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a b s t r a c t 

Time to event outcomes is commonly encountered in epidemiologic research. Multiple papers have dis- 

cussed the inadequacy of using the hazard ratio as a causal effect measure due to its noncollapsibility 

and the time-varying nature. In this paper, we further clarified that the hazard ratio might be used as 

a conditional causal effect measure, but it is generally not a valid marginal effect measure, even under 

randomized design. We proposed to use the restricted mean survival time (RMST) difference as a causal 

effect measure, since it essentially measures the mean difference over a specified time horizon and has 

a simple interpretation as the area under survival curves. For observational studies, propensity score ad- 

justment can be implemented with RMST estimation to remove observed confounding bias. We proposed 

a propensity score stratified RMST estimation strategy, which performs well in our simulation evalua- 

tion and is relatively easy to implement for epidemiologists in practice. Our stratified RMST estimation 

includes two different versions of implementation, depending on whether researchers want to involve 

regression modeling adjustment, which provides a powerful tool to examine the marginal causal effect 

with observational survival data. 

© 2021 Elsevier Inc. All rights reserved. 
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ntroduction 

In epidemiologic studies, time to a certain clinical or health 

vent is commonly used as an outcome measure (often referred 

o as survival outcome) [1–3] . Investigating the causal relationship 

etween an intervention and the survival outcome is an important 

opic, with either randomized or observational designs. Hazard ra- 

io (HR) [4] is often used to measure the association between two 

roups, which can be interpreted as the instantaneous risk ratio. 

n the epidemiologic literature, the Cox proportional hazards (pH) 

odel is routinely used as a regression adjustment tool for con- 

rolling confounding in survival data [ 5 , 6 ]. Despite its popularity, 

R is not an appropriate measure of causal effect in many situa- 

ions. It suffers from the noncollapsibility bias when the treatment 
Abbreviations: HR, hazard ratio; Ph, proportional hazards; RMST, restricted mean 

urvival time; PATE, population average treatment effect. 
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as some effect, is likely to change over time (non-proportional 

azards) and has built-in selection bias [7–9] . 

To overcome drawbacks of HR as a causal effect measure, the 

estricted mean survival time (RMST) difference was proposed [4] . 

he RMST difference is defined as the integral of the survival prob- 

bility difference, which is considered as risk difference. Since risk 

ifference is collapsible [10] and integration is a linear operation 

hat preserves the collapsibility of the integrand, the RMST differ- 

nce is collapsible and therefore provides a valid marginal causal 

ffect interpretation. It is easy to use in randomized trials and 

rovides clinically valuable information on the relative difference 

etween two groups. For observational studies, there was only 

imited literature on this topic that incorporated propensity score 

eighting into RMST estimation [ 11 , 12 ]. To facilitate the use of 

MST difference in epidemiology research, we proposed an eas- 

er propensity score stratification adjustment to remove observed 

onfounding bias. We also conducted a simulation study to exam- 

ne the statistical properties of our proposed method under dif- 

erent scenarios. The propensity score stratified RMST method was 

pplied to the Atherosclerosis Risk in Communities (ARIC) study 

13] , examining the causal effect of smoking on risk of stroke, to 

llustrate its practical utility. 

https://doi.org/10.1016/j.annepidem.2021.09.016
http://www.ScienceDirect.com
http://www.annalsofepidemiology.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.annepidem.2021.09.016&domain=pdf
mailto:lu.232@osu.edu
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Fig. 1. (A) Randomized trials with prognostic factor. (B) Randomized trials without 

prognostic factor. 
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Fig. 2. (A) Observational studies with observed confounders only. (B) Observational 

studies with both observed and unobserved confounders. Dashed arrow indicates 

that observed confounding is controlled by appropriate adjustment. 
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R is not a valid marginal causal effect measure 

Under the potential outcome framework [14] , with a dichoto- 

ous treatment, each individual has a pair of potential outcomes, 

hat is, Y 1 as the outcome under treatment and Y 0 as the outcome 

nder control. In epidemiologic research, population average treat- 

ent effect (PATE) is of more interest, for example, E( Y 1 − Y 0 ) . 

ATE can be estimated in randomized studies without strong as- 

umptions and can be estimated in observation data with ap- 

ropriate adjustment under the ignorable treatment assignment 

ssumption [14] . It is also referred to as marginal effect, with 

he interpretation of comparing mean outcomes for the entire 

tudy population by assigning the treatment to everyone versus 

ithholding the treatment from everyone. Another common effect 

easure is conditional effect, usually resulting from using regres- 

ion models to control confounding. 

