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Abstract

We consider a special class of unipotent periods for automorphic forms on a finite cover of a
reductive adelic group G(Ax), which we refer to as Fourier coefficients associated to the data
of a “Whittaker pair’. We describe a quasi-order on Fourier coefficients, and an algorithm
that gives an explicit formula for any coefficient in terms of integrals and sums involv-
ing higher coefficients. The maximal elements for the quasi-order are ‘Levi-distinguished’
Fourier coefficients, which correspond to taking the constant term along the unipotent rad-
ical of a parabolic subgroup, and then further taking a Fourier coefficient with respect to
a K-distinguished nilpotent orbit in the Levi quotient. Thus one can express any Fourier
coefficient, including the form itself, in terms of higher Levi-distinguished coefficients. In
companion papers we use this result to determine explicit Fourier expansions of minimal and
next-to-minimal automorphic forms on split simply-laced reductive groups, and to obtain
Euler product decompositions of certain Fourier coefficients.
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1 Introduction
1.1 Main results

In this paper we establish a reduction principle for unipotent periods of an automorphic form
on a reductive algebraic group G defined over a number field K. Such periods generalize
Fourier coefficients for classical modular forms, and are important because they often encode
quantities of arithmetic interest. Our motivation comes in part from string theory, where
certain so-called non-perturbative effects can be expressed in terms of unipotent periods [23,
24.35]. This is explored further in a companion paper [21] that uses the results of the present
paper in an essential way.

We work in the useful generality of a pair (G, I'), where G is a finite central extension of
the adele group G(A) = G(Ak),andI" C G isadiscrete subgroup on which the covering map
restricts to an isomorphism with G(K). This class includes the important central extensions
defined in [8]. Also in this case, by [32, Appendix I], the covering map has a canonical
splitting over every unipotent subgroup N = N(A), which we will use to identify N as a
subgroup of G. If n is a left I"-invariant function on G, and y is a character of N that is trivial
on N N T, then the (N, x)-unipotent period of 7 is the integral

U plnl(g) = /[N] n(ng)x(m)~'dn, [N]:=(NNT)\N. (1.1)

Since [N] is compact, the period integral converges under mild conditions on n; although it
is quite unlikely that one can say anything useful in the generality of any N and .

In this paper we consider a special class of unipotent periods Fg,, associated to certain
pairs (S, ¢) € gx g*, where g = g(K) is the Lie algebra of G(K). We refer to these as (S, ¢)-
Fourier coefficients, or simply as Fourier coefficients. As we explain in the next section, this
class includes the unipotent periods studied in the theory of automorphic forms [14-17,29],
which we call neutral Fourier coefficients, and also those arising in string theory [13,24,35],
which we call parabolic Fourier coefficients.
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A reduction principle for Fourier coefficients... 2681

Our main result is a reduction algorithm that allows us to express a given Fourier coefficient
in terms of others, which are higher with respect to a natural quasi-order »=. This is the more
important direction for applications. It is much easier to write a Fourier coefficient in terms
of lower coefficients; such expressions tend to be simpler but less useful — see Proposition
4.3.3 and its proof below, which uses the techniques of [19].

We now give a quick sketch of the essential ideas. We say S € g is Q-semisimple if ad(S)
acts semisimply on g with eigenvalues in , and we write gf for the A-eigenspace. We set

gi)\ = ®M>Agfu gi)\ = @uzkgir etc.,
with similar notation for g*. We say (S, ¢) € g x g* is a Whittaker pair if S is Q-semisimple
and ¢ € (g%)% ,- In this case ¢ is given by the Killing form pairing with a unique nilpotent
element f, in e »- We write g, C g for the stabilizer of ¢, and we set
nse =02, ® (87 Ngy) (12)

Then ng 4, is a nilpotent Lie algebra and ¢|n , is a Lie algebra character. By exponentiation
we get a unipotent subgroup Ng , C G and a character xg ,, and we define

Fs.plnl = Ung ,.xs.,) 1] (1.3)

We now define a -invariant quasi-order on Whittaker pairs. If o = (H, ¢) and @’ =
(H', ¢’) are Whittaker pairs, then we write @ 3= @, first in the following two basic cases:

(1) if ¢’ = ¢, H and H' commute, and we have
g Ny <oy (1.4)

(ii) if H = H’, and there is a parabolic subalgebra p = [ + n defined over K such that

H, fyel, fo— fyen (1.5)
More generally, we write @ 3= o’ if there is a sequence @y, ..., w, with | = @,
@, = w’',and elements yy, ..., ¥,—1 in [ such that @; = y; - @w;+ in the sense of (i) or (ii).

We will also consider separately the quasi-orders given by (i) and (ii). Thus we will write
Hzp H'if (H,9) 7z (H',¢); and ¢ =4 ¢ if (H,9) = (H,¢). (16

We say that a pair (H, @) is Levi-distinguished if H is maximal with respect to ’=,. In
this case, Fp , reduces to a K-distinguished coefficient on a Levi quotient of a parabolic
subgroup, by first taking the constant term along the unipotent radical—see Sect. 2.3 for
details.

Algorithm A, our main result, described in Sect. 4, relates the Fourier coefficients for two
pairs (S, ¢) = (H, ¢) and gives an explicit formula of the form

FHplnl = Mf_l(fs,q;[ﬂ]) + higher terms. (1.7)

Here the “main” term MZ is a discrete sum of integral transforms that we describe shortly.
The “higher” terms are similar expressions, detailed in Sect. 4, involving coefficients Fp
such that (H’, ¢') 3= (H, ¢) but ¢’ is not in the I'-orbit of ¢, which implies that the closure
of the G(C)-orbit of ¢’ properly contains that of ¢. By iteration, we deduce that

(a) any Fpy 4 can be expressed via Levi-distinguished Fy v satisfying (S, ¥) = (H, ¢).
(b) in particular, n = F,0[n] can be expressed in terms of Levi-distinguished Fg,y; .
(c) if n is cuspidal (see Sect. 4.4) it can be expressed in terms of K-distinguished F .
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2682 D. Gourevitch et al.

We now define Mfi For this we write (gfk)ﬁ = gfk N gi etc., and we set

wi= (g7, vi=@")E,, wi=@)3,. (1.8)

We regard these as nilpotent subquotients of the Lie algebra g via the identifications

wz @S /@S, v = e /@DE el (o +@lDs). a9)
and we define corresponding subquotients of the group G as follows:
U =Expu®xk 4A), V =Expb®xA), Q=Exp(). (1.10)

We note that 2 is a discrete group since to C g = g(K) is a lattice. We now set

M (Fs i) = Y /V /[U]fs,¢[n](wvug)dudv geG. (L1

we

There is an important special case where the higher terms in (1.7) vanish. We write ¢ > ¢
if ¥ =g ¢ for some H,but ¢ ¢ I" - ¢, and we say ¢ is in the Whittaker support WS(n) of n
if Fs 4»[n] # 0 for some S, but if y» > ¢ then Fg [n] = O for all S.

Theorem B (see Sect. 4.2) If ¢ is in WS(n) and (S,¢) = (H, @) then Fp ,ln] =
M3y (Fs.pln).

1.2 Classes of Fourier coefficients and further results

The most natural way to complete a nilpotent ¢ € g* to a Whittaker pair is provided by the
Jacobson—Morozov theorem. Specifically, ¢ is given by the Killing pairing with a unique
nilpotent f € g, and f in turn can be completed to an s[,-triple (e, &, f). Then (h, @) is
a Whittaker pair. We will call such pairs, and the corresponding coefficients, neutral. Such
coefficients were extensively studied in [14—17,29], where the name “Fourier coefficient”
was reserved exclusively for this case.

Many applications use the class of parabolic Fourier coefficients, which are period inte-
grals with respect to a character of the unipotent radical U of a parabolic subgroup P = LU.
Despite their prevalence in the literature, these have in general not been evaluated in terms
of known functions on G(A).

An important subclass of parabolic Fourier coefficients are those with respect to max-
imal unipotent subgroups, which we call Whittaker coefficients. When the automorphic
form is spherical and the unipotent character is non-degenerate these factorize over primes
and the non-archimedean factors can be explicitly computed using the Casselman—Shalika
formula [10]. By Lemma 2.3.9 below these Whittaker coefficients are precisely the Levi-
distinguished Fourier coefficients corresponding to nilpotent orbits that are principal in Levi
subalgebras defined over K. We will call such orbits P L-orbits (see Sect. 2.2 below for more
details).

It follows from [19] that for any Whittaker pair (H, ¢) there exists 7 € g such that
(h, @) is aneutral pair and H =, h (see Corollary 3.2.2 below). Moreover, by [19, Theorem
Cl, if Fj 4[n] = 0 for some neutral pair (2, ) then Fg o[n] = 0 for any Whittaker pair
(S, @) with the same nilpotent element ¢. Thus, neutral coefficients determine the Whittaker
support WS(#) and are often used to define it. More generally, if S >=, H then Fg , can be
obtained from Fp , by an integral transform (that can also involve discrete summation), see
Proposition 4.3.3 below.
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A reduction principle for Fourier coefficients... 2683

As an illustrative example we may take the coefficient B = Fg, to be a Whittaker
coefficient with a character supported only on the exponentiated root space of a single simple
root, and the coefficient C = Fp , to be a Fourier coefficient with respect to the unipotent
radical of the standard maximal parabolic subgroup obtained from the same root, together
with a restriction of the same character. Then, B can be obtained as a period integral of
C over the quotient of the unipotent groups. Theorem B and Algorithm A allow us to go
in the opposite direction and obtain C from B and from Levi-distinguished coefficients
corresponding to higher orbits.

Let us discuss the relations between these classes of Fourier coefficients referring to Sect.
2 for more details. By Corollary 4.4.6 below, for any Whittaker pair (H, @), there exists an
S such that (S, ¢) is a Levi-distinguished Whittaker pair, and S =, H.In Lemma B.7 we
show that Levi-distinguished Whittaker pairs have maximal dimension of ng, among all
Whittaker pairs with the same ¢. By Lemma 2.3.9 below, if ¢ is a principal nilpotent in L
then Fp , is a Whittaker coefficient. To summarize, for any orbit O we have that

neutral < any < Levi-distinguished © Whittaker. (1.12)

In particular, for the zero orbit {0}, the neutral coefficient is the identity map Fo o[n] = 7,
while the Whittaker coefficient is the constant term map. From this summary we conclude that
if all Fourier coefficients corresponding to non-PL orbits identically vanish then Algorithm
A allows us to express 7, and all its Fourier coefficients, through its Whittaker coefficients.

