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ABSTRACT: This study investigates the OTT Pluvio® weighing precipitation gauge’s random and systematic error com-
ponents as well as stabilization of the measurements on time-varying rainfall intensities (RI) under laboratory conditions.
A highly precise programmable peristaltic pump that provided both constant and time-varying RI was utilized in the
experiments. Abrupt, gradual step, and cyclic step changes in the RI values were evaluated. RI readings were taken in real
time (RT) at different time resolutions (6-60s) for the RI range of 6-70mmh™'. Our analysis indicates that the lower
threshold for the OTT Pluvio®s real-time RI measurements should be redefined as 7mmh™" at a 1-min resolution.
Tolerance intervals containing 95% of the repeated measurements with a probability of 0.95 are given. It is shown that the
measurement variances are unequal over the range of RI and the measurement repeatability is not uniform. A statistically
significant negative bias was observed for the RI values of 7 and 8mmh ™!, while there was not a statistically significant
linearity problem. Through the use of statistical control limits, it is shown that means of the RI measurements stabilized on
the actual RI value. A detailed investigation on RT bucket weight measurements revealed a time delay in bucket weight
measurements, which causes notable errors in reported RI measurements under dynamic rainfall conditions. To demon-
strate the potentiality of large errors in Pluvio®s real-time RI measurements, a set of equations was developed that faithfully
reproduced the Pluvio®’s internal (hidden) algorithm, and results from dynamic laboratory and in situ rainfall scenarios were
simulated. The results of this investigation show the necessity of modifying the present Pluvio? RI algorithm to enhance its
performance and show the possibility of postprocessing the existing Pluvio® RI datasets for improved measurement
accuracies.

KEYWORDS: Atmosphere; Precipitation; In situ atmospheric observations; Instrumentation/sensors; Measurements;
Error analysis

1. Introduction rainfall, light and moderate rainfall can be significant in terms
of the total rain duration and frequency (Karl and Knight
1998). Hence, the identification and measurement of light and
moderate rainfall are essential to ensure that the full range of
intensities is retrieved and changes in rain intensities are ac-
curately assessed.

The OTT Pluvio?, developed in 2008 as the successor of
Pluvio', which was launched in 1994, has become one of the
most popular weighing rain gauges due to its ease of applica-
tion and reliability in all weather conditions (Nitu et al. 2019).
It has been installed throughout Europe, including remote lo-
cations for which frequent visits would be impractical, and it
has been replacing older technologies as the standard instru-
ment for precipitation measurements in the United States and
Canada. Over the past couple of decades, several government
agencies, such as the National Weather Service (NWS) and the
U.S. Geological Survey (USGS), have completed extensive
testing programs on several rain gauges, including Pluvio®, to
assist the National Atmospheric Deposition Program (NADP)
in determining the appropriate precipitation gauge for the
National Trends Network (NTN). The detailed outlines of
NADP and NTN are provided by Lamb and Bowersox (2000)
and Dossett and Bowersox (1999), respectively. The testing
programs consisted of three test phases. Phase 1 consisted
of indoor bench testing with known amounts of simulated
precipitation, and phase 2 consisted of 26 weeks of actual
precipitation collection at a single outdoor test site near
Corresponding author: Dr. Firat Y. Testik, firat.testik@utsa.edu  Bay Saint Louis, Mississippi (Gordon 2003). In phase 3, rain

Accurate and precise measurement of rainfall intensity (RI)
is of significant importance for various meteorological and
hydrological endeavors such as weather pattern change pre-
dictions, quantitative precipitation forecasts (QPFs), deriva-
tion of rainfall intensity—duration-frequency (IDF) curves, and
rainwater harvesting planning [see the comprehensive volume
on rainfall by Testik and Gebremichael (2010)]. Several RI
measurement studies focused on extreme events of high in-
tensity rainfall (Hou et al. 2014; Lanza and Vuerich 2009;
Larsen et al. 2009; Westra et al. 2014; Willems 2000). However,
studies (Karl and Knight 1998; Kidd and Joe 2007) have also
highlighted the contributions of light (RI <2.5mmh™') and
moderate (2.5 = RI = 7.5mmh™!) rainfall to overall rainfall
occurrence and accumulations. Kidd and Joe (2007) showed
that light rainfall occurs for about 50% and 80% of the total
rain duration in the tropics and in Europe, accounting for 10%
and less than 45% of the accumulated rainfall therein, re-
spectively. Moreover, a series of data from four Micro Rain
Radars (24 GHz) for a 10-month observation period showed
that nearly 80% of the total rain duration over the midlatitude
regions is light and moderate rainfall. While contributions from
light and moderate rainfall to the total rainfall accumulation of
any particular event is often less than the contribution of heavy
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gauges were evaluated for accuracy, ease of operation, and
reliability. For this phase, six NTN sites across the United
States were chosen based on different climate conditions,
equipment configurations, topographic settings, and power
availability. Pluvio' performed consistently well in all of the
test phases. The evaluations demonstrated that the Pluvio'
gauges at all of the test sites were in good agreement with other
rain gauges, and the paired ¢ tests showed that the gauge
measurements were not significantly different when the false
positive data (a zero response from a gauge concurrent with a
recorded response from other precipitation gauges) were re-
moved from the dataset (Tumbusch 2003). Since then, several
agencies have replaced their Pluvio' gauges and upgraded to
Pluvio® gauges (NADP 2015) since Pluvio® precipitation
gauges are low cost and lower gauge network maintenance
costs. The expanding popularity of Pluvio® increases the
necessity to assess its measurements errors.