Hernan et al. [8] pointed out that the noncollapsibility of HR 

s a result of selection bias, which distorts the relationship be- 

ween two variables when conditioning on their common descen- 

ent. Figure 1 A depicts a randomized trial with treatment indi- 

ator A and a covariate X . The outcomes are two binary survival 

tatuses, S t and S t+�t , at time points t and t + �t , respectively. 

is a prognostic factor, which is related to survival outcomes re- 

ardless of treatment assignment (arrows from X to S t and S t+�t ). 

here is no arrow between X and A , since the study is random- 

zed. The arrows from A to S t and S t+�t imply that the treatment 

as some effect. By definition, the HR at t + �t is conditioned on 

 t , HR (t) = lim 

�t→ 0 

Pr ( S t+�t =0 | S t =1 ) 

�t 
. Such conditioning (illustrated as a 

ox surrounding S t ) introduces selection bias as S t is the common 

escendent of both A and X . The situation when such selection bias 

s absent is depicted in Figure 1 B, where there is no prognostic 

actor. This is, however, very unlikely to be true practically, as the 

urvival outcome is expected to be related to some factors, either 

bserved or unobserved. 

There is one way to remove this selection bias by condition- 

ng on X , which blocks the pathway A → S t ← X → S t+�t . But this

ields a conditional effect as one needs to include X in the Cox pH 

odel. Due to the noncollapsibility of HR, the marginal effect does 

ot equal the conditional effect when the treatment has an effect. 

herefore, HR is not a measure with a valid marginal causal effect 

nterpretation, except for some extreme cases. 

Figure 2 presents an observational study scenario, with X being 

n observed confounder and V being an unobserved confounder. 

igure 2 A depicts the case with no unobserved confounder. Appro- 

riate adjustment has been applied to remove confounding, shown 

s a dashed arrow between X and A . Since X is related to the sur- 

ival outcome, the selection bias cannot be removed without con- 

itioning on X . Hence, the resulting HR represents a conditional 

ffect, just like the randomized scenario. Figure 2 B depicts the un- 

ortunate case with an unobserved confounder, where there is no 

ay to remove the selection bias. 

As HR is not a valid marginal effect measure for survival out- 

ome, we introduce RMST difference as an alternative measure, 
150 
hich is essentially a mean difference over a specified time hori- 

on. RMST estimation for randomized trials has been discussed 

ubstantially [ 4 , 15 , 16 ]. We will further extend it to observational

tudies by combining RMST with propensity score stratification to 

emove confounding. 

estricted mean survival time 

RMST is defined as the mean survival time truncated at a fixed 

ime point and is equivalent to the area under the survival curve 

p to the truncation time point. Treatment effect measured by the 

MST difference can be asymptotically unbiasedly estimated with- 

ut the pH assumption. RMST difference also offers a more intu- 

tive interpretation than HR. Moreover, this effect measure is col- 

apsible, which makes it an attractive choice for marginal causal 

ffect estimation [ 17 , 18 ]. 

For a given subject, denote the event time as T and the re- 

tricted event time as U = min ( T , τ ) , where τ is the fixed trunca- 

ion time point, usually prespecified at the design stage based on 

linical relevance and study feasibility. Both T and U are subject to 

ensoring by a random variable C that is assumed to be indepen- 

ent of T and U conditional on covariates. The observable quan- 

ities are ( T ∗, �T , U 
∗, �U ) , where T ∗ = min ( T , C ) , �T = I(T < C) ,

 
∗ = min ( U, C ) , and �U = I(U < C) . The RMST is defined as μ(τ ) =
(U) = ∫ τ0 S(t ) dt , where S(t) is the survival function of T . 

xisting RMST estimation methods 

A natural estimator of μ(τ ) is ˆ μ(τ ) = ∫ τ0 ˆ S (t ) dt , where ˆ S (t ) can

e estimated by the nonparametric Kaplan-Meier method [19] or 

arametric methods assuming a distribution function for T [20] . In 

his paper we estimated ˆ S (t) by the Kaplan-Meier method due to 

ts robustness and popularity in epidemiological research [21] . 

