauge’s random and systematic error com-

ponents as well as stabilization of the measurements on time-varying rainfall intensities (RI) under laboratory conditions.

A highly precise programmable peristaltic pump that provided both constant and time-varying RI was utilized in the

experiments. Abrupt, gradual step, and cyclic step changes in the RI values were evaluated. RI readings were taken in real

time (RT) at different time resolutions (6–60 s) for the RI range of 6–70mmh21. Our analysis indicates that the lower

threshold for the OTT Pluvio2’s real-time RI measurements should be redefined as 7mmh21 at a 1-min resolution.

Tolerance intervals containing 95% of the repeated measurements with a probability of 0.95 are given. It is shown that the

measurement variances are unequal over the range of RI and the measurement repeatability is not uniform. A statistically

significant negative bias was observed for the RI values of 7 and 8mmh21, while there was not a statistically significant

linearity problem. Through the use of statistical control limits, it is shown that means of the RI measurements stabilized on

the actual RI value. A detailed investigation on RT bucket weight measurements revealed a time delay in bucket weight

measurements, which causes notable errors in reported RI measurements under dynamic rainfall conditions. To demon-

strate the potentiality of large errors in Pluvio2’s real-timeRImeasurements, a set of equations was developed that faithfully

reproduced the Pluvio2’s internal (hidden) algorithm, and results from dynamic laboratory and in situ rainfall scenarios were

simulated. The results of this investigation show the necessity of modifying the present Pluvio2 RI algorithm to enhance its

performance and show the possibility of postprocessing the existing Pluvio2 RI datasets for improved measurement

accuracies.

KEYWORDS: Atmosphere; Precipitation; In situ atmospheric observations; Instrumentation/sensors; Measurements;

Error analysis

1. Introduction

Accurate and precise measurement of rainfall intensity (RI)

is of significant importance for various meteorological and

hydrological endeavors such as weather pattern change pre-

dictions, quantitative precipitation forecasts (QPFs), deriva-

tion of rainfall intensity–duration–frequency (IDF) curves, and

rainwater harvesting planning [see the comprehensive volume

on rainfall by Testik and Gebremichael (2010)]. Several RI

measurement studies focused on extreme events of high in-

tensity rainfall (Hou et al. 2014; Lanza and Vuerich 2009;

Larsen et al. 2009;Westra et al. 2014;Willems 2000). However,

studies (Karl and Knight 1998; Kidd and Joe 2007) have also

highlighted the contributions of light (RI ,2.5mmh21) and

moderate (2.5 # RI # 7.5mmh21) rainfall to overall rainfall

occurrence and accumulations. Kidd and Joe (2007) showed

that light rainfall occurs for about 50% and 80% of the total

rain duration in the tropics and in Europe, accounting for 10%

and less than 45% of the accumulated rainfall therein, re-

spectively. Moreover, a series of data from four Micro Rain

Radars (24GHz) for a 10-month observation period showed

that nearly 80% of the total rain duration over the midlatitude

regions is light andmoderate rainfall.While contributions from

light and moderate rainfall to the total rainfall accumulation of

any particular event is often less than the contribution of heavy

rainfall, light and moderate rainfall can be significant in terms

of the total rain duration and frequency (Karl and Knight

1998). Hence, the identification and measurement of light and

moderate rainfall are essential to ensure that the full range of

intensities is retrieved and changes in rain intensities are ac-

curately assessed.

The OTT Pluvio2, developed in 2008 as the successor of

Pluvio1, which was launched in 1994, has become one of the

most popular weighing rain gauges due to its ease of applica-

tion and reliability in all weather conditions (Nitu et al. 2019).

It has been installed throughout Europe, including remote lo-

cations for which frequent visits would be impractical, and it

has been replacing older technologies as the standard instru-

ment for precipitation measurements in the United States and

Canada. Over the past couple of decades, several government

agencies, such as the National Weather Service (NWS) and the

U.S. Geological Survey (USGS), have completed extensive

testing programs on several rain gauges, including Pluvio1, to

assist the National Atmospheric Deposition Program (NADP)

in determining the appropriate precipitation gauge for the

National Trends Network (NTN). The detailed outlines of

NADP and NTN are provided by Lamb and Bowersox (2000)

and Dossett and Bowersox (1999), respectively. The testing

programs consisted of three test phases. Phase 1 consisted

of indoor bench testing with known amounts of simulated

precipitation, and phase 2 consisted of 26 weeks of actual

precipitation collection at a single outdoor test site near

Bay Saint Louis, Mississippi (Gordon 2003). In phase 3, rainCorresponding author: Dr. Firat Y. Testik, firat.testik@utsa.edu
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gauges were evaluated for accuracy, ease of operation, and

reliability. For this phase, six NTN sites across the United

States were chosen based on different climate conditions,

equipment configurations, topographic settings, and power

availability. Pluvio1 performed consistently well in all of the

test phases. The evaluations demonstrated that the Pluvio1

gauges at all of the test sites were in good agreement with other

rain gauges, and the paired t tests showed that the gauge

measurements were not significantly different when the false

positive data (a zero response from a gauge concurrent with a

recorded response from other precipitation gauges) were re-

moved from the dataset (Tumbusch 2003). Since then, several

agencies have replaced their Pluvio1 gauges and upgraded to

Pluvio2 gauges (NADP 2015) since Pluvio2 precipitation

gauges are low cost and lower gauge network maintenance

costs. The expanding popularity of Pluvio2 increases the

necessity to assess its measurements errors.

According to the manufacturer’s guidelines (OTTHydroMet

2014), Pluvio2 can measure 1min real-time rain intensities that

are equal to or larger than 6mmh21 within 61% accuracy.

However, findings of Colli et al. (2014) indicated a low degree of

Pluvio2 measurement accuracy in the RI range of 6–12mmh21.