According to the manufacturer’s guidelines (OTT HydroMet
2014), Pluvio® can measure 1 min real-time rain intensities that
are equal to or larger than 6mmh™! within +1% accuracy.
However, findings of Colli et al. (2014) indicated a low degree of
Pluvio® measurement accuracy in the RI range of 6-12mmh ™!,
Previously, Lanza et al. (2010) and Lanza and Stagi (2009) had
also documented the underperformance of Pluvio®s predeces-
sor (Pluvio') for low intensity RI measurements, providing
motivation for our detailed investigation on this ongoing issue
despite the instrument upgrades. Colli et al. (2014) performed a
series of controlled laboratory tests to assess the Pluvio®’s ac-
curacy under dynamic RI conditions at 1-min intervals. Their
results indicated that Pluvio® tends to underestimate the RI
measurements in the 6-12mmh ™' range with occurrences
of —100% relative errors that indicate no rain was detected by
Pluvio® when low precipitation rates were still generated by the
systems. When filtering out all of the zero RI measurements
from their dataset, the average relative errors of 6-12mmh ™"
class were improved at the expense of excluding nearly 40% of
the data of this range. Moreover, when they analyzed the entire
dataset for a longer time interval (>1 min resolution), the ac-
curacy and precision of RI measurements deteriorated with the
increase of the time interval compared to the filtered dataset.
This was caused by the contributions of the large negative
relative errors for the zero RI measurements (—100%) of
filtered-out data, which dragged the average relative errors
down to negative values and increased the standard deviation
of the entire sample.

In a previous study on error sources of precipitation mea-
surements using electronic weighing systems, Sevruk and
Chvila (2005) found that electronic weighing gauges, including
the Pluvio', measured less liquid precipitation than the stan-
dard nonrecording Hellmann gauge due to inaccurate mea-
surements of small precipitation amounts, and the relative
error of measurements increased particularly when the mea-
suring intervals exceed 1 min. Colli et al. (2013) performed a
dynamic two-step RI response test to determine the contri-
bution of the RI magnitude from the first step on the Pluvio? RI
measurements to the second step. They identified that the
measurement error of the second step was a function of the RI
ratios from the first and second steps, which increased linearly
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with the increase of this ratio. This error, which is caused by a
delay in Pluvio'’s response time (Lanza et al. 2005) and/or due
to partial reading from the previous minute, induces a large
measurement uncertainty that is often beyond the World
Meteorological Organization (WMO) recommended limit of
+5% (Nitu et al. 2019). However, Pluvio®, which is the suc-
cessor of Pluvio', implements faster data acquisition tech-
niques while using the same data processing algorithm. This
resulted in faster data processing and nearly nondelayed re-
sponse time of Pluvio® (Nemeth 2008).

The main purpose of this study is to assess Pluvio? [opera-
tional system (OS) version 1.03.0] gauge’s random (repeat-
ability and uniformity) and systematic (bias and linearity) error
components, as well as stabilization of the measurements on
time-varying rainfall intensities. The paper is organized as
follows. Section 2 describes the methodology of the study.
Measurement system analysis of the Pluvio® with repeated
measurements is provided in section 3. Stabilization of the
measurements on time-varying rainfall intensities is discussed
in section 4. RI measurement errors induced by real-time
bucket weight response time are quantified according to the
Pluvio? algorithm and are demonstrated in a dynamic scenario
in section 5. Conclusions are provided in section 6.

2. Methodology

Considered RI values were in the range of 6-70mmh™'. A
more detailed investigation was performed close to 6mmh ™!
(=0.1mmmin~"'), which is the RI measurement threshold
value of the Pluvio®. There are two available Pluvio? models:
Pluvio® 200 (bucket type: 200 cm?) and Pluvio® 400 (bucket
type: 400 cm?). In this study, Pluvio® 400 was utilized. While the
selection of Pluvio® 400 over Pluvio® 200 was solely based upon
the availability of Pluvio® 400 in our laboratory, the results
presented in this study are equally applicable to both of the
Pluvio® models as explained as follows. According to OTT
HydroMet technical reports (OTT HydroMet 2014), the new-
generation OTT Pluvio® 200 and OTT Pluvio? 400 both use the
same weight-balance technology with the same accuracy and
electronics. This information was verified through communi-
cation with the manufacturer. The only differences between
OTT Pluvio® 200 and 400 are the size of the orifice opening and
the recordable precipitation amount that each holds. Pluvio®
400 (used in the present study) has a 400 cm? orifice area, and
Pluvio® 200 has a 200 cm? orifice area; they have precipitation
collection capacities of 750 and 1500 mm, respectively. The
field performances of the two Pluvio® versions may differ due
to parameters such as evaporative losses and sampling volume.
Since our experiments were conducted in a controlled labo-
ratory environment, potential sources for the field perfor-
mance differences between the two Pluvio? versions are not
applicable to our study. Therefore, the results presented in this
study based on the experiments with Pluvio® 400 are also
applicable to Pluvio® 200. Moreover, to remove the possible
dependency on the OS, internal filtering, and other installa-
tion characteristics of Pluvio®, a guided accuracy test was
carried out as per Pluvio? guidelines. The results of the test
showed that the deviation in weight measurements due to the
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F1G. 1. Comparison of pump-generated (Q,) and measured (Q,,,)
flow rates using the precise balance and densitometer to evaluate
the pump precision and accuracy. Open circles denote measure-
ments and the dashed line denotes a 1:1 relationship.

installation was within the manufacturer’s specified limit
(4.0 g). Note that Pluvio? was updated to the latest firmware
(OS version 1.03.0) before starting this study. Moreover, we
also investigated Pluvio®’s algorithm for the reported real-
time (RT) rain intensity, RI,,, calculations and discussed the
findings in section 5. In the Pluvio® weighing precipita-
tion gauge, precipitation is collected and instantaneously
weighed. The volumetric amount of precipitation is then di-
rectly calculated from the measured weight of the collected
precipitation by considering the water density value and
ambient temperature. For the open bucket designs, the de-
crease in mass due to evaporation has to be considered. Colli
(2014) approximated the magnitude of precipitation depth
measurement fluctuations due to evaporation as 0.3 mm for
temperature changes of approximately 20°C. In general,
inaccuracy in measurements can originate from instru-
mental and environmental variables. Typically, environ-
mental variables associated with measurement inaccuracies
include gradients of atmospheric temperature, wind speed,
and humidity, and instrumental variables associated with
measurement inaccuracies include instrument sensitivity,
sampling characteristics, measuring range, and mechanical
errors (Colli 2014).