In the case G = GL,(A) this generalizes the classical result by Piatetski-Shapiro and
Shalika [34,37] that expresses every cuspidal form through its Whittaker coefficients with
respect to non-degenerate characters. We explain how Algorithm A allows us to reproduce
this result in Sect. 5.3 below.

1.3 Related works

Our main tool is a generalization of the deformation technique of [18,19], which in turn
builds on the root-exchange method of [15,17].

There are three crucial differences between the approach in the current paper and that of
[18]: we consider automorphic forms (rather than mostly local representations), we consider
the general case of the relation S =, H (rather than requiring H to be neutral), and we give
explicit formulas relating various Fourier coefficients, while [18] concentrates on vanishing
properties. A special case of Algorithm A in which (H, ¢) is neutral can be established
using the technique of [18]. One could combine this with a similar, but easier, statement
(Proposition 4.3.3 below) to relate any Fy , to any Fg ,. However this would be less useful
than Algorithm A, which provides more compact expressions since it proceeds directly from
(H, @) to (S, ) without a detour through neutral coefficients.

One can show that for split simply-laced groups the so-called minimal and next-to-minimal
orbits are always PL. Thus Algorithm A and Theorem B give formulas for automorphic forms
attached to the minimal and next-to-minimal representations of simply-laced groups, as well
as all their Fourier coefficients, in terms of their Whittaker coefficients. We develop these
formulas in a companion paper [21]. Another application of Theorem B is to deduce that
certain Fourier coefficients are Eulerian [20].

A Fourier expansion for the discrete spectrum of GL,, (A) is provided in [28], generalizing
[34,37]. In Sect. 5.3 below we apply Algorithm A to provide a further generalization.
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1.4 Structure of the paper

In Sect. 2 we give the definitions of the notions mentioned above, as well as of Whittaker
triples and quasi-Fourier coefficients. These are technical notions defined in [18] and widely
used in the current paper as well.

In Sect. 3 we relate Fourier and quasi-Fourier coefficients corresponding to different
Whittaker pairs and triples. To do that we further develop the deformation technique of
[18,19], making it more general, more explicit, and better adapted to the global case.

Section 4 contains the main results of the paper. In Sect. 4.1 we describe Algorithm A.
The algorithm proceeds by deforming a Whittaker pair (H, ¢) to a bigger pair (S, ¢) along
a straight line H + (S — H) with t € [0, 1] in the Cartan subalgebra. At certain critical
values ¢, additional quasi-Fourier coefficients (associated with higher orbits) are generated.
These can be rewritten in terms of higher Fourier coefficients by proceeding in a straight
line away from a neutral element, see Algorithm 4.1.1. The final result consists of the main
term for (S, ¢) together with these higher Fourier coefficients. In Sect. 4.2 we prove that
the algorithm is correct and terminates in a finite number of steps. We also derive Theorem
B. In Sect. 4.3 we prove additional results, including a formula for Fs , in terms of Fg o
(this direction is opposite to that of Theorem B). In Sect. 4.4 we give a constructive proof
that for any Whittaker pair (H, ¢), there exists an S such that (S, ¢) is a Levi-distinguished
Whittaker pair, and S =, H.

In Sect. 5 we provide explicit examples in the cases SL4, GL,, Sp, and Heisenberg
parabolics of arbitrary simply-laced groups.

Two appendices contain proofs of geometric lemmas on PL-orbits and on our order relation
on rational nilpotent orbits.

2 Preliminaries on nilpotent orbits and Whittaker pairs

In this section, we fix basic notation for Whittaker pairs and Fourier coefficients. We also
introduce some new preparatory results.

2.1 Whittaker pairs

As in the introduction, let K be a number field, o its ring of integers, and let A = Ax be its
ring of adeles. Let T = {z € C : |z| = 1} and fix a non-trivial additive character x : A — T,
which is trivial on K. Then x defines an isomorphism between A and the character group
A= Hom(A, T) via the map a + x,, where x,(b) = x(ab) for a,b € A. Furthermore,
this isomorphism restricts to an isomorphism

A/K:=HomA/K,T)={reh :rixk=1)={xa:a e K} =K, @.1)

which means that we may parametrize characters on A trivial on K by elements in K.
Let G be a reductive group defined over K, G(A) the group of adelic points of G and let
G be a finite central extension of G(A). That is,

15> G2 Gwn -1 2.2)

for some finite group C.
We assume that there exists a section G(K) — G of the projection pr : G—+G(A). Fix
such a section and denote its image in G by I'. By [32, Appendix I], the cover G—G(A)
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A reduction principle for Fourier coefficients... 2685

canonically splits over unipotent subgroups, and thus we will consider such subgroups as
subgroups of G. Let g(K) denote the Lie algebra of G(K) = I" which we will often abbreviate
to g. Let v be a nilpotent subalgebra of g and let v(A) := v ®k A be its adelization. As in the
introduction, we denote by Exp(v) the unipotent subgroup of I' obtained by exponentiation
of v using the above split over unipotent subgroups, and we denote by V := Exp(v(A)) the
unipotent subgroup of G obtained by exponentiation of v(A). We note that Exp(v) = VNT
and for convenience we will denote by [V'] the compact quotient (V N ")\ V.

To conveniently describe different unipotent subgroups of G and characters on these
subgroups we introduce the following notion.

Definition 2.1.1 A Whittaker pair is an ordered pair (S, ¢) € g x g* such that S is a rational
semi-simple element (that is, a semi-simple element for which the eigenvalues of the adjoint
action are in Q), and ad*(S)p = —2¢.

We will often identify ¢ € g* with its dual nilpotent element f = f,, € g with respect
to the Killing form (, ). We will say that ¢ is nilpotent if f, is a nilpotent element of g.
Equivalently, ¢ € g* is nilpotent if and only if the Zariski closure of its coadjoint orbit
includes zero. For example, if (S, ¢) is a Whittaker pair then ¢ is nilpotent.

For any rational semi-simple S € g and 1 € Q we introduce the following notation

g ={Xeg: IS, XI=2X}, o =P, & =ded,. @3
neQ
n>A
and analogously for g‘i , and gi ,.» with a similar use of notation for g*.

For any ¢ € g* let g, be the centralizer of ¢ in g under the coadjoint action and define an
anti-symmetric form w,, : g X g = Kby wy (X, Y) = ¢([X, Y]). We extend ¢ and w, to a
functional and an anti-symmetric form on g(A) respectively by linearity. Given a Whittaker
pair (S, ¢) € g x g*, we letu := 9§1 and define

ngy ={X€u: w,(X,Y)=0forallY eu} and Ns,:=Exp(ns,(4)) (2.4
which, by Lemma 3.2.5 below, can also be written as
s =02, © (8] Ngy)- 2.5)

Note that ng,, is an ideal in u with abelian quotient, and that ¢ defines a character of ng .
We define a corresponding character x, on N, o, trivial on Ng , N T", by

Xo () == x(p(logn)) = x((f,.logn)). (2.6)

More generally, let t € u be any isotropic subspace (not necessarily maximal) with
respect to wy |y, that includes ng . Note that ng , € v C u, and that ng , and v are ideals in
u.Let R = Exp(t(A)). Then X(/If : R — T defined by X(/If(r) = x(¢(logr)) is a character
of R trivial on R N I'. Indeed, since t is isotropic, we have that wy|.a) = 0 and thus
x§ € Hom(R, T), and ¢(X) € K for X € v(K).

Definition 2.1.2 We call a function on G an automorphic function if it satisfies the following
properties:

(i) invariant under the left action of T,
(ii) finite under the right action of the preimage in G of [ [4,ie , G(01), and
(iii) smooth when restricted to the preimage in G of [] G(K,).

infinite v
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We denote the space of all automorphic functions by C*°(I'\G).

Definition 2.1.3 Let (S, ¢) be a Whittaker pair for g and let R, N, x, and Xq’f be as above.
For an automorphic function n, we define the Fourier coefficient of n with respect to the pair
(S, @) tobe

Fs.olnl(g) = / n(ng) xo ()~ dn. 2.7)
[NS,¢]

We also define its R-Fourier coefficient to be the function

FE () = / 1r9) xR dr. 28)
[R]
Observe that if = denotes a subrepresentation of C*°(I"\G) that contains 7 then Fg ,[7] and

F § oln] are matrix coefficients corresponding to the vector n €  and the functional on the
space of automorphic functions defined by the integrals above.

Note that Fyo[n] = n. For a general Whittaker pair (S, ¢), Fs [n](g) is a smooth
function on G in the above sense, but is not invariant under I" any more. On the other hand,
its restriction to the joint centralizer G,y of S and ¢ is left G5 , N I'-invariant. As shown in
[14], if n is also 3-finite and has moderate growth, then the restriction of 1 to G, still has
moderate growth, but may stop being 3-finite.

Remark 2.1.4 In[19, Sect. 6] the integrals (2.7) and (2.8) above are called Whittaker—Fourier
coefficients, but in this paper we call them Fourier coefficients for short.

Definition 2.1.5 A Whittaker pair (&, ¢) is called neutral if either (h, ¢) = (0,0), or h
and the Lie algebra element f = f,, that corresponds to ¢ under the Killing form pairing
can be completed to an sl-triple (e, &, f). Equivalently, (%, ¢) is called neutral if the map
X +— ad*™(X)e defines an epimorphism gg—»(g*)’i »»and i can be completed to an sl-triple.
For more details on sl-triples over arbitrary fields of characteristic zero see [7, Sect. 11].

Definition 2.1.6 We say that (S, ¢, ¢) is a Whittaker triple if (S, @) is a Whittaker pair and
¢ e @)l

For a Whittaker triple (S, ¢, ¢'), let U, R, and N5 o be as in Definition 2.1.3. Note that
@ + ¢’ defines a character of t. Extend it by linearity to a character of t(A) and define an
automorphic character y 4 of R by x (fw, (exp X) := x(¢p(X) + ¢'(X)). For an example
for this notation see Sect. 5.2 below.