Previously, Lanza et al. (2010) and Lanza and Stagi (2009) had

also documented the underperformance of Pluvio2’s predeces-

sor (Pluvio1) for low intensity RI measurements, providing

motivation for our detailed investigation on this ongoing issue

despite the instrument upgrades. Colli et al. (2014) performed a

series of controlled laboratory tests to assess the Pluvio2’s ac-

curacy under dynamic RI conditions at 1-min intervals. Their

results indicated that Pluvio2 tends to underestimate the RI

measurements in the 6–12mmh21 range with occurrences

of2100% relative errors that indicate no rain was detected by

Pluvio2 when low precipitation rates were still generated by the

systems. When filtering out all of the zero RI measurements

from their dataset, the average relative errors of 6–12mmh21

class were improved at the expense of excluding nearly 40% of

the data of this range.Moreover, when they analyzed the entire

dataset for a longer time interval (.1min resolution), the ac-

curacy and precision of RImeasurements deteriorated with the

increase of the time interval compared to the filtered dataset.

This was caused by the contributions of the large negative

relative errors for the zero RI measurements (2100%) of

filtered-out data, which dragged the average relative errors

down to negative values and increased the standard deviation

of the entire sample.

In a previous study on error sources of precipitation mea-

surements using electronic weighing systems, Sevruk and

Chvíla (2005) found that electronic weighing gauges, including

the Pluvio1, measured less liquid precipitation than the stan-

dard nonrecording Hellmann gauge due to inaccurate mea-

surements of small precipitation amounts, and the relative

error of measurements increased particularly when the mea-

suring intervals exceed 1min. Colli et al. (2013) performed a

dynamic two-step RI response test to determine the contri-

bution of theRImagnitude from the first step on the Pluvio2 RI

measurements to the second step. They identified that the

measurement error of the second step was a function of the RI

ratios from the first and second steps, which increased linearly

with the increase of this ratio. This error, which is caused by a

delay in Pluvio1’s response time (Lanza et al. 2005) and/or due

to partial reading from the previous minute, induces a large

measurement uncertainty that is often beyond the World

Meteorological Organization (WMO) recommended limit of

65% (Nitu et al. 2019). However, Pluvio2, which is the suc-

cessor of Pluvio1, implements faster data acquisition tech-

niques while using the same data processing algorithm. This

resulted in faster data processing and nearly nondelayed re-

sponse time of Pluvio2 (Nemeth 2008).

The main purpose of this study is to assess Pluvio2 [opera-

tional system (OS) version 1.03.0] gauge’s random (repeat-

ability and uniformity) and systematic (bias and linearity) error

components, as well as stabilization of the measurements on

time-varying rainfall intensities. The paper is organized as

follows. Section 2 describes the methodology of the study.

Measurement system analysis of the Pluvio2 with repeated

measurements is provided in section 3. Stabilization of the

measurements on time-varying rainfall intensities is discussed

in section 4. RI measurement errors induced by real-time

bucket weight response time are quantified according to the

Pluvio2 algorithm and are demonstrated in a dynamic scenario

in section 5. Conclusions are provided in section 6.

2. Methodology

Considered RI values were in the range of 6–70mmh21. A

more detailed investigation was performed close to 6mmh21

(50.1mmmin21), which is the RI measurement threshold

value of the Pluvio2. There are two available Pluvio2 models:

Pluvio2 200 (bucket type: 200 cm2) and Pluvio2 400 (bucket

type: 400 cm2). In this study, Pluvio2 400 was utilized.While the

selection of Pluvio2 400 over Pluvio2 200 was solely based upon

the availability of Pluvio2 400 in our laboratory, the results

presented in this study are equally applicable to both of the

Pluvio2 models as explained as follows. According to OTT

HydroMet technical reports (OTT HydroMet 2014), the new-

generation OTT Pluvio2 200 and OTT Pluvio2 400 both use the

same weight-balance technology with the same accuracy and

electronics. This information was verified through communi-

cation with the manufacturer. The only differences between

OTT Pluvio2 200 and 400 are the size of the orifice opening and

the recordable precipitation amount that each holds. Pluvio2

400 (used in the present study) has a 400 cm2 orifice area, and

Pluvio2 200 has a 200 cm2 orifice area; they have precipitation

collection capacities of 750 and 1500mm, respectively. The

field performances of the two Pluvio2 versions may differ due

to parameters such as evaporative losses and sampling volume.

Since our experiments were conducted in a controlled labo-

ratory environment, potential sources for the field perfor-

mance differences between the two Pluvio2 versions are not

applicable to our study. Therefore, the results presented in this

study based on the experiments with Pluvio2 400 are also

applicable to Pluvio2 200. Moreover, to remove the possible

dependency on the OS, internal filtering, and other installa-

tion characteristics of Pluvio2, a guided accuracy test was

carried out as per Pluvio2 guidelines. The results of the test

showed that the deviation in weight measurements due to the
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installation was within the manufacturer’s specified limit

(64.0 g). Note that Pluvio2 was updated to the latest firmware

(OS version 1.03.0) before starting this study. Moreover, we

also investigated Pluvio2’s algorithm for the reported real-

time (RT) rain intensity, RIm, calculations and discussed the

findings in section 5. In the Pluvio2 weighing precipita-

tion gauge, precipitation is collected and instantaneously

weighed. The volumetric amount of precipitation is then di-

rectly calculated from the measured weight of the collected

precipitation by considering the water density value and

ambient temperature. For the open bucket designs, the de-

crease in mass due to evaporation has to be considered. Colli

(2014) approximated the magnitude of precipitation depth

measurement fluctuations due to evaporation as 0.3 mm for

temperature changes of approximately 208C. In general,

inaccuracy in measurements can originate from instru-

mental and environmental variables. Typically, environ-

mental variables associated with measurement inaccuracies

include gradients of atmospheric temperature, wind speed,

and humidity, and instrumental variables associated with

measurement inaccuracies include instrument sensitivity,

sampling characteristics, measuring range, and mechanical

errors (Colli 2014).

Experimental tests in this study were performed under lab-

oratory conditions without notable changes in the environ-

mental variables. A fully controlled automatic peristaltic pump

(Cole-Parmer Ismatec IPC ISM931C) of variable flow rates

was used to perform laboratory simulations of different RI

patterns. Before the start of each experiment, the pump flow

rate was calibrated to provide flow rates within an accuracy of

60.05mmh21. Moreover, a precision balance (60.01 g) and a

high accuracy (density: 6 0.001 g cm23; temperature: 60.18C)
densitometer (brand and model: Anton Paar DM-35) were

used to validate the water volume flow rates provided by the

pump. Figure 1 demonstrates a comparison of the config-

ured pump flow rates (Qr) and measured flow rates (Qm).