Experimental tests in this study were performed under lab-
oratory conditions without notable changes in the environ-
mental variables. A fully controlled automatic peristaltic pump
(Cole-Parmer Ismatec IPC ISM931C) of variable flow rates
was used to perform laboratory simulations of different RI
patterns. Before the start of each experiment, the pump flow
rate was calibrated to provide flow rates within an accuracy of
+0.05mm h™!. Moreover, a precision balance (+0.01 g) and a
high accuracy (density: * 0.001 gcm ™ ; temperature: +0.1°C)
densitometer (brand and model: Anton Paar DM-35) were
used to validate the water volume flow rates provided by the
pump. Figure 1 demonstrates a comparison of the config-
ured pump flow rates (Q,) and measured flow rates (Q,,).
Each configured pump flow rate is tested 15 times, and the
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FIG. 2. Schematic diagram of the laboratory experimental setup.

measured flow rate values presented in this figure are the
averages of these tests. The average of the relative errors,
E[E = (Predicted value — Reference value)/Reference value],
and the associated standard deviation of the errors were 0.12%
and 0.83%, respectively. In these calculations, Q, was consid-
ered as the reference value. Water drops generated by using
the pump for the selected flow rates (i.e., the reference RI,
which is denoted by RI,) dropped vertically in still air (i.e., no
wind effects) and were collected by the Pluvio? weighing pre-
cipitation gauge. The Pluvio® RI readings (i.e., RT precipita-
tion intensity from the Pluvio?, which is denoted by R1I,,) were
recorded by a datalogger at different time intervals (6-60s)
throughout the experiments. A schematic diagram of the ex-
perimental setup is presented in Fig. 2.

The pump characteristics and the experimental setup were
suitable to investigate the measurement system under both
static and dynamic experimental conditions. Four types of
experimental simulations were conducted, and these are
named as Constant, Abrupt Change, Gradual Step Change,
and Cyclic Step Change, based on the settings of the pump
over time. The experimental conditions for the simulated
patterns are tabulated in Table 1 and described as follows.

a. Constant RI,

In the Constant RI, experiments, the pump provided a
specific flow rate over time to simulate a constant RI, value.
There were three sets of experiments corresponding to the
Constant RI, study. The main goal of the first set of experi-
ments was to determine the random and systematic error
components of RI,, for a wide range of RI, (section 3). This set
included experiments with constant RI, values of 6, 6.25, 6.5,
6.75, 7, 8, 10, 20, 30, 50, and 70mmh ! for a period of 12 min
each (runs 1-11, Table 1). The second set of experiments was
performed to determine the effectiveness of the measurement
system in producing a measurement when RI is close to the
manufacturer-provided lower threshold value of 6 mmh™!
(section 3). This set included experiments with constant RI,
values of 6, 6.25, 6.5, 6.75 and 7mmh ™", but for a period of
52 min each (runs 12-16, Table 1). Note that the initial and last
minutes of Pluvio® RI readings in the first and second sets were
omitted from the analyses due to the possibility of partial
measurements for those minutes. Also, both sets of experi-
ments had a time resolution of 1 min. The third set of experi-
ments was conducted to investigate the time delay on bucket
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TABLE 1. Summary of the experimental conditions.

Run Pump Duration
No. setting RI, (mmh™!) (min) Assessments
1-11  Constant? 6, 6.25,6.5,6.75,7, 8, 10, 20, 30, 50, 70 12 Bias, linearity, repeatability, uniformity, tolerance intervals
12-16 Constant® 6,6.25,6.5,6.75,7 52 Bias, linearity, repeatability, uniformity, tolerance intervals
17 Constant™ 10 5 Time delay
18-21 Abrupt® (70-17), (70—38), (70— 10), (70—20) 12 Stabilization
22 Gradual® 50—-30—-20—10—7 60 Stabilization
23 Cyclic 7-10 —»20—30 —50—30—20—10—7¢ 120 Stabilization, hysteresis
24 Cyclic 30—»15—-10—-15—-30° 5 Time delay, algorithm validation
25 Cyclic 7-10—-20—30—50—30—20—10—7" 9 Error demonstration

#First (runs 1-11), second (runs 12-16), and third (run 17) test sets included experiments with 12, 52, and 5 min, respectively, for

each RI,.

°RI, suddenly dropped from 70mmh ™" to the selected RI, value for 12 min of measurement for each of the four test cases.
°RI, was gradually stepped down from 50 to 7mm h~! for 12 min of measurement at each step.
dRI, was gradually increased from 7 to 50mmh ™' and decreased back to 7mm h ™! for 12 min of measurement at each step except

50 mm h™! where 24 min measurement recorded.

¢RI, was gradually decreased from 30 to 10 mm h ™! and increased back to 30mm h ™! for 1 min of measurement at each step.
f As in run 23, except 1 min of measurement was taken at each step.

weight measurements (section 5). In this experiment, RI was
set to 10mmh ™! for a duration of 5 min (run 17, Table 1) and
data were recorded at a high time resolution (65s). This ex-
periment was different from other constant tests due to the
different time resolutions, and the initial and last minutes of
this experiment were not omitted.

b. Abrupt change in RI,

In the Abrupt Change experiments, RI, was set to 70mm h ™!
initially and then suddenly dropped to 7,8, 10, or 20mmh ™' in
different experimental runs (i.e., four separate experimental
runs, runs 18-21, Table 1). Each experimental run continued
for at least 12 min after the abrupt change of the RI, value to get
10 R1,, (excluding the RI,, in the first and last minutes that are
considered as intermittent values). Both the Abrupt Change
and the Gradual Step Changes (explained next) simulations
assessed the stabilization of the RI,, on the RI, under dynamic
conditions (section 4).