Definition 2.1.7 For an automorphic function n, we define its (S, ¢, ¢’)-quasi Fourier coef-
ficient to be the function

Fsp.0ll(g) := / Ko+ ) n(ng)dn. 2.9)
[Ns,e]
We also define its (S, ¢, ¢’, R)-quasi Fourier coefficient to be the function

ol = [ 1l n)dr 2.10)
[R]
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Definition 2.1.8 We call a K-subgroup of G a split torus of rank m if it is isomorphic as a
K-subgroup to GL}'. We call a Lie subalgebra [ C gaK-Levi subalgebra ifitis the centralizer
of a split torus.

Remark 2.1.9 We note that the Lie algebra of any split torus is spanned by rational semisimple
elements. Consequently, a subalgebra of [ C g is a K-Levi subalgebra if and only if it is the
centralizer of a rational semisimple element of g. Another equivalent condition is that [ is the
Lie algebra of a Levi subgroup of a parabolic subgroup of G defined over K.

For convenience, we fix a complex embedding o : K< C, which allows us to map a
I"-orbit O in g to a G(C)-orbit in g(C) := g ®,x) C. One can show, using [12], that the
complex orbit corresponding to O does not depend on o. However, we will not need this fact.

Definition 2.1.10 Let (H, ¢) and (S, ¢) be two Whittaker pairs with the same ¢. We say that
(H, ¢) dominates (S, ¢) if H and S commute and

g Na, c ¥y (2.11)

This relation is denoted S =, H in the introduction.

2.2 Principal nilpotent elements, PL elements and standard Whittaker pairs

We introduce some notions for coadjoint nilpotent orbits under the action of I". For general
results on nilpotent orbits over algebraically closed fields see [9,11].

Definition 2.2.1 We say that a nilpotent orbit under I" in g* is principal if it is Zariski dense
in the nilpotent cone N (g*). We say that ¢ € g* is a principal nilpotent element if its orbit
is principal.

We say that a nilpotent ¢ € g* is principal in a Levi (or PL for short) if there exists a
K-Levi subalgebra [ C g and a nilpotent element f € [ such that the Killing form pairing
with f defines ¢ in g*, and a principal nilpotent element of [*. We call a nilpotent I"-orbit in
g* a PL-orbit if it consists of PL elements.

We remark that if G is quasi-split then a nilpotent element ¢ € g* is principal if and only
if it is regular, i.e. the dimension of its centralizer equals the rank of g.

Lemma 2.2.2 Let n be the nilpotent radical of the Lie algebra of a minimal parabolic sub-
group Py. Then w intersects any nilpotent orbit under T in g.

Proof Let f € g be nilpotent, and complete to an sly-triple (e, 4, f). Then i defines a
parabolic subgroup P which then includes a minimal parabolic Q¢. Then Qy is conjugate to
Po under T (see [5, Thm. 4.13(b)]). Since f lies in the nilpotent radical of the Lie algebra of
P, its conjugate will lie in n. O

Definition 2.2.3 We say that a Whittaker pair (S, ¢) is standard if ng , is the nilpotent radical
of the Lie algebra of a minimal parabolic subgroup of G. In this case we will call the Fourier
coefficient Fg, , a Whittaker coefficient.

Remark 2.2.4 In [19, Sect. 6] the Whittaker coefficients are called principal degenerate
Whittaker—Fourier coefficients.

Corollary 2.2.5 A nilpotent element ¢ € g* is principal if and only if it can be completed to
a neutral standard Whittaker pair.
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Proof Let h complete ¢ to a neutral standard Whittaker pair. Then n, , = gﬁl = 9};0 is the
nilpotent radical of the Lie algebra of a minimal parabolic subgroup, and thus sois n := gi 1
Let f € n define ¢ through the Killing form pairing. Then we have [ f, B}io] = n and thus
I" f Nnis Zariski open, and thus Zariski dense, in n. The statement follows now from Lemma
222.

Conversely, let ¢ € g* be a principal nilpotent, and let (e, &, f) be an slp-triple such that
f defines ¢ via the Killing form. Let @ denote the complex orbit of f and @ denote its
Zariski closure. Then @ = A (g) D g’io. Thus O is the Richardson orbit for gﬁo, and thus
dim O = 2dim gio. Now suppose by way of contradiction that the pair (%, ¢) is not standard.
Then gio is not a minimal K-parabolic subalgebra, i.e. there exists a smaller K-parabolic
subalgebra p with nilpotent radical n 2D gh<0. Butn ¢ N = O, and thus O is a Richardson
orbit for p, thus dim O = 2dimn > 2dim gﬁo = dim O which is a contradiction. |

Corollary 2.2.6 A nilpotent ¢ € g* is PL if and only if it can be completed to a standard
Whittaker pair (S, ¢).

Proof Let (S, ¢) be a standard Whittaker pair. Then S = h + Z where (h, ¢) is neutral and
commutes with Z. Then Z defines a Levi subalgebra [, and the Whittaker pair (%, ¢) is neutral
and standard in [. By Corollary 2.2.5, ¢ is principal in [.

Conversely, if ¢ is principal in [ and Z defines [ we let S := TZ + h for T € Q- big
enough. Then (S, ¢) is a standard Whittaker pair. |

Let us remark that in [19] a different definition of principal and PL elements was given.
The following lemma states the equivalence of the definitions.

Lemma2.2.7 Let ¢ € g* be nilpotent. Then

(i) @ is PL if and only if there exist a maximal split toral subalgebra a of g and a choice of
associated simple roots Tl such that ¢ € EB%_ et 92,» where gj;l_ denotes the dual of the
root space gq; .

(ii) If € @aien g(’;’_ then ¢ is principal in the Levi subalgebra given by those simple roots
o; for which the projection of ¢ to g;;l_ is non-zero.

Proof Let Za;el’l gofl_ - @a;el‘[ g;"tl_ denote the subset of vectors with all projections non-
zero. It is enough to show that ¢ € g* is principal if and only if there exist (a, IT) as above

suchthaty € 3, .1y 9o -

To show that, assume first that ¢ is principal. Then, by Corollary 2.2.5, ¢ can be completed
to a neutral standard pair (4, ¢). Then h defines a torus and simple roots, and we have
@ € Za,-en g,.- Conversely, give a and IT as above, we let & := Y- cia)’, where o are
the coroots given by scalar product with ¢;, and ¢; are chosen such that ¢ € (g*)’i 5+ Then
(h, @) is a standard Whittaker pair. Moreover, ¢ is a generic element of (g*)’i , and thus the
Jacobson—Morozov theory implies that (h, ¢) is a neutral pair. |

Remark 2.2.8 Note that for G = GL,(A) all orbits O are PL-orbits. In general this is,
however, not the case, see Appendix A for details.

2.3 Levi-distinguished Fourier coefficients
Definition 2.3.1 We say that a nilpotent f € g is K-distinguished, if it does not belong to a

proper K-Levi subalgebra [ C g. In this case we will also say that ¢ € g* given by the Killing
form pairing with f is K-distinguished. We will also say that the orbit of ¢ is K-distinguished.
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Example 2.3.2 The nilpotent orbits for Sp,, (C) are given by partitions of 2n such that odd
parts have even multiplicity. Each such orbit, except the zero one, decomposes to infinitely
many Sp,,, (Q)-orbits — one for each collection of equivalence classes of quadratic forms
01, ..., QO of dimensions m1, ...mj where k is the number of even parts in the partition
and m1, . ..my are the multiplicities of these parts. A complex orbit is distinguished over C
(i.e. does not intersect a proper Levi subalgebra) if and only if all parts have multiplicity one
(and thus there are no odd parts). To see the “only if” part note that if the partition includes
a part k with multiplicity two then the orbit intersects the Levi GLx XSpy(,_,. If & is odd
then this Levi is defined over Q and thus all Q-distinguished orbits correspond to totally even
partitions. If & is even then this Levi is defined over Q if and only if the quadratic form on the
multiplicity space of k is not anisotropic. Thus, we obtain that a necessary condition for an
orbit O to be Q-distinguished is that its partition A(O) is totally even, a sufficient condition
is that A(O) is multiplicity free, and for totally even partitions with multiplicities there are
infinitely many Q-distinguished orbits and at least one not Q-distinguished. For example,
for the partition (4, 2) all orbits in sps(Q) are Q-distinguished, for the partition 23 some
orbits are Q-distinguished and some are not, and all other partitions do not correspond to
Q-distinguished orbits.

Lemma 2.3.3 Every principal nilpotent element is K-distinguished.

Proof Let f € g define a principal nilpotent element via the Killing form. Suppose the
contrary: f lies in a proper K-Levi subalgebra [ of g. Let Z € g be a rational semi-simple
element such that [ = gOZ . Complete f to an slp-triple y := (e, h, f) in [. Then ad(Z) acts
by a scalar on every irreducible submodule of the adjoint action of y on g. Since [ # g, there
exists an irreducible submodule V on which ad(Z) acts by a negative scalar —c. Let v be a
highest weight vector of V of weight d, and let S := 7 + ¢~ '(d +2)Z. Thenv + f € gfz
and thus v + f is nilpotent. Since f is principal, v + f lies in the Zariski closure of I" f. On
the other hand, v 4+ f belongs to the affine space f + g¢, which is called the Slodowy slice to
I' f at f, and is transversal to I' f, contradicting the assumption that v + f lies in the Zariski
closure of I" f. O

Lemma2.3.4 Let f € g be nilpotent. Then all K-Levi subalgebras | C g such that f € land
f is K-distinguished in | are conjugate by the centralizer of f.

Proof Complete f to an sl-triple y := (e, h, f) and denote its centralizer by G,,. Let us
show that all K-Levi subalgebras [ of g that contain y and in which f is distinguished are
conjugate by G, . Let [ be such a subalgebra, L C G be the corresponding Levi subgroup,
and let C denote the maximal split torus of the center of L. Then C is a split torus in G,,. Let
us show that it is a maximal split torus. Let 7 2 C be a larger split torus in G,,. Then, the
centralizer of T in g is a K-Levi subalgebra that lies in [ and includes y, and thus is equal to
[.ThusT =C.