Each configured pump flow rate is tested 15 times, and the

measured flow rate values presented in this figure are the

averages of these tests. The average of the relative errors,

E[E5 (Predicted value2Reference value)/Reference value],

and the associated standard deviation of the errors were 0.12%

and 0.83%, respectively. In these calculations, Qr was consid-

ered as the reference value. Water drops generated by using

the pump for the selected flow rates (i.e., the reference RI,

which is denoted by RIr) dropped vertically in still air (i.e., no

wind effects) and were collected by the Pluvio2 weighing pre-

cipitation gauge. The Pluvio2 RI readings (i.e., RT precipita-

tion intensity from the Pluvio2, which is denoted by RIm) were

recorded by a datalogger at different time intervals (6–60 s)

throughout the experiments. A schematic diagram of the ex-

perimental setup is presented in Fig. 2.

The pump characteristics and the experimental setup were

suitable to investigate the measurement system under both

static and dynamic experimental conditions. Four types of

experimental simulations were conducted, and these are

named as Constant, Abrupt Change, Gradual Step Change,

and Cyclic Step Change, based on the settings of the pump

over time. The experimental conditions for the simulated

patterns are tabulated in Table 1 and described as follows.

a. Constant RIr

In the Constant RIr experiments, the pump provided a

specific flow rate over time to simulate a constant RIr value.

There were three sets of experiments corresponding to the

Constant RIr study. The main goal of the first set of experi-

ments was to determine the random and systematic error

components of RIm for a wide range of RIr (section 3). This set

included experiments with constant RIr values of 6, 6.25, 6.5,

6.75, 7, 8, 10, 20, 30, 50, and 70mmh21 for a period of 12min

each (runs 1–11, Table 1). The second set of experiments was

performed to determine the effectiveness of the measurement

system in producing a measurement when RI is close to the

manufacturer-provided lower threshold value of 6mmh21

(section 3). This set included experiments with constant RIr
values of 6, 6.25, 6.5, 6.75 and 7mmh21, but for a period of

52min each (runs 12–16, Table 1). Note that the initial and last

minutes of Pluvio2 RI readings in the first and second sets were

omitted from the analyses due to the possibility of partial

measurements for those minutes. Also, both sets of experi-

ments had a time resolution of 1min. The third set of experi-

ments was conducted to investigate the time delay on bucket

FIG. 1. Comparison of pump-generated (Qr) and measured (Qm)

flow rates using the precise balance and densitometer to evaluate

the pump precision and accuracy. Open circles denote measure-

ments and the dashed line denotes a 1:1 relationship.

FIG. 2. Schematic diagram of the laboratory experimental setup.
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weight measurements (section 5). In this experiment, RI was

set to 10mmh21 for a duration of 5min (run 17, Table 1) and

data were recorded at a high time resolution (6 s). This ex-

periment was different from other constant tests due to the

different time resolutions, and the initial and last minutes of

this experiment were not omitted.

b. Abrupt change in RIr

In theAbrupt Change experiments, RIrwas set to 70mmh21

initially and then suddenly dropped to 7, 8, 10, or 20mmh21 in

different experimental runs (i.e., four separate experimental

runs, runs 18–21, Table 1). Each experimental run continued

for at least 12min after the abrupt change of theRIr value to get

10 RIm (excluding the RIm in the first and last minutes that are

considered as intermittent values). Both the Abrupt Change

and the Gradual Step Changes (explained next) simulations

assessed the stabilization of the RIm on the RIr under dynamic

conditions (section 4).

c. Gradual step changes in RIr

In the Gradual Step Changes experiment, RIr was gradually

stepped down from 50mmh21 to 30, 20, 10, and finally to

7mmh21 (run 22, Table 1). In this simulation, the pump ran

continuously throughout the gradual step changes from higher

to lower RI values. At each step change level, the experiment

covered 12min to obtain 10 RIm after excluding the first and

last measurements.

d. Cyclic step changes in RIr

In the Cyclic Step Changes experiment, the pump flow rate

was set to generate RIr values in sequential steps, starting with

7mmh21, which was successively increased to 10, 20, 30, and

50mmh21, and then successively decreased to 30, 20, 10, and

finally back to 7mmh21 (run 23, Table 1). Each RI was visited

two times separately from an increasing and decreasing se-

quential steps, except the peak RI value of 50mmh21. At

each step change level, 12min of data were collected during

both increasing and decreasing step changes, except at 50mmh21

level, where 24min of data were collected. This pattern resulted

in 24min of measured data for each RI level. However, in the

analyses of the experimental data, the intermittent minute

between the changes in RIr and also the first minute of the

cyclic experiment were removed to avoid partial readings. The

exclusion of those minutes resulted in 11min of available data

for analysis for each RIr step, except for 50mmh21 where

23min of data were available. In addition to observing the

stabilization of the RIm values around the set RIr value, the

Cyclic Step Changes simulation investigated hysteresis effects

(section 4). The hysteresis effect can be evaluated as the

maximum difference between the Pluvio2 reported RIm output

and the reference RIrwhen the specifiedRIr is approached first

from an increasing and then a decreasing way in a cyclic pat-

tern. A comparison of the relative errors for RIm with respect

to the specified RIr for the increasing and decreasing phases

in a cyclic test would indicate the impact of hysteresis in RI

measurements.

An additional Cyclic Step Changes experiment was con-

ducted where RIr was changed more frequently to explore the

dynamic response of Pluvio2 measurement (section 5). In this

experiment, different pump flow rates were set to generate

different RIr values at each minute of the experiment, and data

were collected at a 6 s time resolution. The RIr was initially set

to 30mmh21 and then consecutively stepped down to 15 and

10mmh21, and then consecutively stepped up to 15 and

30mmh21 (run 24, Table 1). In addition to investigating the

response delay in Pluvio2 measurement, this type of cyclic test

assisted in evaluating the RI measuring algorithm using the

real-time bucket weight measurement. Furthermore, another

Cyclic Step Changes experiment was performed, in a similar

setting as run 23, except 1min of measurement was taken at

each step (run 25, Table 1) to demonstrate the potentiality of

large error under frequent RI changes (section 5, Case I).