Several methods of regressing RMST on covariates, to control 

or confounding or increase estimation efficiency, have been de- 

eloped [22–24] . Karrison [22] considered RMST regression un- 

er a piecewise exponential model. Andersen et al. [23] devised 

 pseudo-outcome that converts censored survival time to uncen- 

ored pseudo-survival time and then used a generalized linear 

odel on the pseudo-survival time to estimate RMST. Tian et al. 

24] proposed an inverse probability of censoring weighted (IPCW) 

stimating function to estimate RMST. Wang and Schaubel [25] de- 

eloped an estimating function to estimate RMST under general 

ensoring mechanisms. We will use the IPCW estimating function 

ith identity link [24] as a comparator to our proposed method 

n the simulation studies due to its ease of implementation and 

opularity. Let Z i be a p-dimensional covariate vector (including 

reatment indicator A i ) of subject i with i = 1 , . . . , n , where n is the

ample size. The regression coefficients β can be consistently esti- 

ated by solving the estimating equation 

n ( β) = n −1 
∑ n 

i =1 

�Ui 

ˆ G 

(
U 

∗
i 

)Z i 
(
U 

∗
i − βT Z i 

)
= 0 , 
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here βT denotes transpose of vector β and ˆ G (·) is the 

aplan-Meier estimator of the censoring time C based on 

 ( U 
∗
i 
, 1 − �U ) , i = 1 , . . . , n } . The estimated regression coefficient 

f treatment, ˆ βA , represents the conditional treatment effect on 

MST conditioning on covariates. Since RMST difference is collapsi- 

le, the conditional treatment effect equals the marginal treatment 

ffect. The variance of ˆ βA can be derived as a sandwich-type esti- 

ator [24] . 

roposed propensity score stratified rmst estimation in observational 

tudies 

Propensity score adjustment is a popular strategy to removing 

bserved confounding in non-randomized studies [ 26 , 27 ]. Stratifi- 

ation achieves a good balance between the technical complexity 

nd easiness of understanding and implementation [14] . By split- 

ing the sample into several propensity score strata, the covariate 

istribution becomes nearly identical between control and treat- 

ent group within each stratum. Therefore, the strong ignorability 

ondition approximately holds and stratum-specific causal effects 

an be unbiasedly estimated. As RMST difference is collapsible, the 

tratum-specific effects can be pooled by weighted average to ob- 

ain the marginal causal effect estimate. Specifically, it involves the 

ollowing steps: 

ropensity score estimation 

The propensity score is defined as the conditional probability 

f treatment A = 1 given a vector of observed covariates X [26] . 

e estimated the propensity score by fitting a logistic regression 

n treatment indicator A with covariates X following the common 

ractice, although other estimation options are available [ 28 , 29 ]. 

ropensity score stratification 

Depending on the sample size, we may stratify the sample into 

ve or ten strata [30] . Since our real data example has a large sam-

le size, we chose to use ten equal-sized strata based on deciles 

f the propensity score distribution. To ensure asymptotically un- 

iased RMST estimates and nonzero variance estimates, τ must 

ie between the minimum event time and maximum follow-up 

ime (event or censored) of each treatment group in each stra- 

um [ 25 , 31 ]. When this requirement is not met for a given stratum,

t should be merged to the adjacent stratum. A more reasonable 

alue of τ should be considered if this requirement is still not met 

hen the number of strata becomes less than five after merging. 

reatment effect estimation 

The marginal treatment effect is estimated as a weighted aver- 

ge of stratum-specific treatment effects weighting by stratum size. 

et L be the number of strata and n l be the size of stratum l with

 = 1 , . . . , L . The total sample size n = 

∑ L 
l=1 n l . The stratum-specific

reatment effect is estimated by ˆ νl = ∫ τ0 ( ̂  S l1 (t) − ˆ S l0 (t )) dt , where 

ˆ  l1 (t) and ˆ S l0 (t) are the Kaplan-Meier estimates of survival func- 

ion for treatment and control groups in stratum l, respectively. 

he marginal treatment effect is calculated by ˆ ν = 

∑ L 
l=1 Pr (l) ̂  νl = 

 L 
l=1 ( n l /n ) ̂  νl . Since strata are independent of each other, the vari- 

nce of ˆ ν is estimated by ˆ V ( ̂  ν) = 

∑ L 
l=1 ( n l /n ) 