¢. Gradual step changes in RI,

In the Gradual Step Changes experiment, RI, was gradually
stepped down from 50 mm h™! to 30, 20, 10, and finally to
7mmh~! (run 22, Table 1). In this simulation, the pump ran
continuously throughout the gradual step changes from higher
to lower RI values. At each step change level, the experiment
covered 12 min to obtain 10 RI,, after excluding the first and
last measurements.

d. Cyclic step changes in RI,

In the Cyclic Step Changes experiment, the pump flow rate
was set to generate RI, values in sequential steps, starting with
7 mm hfl, which was successively increased to 10, 20, 30, and
50mmh ™!, and then successively decreased to 30, 20, 10, and
finally back to 7mmh ™! (run 23, Table 1). Each RI was visited
two times separately from an increasing and decreasing se-
quential steps, except the peak RI value of 50mmh™!. At
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each step change level, 12 min of data were collected during
both increasing and decreasing step changes, except at 50 mmh ™"
level, where 24 min of data were collected. This pattern resulted
in 24 min of measured data for each RI level. However, in the
analyses of the experimental data, the intermittent minute
between the changes in RI, and also the first minute of the
cyclic experiment were removed to avoid partial readings. The
exclusion of those minutes resulted in 11 min of available data
for analysis for each RI, step, except for 50mmh™! where
23min of data were available. In addition to observing the
stabilization of the RI,, values around the set RI, value, the
Cyclic Step Changes simulation investigated hysteresis effects
(section 4). The hysteresis effect can be evaluated as the
maximum difference between the Pluvio® reported R1,,, output
and the reference RI, when the specified R, is approached first
from an increasing and then a decreasing way in a cyclic pat-
tern. A comparison of the relative errors for RI,,, with respect
to the specified RI, for the increasing and decreasing phases
in a cyclic test would indicate the impact of hysteresis in RI
measurements.

An additional Cyclic Step Changes experiment was con-
ducted where RI, was changed more frequently to explore the
dynamic response of Pluvio® measurement (section 5). In this
experiment, different pump flow rates were set to generate
different RI, values at each minute of the experiment, and data
were collected at a 6 s time resolution. The RI, was initially set
to 30mmh ™! and then consecutively stepped down to 15 and
10mmh™!, and then consecutively stepped up to 15 and
30mmh ™! (run 24, Table 1). In addition to investigating the
response delay in Pluvio® measurement, this type of cyclic test
assisted in evaluating the RI measuring algorithm using the
real-time bucket weight measurement. Furthermore, another
Cyclic Step Changes experiment was performed, in a similar
setting as run 23, except 1 min of measurement was taken at
each step (run 25, Table 1) to demonstrate the potentiality of
large error under frequent RI changes (section 5, Case I).
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TABLE 2. Summary of the repeatability test statistics. R, indi-
cates the average of the RI,, in the sample of corresponding
RI,. The repeatability standard deviation S estimates are based
on Eq. (1).

RI, 95% measurement range  Half width of the
(mmh™") S  (RI, * indicated value) intervals as R, (%)

7 0.19 0.64 9.2
8 0.2 0.68 8.4

10 0.24 0.81 8.1

20 0.37 1.25 6.3

30 0.6 2.03 6.8

50 0.74 2.50 5.0

70 1 3.38 4.8

3. Measurement system analysis of the Pluvio® gauge

Error in the Pluvio? measurements with respect to time and
over the RI range of 6-70 mm h ™! is assessed through statistical
analysis of the measurement variability. Minitab statistical
software was used in the study. In particular, bias, linearity, re-
peatability, and uniformity of the measurement system were
studied under the Constant RI, setup described in the previous
section. Measurement variability is often described by the normal
distribution, and this is an assumption of the standard methods of
measurement system analysis. Hence, goodness of fit of the nor-
mal distribution to the measurements was checked in the analysis.
Unless otherwise stated, samples of 10 RI,,, taken at 1 min reso-
lutions by the Pluvio?, after omitting the initial and last mea-
surements, were considered for each of the experimental settings.

A number of experiments were performed to test the Pluvio?
under Constant RI, with values close to the lower RI threshold
value of 6mmh ™. The initial set of experiments (runs 1-11,
Table 1) revealed that many RI,,, were zero when RI, was set to
less than 6.5 mm h™!, indicating that the gauge may not be ef-
fective in measuring the RI, close to the lower threshold. To
confirm the findings of these experiments and to estimate the
proportion of RI,, that are nonzero (in fact, nonzero measure-
ments were close to and around the corresponding RI, values), a
new set of experiments was conducted to obtain 50 RI,, for each
of the selected RI, that are less than or equal to 7mmh ™' (runs
12-16, Table 1). The estimated proportions of nonzero mea-
surements with a sample size of 50 were 0.06, 0.1, 0.74, 0.96, and 1
for the RI, settings of 6, 6.25, 6.5, 6.75, and 7.00mm h™ !, re-
spectively. This finding indicates that there is a high probability
for missed RI,, when RI is less than 6.5 mmh ™" and the effec-
tiveness of the gauge increases as RlI, is raised to 7mmh™".
Consequently, it is suggested that Pluvio”s lower RI, threshold
value should be redefined as 7 mm h ™', In the following analyses,
RI, values of 7mmh ™! and larger are considered.

The reproducibility of the experimental conditions was
checked by collecting two sets of RI,, samples during two
different experimental runs with the same RI, value of
7mmh L. Two-sample ¢ test and F test for two variances were
utilized for the evaluation. Normal probability plots of the two
RI,, samples indicated that normal distribution is a good fit to
the data. The two-sample ¢ test was used to test the hypothesis
of equal means of the RI, under the two experimental
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conditions against the alternative that these means are not
equal. The p value of the test was 0.747 and the 95% confidence
interval for the differences between the means is (—0.1307,
0.1787). This result indicates that there is not enough evidence
to claim that the RI,, means are different for reasonable
choices of significance level a. The F test for the two variances
was used to test the null hypothesis that the ratio of the variances
of the RI,,, under the two experimental conditions is equal to 1
(homogeneity of the variances) against the alternative that the
ratio is different from 1. The p value of the F test was 0.556 and
the 95% confidence interval for the standard deviation ratio was
(0.610, 2.457). Hence, the test fails to reject that the variances
were equal for reasonable choices of significance level . Overall,
there is no evidence to claim that the samples came from different
populations and we conclude that it is reasonable to assume that
the experimental conditions in the study were reproducible.

A repeatability study to assess the random error component
of the measurement system (i.e., the variation in the mea-
surements obtained when the same RI, is measured repeatedly
under the same experimental conditions) was conducted. To
quantify the repeatability component of the measurement
error, the standard deviation estimate,

¢y

is used, where n is the sample size, RI,,; is the ith RI mea-
surement, and R1,, is the average of the RI,, in the sample. A
summary of repeatability test statistics is presented in Table 2
including the standard deviation for corresponding RI,. Under
the normal distribution model of the measurements and for the
sample size of 10, at least 95% of the repeated measurements
will lie within the tolerance interval RI,, +3.379S with a
probability of 0.95. Table 2 presents the half width of the 95%
repeated measurements intervals as a percentage of the cor-
responding RI,, and it can be seen from this table that the
uncertainties in the measurements decrease as a percentage of
RI, with an increase of the RI, value.