TABLE 1. Summary of the experimental conditions.

Run

No.

Pump

setting RIr (mmh21)

Duration

(min) Assessments

1–11 Constanta 6, 6.25, 6.5, 6.75, 7, 8, 10, 20, 30, 50, 70 12 Bias, linearity, repeatability, uniformity, tolerance intervals

12–16 Constanta 6, 6.25, 6.5, 6.75, 7 52 Bias, linearity, repeatability, uniformity, tolerance intervals

17 Constanta 10 5 Time delay

18–21 Abruptb (70/7), (70/8), (70/10), (70/20) 12 Stabilization

22 Gradualc 50/30/20/10/7 60 Stabilization

23 Cyclic 7/10 /20/30 /50/30/20/10/7d 120 Stabilization, hysteresis

24 Cyclic 30/15/10/15/30e 5 Time delay, algorithm validation

25 Cyclic 7/10/20/30/50/30/20/10/7f 9 Error demonstration

a First (runs 1–11), second (runs 12–16), and third (run 17) test sets included experiments with 12, 52, and 5 min, respectively, for

each RIr.
b RIr suddenly dropped from 70 mm h21 to the selected RIr value for 12 min of measurement for each of the four test cases.
c RIr was gradually stepped down from 50 to 7 mm h21 for 12 min of measurement at each step.
d RIr was gradually increased from 7 to 50 mm h21 and decreased back to 7 mm h21 for 12 min of measurement at each step except

50 mm h21 where 24 min measurement recorded.
e RIr was gradually decreased from 30 to 10 mm h21 and increased back to 30 mm h21 for 1 min of measurement at each step.
f As in run 23, except 1 min of measurement was taken at each step.
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3. Measurement system analysis of the Pluvio2 gauge

Error in the Pluvio2 measurements with respect to time and

over theRI range of 6–70mmh21 is assessed through statistical

analysis of the measurement variability. Minitab statistical

software was used in the study. In particular, bias, linearity, re-

peatability, and uniformity of the measurement system were

studied under the Constant RIr setup described in the previous

section.Measurement variability is often described by the normal

distribution, and this is an assumption of the standard methods of

measurement system analysis. Hence, goodness of fit of the nor-

mal distribution to themeasurements was checked in the analysis.

Unless otherwise stated, samples of 10 RIm taken at 1min reso-

lutions by the Pluvio2, after omitting the initial and last mea-

surements, were considered for each of the experimental settings.

A number of experiments were performed to test the Pluvio2

under Constant RIrwith values close to the lower RI threshold

value of 6mmh21. The initial set of experiments (runs 1–11,

Table 1) revealed that many RImwere zero whenRIrwas set to

less than 6.5mmh21, indicating that the gauge may not be ef-

fective in measuring the RIr close to the lower threshold. To

confirm the findings of these experiments and to estimate the

proportion of RIm that are nonzero (in fact, nonzero measure-

ments were close to and around the correspondingRIr values), a

new set of experiments was conducted to obtain 50 RIm for each

of the selected RIr that are less than or equal to 7mmh21 (runs

12–16, Table 1). The estimated proportions of nonzero mea-

surementswith a sample size of 50were 0.06, 0.1, 0.74, 0.96, and 1

for the RIr settings of 6, 6.25, 6.5, 6.75, and 7.00mmh21, re-

spectively. This finding indicates that there is a high probability

for missed RIm when RI is less than 6.5mmh21 and the effec-

tiveness of the gauge increases as RIr is raised to 7mmh21.

Consequently, it is suggested that Pluvio2’s lower RIr threshold

value should be redefined as 7mmh21. In the following analyses,

RIr values of 7mmh21 and larger are considered.

The reproducibility of the experimental conditions was

checked by collecting two sets of RIm samples during two

different experimental runs with the same RIr value of

7mmh21. Two-sample t test and F test for two variances were

utilized for the evaluation. Normal probability plots of the two

RIm samples indicated that normal distribution is a good fit to

the data. The two-sample t test was used to test the hypothesis

of equal means of the RIm under the two experimental

conditions against the alternative that these means are not

equal. The p value of the test was 0.747 and the 95% confidence

interval for the differences between the means is (20.1307,

0.1787). This result indicates that there is not enough evidence

to claim that the RIm means are different for reasonable

choices of significance level a. The F test for the two variances

was used to test the null hypothesis that the ratio of the variances

of the RIm under the two experimental conditions is equal to 1

(homogeneity of the variances) against the alternative that the

ratio is different from 1. The p value of the F test was 0.556 and

the 95% confidence interval for the standard deviation ratio was

(0.610, 2.457). Hence, the test fails to reject that the variances

were equal for reasonable choices of significance level a. Overall,

there is no evidence to claim that the samples came fromdifferent

populations and we conclude that it is reasonable to assume that

the experimental conditions in the study were reproducible.

A repeatability study to assess the random error component

of the measurement system (i.e., the variation in the mea-

surements obtained when the same RIr is measured repeatedly

under the same experimental conditions) was conducted. To

quantify the repeatability component of the measurement

error, the standard deviation estimate,

S5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(RI
m,i

2RI
m
)2

n2 1

vuuut
, (1)

is used, where n is the sample size, RIm,i is the ith RI mea-

surement, and RIm is the average of the RIm in the sample. A

summary of repeatability test statistics is presented in Table 2

including the standard deviation for corresponding RIr. Under

the normal distribution model of themeasurements and for the

sample size of 10, at least 95% of the repeated measurements

will lie within the tolerance interval RIm 6 3:379S with a

probability of 0.95. Table 2 presents the half width of the 95%

repeated measurements intervals as a percentage of the cor-

responding RIr, and it can be seen from this table that the

uncertainties in the measurements decrease as a percentage of

RIr with an increase of the RIr value.