2 ̂  V ( ̂  νl ) , where ˆ V ( ̂  νl ) is
he stratum-specific variance [21] . A possible improvement of this 

tratified adjustment is to include regression modeling, where we 

ould use strata as a categorical covariate in an IPCW estimating 

quation [24] with identity link function. Unlike the above strati- 

ed estimation where treatment effect can vary across strata, this 

ethod assumes that treatment effect is the same in all strata. The 

enefit here is the potential gain in variance estimation due to the 

se of regression models. 
151 
imulation study 

Our simulation study consists of two parts—the first part con- 

erns with a randomized design with no confounding and the sec- 

nd part concerns with an observational design with known con- 

ounders and other covariates. 

andomized assignment 

A common misconception is that, due to the randomization, a 

imple Cox pH model with only treatment indicator A provides an 

nbiased estimate of the marginal treatment effect. In Figure A1 

n Appendix A, we demonstrated that, under a true Cox pH model 

ith treatment A and an independent covariate X , the marginal HR 

f treatment marginalizing over X is non-proportional, unless there 

s no treatment effect. Thus, the mar ginal HR of treatment cannot 

e summarized as a single value. The derivation of marginal HR is 

ncluded in Appendix A. 

Our simulation generated the treatment indicator A from 

ernoulli distribution, an independent prognostic factor X from 

(0,1) , potential survival times ( T 1 , T 0 ) from Weibull distribution 

32] , and truncated potential survival times U 
j = min ( T j , τ ) , j = 

 , 1 . The censoring variable C was generated from an exponen- 

ial distribution with rate parameter 0.45 and the truncation time 

was set to 2.67, the 70th percentile of the censoring distribu- 

ion. Detailed description of the simulation setup is included in 

ppendix B. Five hundred datasets of sample size 500 were sim- 

lated. 

We considered four simulation scenarios: proportional hazards 

ith no treatment effect (ref erred to as pH _null ), proportional haz- 

rds with some effect (pH _alt ), non-proportional hazards with no 

ffect ( NPH_null ), and non-proportional hazards with some effect 

 NPH_alt ). We compared three estimation methods: Cox regression 

ith only A , Cox regression with A and X , and RMST difference be- 

ween treatment groups without adjusting for X . The performance 

etrics include the average of the 500-point estimates of treat- 

ent effect, model-based standard error (SEM) which was the av- 

rage of the 500 estimated standard errors, empirical standard er- 

or (SEE) which was the standard deviation of the 500-point esti- 

ates, and 95% coverage probability (CP) which was the proportion 

f the 500 95% confidence intervals that covered the true value. 

As shown in Table 1 , under pH _null , all three methods gener-

te almost unbiased estimates of their target parameters and ad- 

quate coverage probabilities. Under pH _alt , the marginal HR is a 

on-constant function of time as illustrated in Appendix Figure A1, 

nd therefore cannot be estimated correctly by either of the two 

ox models. The Cox model with A and X unbiasedly estimates βA , 

he conditional HR of A , whereas the Cox model with only A cannot 

ven estimate βA unbiasedly as shown by the large bias and poor 

overage probability. On the other hand, RMST difference gives un- 

iased estimates of the marginal treatment effect on RMST. Under 

onPH_null and nonPH_alt , the Cox model with A and X gives bi- 

sed estimates of βA since it misspecifies the true non-proportional 

odel as proportional. RMST difference still provides almost unbi- 

sed estimates of the marginal treatment effect and adequate cov- 

rage probability. 

on-randomized assignment 

The second simulation considers an observational setup with 

our estimation methods. Since the first stimulation demonstrated 

hat the Cox model on HR is not valid for marginal treatment effect 

stimation, we did not further consider it here. 
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Table 1 

Performance of Estimation Methods for Marginal Treatment Effect Under Randomized Treat- 

ment Assignment. (500 Simulated Datasets with n = 500 Each). True TE: true treatment effect. 