To assess the uniformity of the measurement system (i.e.,
the change in repeatability over the measurement range consid-
ered) Bartlett’s test (assuming normal distribution) and Levene’s
test (for any continuous distribution) were used to test the equality
of the variances at different RI, values. The p values (0.000 for the
Bartlett’s test and 0.000 for the Levene’s test) indicated that
the data provide enough evidence to claim that the variances of
the repeated measurements are unequal at different RI, values. In
particular, variation in the measurements by the Pluvio? increases
as the RI, is increased. The effect of the random error on the
measurements increases and a problematic uniformity is observed
over the range of RI. The 95% Bonferroni confidence intervals for
the standard deviations are provided in Fig. 3. Also seen in this
figure, the standard deviation estimates increase, and their confi-
dence intervals widen with an increase of RI,.

The systematic error component of the measurement system
is often evaluated by a study of the bias (RI,, — RI,) and line-
arity. It is clear from this equation that we did not perform
normalization on bias estimation with respect to R1I,. Therefore,
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FIG. 3. Results of tests for equal variances for repeated RI,, at
the selected RI, values and the 95% Bonferroni confidence inter-
vals for the standard deviations.

bias may seem to increase with increases of RI,. Bias is the
combined effect of all sources of variability, which consistently
offsets the results of repeated applications of the measurement
system. Linearity is the change in the bias over the measure-
ment range. It is assessed by using the slope of a linear re-
gression, where the relationship between the average bias
(response variable) and the RI, values (explanatory variable) is
described by a straight line. A slope of 0 for the regression line
indicates that linearity is not present, that is the measurement
system has the same bias for all reference values. Consider the
gauge bias results provided in Fig. 4; ¢ tests of the null hypothesis
that the bias is zero against the alternative that it is different
from zero indicate that the biases are statistically significant for
the RI, values of 7 and 8 mm h™!atalevel of & = 0.05. The bias
estimates are —(0.26 and —0.21, showing that the RI, values are
underestimated and on average the RI,, are less than the cor-
responding RI, values. For the rest of the RI, values
considered, a statistically significant bias is not observed. Now
consider the regression line, its 95% confidence interval, and the
gauge linearity result in Fig. 4. The p value is 0.264 for the ¢ test
of the null hypothesis that the regression line slope is zero
against the alternative that it is different from zero. This suggests
that the measurement system does not have a statistically sig-
nificant linearity problem across different RI, values.

4. Stabilization of the OTT Pluvio®> RI measurements on
the Rl reference value under dynamic conditions

Experimental runs were also conducted with time-varying
RI, values as simulations of RI patterns. The RI patterns
simulated are Abrupt Change, Gradual Step Changes, and
Cyclic Step Changes as described in section 2. The RI,,, values
from the experiments were used to observe the stabilization of
the measurement system on the time-varying RI, values. In this
regard, RI,, are plotted over time, together with statistical
control limits (UCL—upper control limit; and LCL—lower
control limit; see, e.g., Montgomery 2009)

UCL=RI +3- 8 and LCL=RI -3 2

1.128 1.128 @
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for each RI,. Here, R/1.128 is a standard deviation (¢) estimate
of the measurement process, and

-

|RIm.i - RIm i—l‘
R==2 3
| ®)

for a sample of n RI,,, corresponding to a value of RI,. Under
the assumption of normal distribution and when there is no
measurement bias, 99.73% of the measurements are confined
by RI = 30. Hence, an RI,,, exceeding the control limits can be
taken as an indication that the mean of the measurement
process did not stabilize on the corresponding RI,.

RI,, and their corresponding statistical control limits under
the experimental simulations of the time-varying RI, are pro-
vided in the graphs in Figs. Sa—c, respectively, for the Abrupt
Change, Gradual Step Changes, and Cyclic Step Changes ex-
periments. As can be seen from the graphs, none of the RI,,
exceed the control limits. Therefore, it is concluded that there
is no evidence to claim that the means of the measurements are
not stabilized on the corresponding time-varying RI, values.
Moreover, the relative errors for RI,, with respect to the
specified RI, for the increasing and decreasing phases was
within —0.07% to +0.51%. This low error percentage indicates
that there was no significant effect of hysteresis in the RI
measurements.

Homogeneity of variances of RI,, under the considered
experimental scenarios was also evaluated for some of the RI,
values. From the results of tests for equal variances and the
95% confidence intervals given in Figs. 6a and 6b, respectively,
for the R1, values of 7 and 20 mm h ', it is concluded that there
is not enough evidence at a significance level of @ = 0.05
to claim that the measurement variances are different under
dynamic conditions for a given RI,.

5. Pluvio® rain intensity measurement errors induced by
bucket weight response time

In this section, we assessed the RT rainfall intensity output
of Pluvio? in relation to Pluvio®s RT bucket weight measure-
ments. Pluvio®s algorithm calculates RI values based on RT
bucket weight measurements. Therefore, we first assessed
Pluvio®s RT bucket weight measurements using the highest
possible temporal resolution output produced by Pluvio®,
which led to the identification of a time delay in RT bucket
weight measurements. We then faithfully reproduced Pluvio®’s
RT rainfall intensity calculation algorithm using RT bucket
weight measurements with relevant validation and provided
the pertinent mathematical relations. We finally used this
faithfully reproduced algorithm to evaluate Pluvio®s RT
rainfall intensity measurement capability under two different
dynamic rainfall scenarios.

To identify the time delay (¢z;) in RT bucket weight time
series measurements, two sets of experiments were conducted
with constant and cyclic step changes of the reference rainfall
intensity in Pluvio® measurements with the highest temporal
resolution, Az = 6s (experimental runs 17 and 24 in Table 1).
In Fig. 7, measured bucket weight increment time series AB
for experimental runs 17 (constant) and 24 (cyclic) are shown.
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FIG. 4. Bias and linearity study results for the Pluvio® gauge. Solid circles represent R1,,, stars represent average
bias, thick dashed lines represent confidence intervals (CI), and the solid line represents the linear regression line.
Coef is the regression coefficient, SE Coef is the standard error of the regression coefficient, and P is the p value.