To assess the uniformity of the measurement system (i.e.,

the change in repeatability over the measurement range consid-

ered) Bartlett’s test (assuming normal distribution) and Levene’s

test (for any continuous distribution)were used to test the equality

of the variances at different RIr values. The p values (0.000 for the

Bartlett’s test and 0.000 for the Levene’s test) indicated that

the data provide enough evidence to claim that the variances of

the repeatedmeasurements are unequal at differentRIr values. In

particular, variation in the measurements by the Pluvio2 increases

as the RIr is increased. The effect of the random error on the

measurements increases and a problematic uniformity is observed

over the rangeofRI. The 95%Bonferroni confidence intervals for

the standard deviations are provided in Fig. 3. Also seen in this

figure, the standard deviation estimates increase, and their confi-

dence intervals widen with an increase of RIr.

The systematic error component of themeasurement system

is often evaluated by a study of the bias (RIm 2RIr) and line-

arity. It is clear from this equation that we did not perform

normalization on bias estimation with respect to RIr. Therefore,

TABLE 2. Summary of the repeatability test statistics. RIm indi-

cates the average of the RIm in the sample of corresponding

RIr. The repeatability standard deviation S estimates are based

on Eq. (1).

RIr
(mmh21) S

95% measurement range

(RIm 6 indicated value)

Half width of the

intervals as RIr (%)

7 0.19 0.64 9.2

8 0.2 0.68 8.4

10 0.24 0.81 8.1

20 0.37 1.25 6.3

30 0.6 2.03 6.8

50 0.74 2.50 5.0

70 1 3.38 4.8
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bias may seem to increase with increases of RIr. Bias is the

combined effect of all sources of variability, which consistently

offsets the results of repeated applications of the measurement

system. Linearity is the change in the bias over the measure-

ment range. It is assessed by using the slope of a linear re-

gression, where the relationship between the average bias

(response variable) and theRIr values (explanatory variable) is

described by a straight line. A slope of 0 for the regression line

indicates that linearity is not present, that is the measurement

system has the same bias for all reference values. Consider the

gauge bias results provided in Fig. 4; t tests of the null hypothesis

that the bias is zero against the alternative that it is different

from zero indicate that the biases are statistically significant for

the RIr values of 7 and 8mmh21 at a level of a5 0.05. The bias

estimates are 20.26 and 20.21, showing that the RIr values are

underestimated and on average the RIm are less than the cor-

responding RIr values. For the rest of the RIr values

considered, a statistically significant bias is not observed. Now

consider the regression line, its 95% confidence interval, and the

gauge linearity result in Fig. 4. The p value is 0.264 for the t test

of the null hypothesis that the regression line slope is zero

against the alternative that it is different from zero. This suggests

that the measurement system does not have a statistically sig-

nificant linearity problem across different RIr values.

4. Stabilization of the OTT Pluvio2 RI measurements on
the RI reference value under dynamic conditions

Experimental runs were also conducted with time-varying

RIr values as simulations of RI patterns. The RI patterns

simulated are Abrupt Change, Gradual Step Changes, and

Cyclic Step Changes as described in section 2. The RIm values

from the experiments were used to observe the stabilization of

themeasurement system on the time-varying RIr values. In this

regard, RIm are plotted over time, together with statistical

control limits (UCL—upper control limit; and LCL—lower

control limit; see, e.g., Montgomery 2009)

UCL5RI
r
1 3

R

1:128
and LCL5RI

r
2 3

R

1:128
(2)

for each RIr. Here,R/1:128 is a standard deviation (s) estimate

of the measurement process, and

R5
�
n

i52

jRI
m,i

2RI
m,i21

j
n2 1

(3)

for a sample of n RIm corresponding to a value of RIr. Under

the assumption of normal distribution and when there is no

measurement bias, 99.73% of the measurements are confined

by RI6 3s. Hence, an RIm exceeding the control limits can be

taken as an indication that the mean of the measurement

process did not stabilize on the corresponding RIr.

RIm and their corresponding statistical control limits under

the experimental simulations of the time-varying RIr are pro-

vided in the graphs in Figs. 5a–c, respectively, for the Abrupt

Change, Gradual Step Changes, and Cyclic Step Changes ex-

periments. As can be seen from the graphs, none of the RIm
exceed the control limits. Therefore, it is concluded that there

is no evidence to claim that the means of the measurements are

not stabilized on the corresponding time-varying RIr values.

Moreover, the relative errors for RIm with respect to the

specified RIr for the increasing and decreasing phases was

within20.07% to10.51%. This low error percentage indicates

that there was no significant effect of hysteresis in the RI

measurements.

Homogeneity of variances of RIm under the considered

experimental scenarios was also evaluated for some of the RIr
values. From the results of tests for equal variances and the

95% confidence intervals given in Figs. 6a and 6b, respectively,

for the RIr values of 7 and 20mmh21, it is concluded that there

is not enough evidence at a significance level of a 5 0.05

to claim that the measurement variances are different under

dynamic conditions for a given RIr.

5. Pluvio2 rain intensity measurement errors induced by
bucket weight response time

In this section, we assessed the RT rainfall intensity output

of Pluvio2 in relation to Pluvio2’s RT bucket weight measure-

ments. Pluvio2’s algorithm calculates RI values based on RT

bucket weight measurements. Therefore, we first assessed

Pluvio2’s RT bucket weight measurements using the highest

possible temporal resolution output produced by Pluvio2,

which led to the identification of a time delay in RT bucket

weight measurements. We then faithfully reproduced Pluvio2’s

RT rainfall intensity calculation algorithm using RT bucket

weight measurements with relevant validation and provided

the pertinent mathematical relations. We finally used this

faithfully reproduced algorithm to evaluate Pluvio2’s RT

rainfall intensity measurement capability under two different

dynamic rainfall scenarios.

To identify the time delay (td) in RT bucket weight time

series measurements, two sets of experiments were conducted

with constant and cyclic step changes of the reference rainfall

intensity in Pluvio2 measurements with the highest temporal

resolution, Dt 5 6 s (experimental runs 17 and 24 in Table 1).

