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ABSTRACT

Time to event outcomes is commonly encountered in epidemiologic research. Multiple papers have dis-
cussed the inadequacy of using the hazard ratio as a causal effect measure due to its noncollapsibility
and the time-varying nature. In this paper, we further clarified that the hazard ratio might be used as
a conditional causal effect measure, but it is generally not a valid marginal effect measure, even under
randomized design. We proposed to use the restricted mean survival time (RMST) difference as a causal
effect measure, since it essentially measures the mean difference over a specified time horizon and has
a simple interpretation as the area under survival curves. For observational studies, propensity score ad-
justment can be implemented with RMST estimation to remove observed confounding bias. We proposed
a propensity score stratified RMST estimation strategy, which performs well in our simulation evalua-
tion and is relatively easy to implement for epidemiologists in practice. Our stratified RMST estimation
includes two different versions of implementation, depending on whether researchers want to involve
regression modeling adjustment, which provides a powerful tool to examine the marginal causal effect

with observational survival data.

© 2021 Elsevier Inc. All rights reserved.

Introduction

In epidemiologic studies, time to a certain clinical or health
event is commonly used as an outcome measure (often referred
to as survival outcome) [1-3]. Investigating the causal relationship
between an intervention and the survival outcome is an important
topic, with either randomized or observational designs. Hazard ra-
tio (HR) [4] is often used to measure the association between two
groups, which can be interpreted as the instantaneous risk ratio.
In the epidemiologic literature, the Cox proportional hazards (pH)
model is routinely used as a regression adjustment tool for con-
trolling confounding in survival data [5,6]. Despite its popularity,
HR is not an appropriate measure of causal effect in many situa-
tions. It suffers from the noncollapsibility bias when the treatment

Abbreviations: HR, hazard ratio; Ph, proportional hazards; RMST, restricted mean
survival time; PATE, population average treatment effect.
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has some effect, is likely to change over time (non-proportional
hazards) and has built-in selection bias [7-9].

To overcome drawbacks of HR as a causal effect measure, the
restricted mean survival time (RMST) difference was proposed [4].
The RMST difference is defined as the integral of the survival prob-
ability difference, which is considered as risk difference. Since risk
difference is collapsible [10] and integration is a linear operation
that preserves the collapsibility of the integrand, the RMST differ-
ence is collapsible and therefore provides a valid marginal causal
effect interpretation. It is easy to use in randomized trials and
provides clinically valuable information on the relative difference
between two groups. For observational studies, there was only
limited literature on this topic that incorporated propensity score
weighting into RMST estimation [11,12]. To facilitate the use of
RMST difference in epidemiology research, we proposed an eas-
ier propensity score stratification adjustment to remove observed
confounding bias. We also conducted a simulation study to exam-
ine the statistical properties of our proposed method under dif-
ferent scenarios. The propensity score stratified RMST method was
applied to the Atherosclerosis Risk in Communities (ARIC) study
[13], examining the causal effect of smoking on risk of stroke, to
illustrate its practical utility.
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Fig. 1. (A) Randomized trials with prognostic factor. (B) Randomized trials without
prognostic factor.

Method
HR is not a valid marginal causal effect measure

Under the potential outcome framework [14], with a dichoto-
mous treatment, each individual has a pair of potential outcomes,
that is, Y! as the outcome under treatment and Y as the outcome
under control. In epidemiologic research, population average treat-
ment effect (PATE) is of more interest, for example, E(Y! —Y9).
PATE can be estimated in randomized studies without strong as-
sumptions and can be estimated in observation data with ap-
propriate adjustment under the ignorable treatment assignment
assumption [14]. It is also referred to as marginal effect, with
the interpretation of comparing mean outcomes for the entire
study population by assigning the treatment to everyone versus
withholding the treatment from everyone. Another common effect
measure is conditional effect, usually resulting from using regres-
sion models to control confounding.