Since [ is the centralizer of T in G, T is a maximal split torus of G, and all maximal
split tori of reductive groups are conjugate (see [3, 15.14]), we get that all the choices of L
are conjugate.

Since all the choices of y are conjugate by the centralizer of f, the lemma follows. O

Definition 2.3.5 Let Z € g be a rational-semisimple element and [ denote its centralizer. Let
(h, @) be a neutral Whittaker pair for [, such that the orbit of ¢ in [* is K-distinguished. We
say that the Whittaker pair (h 4 Z, ¢) is Levi-distinguished if

g =gl =gy @ L, and gt =11 2.12)
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In this case we also say that the Fourier coefficient 7, 7 , is Levi-distinguished.

Remark 2.3.6 Let (h, ¢) be a neutral Whittaker pair for g. If ¢ is K-distinguished then Fj, ,,
is a Levi-distinguished Fourier coefficient. If a rational semi-simple Z commutes with z and
with ¢, and ¢ is K-distinguished in [ := gg then Fj, 1717, is a Levi-distinguished Fourier
coefficient for any 7 bigger than m /M + 1, where m is the maximal eigenvalue of & and M
is the minimal positive eigenvalue of Z. See also Lemma 4.4.5 for further discussion.

Lemma 2.3.7 ([19, Lemma 3.0.2]) For any Whittaker pair (H, @) there exists Z € g(l)" such
that (H — Z, @) is a neutral Whittaker pair.

Remark 2.3.8 In [19] the lemma is proven over a local field, but the proof only used the
Jacobson—Morozov theorem, that holds over arbitrary fields of characteristic zero.

Lemma 2.3.9 For any Whittaker pair (H, @), the following are equivalent:

(i) (H, @) is standard pair
(ii) (H, ) is a Levi-distinguished Fourier coefficient, and ¢ is a PL nilpotent.

Proof First let (H, ¢) be a standard pair. Then by Lemma 2.3.7, H can be decomposed as
H = h 4+ Z where (h, ¢) is a neutral pair and Z commutes with 4 and with ¢. Let [ and L
denote the centralizers of Z in g and G, and N := Npg ,. Then N is the unipotent radical
of a minimal parabolic subgroup of G, and L is a Levi subgroup of G. Thus, N N L is
the unipotent radical of a minimal parabolic subgroup of L. The Lie algebra of N N L is
ng N gg = g};] n gg. Thus, Exp(g}i_] n gg) is the unipotent radical of a minimal parabolic
subgroup of L. Since ¢ is given by Killing form pairing with f € g£71 N gg, we get by
Corollary 2.2.5 that ¢ is principal in [. Replacing Z by ¢ Z with ¢ large enough, we obtain
that (H, ¢) is a Levi-distinguished pair.

Now, assume that ¢ is a PL nilpotent, and let (H, ¢) = (h+ Z, ¢) be a Levi-distinguished
pair. Let [ = gg be the corresponding Levi subalgebra, and let f = f, be the element
of g that defines ¢. Since f is distinguished in [, and principal in some Levi subalgebra,
Lemmas 2.3.3 and 2.3.4 imply that f is principal in [. Thus, ng , N 1is the nilpotent radical
of the Lie algebra of a minimal parabolic subgroup of L and thus ng oy = ng o, N1 @ gfo
the nilpotent radical of the Lie algebra of a minimal parabolic subgroup of G. Thus (H, ¢)
is standard Whittaker pair. O

Lemma 2.3.10 Let (H, ¢) and (S, @) be Levi-distinguished Whittaker pairs with the same .
Then dimng , = dimng o

Proof By the definition of Levi-distinguished Whittaker pair, there exists a decomposition
H = h + Z such that ¢ is given by the Killing form pairing with a distinguished element
f € 1= gf and (2.12) holds. Let S = h’ + Z’ be a decomposition for S satisfying the
same properties, and let [ := gg/. By Lemma 2.3.4, [ and ' are conjugate by the centralizer
of f, and thus we can assume that [ = . By the Jacobson-Morozov theorem, & and h’ are
conjugate by the centralizer of f in . Now,

dimny , = dim %, + dim g% = dim [, + (dimg — dim [)/2 = dimng,. (2.13)

In Lemma B.7 (ii) below we show that Levi-distinguished pairs have maximal dimension
of ng,, among all Whittaker pairs with nilpotent element ¢.
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2.4 Order on nilpotent orbits and Whittaker support

Definition 2.4.1 We define a partial order on nilpotent orbits in g* = g*(K) to be the transitive
closure of the following relation R: (O, O') € R if there exist ¢ € O, rational semi-simple
H,Z € g,and ¢ € (g*)f0 N (g*)f2 such that ¢ € (g*)g N (g9, [H,Z] = 0, and
p+¢ €0

In the notation of the introduction, the conditions in the definition read ¢ + ¢’ =g ¢,
the parabolic subalgebra in (1.5) being gfo. In Appendix B, we study these rational orbits
in more detail. In particular, in Corollary B.3 we prove that this is indeed a partial order, i.e.
that R is anti-symmetric. We will thus denote © < O’ (or O' > O) if (O, O') lies in the
transitive closure of R, and O < O’ if O < O" and O # O’. By Corollary B.2 below this
implies an inequality on the dimensions of complexifications: dim O¢ < dim O(’C.

Lemma2.4.2 [f O > O, then for any place v of K, the closure of O in g(K,) := g @k K,
(in the local topology) contains O.

Proof Fix aplace v of K. Since G(K) is dense in G(K,), the closure of O’ equals the closure
of the saturation G(K,,)O’. Thus itis enough to show that forany Z € g,¢ € gg andy € gfo,
¢ lies in the closure of G(K,)(¢ + ). By [18, Lemma 2.18], there exist a central element
7' € g, apositive integer k and an algebraic group homomorphism i : KX — G*(K,) such
that k(Z — Z') = du(1), where G* denotes the adjoint group of G. Let A € K} be small,
and let g’ := p(A). Since the natural projection G — G4 is onto, the image of the map
between the K, -points G(K,)) — G*(K,) has finite index in G*(K,) (by [4, Corollary
6.4]), and thus for some power m, (g")" lies in this image. Let g € G(K,) be a preimage of
(g")™. Since ¢ € gg and ¢ € gfo, we have g"¢ = ¢, while g" — 0 when n — oo. Thus
g +v)— o m

Let us use this opportunity to mention that a similar argument in the 4th paragraph in the
proof of [18, Proposition 4.12] is imprecise, and should be replaced by the argument above.

Definition 2.4.3 For an automorphic function 1, we define WO(#) to be the set of nilpotent
orbits O in g* under the coadjoint action of G(K) such that Fj 4[] # 0 for some neutral
Whittaker pair (&, ¢) with ¢ € O. Using the partial order of Definition 2.4.1, we define the
Whittaker support WS(n) to be the set of maximal elements in WO(7).

Remark 2.4.4 Applying Lemma 2.4.2 to Archimedean places, we obtain that our order is
stronger than the closure (Bruhat) order on complex orbits, i.e. if O" > O then O(/C 2 Oc.
It is in general strictly stronger; for example one can show that the maximal elements with
respect to our order are the K-distinguished orbits. For G = GLy,, our order coincides with
the Bruhat order on complex orbits by [18, Proposition 7.5].

The definition of the Whittaker support WS of automorphic representations given in [18,
Sect. 8] uses the coarser Bruhat order on complex orbits. Thus, the WS defined in Definition
2.4.3 includes the WS used in [18, Sect. 8] but is frequently not equal to it.

3 Relating different Fourier coefficients

In this section we will introduce some standard tools used to relate different types of Fourier
coefficients. In the subsequent subsection we first relate Fourier coefficients for different
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isotropic subspaces for a single Whittaker pair. Then we relate Fourier coefficients along
deformations of Whittaker pairs, and lastly we explain the relationship between the conju-
gation of a Whittaker pair and the translation of the argument of a Fourier coefficient.

The statements in this section have partial local analogues in [18,19]. However, the state-
ments we give here are global and more explicit.

3.1 Relating different isotropic subspaces

We will now see how Fg , o and F § . AN be expressed through each other.

Lemma3.1.1 (cf. [19, Lemma 6.0.2] for a slightly weaker statement) Let n € C*°(I'\G), let
(S, ¢, ¢') be a Whittaker triple, ns o, be as in (2.4), and u := gil.

Let ng , C i C t be isotropic subspaces of u, and let it D vt be their orthogonal com-
plements with respect to wy|y. Let also I := Exp(i(A)), R = Exp(t(A)), I+ .= Exp(il (A))
and Rt = Exp(it(A)). Then,

Fspnl@) = / F§ g IMlug) du 3.1)
[R/1]
and
fé,wﬁtp’["](g) = Z fﬁ(p,(p/[n](yg)- (3.2)
yeEBxp(it/vl)

We will mostly use this lemma in the case i = ng,, for which il = u. The convergence
in (3.2) is absolute convergence, uniform in compact subsets of G.

Proof We assume that ¢ is non-zero since otherwise R = I = Ng . We have that / € R

with R /I abelian which means that (3.1) follows immediately from the definitions of F ; o0

and ]:R(p o . For (3.2) observe that the function (Xq;) ! f’ o0 [n] on R is left-invariant
under the action of / - (R N T"). In other words, we can 1dent1fy it with a function on

(I - (RNT)\R = Exp(r/i)\ Exp((v/) () =: [R/1], (3.3)

where the equality follows from the fact that R/ is abelian. Therefore, we have a Fourier
series expansion

Fpom@y = > ¢, r y@xXw, (3.4)
yelRr 0

where [R/I]" denotes the Pontryagin dual group of [R/I] and

Cy e (1) = f Y xS, @ ndu. (3.5)

[R]

The Fourier series (3.4) converges absolutely since the function 7 is smooth.
In particular, denoting by Id € G the identity element we obtain

]:é«ﬂ,(p’[”](ld): Z C¢,X:+w/(77)- (3.6)

velR/ 11N

Now observe that the map X — wy (X, -) = ¢ o ad(X) induces an isomorphism between
it / v and the dual space (t/i)*. Hence, according to equations (2.1) and (3.3), we can use
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the character x to define a group isomorphism

(I+*NT)/(RENT) — [R/IT"

u > Y, 3.7

where
Yu(r) = x(@([X,Y]), wu=expX and r =exp?. (3.8)
Hence, forallu € I NT and r € R we have
Vu(M) Xy (1) = X @UX, YD + ¢/ (X, YD X (@(Y) + ¢' (V) = x((¢ + (Y +[X, Y1)
= (¢ + )W) = Kpry (AdWY)) = x5 wru™).