Estimated TE: the average of the 500 estimated treatment effects. SEM: the average of the 

500 model-based standard error estimates. SEE: the empirical standard error as the standard 

deviation of the 500 TE estimates. CP: 95% confidence interval coverage probability 

Scenarios Method True TE ∗ Estimated TE SEM SEE CP 

pH_null 

Cox with A 0 0.00 0.12 0.12 0.95 

Cox with A and X 0 −0.01 0.12 0.12 0.95 

RMST difference 0 0.00 0.088 0.087 0.96 

pH_alt 

Cox with A – −0.36 0.13 0.13 0.79 

Cox with A and X −0.5 −0.51 0.13 0.13 0.95 

RMST difference 0.25 0.25 0.090 0.090 0.95 

nonPH_null 

Cox with A – −0.039 0.13 0.12 0.94 

Cox with A and X 0 −0.14 0.13 0.14 0.79 

RMST difference 0.087 0.086 0.077 0.077 0.96 

nonPH_alt 

Cox with A – −0.28 0.13 0.13 0.60 

Cox with A and X −0.5 −0.47 0.13 0.14 0.94 

RMST difference 0.27 0.27 0.079 0.079 0.95 

∗ The true treatment effect (TE) for Cox regression with only A is the marginal HR of A that 

varies over time and therefore cannot be represented by a single value except when the true 

conditional log-HR of A is zero; the true TE for Cox regression with A and X is the conditional 

log-HR of A; the true TE for RMST difference is the marginal treatment effect on RMST. 
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ropensity score stratified estimation 

This is the proposed method described in the previous section. 

amples were stratified into ten equal-sized strata based on the 

eciles of the propensity score distribution. RMST difference was 

stimated nonparametrically in each stratum separately and then 

ooled by weighted average to obtain the marginal treatment ef- 

ect estimation. 

ropensity score strata adjusted regression estimation 

This is the second way of using propensity score strata, as de- 

cribed in the previous section. Ten strata are included as a cat- 

gorical variable with ten levels in the IPCW estimating equation 

ith a linear model on RMST. 

onfounder-adjusted regression 

We again used the IPCW estimating equation to estimate treat- 

ent effect but included individual confounders instead of the 

ropensity score strata indicators as covariates in the regression 

odel on RMST. 

rude comparison 

RMST was directly compared between control and treated 

roups without adjusting for confounders. 

We generated nine independent covariates from either nor- 

al or Bernoulli distribution. Potential survival times ( T 1 , T 0 ) were 

enerated from Weibull distributions in a similar way as in the 

rst part of simulation. We considered two data-generating mod- 

ls, one using the linear form of covariates and the other using var- 

ous nonlinear functional forms of covariates (details in Appendix 

). 

The treatment status A was generated from Bernoulli distribu- 

ion with P ( A = 1 ) defined by a logit model 

ogit ( P ( A = 1 ) ) = −1 . 7 + 0 . 5 X 3 + 0 . 25 X 4 − 0 . 25 X 5 

+ 0 . 5 X 6 − 0 . 5 X 7 + 0 . 5 X 8 + 0 . 5 X 9 . 

The sample size was set to 20 0 0. The proportion of treated sub- 

ects in the sample was around 20%. The censoring variable C was 

enerated depending on X 5 and X 6 . Truncation time τ were de- 

ermined similarly as before. In this setting, covariate X , X , X , 
3 4 5 

152 
nd X 6 were confounders. We considered the same four simulation 

cenarios as in the randomized case. Five hundred datasets were 

imulated for each combination of data-generating model and sce- 

ario. 

The simulation results of the first data-generating model with 

nly linear covariates are summarized in Table 2 . Both propensity 

core stratification and propensity score strata adjusted regression 

ive virtually unbiased estimates of marginal treatment effect on 

MST and adequate coverage probabilities in all four scenarios. The 

atter method provides smaller estimated variance than the former 

ethod, which reflects the advantage of regression modeling over 

onparametric estimation. Confounder-adjusted regression method 

xhibits some degree of bias and unsatisfactory coverage probabil- 

ties. The crude estimation method gives highly biased estimates 

nd poor coverage probabilities across all scenarios. Similar find- 

ngs are observed with the second data-generating model (results 

ummarized in Appendix B). 

eal data analysis 

The ARIC study [13] is an ongoing large prospective cohort 

tudy in four U.S. communities. One of its major themes is to in- 

estigate risk factors of stroke [33] . We applied the four methods 

ompared in non-randomized simulation to estimate the marginal 

ausal effect of baseline smoking status on the incident ischemic 

troke measured as 20-year RMST. The analysis results are sum- 

arized in Table 3 . The pattern of the results of the four methods 

s consistent with the simulation results. Based on the propensity 

core stratified analysis, the average ischemic stroke-free time over 

0 years is 4.5 months (95% confidence interval: 3.0, 6.0 months) 

horter among current smokers compared to that among non- 

urrent smokers. Details of the ARIC study and our analysis were 

elegated to Appendix C. 