Hernan et al. [8] pointed out that the noncollapsibility of HR
is a result of selection bias, which distorts the relationship be-
tween two variables when conditioning on their common descen-
dent. Figure 1A depicts a randomized trial with treatment indi-
cator A and a covariate X. The outcomes are two binary survival
statuses, S¢ and S; A, at time points t and t + At, respectively.
X is a prognostic factor, which is related to survival outcomes re-
gardless of treatment assignment (arrows from X to Sy and Sg, a¢).
There is no arrow between X and A, since the study is random-
ized. The arrows from A to S; and S;, A, imply that the treatment
has some effect. By definition, the HR at t + At is conditioned on

St, HR(t) = Alim0 Pr(s”AfAztolsf:l). Such conditioning (illustrated as a
t—

box surrounding S;) introduces selection bias as S; is the common
descendent of both A and X. The situation when such selection bias
is absent is depicted in Figure 1B, where there is no prognostic
factor. This is, however, very unlikely to be true practically, as the
survival outcome is expected to be related to some factors, either
observed or unobserved.

There is one way to remove this selection bias by condition-
ing on X, which blocks the pathway A — St < X — S, a¢. But this
yields a conditional effect as one needs to include X in the Cox pH
model. Due to the noncollapsibility of HR, the marginal effect does
not equal the conditional effect when the treatment has an effect.
Therefore, HR is not a measure with a valid marginal causal effect
interpretation, except for some extreme cases.

Figure 2 presents an observational study scenario, with X being
an observed confounder and V being an unobserved confounder.
Figure 2A depicts the case with no unobserved confounder. Appro-
priate adjustment has been applied to remove confounding, shown
as a dashed arrow between X and A. Since X is related to the sur-
vival outcome, the selection bias cannot be removed without con-
ditioning on X. Hence, the resulting HR represents a conditional
effect, just like the randomized scenario. Figure 2B depicts the un-
fortunate case with an unobserved confounder, where there is no
way to remove the selection bias.

As HR is not a valid marginal effect measure for survival out-
come, we introduce RMST difference as an alternative measure,
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Fig. 2. (A) Observational studies with observed confounders only. (B) Observational
studies with both observed and unobserved confounders. Dashed arrow indicates
that observed confounding is controlled by appropriate adjustment.

which is essentially a mean difference over a specified time hori-
zon. RMST estimation for randomized trials has been discussed
substantially [4,15,16]. We will further extend it to observational
studies by combining RMST with propensity score stratification to
remove confounding.

Restricted mean survival time

RMST is defined as the mean survival time truncated at a fixed
time point and is equivalent to the area under the survival curve
up to the truncation time point. Treatment effect measured by the
RMST difference can be asymptotically unbiasedly estimated with-
out the pH assumption. RMST difference also offers a more intu-
itive interpretation than HR. Moreover, this effect measure is col-
lapsible, which makes it an attractive choice for marginal causal
effect estimation [17,18].

For a given subject, denote the event time as T and the re-
stricted event time as U = min(T, t), where 7 is the fixed trunca-
tion time point, usually prespecified at the design stage based on
clinical relevance and study feasibility. Both T and U are subject to
censoring by a random variable C that is assumed to be indepen-
dent of T and U conditional on covariates. The observable quan-
tities are (T*, Ar, U*, Ay), where T* = min(T, C), At = I(T <),
U* = min(U, C), and Ay = I(U < C). The RMST is defined as u(t) =
E(U) = s S(t)dt, where S(t) is the survival function of T.

Existing RMST estimation methods

A natural estimator of () is (1) = fF S(t)dt, where $(¢) can
be estimated by the nonparametric Kaplan-Meier method [19] or
parametric methods assuming a distribution function for T [20]. In
this paper we estimated $(t) by the Kaplan-Meier method due to
its robustness and popularity in epidemiological research [21].