Here we are taking again u = exp X, r = exp Y and the middle equality follows from the
vanishing of ¢ on giz. But now, from formula (3.5) and the fact that  is automorphic, we
have

punt 0 = [0 A0 00 = [ 1w .

[R] [R]
= / X (N @ rwydr = 7§, I, (3.9)
[R]
forall u € U NT. Combining this with (3.6) and (3.7) we obtain
F§ g nl1d) = > F§ i), (3.10)
ue(I+Nr)/(RLNT)

Applying this to 1 and its right shifts we obtain (3.2). The convergence is uniform when g
varies in compact subsets of G since 7 is infinitely smooth. O

Corollary 3.1.2 Let n € C*®(I'\G), let (S, ¢, ¢') be a Whittaker triple, and ns ,, and u be
as above. Let ¢, t' C u be two isotropic subspaces that include ng . Assume dim v = dim ¢/
and v N (t)+ C . Then

Fi gy Il(8) = / F&, o nlug) du. 3.11)
R/(RNR’)

Note that this is a non-compact, adelic, integral. It converges absolutely.

Proof Leti:=t N t’. We claim that the natural map p : t/i — i+/(¢)" is an isomorphism.
Indeed, from the assumption tN (¢') C ¢’ we have i = tN(¢/)* and thus p is an embedding.
Further, from the assumption dim v = dim v’ we obtain that the source and the target spaces
of p have the same dimension. Indeed,

dim(il/(t’)L) =dimu — dimi — (dimu — dimt’) = dimt — dimi = dim(z/i) (3.12)

Now, p defines a natural isomorphism Exp(it/(v)1) = Exp(t/i). Let I := Exp(i(A)) =
RN R’. From Lemma 3.1.1 we obtain

FE, ) = f Yoo FE, n(yug)du = f FE o mMugydu.  (3.13)
[R/1] Y EExp(¥/1) R/I
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The convergence of the integral follows from the convergence of the Fourier series
in (3.2).

This corollary can be seen as a version of the root exchange lemma in [15].

3.2 Relating different Whittaker pairs

Let (H, ¢) be a Whittaker pair.
Lemma 3.2.1 Let Z be as in Lemma 2.3.7. Then (H — Z, ¢) dominates (H, ¢).
Proof Denote h := H — Z. We have to show that (2.11) holds, i.e.
gpNgly Sy (3.14)

Since g, is spanned by lowest weight vectors, we have g, C g’éo and thus g, N ggl = {0}.

Corollary 3.2.2 Any Whittaker pair is dominated by a neutral Whittaker pair with the same
character .

Another example of domination is provided by the following proposition, that immediately
follows from [19, Proposition 3.3.3].

Proposition 3.2.3 If ¢ is a PL nilpotent then there exists Z € g such that (H + Z, ¢) is a
standard Whittaker pair and (H , ¢) dominates (H + Z, ¢).

From now till the end of the section let (H, ¢) be a Whittaker pair and Z € ggl be a
rational semi-simple element such that (H, ¢) dominates (H + Z, ¢). We will now consider
the deformation of the former Whittaker pair to the latter. For any rational number ¢ > 0
define

H :=H+1tZ, u := gf’l, v, = gf’l, and to; ;= gfl’. (3.15)

Definition 3.2.4 We call t+ > 0 regular if u; = u, 4, for any small enough ¢ € Q, or in
other words to; C gg. If ¢ is not regular we call it critical. Equivalently, ¢ is critical if
gf{f 4 gg which we may interpret as something new has entered the 1-eigenspace of H. For
convenience, we will say that = 0 is critical.

We also say that ¢ > 0 is quasi-critical if either g{{’ g gg or g? g gg . We may interpret
this as something new has entered either the 1-eigenspace or the 2-eigenspace. The latter
is related to new characters being available in the Whittaker pairs. Note that there are only
finitely many (quasi-)critical numbers.

Recall the anti-symmetric form wy, on g givenby w,, (X, Y) = ¢([X, Y']) and the definition
ng, o = Ker(wyly,).
Lemma3.2.5 ([19, Lemma 3.2.6])
(i) The form w, is ad(Z)-invariant.
(ii) Ker wy, = gy
(iii) Ker(wylw,) = Ker(wy) N 1;.

(iv) Ker(wyply,) = v @ Ker(wylrw, ).
(v) oy Ngy Sy foranys <t.
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We will often suppress the deformation H; and character ¢ and simply write n, = ngy, .
Similarly, define

lh=1lpp =@ Ng%) +nm, and t =ty 4= W NgZy) +npe.  (3.16)
We note that [; and v, are nilpotent subalgebras. The choice of notation for them comes from
‘left’ and ‘right’.
Lemma3.2.6 Foranyt > 0 we have

(i) l; and v; are ideals inu; and [l;, ¢ ] C [, Nt = ny.
(ii) 1, andv; are isotropic subspaces of u; of the same dimension, and the naturafl[projections
l;/ny — ut/t,L andt; /ny — U.,/I,l are isomorphisms. Furthermore, l; = g, ’ﬂgio@n,.
(iii) Suppose that 0 < s < t, and all the elements of the interval (s, t) are regular. Then

0 @ (0, N g%g) = vy ® (v N gZ) (3.17)
[ =t + (0, N gy) and ts N (10, N gy) = g N g§ N gy (3.18)

Moreover, ¢ is an ideal in |; and the quotient is commutative.

Proof 1t is easy to see that v, is an ideal in u, with commutative quotient, and that v, C
l; Nt; = n,. This proves (i). For the first part of (ii), note that (I; + v;)/n; is a symplectic
space in which the projections of [; and t; are complementary Lagrangians.

For the second part, we have by Lemma 3.2.5 that g{i’ Ngy € gfo and thus,

[ =0, ® (v, NgZy) @ (0, Ngy). (3.19)
For part (iii) note that
vs = (0, N gZ0) ® (0; N g%y, (3.20)
v, = (0, N gZg) & (0, NgZy). (3.21)
v, N g2y = (s NgZy) @ (0, N %), (3.22)
0, N g%y = (0, N g%y) @ (v, N g%y) . (3.23)

This implies (3.17). By Lemma 3.2.5 we have
ng = by @ (gp N10y) S 03 B (w3 N gZ), (3.24)
and thus
= by ® (s N gZ) @ (o Ng§ Ngy) and t; N (o, N gy) =109 N gf Ngy.  (3.25)
Hence, (3.17) and (3.19) imply (3.18), and the rest is straightforward. ]

Using Lemma 2.3.7, choose an sl,-triple (ey, i, f,) in gg such that 4~ commutes with H
and with Z, and ¢ is given by the Killing form pairing with f = f,. Define L, = Lp, , :=
Exp(lq,,o(A)), R = Ry, 4 := Exp(tph, ,(A)) and V; := Exp(v,(A)). From Lemmas 3.2.6
and 3.1.1 we get the following.

Lemma 3.2.7 Let (H, @) and (S, ¢) be Whittaker pairs such that (H, ¢) dominates (S, ¢).
Let Z =S — H, H = H +tZ and define R;, L; and V; as above.
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(i) Let t = 0 and ¢' € (§°)_" ,. Letalso I = L; andj = v, or I = R, and j =
respectively. Let A := Exp((ut /n,)io)(A). Then,

Frpo @ = > Fh e, (3.26)
Y €Exp(j/n)
5"'1{1,,W/[n](g)= / FH,.p.9'M(ug)du, (3.27)
[I/NH;(p]
Fh @) = / FR o Inlwg)dv, (328)

(it) Now, let 9_15 s < tfsluch that there are no critical values in the interval (s, t) and let
¢ € (@)2, N (@), Then,

F it o 1(@) = / Fh oM (ug) du (3.29)
[L:/Ry]

Fit oo m@ =Y Fy 01, (3.30)
yew’

where W' := (%)™ 0 (g%)% N (g)%,
(iii) Let0 < s <t and ¢’ as in (ii), and let € (g%)™ , N (g%)™. Then

M@= [ Furprpilede. G310
[Ry/V;] V'€V

where W' = (g*)™ N (g*)%+v.

Proof For part (i) we note that [; and t; are isotropic subspaces of u; containing n, by
Lemma 3.2.6(ii). Thus, the statement follows from Lemma 3.1.1 and Corollary 3.1.2. The
domain of summation for y in (3.26) follows from Lemma 3.2.6(ii). Note that for Corol-
lary 3.1.2 we have that [; Nt} = [, N, = n; and [, /n; = (u' /o")%, by Lemma 3.2.6.

For part (ii) we note from Lemma 3.2.6(iii) that t; C [, and that [, /v is commutative with

a set of representatives gllq’ NgyN 950- Indeed, I; /¢y projects naturally and isomorphically to
(81" Ngy) /(81" NgyNgf),and g} Ng, < g%, by Lemma3.2.5. Thus, (3.29) follows directly
by integration, while (3.30) follows from a Fourier expansion in L,/ R; with characters given
by ([;/ts)* for which we have the set of representatives W’ := (g*)f’l N (g*)% N (g*)iO

For part (iii), note first that N, := Ny, .o+vy and Ry = Ry, depend on different characters
which means that we cannot directly relate them using Lemma 3.2.6(iii) as we did in part (ii).
Instead, we will relate them both to V; = Exp(v,(A)) where v, := gf’l which does not
depend on any character.