This figure indicates that Pluvio starts reporting bucket weight
measurements between 13 and 17's from the start of the rain-
fall. Therefore, the measurement time delay ¢, value is in be-
tween 13 and 17s, which cannot be identified with a higher
accuracy due to the limitation in Pluvio®s highest temporal
measurement resolution of 6 s. In our analyses below, we used
the ¢, value of 17 s as it will introduce the maximum possibility
of error in RI calculation and will produce a conservative es-
timation during the analysis.

To demonstrate the errors induced by the identified time
delay 7, in bucket weight measurements, a relationship between
the Pluvio® bucket weight time series and the known/reference
rainfall intensity time series R1I,, is necessary. Based upon our
experiments, we derived the following equation to predict the
reported bucket weight time series, B, by Pluvio® for a given
rainfall event with the known/reference rainfall intensity time
series RI, :

Bp,t = Bp,t*At

+(RL,, A, 4)

Here, the p, r, and m indices are used to indicate predicted,
reference, and measured parameters, respectively. B, ,_a, is
the predicted bucket weight at time instant ¢ — A, RI,,,, is the
reference rain intensity at time instant ¢ — z,, and At is the time
resolution of the Pluvio? bucket weight measurements which
can be set as multiples of 6 s. The predictions of the reported
bucket weight time series can then be used to predict the re-
ported rain intensity time series by Pluvio® as follows.

We identified that the internal (hidden) algorithm of Pluvio®
calculates the reported RI,, , values by implementing a moving
precipitation accumulation over the last minute in the bucket
weight measurements. Based upon this finding, we developed
Egq. (5) to predict the reported rain intensity values by Pluvio®
using the predicted bucket weight values calculated from
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Eq. (4). Note that the relationship between the reported real-
time rainfall intensity RI,,, and the measured bucket weight
B, at a given time t has the same mathematical form of
Eq. (5). Depending on the purpose, the predicted and mea-
sured quantities can be used interchangeably in Eq. (5):

60x Y (B .-B

L~ Boia) RIpJ26mmh’1

RI =

it

0, Rl <6mmh™
®)

Here, R, ,is the predicted rain intensity for the reported value
by Pluvio? at a given time, t, is the rain accumulation time step
of 60's that is used for rain intensity calculations by Pluvio®, and
the multiplication factor of 60 minh ™" is included in Eq. (5)
to provide RI,, values per hour following the convention.
Pluvio? has a reported minimum threshold for rain intensity
measurements of 6mmh~!. This means that whenever
RI,, <6 mm h™!, the RI,,, value is reported as 0 by Pluvio®.
Therefore, a conditional statement is implemented in RI,
calculations in Eq. (5).

Figure 8 provides a comparison between the real-time rain
intensity measurements, RI,,,, reported by Pluvio? and pre-
dicted rain intensity time series, RI,,,, using Eq. (5) alone for
the experimental run 24. Here, Pluvio®>measured bucket
weight values, rather than the values predicted by Eq. (4), were
used in calculations of Eq. (5) to evaluate the predictive
capabilities of Eq. (5) alone. Note that predictive capability
of Eq. (4) alone and predictive capabilities of Egs. (4) and (5)
combined are assessed and demonstrated later in Figs. 9 and
10, respectively. The comparison presented in Fig. 8 shows
that the average relative error E [E = (RL,, — RL,)/RL,,]
is —0.085%. Ideally, RL,, , and R, , values should overlap with
E value of 0.00%. The observed deviation is caused by the
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FI1G. 5. Statistical control limits (UCL and LCL) and stabilization
of the RL,, on the RI, after (a) Abrupt Change, (b) Gradual Step
Change, and (c) Cyclic Step Changes. The x axis provides the time
order, which can be considered as the experimental time in
minutes.

resolution difference between the providing bucket weight
measurement output (with resolution of 0.01 mm) and the
collecting bucket weight by the precipitation gauge known as
internal raw data (with resolution of 0.001 mm). Nevertheless,
the insignificant relative error value clearly indicates that our
suggested algorithm faithfully reproduced the one used by
Pluvio? with sufficient accuracy for our analyses presented in
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FI1G. 6. Results of tests for equal variances of RI,, and 95%
Bonferroni confidence intervals for standard deviations under the
experimental simulations considered for the RI, settings (a) 7 and
(b)20mmh~".

this section. A similar approach was followed to evaluate the
predictive capability of Eq. (4) separately by comparing the
predicted bucket weight time series (B,, ;) which was calculated
using Eq. (4) with the measured real-time bucket weight (B,, )
output from Pluvio® for the reference rainfall intensity time
series (RI,,) of experimental run 24 (Fig. 9). This comparison
shows that the average relative error, E, value between B, and
B, values for the entire time series is —0.0006% with a
standard deviation of 0.004%, validating Eq. (4) for highly
accurate bucket weight predictions. Once the predictive ca-
pabilities of Eqs. (4) and (5) were validated individually, we
assessed the predictive capabilities of Eqs. (4) and (5) com-
bined. Figure 10 shows a comparison between the measured
RI,, ,and predicted RI, , time series of experimental run 24 and
demonstrates the predictive capability of Egs. (4) and (5)
combined. Here, the predicted RI,, time series was obtained
by, first, calculating the predicted bucket weight time series
(Bp,) for the reference rainfall intensity time series (RI,,) of
experimental run 24 using Eq. (4), and then computing the
predicted rainfall intensity time series using Eq. (5). The av-
erage relative error E between Rl,,, and RI,, values for the
entire time series is —0.286%, demonstrating the good pre-
dictive capability of Egs. (4) and (5) combined.