Several methods of regressing RMST on covariates, to control
for confounding or increase estimation efficiency, have been de-
veloped [22-24]. Karrison [22] considered RMST regression un-
der a piecewise exponential model. Andersen et al. [23] devised
a pseudo-outcome that converts censored survival time to uncen-
sored pseudo-survival time and then used a generalized linear
model on the pseudo-survival time to estimate RMST. Tian et al.
[24] proposed an inverse probability of censoring weighted (IPCW)
estimating function to estimate RMST. Wang and Schaubel [25] de-
veloped an estimating function to estimate RMST under general
censoring mechanisms. We will use the [PCW estimating function
with identity link [24] as a comparator to our proposed method
in the simulation studies due to its ease of implementation and
popularity. Let Z; be a p-dimensional covariate vector (including
treatment indicator A;) of subject i with i =1, ..., n, where n is the
sample size. The regression coefficients § can be consistently esti-
mated by solving the estimating equation

n Ayi
Wb = L g

z(U; - B"z) =0,
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where BT denotes transpose of vector B and G(-) is the
Kaplan-Meier estimator of the censoring time C based on
{U*, 1-Ay), i=1,...,n}. The estimated regression coefficient

of treatment, BA, represents the conditional treatment effect on
RMST conditioning on covariates. Since RMST difference is collapsi-
ble, the conditional treatment effect equals the marginal treatment
effect. The variance of BA can be derived as a sandwich-type esti-
mator [24].

Proposed propensity score stratified rmst estimation in observational
studies

Propensity score adjustment is a popular strategy to removing
observed confounding in non-randomized studies [26,27]. Stratifi-
cation achieves a good balance between the technical complexity
and easiness of understanding and implementation [14]. By split-
ting the sample into several propensity score strata, the covariate
distribution becomes nearly identical between control and treat-
ment group within each stratum. Therefore, the strong ignorability
condition approximately holds and stratum-specific causal effects
can be unbiasedly estimated. As RMST difference is collapsible, the
stratum-specific effects can be pooled by weighted average to ob-
tain the marginal causal effect estimate. Specifically, it involves the
following steps:

Propensity score estimation

The propensity score is defined as the conditional probability
of treatment A =1 given a vector of observed covariates X [26].
We estimated the propensity score by fitting a logistic regression
on treatment indicator A with covariates X following the common
practice, although other estimation options are available [28,29].

Propensity score stratification

Depending on the sample size, we may stratify the sample into
five or ten strata [30]. Since our real data example has a large sam-
ple size, we chose to use ten equal-sized strata based on deciles
of the propensity score distribution. To ensure asymptotically un-
biased RMST estimates and nonzero variance estimates, T must
lie between the minimum event time and maximum follow-up
time (event or censored) of each treatment group in each stra-
tum [25,31]. When this requirement is not met for a given stratum,
it should be merged to the adjacent stratum. A more reasonable
value of 7 should be considered if this requirement is still not met
when the number of strata becomes less than five after merging.

Treatment effect estimation

The marginal treatment effect is estimated as a weighted aver-
age of stratum-specific treatment effects weighting by stratum size.
Let L be the number of strata and n; be the size of stratum [ with
I=1,...,L The total sample size n = Y"F_, n;. The stratum-specific
treatment effect is estimated by D, = §(5;(t) — Sjo(t))dt, where
§,1 (t) and §,o(t) are the Kaplan-Meier estimates of survival func-
tion for treatment and control groups in stratum [, respectively.
The marginal treatment effect is calculated by ¥ = Zle Pr(l)d, =
Z,L:1 (n;/n)¥,. Since strata are independent of each other, the vari-
ance of D is estimated by V(D) = Y°F_; (n;/n)2V (9;), where V(D)) is
the stratum-specific variance [21]. A possible improvement of this
stratified adjustment is to include regression modeling, where we
could use strata as a categorical covariate in an IPCW estimating
equation [24] with identity link function. Unlike the above strati-
fied estimation where treatment effect can vary across strata, this
method assumes that treatment effect is the same in all strata. The
benefit here is the potential gain in variance estimation due to the
use of regression models.
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Simulation study

Our simulation study consists of two parts—the first part con-
cerns with a randomized design with no confounding and the sec-
ond part concerns with an observational design with known con-
founders and other covariates.