We have that v, is an ideal in |; := [, , with commutative quotient. Since [; and vy :=
th, e are part of the same deformation with the same character we can then use (3.18) in
Lemma 3.2.6(iii) to see that v, is an ideal in ty with commutative quotient. Thus,

fﬁi,w,ww[nl(g): / Fy,[nl(ug)du where
[Rs/Vi]

@ Springer



A reduction principle for Fourier coefficients... 2697

Fulnlg) = / D08 Ky (). (332)
[Vi]

Furthermore, v, is an ideal in n} := lH,,p+y and n, /v, is commutative with a set of

representatives gfl’ N gy+y by (2.5). The statement now follows from a Fourier expansion of
Fv,[n1(g) in N//V; with characters given by (n}/v,)* for which we have the representatives

W= (@) N @) o

Lemma3.2.8 Let (S, ¢, ) be a Whittaker triple, n an automorphic function and y € T.
Then,

Fs.0.0[n1(8) = Fady)s,ad*(y)e.ad* )y [11(¥8) - (3.33)

Proof The proofis straightforward. We have that y, 1y (1) = xad* () (o) (YUY ™~ 1. Indeed,
the right-hand side equals

1 (A" @)@ + 1) (Ad() ogw) ) = x (@ + Y)(Ad(y ™) Ad(y) log i) = ey ()
(3.34)
We also have that gAAd(y)S = Ad(y)gf since, for x € g, [Ad(y)S, Ad(y)x] = Ad(p)[S, x].

Similarly, JAd*(y)p = Ad()/)g(p and thus, NAd(y)S,Ad*(y)p = Ad()/)tlsy(p.
Hence, using the automorphic invariance of 7, the right-hand side of (3.33) equals

n(y~uy ) xad () @) ' du

[Nad(y)s.ad* ()]

= / 1’ §) xad* (g (vu'y ™D du (3.35)
[y ' (Nad)s.aax)¥ ]

By the arguments above, this equals Fs o y[7]1(g). ]

4 The reduction algorithm

In this section we will present Algorithm A which details the steps for expressing a Fourier
coefficient Fy , for a Whittaker pair (H, ¢) in terms of Fourier coefficients Fg  with pairs
(S,¥) = (H, ¢) as described in Sect. 1.1 and detailed below in Proposition 4.1.3.

The proof of this proposition, which also shows that Algorithm A terminates in a finite
number of steps and produces the stated result, is given in Sect. 4.2.

After stating and proving some additional results in Sect. 4.3 that follow from the algorithm
(and are used in [20]) we show in Corollary 4.4.7 in Sect. 4.4 that Fg , can, by iteration, be
expressed in terms of Levi-distinguished Fourier coefficients associated to orbits which are
equal to or bigger than I"'g. In the same subsection we also discuss some further results in
Remark 4.4.8.

4.1 Statement of algorithm
Before stating Algorithm A, we first start with an algorithm that expresses any quasi-Fourier

coefficient Fp 4 o in terms of Fourier coefficients Fg, y such that either (H, ¢) dominates
S, ¥)orT'y > Te.
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Algorithm 4.1.1 Given a Whittaker triple (H, ¢, ¢), choose & that commutes with H such
that (h, ¢) is a neutral pair. This is possible by Lemma 2.3.7. Let Z = H — h, and let
H; := H +tZ for any ¢t € Q. Let mz denote the minimal positive eigenvalue of Z and M},
denote the maximal positive eigenvalue of h. Let T := (M}, + 2)/mz. If Z is central we set
myz to 1 for definiteness. Then for every i > 0 we have

H. H. H H.
9o = (9’;-)5 D (BziT)go’ 0% C 9.3 and g%, C g_7,. 4.1
Since g, C ggo, and since ad(h) has integer eigenvalues, we obtain

H H
NHyp =0T =91 =0-)- 4.2)

We get two cases depending on whether there are any quasi-critical ¢ in the interval (0, T).
Recall that the number of quasi-critical ¢ is in any case finite.

(i) If there are no quasi-critical ¢+ € (0, T') then, using Lemma 3.2.7(i) and (ii), we may
express Fp o o linearly in terms of the set of all Fp, ¢ o4y With ¥/ € W' =

@)% 0 (g%)% N (g%)%,. By (4.1) we have W' = {0} and LT = Ny, ,. By (4.2),

’ : Lz
¢’ vanishes on ng; , thus Flir oy

Frpol@ = Y F  Ilye)= Y Fy )= Y Furelnlye).
v €Exp(lo/no) v €Exp(lo/no) y€Exp(lo/no)

= FHy.0.¢' = FHr,p- Altogether we have

(4.3)

(ii)) Now assume that there are quasi-critical numbers in (0, 7) and let s be the smallest
one. Since s is the first quasi-critical value we have that (g”‘)i”_2 C (g”‘)f“'_2 because
this is the first point where something new may enter the —2-eigenspace. Decompose
¢ =¥ +¢" where ¥ € (g%)™ and ¢ € (g")™ ,. Using Lemma 3.2.7(i) and (i),
we may express Fp o o in terms of the Fourier coefficients Fpy, o4y 74y With ¢ €

v = (g*)f’“1 N (g*)%*¥ in the following way:
Fuggyl@ = > F my= Y. f FHyo+v.g+y M)y g) du.
¥ €Exp(lo/no) v €Exp(lo/n0) R/ v, ]
,‘p//e\p// ?
4.4)

Now, we repeat the procedure for each triple Fp, ¢4y, ¢”+y~ and so on until we reach
an expression that includes only Fourier coefficients.

O

Lemma4.1.2 Algorithm4.1.1 terminates in a finite number of steps, and expresses Fy 4 o in
terms of Fourier coefficients Fs, o; such that for each i, either ®; = ¢ and (H, ¢) dominates
(Si, @), or 'd; > I'.

We postpone the proof of the above lemma to the next subsection. Now let (H, ¢)
and (S, ¢) be Whittaker pairs such that (H, ¢) dominates (S, ¢). The following algorithm
expresses Fp o, in terms of Fg , and Fourier coefficients Fg y such that 'y > T'e.

AlgorithmA Let Z := S — H and H, := H +tZ. Let first s = 0 and ¢ be the first quasi-
critical point in the interval (s, 1). If there are no critical points in this interval we let r = 1
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which will be the end point of this algorithm. Using Lemma 3.2.7(i) and (ii), we have that
Fu [n](g) equals

R; L
Fuolnl@) = Y Fi,my= ) F oy e)
v €Exp(ly/ny) v €Exp(ls/ny)
I/I/E\I//

3 / Fiy g Il (yug)du
y €Exp(ly/ny)
Vew [Lt/NH, 0]

= Z / FH, 0,y M(yug)du, 4.5)

S\Z
v EExp((81 %) [Exp((gf")Z,(A))]

Yew
where W/ = (g*)il'1 N (g*)% N (g*)io. The last step follows from Lemma 3.2.6(ii). For all
non-zero ¥" € W’ we run Algorithm 4.1.1 to express the quasi-Fourier coefficient Fp, ,, y
in terms of Fourier coefficients, that, as we will show, correspond to higher orbits. For the
¥’ = 0 term we iterate the same step as above using (4.5) and Algorithm 4.1.1 but now with
s =t and t being the next quasi-critical point, until we reach t = 1. O

Proposition 4.1.3 Algorithm A terminates in a finite number of steps and produces an expres-
sion of the form

Fii,o[nl(g) = M3 (Fs.p[n]) + A, (4.6)
where
MG (Fspli) =) / / Fs plnl(woug) dudv (4.7)
weR V U]

which is called the “main term” in the introduction,
U =Exp(u(d)), V =Exp(v(4)), Q=Exp(w(K)),
wi= (@D} = @D/l vi= 8D =l /6l 4.8)
wi= (@)%, = o/ (o) + @5, ).

and A'is a countable absolutely convergent sum of integral transforms of Fourier coefficients
corresponding to orbits bigger than that of ¢.

We prove this proposition in the next subsection.

4.2 Proofs of Theorem B and the validity of Algorithm A

We prove the following lemma in Appendix B.

Lemma4.2.1 Let (H, ¢) be a Whittaker pair, and let Z be a rational semi-simple element
that commutes with H and with ¢. Let ¢’ € (g*)go N (g*)g. Then either dim G(C) (¢ +¢') >
dim G(C)(¢), or ¢ is conjugate to ¢ + ¢’ by the stabilizer of H in T.

Let us now present the proofs that were postponed from the last subsection.

Proof of Lemma 4.1.2 1In case (i) of the algorithm it terminates in one step, and (4.3) expresses
FH g, interms of Fy, 4, and (H, @) dominates (Hr, ¢). Thus assume that we are in case

@ Springer



2700 D. Gourevitch et al.

(ii), and let s € (0, T] be the smallest critical number. Decompose ¢’ = ¥ + ¢” where
¥ e (g9 and ¢ € (g™ ,. Note that € (%)%, and thus the orbit ['(¢ + ¥) of ¢ + ¥
is bigger than or equal to the orbit I'p of ¢.

IfT'(p+y) = I'p then, by Lemma4.2.1, ¢+ is conjugate to ¢ under the stabilizer of Hj
in I". Then, by shifting the argument, we express each Fy oty o7y~ in terms of Fy o o
for some ¢". Then we run the algorithm on Fp, , ,» and it terminates by induction on the
finite number of critical values in the interval (0, 7).

If I'(¢ + ¢¥) > Te then, by Lemma 4.2.1, dim G(C)(¢ + ¢¥) > dim G(C)(¢), and thus
the algorithm terminates by induction on dim G(C)(gp). O

Lemma4.2.2 Let (H, ¢) be a Whittaker pair, and let (ey, h, f,) be an sly-triple such that ¢
is given by Killing form pairing with f,, and h commutes with H. Let 0 # ¢’ € (91*)572 n
(g*)lg_1 N (g*). Then Algorithm 4.1.1 expresses the quasi-Fourier coefficient Fy o o in
terms of Fourier coefficients (S;, ®;) with I ®; > Te.

Proof As in the algorithm, we let Z := H — h, and for any t > O denote H; := H + tZ.
Then ¢’ decomposes to a sum of eigenvectors v; of Z, and each of these lies in ((g*)%)g_] .