iscussion 

In this paper, we clarified the utility of HR as a causal ef- 

ect measure, which is generally not a valid marginal effect mea- 

ure even under randomized designs. Alternatively, RMST differ- 

nce provides a valid marginal causal effect measure for survival 
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Table 2 

Performance of Estimation Methods for Marginal RMST Treatment Effect under the Data- 

generating Model with Linear Covariates (500 Simulated Datasets with n = 20 0 0 Each). True TE: 

true treatment effect. Estimated TE: the average of the 500 estimated treatment effects. SEM: the 

average of the 500 model-based standard error estimates. SEE: the empirical standard error as the 

standard deviation of the 500 TE estimates. CP: 95% CI coverage probability 

Scenario Method True TE Estimated TE SEM SEE CP 

pH_null 

PS Stratification 0.00 −0.02 0.15 0.14 0.95 

PS Strata Regression −0.08 0.12 0.10 0.93 

Confounder Adjusted −0.11 0.12 0.11 0.87 

Crude −0.52 0.11 0.11 0.006 

pH_alt 

PS Stratification 0.42 0.40 0.16 0.14 0.95 

PS Strata Regression 0.34 0.12 0.11 0.92 

Confounder Adjusted 0.31 0.12 0.11 0.88 

Crude −0.11 0.12 0.12 0.008 

nonPH_null 

PS Stratification 0.13 0.12 0.12 0.11 0.96 

PS Strata Regression 0.15 0.10 0.087 0.97 

Confounder Adjusted 0.17 0.063 0.063 0.91 

Crude −0.27 0.090 0.087 0.006 

nonPH_alt 

PS Stratification 0.43 0.43 0.13 0.12 0.95 

PS Strata Regression 0.45 0.10 0.091 0.97 

Confounder Adjusted 0.45 0.066 0.065 0.94 

Crude 0.021 0.096 0.092 0.008 

Table 3 

Estimated effect of smoking status (current smoker vs nonsmoker) on 20-y RMST of incident ischemic stroke in ARIC study 

Estimated difference in RMST in months Estimated SE 95% CI (Lower Bound) 95% CI (Upper Bound) 

Crude −4.19 0.68 −5.52 −2.85 

PS stratified −4.51 0.75 −6.00 −3.03 

PS strata-adjusted −4.48 0.70 −5.85 −3.11 

Covariate-adjusted −5.19 0.67 −6.51 −3.87 
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utcomes. It is more advantageous because (i) it does not change 

ver time; (ii) it is collapsible; (iii) it does not depend on propor- 

ional hazards assumption. We have seen an increased acceptance 

f RMST measures in randomized clinical studies. However, the use 

f RMST in observational epidemiologic studies is still limited. 

One reason for the limited use of RMST in epidemiologic re- 

earch may be that its interpretation is quite different from that of 

 hazard. It must be interpreted in the context of a specified time 

orizon. However, life expectancy over a time horizon τ , such as 
0-year life expectancy, may be more intuitive to patients, clini- 

ians, and epidemiologists [ 16 , 34–36 ]. Another reason for its lim- 

ted use in epidemiology may be due to the lack of methodology 

evelopment, which requires additional confounding adjustment. 

nly a couple of papers discussed incorporating propensity score 

eighting adjustment into RMST estimation [ 11 , 12 ]. In this article, 

e propose to estimate covariate adjusted RMST difference by the 

opular propensity score stratification method, which is easily un- 

erstood by epidemiologists, and thereby promote the use of RMST 

n epidemiologic research. Nevertheless, more propensity score- 

ased adjustment methods should be developed for epidemiolo- 

ists to use, including matching-based RMST estimation and more 

efined stratified RMST methods. 

One limitation of our work is that propensity score adjustment 

s known to only remove confounding due to observed covariates. 

n many epidemiologic studies, the hidden bias due to unobserved 

ovariates remains a major threat to the validity of the scientific 

ndings. A popular approach to assessing the potential impact of 

nmeasured confounding is via sensitivity analysis [37] . There is 

nly limited discussion on sensitivity analysis comparing survival 

urves and it would be desirable to develop sensitivity analysis 

trategies for RMST estimators [38] . 
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