Randomized assignment

A common misconception is that, due to the randomization, a
simple Cox pH model with only treatment indicator A provides an
unbiased estimate of the marginal treatment effect. In Figure Al
in Appendix A, we demonstrated that, under a true Cox pH model
with treatment A and an independent covariate X, the marginal HR
of treatment marginalizing over X is non-proportional, unless there
is no treatment effect. Thus, the marginal HR of treatment cannot
be summarized as a single value. The derivation of marginal HR is
included in Appendix A.

Our simulation generated the treatment indicator A from
Bernoulli distribution, an independent prognostic factor X from
N(0,1), potential survival times (T', T?) from Weibull distribution
[32], and truncated potential survival times U/ = min(TJ, 1), j =
0,1. The censoring variable C was generated from an exponen-
tial distribution with rate parameter 0.45 and the truncation time
T was set to 2.67, the 70th percentile of the censoring distribu-
tion. Detailed description of the simulation setup is included in
Appendix B. Five hundred datasets of sample size 500 were sim-
ulated.

We considered four simulation scenarios: proportional hazards
with no treatment effect (referred to as pH_null), proportional haz-
ards with some effect (pH_alt), non-proportional hazards with no
effect (NPH_null), and non-proportional hazards with some effect
(NPH_alt). We compared three estimation methods: Cox regression
with only A, Cox regression with A and X, and RMST difference be-
tween treatment groups without adjusting for X. The performance
metrics include the average of the 500-point estimates of treat-
ment effect, model-based standard error (SEM) which was the av-
erage of the 500 estimated standard errors, empirical standard er-
ror (SEE) which was the standard deviation of the 500-point esti-
mates, and 95% coverage probability (CP) which was the proportion
of the 500 95% confidence intervals that covered the true value.

As shown in Table 1, under pH_null, all three methods gener-
ate almost unbiased estimates of their target parameters and ad-
equate coverage probabilities. Under pH_alt, the marginal HR is a
non-constant function of time as illustrated in Appendix Figure A1,
and therefore cannot be estimated correctly by either of the two
Cox models. The Cox model with A and X unbiasedly estimates S,
the conditional HR of A, whereas the Cox model with only A cannot
even estimate 4 unbiasedly as shown by the large bias and poor
coverage probability. On the other hand, RMST difference gives un-
biased estimates of the marginal treatment effect on RMST. Under
nonPH_null and nonPH_alt, the Cox model with A and X gives bi-
ased estimates of S84 since it misspecifies the true non-proportional
model as proportional. RMST difference still provides almost unbi-
ased estimates of the marginal treatment effect and adequate cov-
erage probability.

Non-randomized assignment

The second simulation considers an observational setup with
four estimation methods. Since the first stimulation demonstrated
that the Cox model on HR is not valid for marginal treatment effect
estimation, we did not further consider it here.
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Table 1
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Performance of Estimation Methods for Marginal Treatment Effect Under Randomized Treat-
ment Assignment. (500 Simulated Datasets with n = 500 Each). True TE: true treatment effect.
Estimated TE: the average of the 500 estimated treatment effects. SEM: the average of the
500 model-based standard error estimates. SEE: the empirical standard error as the standard

deviation of the 500 TE estimates. CP:

95% confidence interval coverage probability

Scenarios Method True TE' Estimated TE ~ SEM SEE CP
pH_null
Cox with A 0 0.00 0.12 0.12 0.95
Cox withAand X 0 —-0.01 0.12 0.12 0.95
RMST difference 0 0.00 0.088 0.087 0.96
pH_alt
Cox with A - -0.36 0.13 0.13 0.79
Cox with Aand X -0.5 -0.51 0.13 0.13 0.95
RMST difference 0.25 0.25 0.090 0.090 0.95
nonPH_null
Cox with A - —-0.039 0.13 0.12 0.94
Cox withAand X 0 -0.14 0.13 0.14 0.79
RMST difference 0.087 0.086 0.077 0.077 0.96
nonPH_alt
Cox with A - -0.28 0.13 0.13 0.60
Cox with Aand X  -0.5 -0.47 0.13 0.14 0.94
RMST difference 0.27 0.27 0.079 0.079 0.95