Since (g*)¢» C (g*)go, we obtain V; € ((g*)’go)io. Hence, while running Algorithm 4.1.1,

some of the eigenvectors ; will join the space (g”‘)f’2 for some ¢t > 0, leading to an orbit
that is greater than, or equal to, that of ¢. To show that it is not equal to "¢ note that ¢ + v;
lies in the Slodowy slice ¢ + (g*)¢, and thus its complex orbit has bigger dimension than
that of ¢. More Whittaker triples will be produced while running Algorithm 4.1.1, but their
third elements will lie in (g*)I_J’1 N (g*)% for some r > 0 and thus lead to bigger orbits using
the argument as above. |

Proof of Proposition 4.1.3 As in the statement of Algorithm A let Z := S — H and H; :=
H +t Z. If there are no quasi-critical points in the interval (0, 1) then = 1 and the algorithm
terminates in one step. In this case we can decompose the expression in the right-hand side
of (4.5) as

Z /E SVH (o Fhp,pp'M(yug)du + A, (4.9)
yeExp((g)3,) 7 EXP(81)= ()]
where
A= SH Frp.p.up nl(yug)du . (4.10)
yeBxp((gh)3 ) 7 EXP(81)=1 ()]
O£y eV’

By Lemma 4.2.2, for every non-zero ' € W' = (g*)% | N (g%)% N (g)%,, Algorithm 4.1.1
expresses Fg o o4y in terms of Fourier coefficients (S;, ®;) with '®; > I'p. Thus the term
A satisfies the conditions of the proposition.

Let us now assume that there exist quasi-critical points 0 < #; < -+ < f, < 1.
Lemma 4.2.2 again implies that all non-zero ¥ € ¥/ = (g*)ftl" N (g% N (9*)£0 will
lead to Fourier coefficients corresponding to bigger orbits, that will be accumulated in A. It
is left to track down the formula for the term that we get when we take all ¥’ in all the steps
to be zero. Let

H;. H;.
v = (g NgZp)/(a-j Na%y) and V; =Exp(v;). (4.11)
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By Lemma 3.2.7(i) we have

Fhi, oIm(e) = / FR lwvig) dv; 4.12)
Vi

Using Lemma 3.2.7(ii) (retaining only v = 0) we obtain

f,’;w[n](g)=/... / /Téw[n](vn...vlg)dv—i-A. (4.13)

Vi V-1 Va

H;, H,.
Since v = P_, (g, N gio), and as a commutative Lie algebra g, N 950 is naturally
isomorphic to v;, the group V is glued from V;. Thus

/ / /fsw 1y .. Ulg)dv_/fs(p nl(vg)dv. (4.14)

Vi Va1 Vi

The proposition now follows from Lemma 3.2.7(i). |

Proof of Theorem B Under the assumption of Theorem B, for any ® with '® > T¢, the
neutral coefficient Fj ¢[n] vanishes. By [19, Theorem C], this implies the vanishing of
Fs.oln] for any pair (S, ) with '® > T'g. Thus, the term A in Proposition 4.1.3 also
vanishes. The theorem follows. |

4.3 Additional results

Let us prove for future use some additional results that utilise the technique of this section.
For the entire subsection we fix Whittaker pairs (H, ¢) and (S, ¢) such that (H, ¢) dominates
(S,¢).LetZ:=S—HandletH, :=H+tZ.Let0 <t] <--- <t, < 1be all the critical
values between 0 and 1. Let 7y := 0 and t,1 := 1. Lastly, for each #;, let R := R, and
L := L;; be defined as in (3.16).

Lemma4.3.1 Let n be an automorphic function such that T € WS(n). Then we have
FR G =Fh )

Proof Denote H; := H,; for any j, and ¢ := (g*)_] Hiv1 A (g N (g*)io. Arguing as in the
proof of Lemma 3.2.7(ii), we obtain

Fhol =D Fhi gl (4.15)

¢'ec
We have to show that for any non-zero ¢’ € ¢, we have fL Hivr.po M= 0.But f1L1 e
an integral of Fp, | 4 ¢'[n], which by Lemma 4.2.2 is expressed through coefﬁ01ents Fs; ey

with '®; > T'g. Since ¢ € WS(n7), Fs;,0;[n] = 0 for all j, and thus F [nl = 0.
O

i+1-§0~(ﬂ
Corollary 4.3.2 Let n be an automorphic function such that T € WS(n). Let v :=
oy /@ nalp. v =03, /02, N (Y +8y)). V = Exp(o(A)), and V' := Exp(v'(A).
Then,

7R il(e) = fv FE e and Fh[n(e) = /V FE gy, @.16)
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Proof With the notation introduced above, let

(g> Ng%y)/ (g> Ng%y) and V; =Exp(v;). (4.17)
By Lemma 3.2.7(i) we have
Fh, onl@) = f Fh oig)dv; . (4.18)
Vi

By Lemma 4.3.1 we have ]:Ilf’z- ’(p[n] = .7-'[L{[A yw[n]. Thus

Fiy o[nl(g) = / / /Fs(p[n](vn. vlg)dv—/Fs(,[n](vg)dv (4.19)

Vi Va—1 Va

Similarly, let

Hy, H, Hy, ~  Hy Hy,
o) = (a.1)%0/ (@ Nay "+ @-DZ%) = @-DZ%0/((a-1)% N gy) and V] = Exp(v}).
(4.20)
Then the nilpotent group V' is glued from the commutative groups V, and

F§ ,nl(g) = / //fH(,,[n](m vng)dv—/FH(/,[n](vg)dv 4.21)

Vi v vy

Proposition 4.3.3 (cf. [19, Theorem A] for a local analogue) For any n € C*°(I'\G) with
FH,oln]l = 0we have Fs 4[n] = 0.

Proof Let Z := S — H,andforany ¢t > Olet H, ;= H+1tZ. Let0 <1; <--- <t <1
be all the critical values of ¢ between 0 and 1. Let #p := 0 and #;1 := 1. By Lemma 3.2.7(i)
and (ii), forany 0 < i <k, f"’rm#’ is expressed in terms of .7-'1.1”,(/,. Since H;, = H, we
obtain by induction that F, H,, ,pln]l = 0 for all i. Since Hy,,, = S, the proposition follows.

O

4.4 Levi-distinguished coefficients

Let us show that any Whittaker pair (H, ¢) dominates a Levi-distinguished Whittaker pair.
Using Lemma 2.3.7, decompose H = h + Z, where (h, ¢) is a neutral pair, and Z commutes
with 4 and ¢.

Notation 4.4.1 Let C C T denote the centralizer of (4, ¢). Let A denote a maximal split
torus of C such that its Lie algebra a includes Z, and let M denote the centralizer of a in G.
Then M is a Levi subgroup of G, m includes %, Z and ¢. Let z be a rational semi-simple
element of a that is generic in the sense that its centralizer is M.

Lemma 4.4.2 As an element of m, ¢ is K-distinguished.

Proof Let | be the Lie algebra of a Levi subgroup L of M defined over K such that ¢ € [*.
We have to show that L = M. By replacing L by its conjugate by an element of I' we can
assume 4 € [, and that there exists a rational semi-simple element z’ € m such that [ is the
centralizer of z’. Then z’ commutes with /2 and ¢ and we have to show that 7’ is central in m.

Indeed, 7/ € mN ¢ = a. Now, any X € m commutes with z, and thus with any element of
a, since z is generic in a. Thus a lies in the center of m and thus 7z’ is central. O
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Note that the eigenvalues of the adjoint action of any Lie algebra element are symmetric
around zero.

Notation 4.4.3 Let N be a positive integer that is bigger than the ratio of the maximal eigen-
value of ad(z) by the minimal positive eigenvalue of ad(Z). Let

7' :=NZ+z. (4.22)

From our choice of N we have
0o = 0Z0® (g NoZg) and gf = g5 =m < gf. (4.23)
Thatm C gg follows from the fact that M is the centralizer of z which equals the centralizer

of a and a includes Z.

Lemma 4.4.4 For rational T > 0, (H, ¢) dominates (H + TZ', ¢), that is, H, ¢ and TZ’
commute, and satisfy (2.11).

Proof By construction H = h+ Z, ¢ and Z commute, and since i, Z, ¢ € m they commute

with z. Thus, Z’ commutes with H and ¢. Furthermore, g, N gfl - g’io N gfl - gfo -
TZ' - - -

g>0 - g>0 O

Lemma4.4.5 For afixed A € Q, and a rational T > 0 large enough,

H+TZ' H+TZ'

92, =g = g>0 ® (g0 n gH+TZ ) = g 0 "D m>2 and gH+TZ mf = mﬁ. (4.24)

The Fourier coefficient Fy 77/ o is then Levi-distinguished.

Proof For large enough T, we have that gH+TZ ﬂg<0 = {0} and gH+TZ ﬁgflo = 930 Thus

gfﬁ” = ngZ N (g%, ® go @ g%,) = g>0 ® (gF NgHT%). Since H = h + Z and

mgHJrTZ

90 =mcC 90 we have that 90 90 ﬁg>1 and since & is neutralg>l = g>2 Now

g¢ = mand thus, gH+TZ = g>0®(go/ﬂg>2) = g>0@m>2.Domg the same manipulations
for gH 2" one ends up with the same result, proving the equality gH +7Z! gfz"' rz,

Now, for any fixed . € Q and a large enough T, we have that gH+TZ = g)h N gg/ =

gk nm= mA Again, since H =h+ Zand m C 90 , we get that mA = mﬁ.
Since H+TZ' = h+Z+TZ', the semi-simple element denoted by Z in Definition 2.3.5

is here Z + T'Z’, which, for large enough T has the centralizer gg N gol = 90’ = m. By

Lemma 4.4.2, ¢ is K-distinguished in m. Since g %0 € g>0 we have that gZ+TZ = gf;) and

thus (4.24) implies (2.12) which means that 777, is Levi-distinguished. O
Corollary 4.4.6 Any Whittaker pair (H, ¢) dominates a Levi-distinguished Whittaker pair.

Corollary 4.4.7 Algorithm A allows us to express any Fourier coefficient Fpy o, in terms of
Levi-distinguished Fourier coefficients with characters in orbits which are equal to or bigger
than T .