In Fig. 7, measured bucket weight increment time series DB
for experimental runs 17 (constant) and 24 (cyclic) are shown.

FIG. 3. Results of tests for equal variances for repeated RIm at

the selected RIr values and the 95% Bonferroni confidence inter-

vals for the standard deviations.
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This figure indicates that Pluvio2 starts reporting bucket weight

measurements between 13 and 17 s from the start of the rain-

fall. Therefore, the measurement time delay td value is in be-

tween 13 and 17 s, which cannot be identified with a higher

accuracy due to the limitation in Pluvio2’s highest temporal

measurement resolution of 6 s. In our analyses below, we used

the td value of 17 s as it will introduce the maximum possibility

of error in RI calculation and will produce a conservative es-

timation during the analysis.

To demonstrate the errors induced by the identified time

delay td in bucket weight measurements, a relationship between

the Pluvio2 bucket weight time series and the known/reference

rainfall intensity time series RIr,t is necessary. Based upon our

experiments, we derived the following equation to predict the

reported bucket weight time series, Bp,t, by Pluvio2 for a given

rainfall event with the known/reference rainfall intensity time

series RIr,t:

B
p,t
5B

p,t2Dt
1 (RI

r,t2td
Dt). (4)

Here, the p, r, and m indices are used to indicate predicted,

reference, and measured parameters, respectively. Bp,t2Dt is

the predicted bucket weight at time instant t2Dt, RIr,t2td is the

reference rain intensity at time instant t2 td, and Dt is the time

resolution of the Pluvio2 bucket weight measurements which

can be set as multiples of 6 s. The predictions of the reported

bucket weight time series can then be used to predict the re-

ported rain intensity time series by Pluvio2 as follows.

We identified that the internal (hidden) algorithm of Pluvio2

calculates the reported RIm,t values by implementing a moving

precipitation accumulation over the last minute in the bucket

weight measurements. Based upon this finding, we developed

Eq. (5) to predict the reported rain intensity values by Pluvio2

using the predicted bucket weight values calculated from

Eq. (4). Note that the relationship between the reported real-

time rainfall intensity RIm,t and the measured bucket weight

Bm,t at a given time t has the same mathematical form of

Eq. (5). Depending on the purpose, the predicted and mea-

sured quantities can be used interchangeably in Eq. (5):

RI
p,t
5

8><
>:

603 �
t

i5t2ta1Dt

(B
p,i
2B

p,i2Dt
), RI

p,t
$ 6mmh21

0 , RI
p,t
, 6mmh21

.

(5)

Here, RIp,t is the predicted rain intensity for the reported value

by Pluvio2 at a given time, ta is the rain accumulation time step

of 60 s that is used for rain intensity calculations by Pluvio2, and

the multiplication factor of 60 min h21 is included in Eq. (5)

to provide RIp,t values per hour following the convention.

Pluvio2 has a reported minimum threshold for rain intensity

measurements of 6 mm h21. This means that whenever

RIp,t ,6 mm h21, the RIp,t value is reported as 0 by Pluvio2.

Therefore, a conditional statement is implemented in RIp,t
calculations in Eq. (5).

Figure 8 provides a comparison between the real-time rain

intensity measurements, RIm,t, reported by Pluvio2 and pre-

dicted rain intensity time series, RIp,t, using Eq. (5) alone for

the experimental run 24. Here, Pluvio2-measured bucket

weight values, rather than the values predicted by Eq. (4), were

used in calculations of Eq. (5) to evaluate the predictive

capabilities of Eq. (5) alone. Note that predictive capability

of Eq. (4) alone and predictive capabilities of Eqs. (4) and (5)

combined are assessed and demonstrated later in Figs. 9 and

10, respectively. The comparison presented in Fig. 8 shows

that the average relative error E [E5 (RIp,t 2RIm,t)/RIm,t]

is20.085%. Ideally, RIm,t and RIp,t values should overlap with

E value of 0.00%. The observed deviation is caused by the

FIG. 4. Bias and linearity study results for the Pluvio2 gauge. Solid circles represent RIm, stars represent average

bias, thick dashed lines represent confidence intervals (CI), and the solid line represents the linear regression line.

Coef is the regression coefficient, SE Coef is the standard error of the regression coefficient, and P is the p value.
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resolution difference between the providing bucket weight

measurement output (with resolution of 0.01mm) and the

collecting bucket weight by the precipitation gauge known as

internal raw data (with resolution of 0.001mm). Nevertheless,

the insignificant relative error value clearly indicates that our

suggested algorithm faithfully reproduced the one used by

Pluvio2 with sufficient accuracy for our analyses presented in

this section. A similar approach was followed to evaluate the

predictive capability of Eq. (4) separately by comparing the

predicted bucket weight time series (Bp,t) which was calculated

using Eq. (4) with the measured real-time bucket weight (Bm,t)

output from Pluvio2 for the reference rainfall intensity time

series (RIr,t) of experimental run 24 (Fig. 9). This comparison

shows that the average relative error,E, value betweenBp,t and

Bm,t values for the entire time series is 20.0006% with a

standard deviation of 0.004%, validating Eq. (4) for highly

accurate bucket weight predictions. Once the predictive ca-

pabilities of Eqs. (4) and (5) were validated individually, we

assessed the predictive capabilities of Eqs. (4) and (5) com-

bined. Figure 10 shows a comparison between the measured

RIm,t and predictedRIp,t time series of experimental run 24 and

demonstrates the predictive capability of Eqs. (4) and (5)

combined. Here, the predicted RIp,t time series was obtained

by, first, calculating the predicted bucket weight time series

(Bp,t) for the reference rainfall intensity time series (RIr,t) of

experimental run 24 using Eq. (4), and then computing the

predicted rainfall intensity time series using Eq. (5). The av-

erage relative error E between RIm,t and RIp,t values for the

entire time series is 20.286%, demonstrating the good pre-

dictive capability of Eqs. (4) and (5) combined.

To demonstrate the potential errors in Pluvio2 RI mea-

surements, two different dynamic rainfall scenarios were

simulated, and results were evaluated based on comparisons

FIG. 5. Statistical control limits (UCL and LCL) and stabilization

of the RIm on the RIr after (a) Abrupt Change, (b) Gradual Step

Change, and (c) Cyclic Step Changes. The x axis provides the time

order, which can be considered as the experimental time in

minutes.