* The true treatment effect (TE) for Cox regression with only A is the marginal HR of A that
varies over time and therefore cannot be represented by a single value except when the true
conditional log-HR of A is zero; the true TE for Cox regression with A and X is the conditional
log-HR of A; the true TE for RMST difference is the marginal treatment effect on RMST.

Propensity score stratified estimation

This is the proposed method described in the previous section.
Samples were stratified into ten equal-sized strata based on the
deciles of the propensity score distribution. RMST difference was
estimated nonparametrically in each stratum separately and then
pooled by weighted average to obtain the marginal treatment ef-
fect estimation.

Propensity score strata adjusted regression estimation

This is the second way of using propensity score strata, as de-
scribed in the previous section. Ten strata are included as a cat-
egorical variable with ten levels in the IPCW estimating equation
with a linear model on RMST.

Confounder-adjusted regression

We again used the IPCW estimating equation to estimate treat-
ment effect but included individual confounders instead of the
propensity score strata indicators as covariates in the regression
model on RMST.

Crude comparison

RMST was directly compared between control and treated
groups without adjusting for confounders.

We generated nine independent covariates from either nor-
mal or Bernoulli distribution. Potential survival times (T, T%) were
generated from Weibull distributions in a similar way as in the
first part of simulation. We considered two data-generating mod-
els, one using the linear form of covariates and the other using var-
ious nonlinear functional forms of covariates (details in Appendix
B).

The treatment status A was generated from Bernoulli distribu-
tion with P(A = 1) defined by a logit model

logit(P(A=1)) = —1.7 + 0.5X5 + 0.25X4 — 0.25X5
+ 0.5Xs — 0.5X7 4+ 0.5Xg + 0.5Xg.
The sample size was set to 2000. The proportion of treated sub-
jects in the sample was around 20%. The censoring variable C was

generated depending on X5 and Xg. Truncation time T were de-
termined similarly as before. In this setting, covariate X3, X4, Xs,
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and Xz were confounders. We considered the same four simulation
scenarios as in the randomized case. Five hundred datasets were
simulated for each combination of data-generating model and sce-
nario.

The simulation results of the first data-generating model with
only linear covariates are summarized in Table 2. Both propensity
score stratification and propensity score strata adjusted regression
give virtually unbiased estimates of marginal treatment effect on
RMST and adequate coverage probabilities in all four scenarios. The
latter method provides smaller estimated variance than the former
method, which reflects the advantage of regression modeling over
nonparametric estimation. Confounder-adjusted regression method
exhibits some degree of bias and unsatisfactory coverage probabil-
ities. The crude estimation method gives highly biased estimates
and poor coverage probabilities across all scenarios. Similar find-
ings are observed with the second data-generating model (results
summarized in Appendix B).

Real data analysis

The ARIC study [13] is an ongoing large prospective cohort
study in four U.S. communities. One of its major themes is to in-
vestigate risk factors of stroke [33]. We applied the four methods
compared in non-randomized simulation to estimate the marginal
causal effect of baseline smoking status on the incident ischemic
stroke measured as 20-year RMST. The analysis results are sum-
marized in Table 3. The pattern of the results of the four methods
is consistent with the simulation results. Based on the propensity
score stratified analysis, the average ischemic stroke-free time over
20 years is 4.5 months (95% confidence interval: 3.0, 6.0 months)
shorter among current smokers compared to that among non-
current smokers. Details of the ARIC study and our analysis were
relegated to Appendix C.