To demonstrate the potential errors in Pluvio® RI mea-
surements, two different dynamic rainfall scenarios were
simulated, and results were evaluated based on comparisons
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FIG. 7. Measured bucket weight increment (AB) as a function
of experimental time ¢ during experiments with RI, settings
as (a) constant at 10mmh ' with a 5min duration (refer to the
experimental run 17 in Table 1) and (b) cyclic step changes as 30 —
15 — 10 — 15 — 30mm h ™! with a 1 min duration for each RI, step
(refer to the experimental run 24 in Table 1). AB is measured every
6. Both plots exhibit that the first measured bucket weight incre-
ment was around 18s after the beginning of the experiments.

between the reference (RI,,) and predicted (RI,, ) rainfall in-
tensities for both simulated scenarios (see Figs. 11 and 12,
discussed later). These two scenarios are Case [—an additional
laboratory experiment with Cyclic Step Changes in RI, with an
RI, duration of 1 min at each step (run 25 in Table 1) to validate
the developed equations and demonstrate the error under
frequent RI changes; and Case II—in situ rainfall intensity
measurements from one of our field experiments to incorpo-
rate a typical real-world scenario for the time evolution of
rainfall intensity in our demonstration. As presented next, re-
sults from these two cases demonstrate that Pluvio® RT mea-
surements include large errors, which can be improved through
improvements in Pluvio® algorithms for RI calculations.

a. Casel

A laboratory experiment with cyclic changes of RI was
conducted with a pump setting to generate RI, values in se-
quential steps, starting with 7mm h ™!, which was successively
increased to 10, 20, 30, and 50mmh ™', and then decreased
successively to 30, 20, 10, and finally back to 7mm h™! with
1 min time duration for each of the RI steps (refer to run 25,
Table 1). For the modeling, the bucket weight time series, B,
was predicted using Eq. (4) and the predicted rain intensity
time series, RI, ,, was calculated from B, , values using Eq. (5).
Figure 11 demonstrates the combined predictive capability of
Eqgs. (4) and (5) by comparing predicted, RL,;, and measured,
RI,,,, rainfall intensity time series for experimental run 25.
This comparison served two purposes: (i) verification of
the reliable reproduction of the Pluvio® RI algorithm and (ii)
estimation of the Pluvio® RI measurement errors under a
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FI1G. 8. Comparison of Pluvio’-measured RI,,, and calculated
RI,, from the measured rain accumulation over the last minute in
the bucket for the experimental run 24 (refer to Table 1). The result
indicated an average relative error (E) of —0.085% for the whole
time series. Open circles denote the measured RI,,, and the solid
line denotes the calculated RI,, .

simplified hypothetical rainfall scenario that simulates the
dynamic features of rainfall (Case I). The average relative er-
ror, E, for the comparison between RI,, and RI,,, values was
0.8%, validating the predictive capability of the developed
equations under frequent RI changes. This validation also
gives us the opportunity to use predicted, RI,,, instead of
measured, RI,,,, time series for Pluvio? RI error estimation.
Comparison of reference, R1,,, with both measured, RI,, ,, and
predicted, RI,,, rainfall intensity time series individually ex-
hibit the same significant average absolute relative error, |E|,
value of 41%. This significant error called for an investigation
of the potential errors in Pluvio? RI measurements under field
conditions (Case IT) where RI changes can be rather frequent.
Note that according to WMO (1996) guidelines, laboratory test
results of catchment type rainfall intensity gauges should be
presented in terms of relative error to exhibit the measurement
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F1G. 9. Validation of Eq. (4) based on the comparison of pre-
dicted bucket weight (B,,;) and measured bucket weight (B,,,,) for
experimental run 24 (refer to Table 1). The average relative error
(E) for the entire time series is —0.0006% with a standard deviation
of 0.004%. Open circles denote B,,,, and the solid line denotes B, ,.
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FIG. 10. Comparison of predicted R,,, using Eq. (5), Pluvio™measured
Rl and the reference RI,, for experimental run 24 (refer to
Table 1). Open circles denote RI,,, the solid line represents RI,,,,
and open squares denote RI,,.

accuracy, and the relative error value should be within =5% of
the reference RI. In this study, we referred to the error as
significant when the relative error value is larger than =5% of
the reference RI. However, here in Case I and Case 11, we
presented the error statistics in rain intensity measurement as
absolute relative error, which is a good way to demonstrate not
only the accuracy but also the precision of measurements.

b. Case Il

For this case, an in situ rainfall intensity time series mea-
sured using an OTT Parsivel® Laser Weather Sensor (firmware
V 2.11.6) (Loffler-Mang and Joss 2000) from one of our field
experiments is utilized. Parsivel® provides measured RI values
for each minute. In this analysis, the Parsivel”> measured RI
time series is used only to provide a typical RI change pattern
during typical rainfall events. This measured RI time series was
used to simulate and demonstrate Pluvio® RI algorithm’s per-
formance under a realistic dynamic scenario. Note that our
goal was not a comparative evaluation of the measurements by
Pluvio® and Parsivel®, and collocated Pluvio® and Parsivel®
measurements were not conducted. Therefore, accuracy of
Parsivel® measurements is not of importance for our analysis.
For the following analysis, Parsivel’-measured RI data with a
1-min time resolution are converted to a 6-s time resolution RI
time series using linear interpolation. Figure 12a shows the
Parsivel® RI time series with both 1-min and 6-s time resolu-
tions. The RI time series with the 6-s time resolution is used in
our subsequent analysis and referred to as the reference RI,
RI,,. Based on the linearly interpolated time series RI, ,, the
predicted Pluvio® RI time series RI,, was calculated using
Egs. (4) and (5) and is shown in Fig. 12b. The average absolute
relative error \E between RI,, and RI,, was 39% for the entire
time series, and when the minimum RI measurement threshold
criterion as mentioned in Pluvio® guidelines was imposed in
RI,, time series calculations [recall Eq. (5)], the average ab-
solute relative error, |E|, between RI, , and RI,, was 19% after
excluding the time steps whenever RI,, <6 mm h™'. Such
significant measurement errors under realistic dynamic con-
ditions indicate high uncertainty associated with Pluvio® RI

Brought to you by TEXAS A & M UNIV | Unauthenticated | Downloaded 04/13/21 10:14 AM UTC

OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 38

60

50

o
=)

RI (mm/hr)
w
(=

20

0 100 200 300 400 500 600
t(s)