FIG. 6. Results of tests for equal variances of RIm and 95%

Bonferroni confidence intervals for standard deviations under the

experimental simulations considered for the RIr settings (a) 7 and

(b) 20mmh21.
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between the reference (RIr,t) and predicted (RIp,t) rainfall in-

tensities for both simulated scenarios (see Figs. 11 and 12,

discussed later). These two scenarios are Case I—an additional

laboratory experiment with Cyclic Step Changes in RIrwith an

RIr duration of 1min at each step (run 25 in Table 1) to validate

the developed equations and demonstrate the error under

frequent RI changes; and Case II—in situ rainfall intensity

measurements from one of our field experiments to incorpo-

rate a typical real-world scenario for the time evolution of

rainfall intensity in our demonstration. As presented next, re-

sults from these two cases demonstrate that Pluvio2 RI mea-

surements include large errors, which can be improved through

improvements in Pluvio2 algorithms for RI calculations.

a. Case I

A laboratory experiment with cyclic changes of RI was

conducted with a pump setting to generate RIr values in se-

quential steps, starting with 7mmh21, which was successively

increased to 10, 20, 30, and 50mmh21, and then decreased

successively to 30, 20, 10, and finally back to 7mmh21 with

1min time duration for each of the RI steps (refer to run 25,

Table 1). For the modeling, the bucket weight time series, Bp,t,

was predicted using Eq. (4) and the predicted rain intensity

time series, RIp,t, was calculated from Bp,t values using Eq. (5).

Figure 11 demonstrates the combined predictive capability of

Eqs. (4) and (5) by comparing predicted, RIp,t, and measured,

RIm,t, rainfall intensity time series for experimental run 25.

This comparison served two purposes: (i) verification of

the reliable reproduction of the Pluvio2 RI algorithm and (ii)

estimation of the Pluvio2 RI measurement errors under a

simplified hypothetical rainfall scenario that simulates the

dynamic features of rainfall (Case I). The average relative er-

ror, E, for the comparison between RIp,t and RIm,t values was

0.8%, validating the predictive capability of the developed

equations under frequent RI changes. This validation also

gives us the opportunity to use predicted, RIp,t, instead of

measured, RIm,t, time series for Pluvio2 RI error estimation.

Comparison of reference, RIr,t, with both measured, RIm,t, and

predicted, RIp,t, rainfall intensity time series individually ex-

hibit the same significant average absolute relative error, jEj,
value of 41%. This significant error called for an investigation

of the potential errors in Pluvio2 RI measurements under field

conditions (Case II) where RI changes can be rather frequent.

Note that according toWMO (1996) guidelines, laboratory test

results of catchment type rainfall intensity gauges should be

presented in terms of relative error to exhibit themeasurement

FIG. 7. Measured bucket weight increment (DB) as a function

of experimental time t during experiments with RIr settings

as (a) constant at 10mmh21 with a 5min duration (refer to the

experimental run 17 in Table 1) and (b) cyclic step changes as 30/
15/ 10/ 15/ 30mmh21 with a 1min duration for eachRIr step

(refer to the experimental run 24 in Table 1). DB is measured every

6 s. Both plots exhibit that the first measured bucket weight incre-

ment was around 18 s after the beginning of the experiments.

FIG. 8. Comparison of Pluvio2-measured RIm,t and calculated

RIp,t from the measured rain accumulation over the last minute in

the bucket for the experimental run 24 (refer to Table 1). The result

indicated an average relative error (E) of 20.085% for the whole

time series. Open circles denote the measured RIm,t and the solid

line denotes the calculated RIp,t.

FIG. 9. Validation of Eq. (4) based on the comparison of pre-

dicted bucket weight (Bp,t) and measured bucket weight (Bm,t) for

experimental run 24 (refer to Table 1). The average relative error

(E) for the entire time series is20.0006%with a standard deviation

of 0.004%. Open circles denoteBm,t and the solid line denotes Bp,t.
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accuracy, and the relative error value should be within65% of

the reference RI. In this study, we referred to the error as

significant when the relative error value is larger than 65% of

the reference RI. However, here in Case I and Case II, we

presented the error statistics in rain intensity measurement as

absolute relative error, which is a good way to demonstrate not

only the accuracy but also the precision of measurements.

b. Case II

For this case, an in situ rainfall intensity time series mea-

sured using an OTT Parsivel2 Laser Weather Sensor (firmware

V 2.11.6) (Löffler-Mang and Joss 2000) from one of our field

experiments is utilized. Parsivel2 provides measured RI values

for each minute. In this analysis, the Parsivel2 measured RI

time series is used only to provide a typical RI change pattern

during typical rainfall events. This measuredRI time series was

used to simulate and demonstrate Pluvio2 RI algorithm’s per-

formance under a realistic dynamic scenario. Note that our

goal was not a comparative evaluation of the measurements by

Pluvio2 and Parsivel2, and collocated Pluvio2 and Parsivel2

measurements were not conducted. Therefore, accuracy of

Parsivel2 measurements is not of importance for our analysis.

For the following analysis, Parsivel2-measured RI data with a

1-min time resolution are converted to a 6-s time resolution RI

time series using linear interpolation. Figure 12a shows the

Parsivel2 RI time series with both 1-min and 6-s time resolu-

tions. The RI time series with the 6-s time resolution is used in

our subsequent analysis and referred to as the reference RI,

RIr,t. Based on the linearly interpolated time series RIr,t, the

predicted Pluvio2 RI time series RIp,t was calculated using

Eqs. (4) and (5) and is shown in Fig. 12b. The average absolute

relative error jEj between RIp,t andRIr,twas 39% for the entire

time series, and when theminimumRImeasurement threshold

criterion as mentioned in Pluvio2 guidelines was imposed in

RIp,t time series calculations [recall Eq. (5)], the average ab-

solute relative error, jEj, between RIp,t and RIr,t was 19% after

excluding the time steps whenever RIp,t ,6mmh21. Such

significant measurement errors under realistic dynamic con-

ditions indicate high uncertainty associated with Pluvio2 RI

measurements. A closer look into Fig. 12b indicates that there

is a time shift between the two time series, RIp,t and RIr,t. This

shift occurred due to both the time-delay in Pluvio2’s bucket

weight measurement and also Pluvio2’s RI calculation algorithm.