Discussion

In this paper, we clarified the utility of HR as a causal ef-
fect measure, which is generally not a valid marginal effect mea-
sure even under randomized designs. Alternatively, RMST differ-
ence provides a valid marginal causal effect measure for survival
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Table 2
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Performance of Estimation Methods for Marginal RMST Treatment Effect under the Data-
generating Model with Linear Covariates (500 Simulated Datasets with n = 2000 Each). True TE:
true treatment effect. Estimated TE: the average of the 500 estimated treatment effects. SEM: the
average of the 500 model-based standard error estimates. SEE: the empirical standard error as the
standard deviation of the 500 TE estimates. CP: 95% CI coverage probability

Scenario Method True TE  Estimated TE = SEM SEE CP
pH_null
PS Stratification 0.00 -0.02 0.15 0.14 0.95
PS Strata Regression —0.08 0.12 0.10 0.93
Confounder Adjusted -0.11 0.12 0.11 0.87
Crude -0.52 0.11 0.11 0.006
pH_alt
PS Stratification 0.42 0.40 0.16 0.14 0.95
PS Strata Regression 0.34 0.12 0.11 0.92
Confounder Adjusted 0.31 0.12 0.11 0.88
Crude -0.11 0.12 0.12 0.008
nonPH_null
PS Stratification 0.13 0.12 0.12 0.11 0.96
PS Strata Regression 0.15 0.10 0.087 0.97
Confounder Adjusted 0.17 0.063 0.063 0.91
Crude -0.27 0.090 0.087 0.006
nonPH_alt
PS Stratification 0.43 0.43 0.13 0.12 0.95
PS Strata Regression 0.45 0.10 0.091 0.97
Confounder Adjusted 0.45 0.066 0.065 0.94
Crude 0.021 0.096 0.092 0.008

Table 3

Estimated effect of smoking status (current smoker vs nonsmoker) on 20-y RMST of incident ischemic stroke in ARIC study

Estimated difference in RMST in months

Estimated SE

95% CI (Lower Bound)  95% CI (Upper Bound)

Crude -4.19 0.68 —5.52 -2.85

PS stratified -4.51 0.75 -6.00 -3.03

PS strata-adjusted —4.48 0.70 -5.85 -3.11

Covariate-adjusted  —5.19 0.67 -6.51 -3.87
outcomes. It is more advantageous because (i) it does not change Acknowledgments

over time; (ii) it is collapsible; (iii) it does not depend on propor-
tional hazards assumption. We have seen an increased acceptance
of RMST measures in randomized clinical studies. However, the use
of RMST in observational epidemiologic studies is still limited.

One reason for the limited use of RMST in epidemiologic re-
search may be that its interpretation is quite different from that of
a hazard. It must be interpreted in the context of a specified time
horizon. However, life expectancy over a time horizon t, such as
10-year life expectancy, may be more intuitive to patients, clini-
cians, and epidemiologists [16,34-36]. Another reason for its lim-
ited use in epidemiology may be due to the lack of methodology
development, which requires additional confounding adjustment.
Only a couple of papers discussed incorporating propensity score
weighting adjustment into RMST estimation [11,12]. In this article,
we propose to estimate covariate adjusted RMST difference by the
popular propensity score stratification method, which is easily un-
derstood by epidemiologists, and thereby promote the use of RMST
in epidemiologic research. Nevertheless, more propensity score-
based adjustment methods should be developed for epidemiolo-
gists to use, including matching-based RMST estimation and more
refined stratified RMST methods.

One limitation of our work is that propensity score adjustment
is known to only remove confounding due to observed covariates.
In many epidemiologic studies, the hidden bias due to unobserved
covariates remains a major threat to the validity of the scientific
findings. A popular approach to assessing the potential impact of
unmeasured confounding is via sensitivity analysis [37]. There is
only limited discussion on sensitivity analysis comparing survival
curves and it would be desirable to develop sensitivity analysis
strategies for RMST estimators [38].
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