FIG. 11. Demonstration of errors in Pluvio? RI measurements for
Case I. The time series for the predicted RI, ;, measured R1,,,, and
reference RI,, for experimental run 25 (refer to Table 1) are
compared. The average relative error (E) between R, , and R, is
0.8% whereas the average absolute relative error (|E|) between
RI,; and RI,, is 41%. Open circles denote RI,,,, the solid line
represents RI, ,, and open squares denote RI,,.

measurements. A closer look into Fig. 12b indicates that there
is a time shift between the two time series, RI, , and R, . This
shift occurred due to both the time-delay in Pluvio®’s bucket
weight measurement and also Pluvio”s RI calculation algorithm.
Since Pluvio® RI calculations at each time step incorporate pre-
cipitation accumulation over the preceding minute, modifications
of the Pluvio? RI calculation algorithm can potentially improve
the accuracy of Pluvio”’s RI measurements. To demonstrate this,
the RI,,, time series was shifted 42 s backward in time in Fig. 12c.
As can be seen from this graph, the time-shifted RI,, and RL,,
matched closely with an average absolute relative error |E| of 2%
after imposing the minimum RI threshold criterion. These results
reveal valuable opportunities to significantly improve the field
performance of Pluvio”s RI measurements.

6. Conclusions

In this study, we statistically analyzed the Pluvio® gauge’s
measurement error components and the stabilization of the
gauge’s measurements on the corresponding reference value
under constant, abrupt, gradual step, and cyclic step change
simulations of the RI. The range of RI values considered in
the experiments was 6 to 70 mm h ™!, with a higher granularity
in the range of 6 to 7mmh ™" and with 6mmh ™' being the
manufacturer provided lower threshold value for the mea-
surements. Moreover, we examined the RT bucket weight
measurements and the algorithm of Pluvio? RI calculations
from the bucket weight measurements through experiments
with high time resolution.

All experiments were conducted by using a highly precise
and automated peristaltic pump that provided predefined flow
rates in simulating constant RI and its changes. Repeated
measurements of constant RI indicated that there is a high
probability of false zero readings when the RI, is in the range
6 = RI <6.5mmh~'. Furthermore, statistically significant
negative biases were observed for the RI, settings of 7 and
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FIG. 12. Demonstration of Pluvio® RI measurement analysis for
Case IL. (a) In situ Parsivel’ RI measurements with a 1 min time
resolution (solid line) and the reference RI,, with a 6 s time reso-
lution (dashed line) obtained by linear interpolation of the 1 min
Parsivel® RI measurements. (b) A comparison of the reference
(RI,,, dashed line) and predicted Pluvio® [RI,, calculated using
Egs. (4) and (5)—solid line] RI time series. (c) A comparison of the
reference RI time series (RI,,, dashed line) and predicted Pluvio®
RItime series (RI, , solid line) that is shifted 42 s backward in time
for a closer match with the reference RI time series.

8mmh~'. That is, on average, the RI,, values are less than the
corresponding RI, values. As a percentage of the RI,, the es-
timated systematic biases are —3.7% and —2.6% for the 7 and
8 mmh ™! RI,, respectively. Uncertainty of the measurements,
characterized by the half widths of the tolerance intervals as a
percentage of the corresponding RI, values, are larger for the
smaller RI, settings and decrease with an increase of the RI,.
The study for the uniformity of the measurement system in-
dicated that variances of repeated measurements are unequal
over the range of RI, studied. A statistically significant linearity
problem, that is a change of bias over the range of RI studied, is
not observed. However, a bias test for the individual reference
RI, exhibits that the biases are statistically significant for the
RI, values of 7 and 8mm h ™! at a level of a = 0.05. Analysis of
the measurements under simulated abrupt, gradual step, and
cyclic step changes of the RI, indicated that there is not suffi-
cient evidence to claim that the means of the measurements do
not stabilize rapidly on the corresponding RI, setting after the
changes, as RI,, never exceeded the control limits after dis-
regarding the initial and intermittent minutes between the
changes in RI,. Moreover, there was no significant evidence
of hysteresis effects on the measurements during the RI
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simulation with cyclic step changes. Our findings suggest
that the lower threshold value for the OTT Pluvio® RI
measurements should be redefined as 7 mm h !, and the bias
should be considered close to the lower threshold value for
RI measurements.

Investigation of the time delay in bucket weight measure-
ments and identification of the internal algorithm in Pluvio®
real-time RI calculation using real-time bucket weight mea-
surement led us to develop a set of equations that demonstrate
error for dynamic rainfall scenarios that are typical in the field.
Implementation of those equations in two cases (Cases I and
II) revealed the potentiality of large errors in Pluvio®s RI
measurements. Identification of the RI calculation algorithm
and potential error sources present valuable opportunities to
improve Pluvio®> RI measurement capabilities through im-
provements in the algorithm; and hence, Pluvio®’s wider use for
RI measurements. Furthermore, considering the time delay in
bucket weight measurements and adequate relevant improve-
ments in the RI calculation algorithm, a simple postprocessing of
the available Pluvio® datasets may lead to valuable RI datasets
with desirable accuracy for various applications.

This study clearly shows that understanding of the Pluvio®
weighing gauge behavior and functionality with special focus
on its proprietary internal algorithm is essential for all appli-
cations that utilize Pluvio® measurements. In regard to Pluvio®
RI output, our results grant new studies on improving RI cal-
culation algorithms to reduce the measurement errors. Such an
algorithm development effort may consider, instead of using a
constant last-minute precipitation accumulation, a dynamic
time frame based on the changes in the frequency of RI to
improve Pluvio®s RI measurement performance under the
dynamic rainfall conditions. An improved algorithm using
Pluvio® datasets would enable postprocessing of the existing
and new datasets of Pluvio® bucket weight measurements for
RI calculations. This would have importance in applications
where the use of RI is required, for example, verification of
radar or lidar outputs where precise ground RI measurements
are essential. Overall, this study provides insights on Pluvio®
weighing gauge behavior under different RI conditions and
reveals the instrument’s proprietary internal calculation
procedure for RI measurement, which is indispensable for
RI applications. Moreover, similar studies to this one that
consider a wide range of RI values, larger sample sizes, and
extended time periods can be recommended for future re-
search. Furthermore, effects of potential sources of variability
in the measurement system can be studied through experi-
mental design methods.
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