Since Pluvio2 RI calculations at each time step incorporate pre-

cipitation accumulation over the precedingminute, modifications

of the Pluvio2 RI calculation algorithm can potentially improve

the accuracy of Pluvio2’s RI measurements. To demonstrate this,

the RIp,t time series was shifted 42 s backward in time in Fig. 12c.

As can be seen from this graph, the time-shifted RIp,t and RIr,t
matched closely with an average absolute relative error jEj of 2%
after imposing theminimumRI threshold criterion. These results

reveal valuable opportunities to significantly improve the field

performance of Pluvio2’s RI measurements.

6. Conclusions

In this study, we statistically analyzed the Pluvio2 gauge’s

measurement error components and the stabilization of the

gauge’s measurements on the corresponding reference value

under constant, abrupt, gradual step, and cyclic step change

simulations of the RI. The range of RI values considered in

the experiments was 6 to 70mmh21, with a higher granularity

in the range of 6 to 7mmh21 and with 6mmh21 being the

manufacturer provided lower threshold value for the mea-

surements. Moreover, we examined the RT bucket weight

measurements and the algorithm of Pluvio2 RI calculations

from the bucket weight measurements through experiments

with high time resolution.

All experiments were conducted by using a highly precise

and automated peristaltic pump that provided predefined flow

rates in simulating constant RI and its changes. Repeated

measurements of constant RI indicated that there is a high

probability of false zero readings when the RIr is in the range

6 # RI ,6.5mmh21. Furthermore, statistically significant

negative biases were observed for the RIr settings of 7 and

FIG. 11. Demonstration of errors in Pluvio2 RImeasurements for

Case I. The time series for the predicted RIp,t, measured RIm,t, and

reference RIr,t for experimental run 25 (refer to Table 1) are

compared. The average relative error (E) betweenRIm,t andRIp,t is

0.8% whereas the average absolute relative error (jEj) between

RIp,t and RIr,t is 41%. Open circles denote RIm,t, the solid line

represents RIp,t, and open squares denote RIr,t.

FIG. 10. ComparisonofpredictedRIp,tusingEq. (5),Pluvio
2-measured

RIm,t, and the reference RIr,t for experimental run 24 (refer to

Table 1). Open circles denote RIm,t, the solid line represents RIp,t,

and open squares denote RIr,t.
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8mmh21. That is, on average, the RIm values are less than the

corresponding RIr values. As a percentage of the RIr, the es-

timated systematic biases are23.7% and22.6% for the 7 and

8mmh21 RIr, respectively. Uncertainty of the measurements,

characterized by the half widths of the tolerance intervals as a

percentage of the corresponding RIr values, are larger for the

smaller RIr settings and decrease with an increase of the RIr.

The study for the uniformity of the measurement system in-

dicated that variances of repeated measurements are unequal

over the range ofRIr studied. A statistically significant linearity

problem, that is a change of bias over the range of RI studied, is

not observed. However, a bias test for the individual reference

RIr exhibits that the biases are statistically significant for the

RIr values of 7 and 8mmh21 at a level of a5 0.05. Analysis of

the measurements under simulated abrupt, gradual step, and

cyclic step changes of the RIr indicated that there is not suffi-

cient evidence to claim that the means of the measurements do

not stabilize rapidly on the corresponding RIr setting after the

changes, as RIm never exceeded the control limits after dis-

regarding the initial and intermittent minutes between the

changes in RIr. Moreover, there was no significant evidence

of hysteresis effects on the measurements during the RI

simulation with cyclic step changes. Our findings suggest

that the lower threshold value for the OTT Pluvio2 RI

measurements should be redefined as 7 mm h21, and the bias

should be considered close to the lower threshold value for

RI measurements.

Investigation of the time delay in bucket weight measure-

ments and identification of the internal algorithm in Pluvio2

real-time RI calculation using real-time bucket weight mea-

surement led us to develop a set of equations that demonstrate

error for dynamic rainfall scenarios that are typical in the field.

Implementation of those equations in two cases (Cases I and

II) revealed the potentiality of large errors in Pluvio2’s RI

measurements. Identification of the RI calculation algorithm

and potential error sources present valuable opportunities to

improve Pluvio2 RI measurement capabilities through im-

provements in the algorithm; and hence, Pluvio2’s wider use for

RI measurements. Furthermore, considering the time delay in

bucket weight measurements and adequate relevant improve-

ments in theRI calculation algorithm, a simple postprocessing of

the available Pluvio2 datasets may lead to valuable RI datasets

with desirable accuracy for various applications.

This study clearly shows that understanding of the Pluvio2

weighing gauge behavior and functionality with special focus

on its proprietary internal algorithm is essential for all appli-

cations that utilize Pluvio2 measurements. In regard to Pluvio2

RI output, our results grant new studies on improving RI cal-

culation algorithms to reduce the measurement errors. Such an

algorithm development effort may consider, instead of using a

constant last-minute precipitation accumulation, a dynamic

time frame based on the changes in the frequency of RI to

improve Pluvio2’s RI measurement performance under the

dynamic rainfall conditions. An improved algorithm using

Pluvio2 datasets would enable postprocessing of the existing

and new datasets of Pluvio2 bucket weight measurements for

RI calculations. This would have importance in applications

where the use of RI is required, for example, verification of

radar or lidar outputs where precise ground RI measurements

are essential. Overall, this study provides insights on Pluvio2

weighing gauge behavior under different RI conditions and

reveals the instrument’s proprietary internal calculation

procedure for RI measurement, which is indispensable for

RI applications. Moreover, similar studies to this one that

consider a wide range of RI values, larger sample sizes, and

extended time periods can be recommended for future re-

search. Furthermore, effects of potential sources of variability

in the measurement system can be studied through experi-

mental design methods.
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