Proof Choose a Levi-distinguished Whittaker pair (S, ¢) dominated by (H, ¢). Then Algo-
rithm A expresses Fg o in terms of Fg o, and Fourier coefficients F, H, corresponding
to higher orbits. Each of the pairs (H/, ®;) dominates a Levi-distinguished Whittaker pair
(Si, @;). We repeat the procedure for each pair. The process terminates in a finite number of
steps since the dimension of each complex orbit G(C)®; is bigger than that of G(C)p. O
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Remark 4.4.8 (i) Note that n = Fp o[n]. Thus, the algorithm allows us to express any auto-
morphic function in terms of its Levi-distinguished Fourier coefficients.

(ii) Algorithm A produces a general formula, that holds for all automorphic functions n €
C°(I'\G). However, if we put additional assumptions on 7 the algorithm might terminate
earlier and produce a shorter expression.

(iii) By Lemma 2.3.9, the Levi-distinguished Fourier coefficients of PL elements are Whit-
taker coefficients. This implies that if all Levi-distinguished Fourier coefficients of some
automorphic function 7 corresponding to non-PL orbits vanish, then the algorithm allows
us to express 7 in terms of its Whittaker coefficients.

(iv) Vanishing as in (iii) happens in two important cases. One is the case of GL,, in which all
orbits are PL orbits. We explain the results in this case in Sect. 5.3 below. Another case
is the case when G is simply-laced, and 7 is minimal or next-to-minimal. In this case the
output of the algorithm is analyzed in great detail in [21].

Let us now go to the other extreme and consider cuspidal 7.

Lemma4.4.9 Letn € C®°(I'\G), and assume that the constant term cy[n] := f[U] n(u)du
vanishes for any U C G which is a unipotent radical of a proper parabolic subgroup. Let
Fs.olnl be a non-vanishing Levi-distinguished Fourier coefficient. Then the orbit I'¢ € g*
is K-distinguished.

Proof Recall that by Definition 2.3.5, there is a decomposition S = & + Z such that (&, ¢)
be a neutral Whittaker pair for [ := gZ, the orbit of ¢ in [* is K-distinguished, and

7 = e = oy @y and 7 = 1 42)

Letp := ggo, P be the corresponding parabolic subgroup, and U be the unipotent radical
of P. By (4.25), Fs.olnl = Fn,o(culnl), where we view cy[n] as an element of C°(I'\G).
Since Fs,,[n] does not vanish, neither does cy[n] and thus P = G. Thus L = G and thus
the orbit I'p € g* is K-distinguished. O

5 Applications and examples

In this section we will illustrate how to apply the framework introduced in this paper to
compute certain Fourier coefficients in detail. We begin in Sect. 5.1 to consider the case
when G is split and simply-laced and P C G is a parabolic subgroup with unipotent radical
U isomorphic to a Heisenberg group. We use Algorithm A to express any automorphic
function on G in terms of its Fourier coefficients with respect to U. In Sect. 5.2 we then give
an example of a Whittaker triple and a quasi-Fourier coefficient for the group G = SL4. In
Sect. 5.3 we demonstrate Algorithm A, Corollary 4.4.7 and Remark 4.4.8 for G = GL,,. In
Sect.5.4 we demonstrate them for G = Spy.

In [21] we apply Theorem B, Algorithm A, and Proposition 5.1.5 below to automorphic
forms in small automorphic representations of all simple split simply-laced groups.

As many examples below are built on classical groups, we shall use matrix notation and
denote by e;; the elementary matrix with a 1 at position (i, j) and zeroes elsewhere.
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5.1 Fourier expansions along Heisenberg parabolics

Let G be split and simply-laced, and let ) C g be the Lie algebra of a maximal split torus. Fix
a choice of positive roots. For any simple root « define S, € h by a(Sy) = 2 and B(Sy) =0
for any other simple root .

Definition 5.1.1 We say that a simple root « is a Heisenberg root if gi“o is a Heisenberg Lie
algebra, or, equivalently, if gi“ has dimension one.

Lemma 5.1.2 If g is simple of type A,, there are no Heisenberg roots. If g is simple of type
Dy, or E, then there exists a unique Heisenberg root, and this is the unique simple root o
satisfying (o, dmax) = 1, where amax denotes the highest root.

Proof Let g be simple and let @ be a Heisenberg root. Then gi" has to be the highest weight
space of the adjoint representation, i.e. the root space of omax. Since gf” is one-dimensional,
dmax — B 1s not a root for any simple root 8 # «. Thus amax — o is a root, and thus
(o, max) = 1. The roots o with this property are precisely the nodes in the affine Dynkin
diagram that are connected to the affine node (corresponding to —a/max)-

Checking the affine Dynkin diagrams (see [6, Tables IV-VII]), we see that there is a unique
simple root « with this property in types D, and E,, and these roots are indeed Heisenberg.
In the Bourbaki notation, these roots are a for D,, and E¢, oy for E7 and ag for Eg. In type

A, there are two roots with this property but none of them is Heisenberg. In fact, gfo is
abelian for any simple root § in type A,. This is so, since in type A,, ¢max is the sum of all
simple roots (with all coefficients being 1). O

Notation 5.1.3 Let « be a root. Define Ay := a¥ € h by requiring for all roots 8

(o, B)
(o, @)

Denote also by g, the set of non-zero covectors in the dual root space g* .

Bhe) =2 = (o, B). (5.1

Note that for 8 # +a, B(hy) € {—1,0, 1}. By [25, Proposition I1.8.3], (A, ¢) is a neutral
pair for any ¢ € g*,.

Notation 5.1.4 For any Heisenberg root «, let Q, C I' be the abelian subgroup obtained
by exponentiation of the abelian Lie algebra given by the direct sum of the root spaces of
negative roots 8 satisfying («, 8) = 1. Let

W, :={roote | (¢, ) <0, e(Sy) =2}. 5.2)
Note that all the roots in W, have to be positive.

In this subsection we use Algorithm A to deduce the following proposition, that will be
used in the sequel paper [21].

Proposition 5.1.5 Let o be a Heisenberg root. Let y,, € T be a representative of a Weyl group
element that conjugates o to omax, Where amax denotes the maximal root of the component
of g corresponding to «. Then we have

@)= Y Fsel@+ > > > Fserwhlewg). (63

(pe(g*)i‘é (.069:1 weQy we@se\[/a gis

@ Springer



2706 D. Gourevitch et al.

For the proof we will need the following lemma.

Lemma5.1.6 Let o be a Heisenberg root. Then for any ¢ € g, we have

Fhaol@ =D Y. Fs,prvnl@g). (54)

W€ we@sewa gis

Proof Following Algorithm A we consider the deformation (1—¢)hy+1S,. By Lemma3.1.1,
we have
Fraplnl@) =Y Fp Inl(@g) . (5.5)

WERy

Then, the critical values are 1/2 and 2/3, and the quasi-critical values are 1/3 and 1. At 1/3,
we have no Whittaker triple entries yet and thus nothing moves into the —2-eigenspace. At
1/2, we get contributions in the third component of the Whittaker triple from the root spaces
of all the roots ¢ with (¢, ®) = 0 and €(Sy) = —2. Att = 2/3 we also get all the negative
roots with (¢, @) = 1 and &(S,) = —2. This means that we would get contributions from
all these root spaces in the third component of the Whittaker triple. At ¢ = 1 the Whittaker
triple becomes a Whittaker pair and thus we obtain

Frplm@ =Y F0 Ilwg)= Y. Y Fsprl@g). (56

wey WwEey 1pe@se%t g’ig

O

Since n = Fo,0[n], in order to express 1 in terms of Fourier coefficients of the form Fy, ,
we need to consider the deformation S; := tS,. To simplify the exposition we do that in
more elementary terms.

Proof of Proposition 5.1.5 By the conditions, the Lie algebra gi“o is a Heisenberg Lie algebra,
with center gi‘*, and abelian quotient gg‘*‘ We restrict 7 to the exponential of the center and
decompose to Fourier series. The constant term with respect to the center gf"’ is Fs, 3,0lnl,
and the other terms are Fg,/2,4[n] for ¢ # 0 € (g*)i"4 = (g*)i"z/z. We remark that this
constant term can be denoted F.s, 0[n] for any 1/4 < ¢ < 1/2 but not for ¢ = 1/2 since 0

defines a zero form on the 1-eigenspace, and thus n.s, 0 = gczsl‘* = gi“c_l andng, /2,0 = gi"‘z.
Note also that (g*)i“z/ 2= gfamax. Altogether we have
n(g) = Fs,p0ml@) + Y. Fsuelnl(@). (5.7)

(pegiﬂmax
Note that y, conjugates Sy /2 to hy. Thus, by Lemma 3.2.8, we have
Fs4/2.001(8) = Fiy Ad* () [M1(Va @)

and
Yo Fspelnl@ =Y Fielnleg). (5.8)

PEB  pax peg’y

We restrict the constant term of (5.7) to the maximal abelian quotient of Exp(g i“o), decom-
pose to Fourier series and obtain

Fsolnl@ =Y Fs,olnl(e). (5.9)

pe(@)’®
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Formula (5.3) follows now from (5.7), (5.8), (5.4) and (5.9). m|

Remark 5.1.7 Let us explain why we chose to use S, in Proposition 5.1.5. In types E¢, E7,
and Ejg this choice follows Sect. 4.4. Indeed, the starting point is n = Fp o[#n]. In the first step
we choose a generic element z in the Cartan. Choose z to be 2 on the Heisenberg root ¢, and
to be very small positive rational numbers on other roots. This obtained deformation gives
the same results as the deformation with Z = S, . The first critical value is 1/4, at which we
obtain the decomposition described in (5.7). With the constant term we can proceed to the
next critical value 1/2, at which we obtain the decomposition in (5.9).

Then we conjugate the non-constant terms obtained in (5.7) by y,. This is not part of the
algorithm, but we do that for convenience. Now we need to choose a generic z that commutes
with the root space of @. We choose it to be 1 on the only simple root non-orthogonal to «,
and very small positive rational numbers on other simple roots. The resulting decomposition
appears in Lemma 5.1.6. Altogether, this gives Proposition 5.1.5.

To express 7 in terms of its Levi-distinguished coefficients one should continue with each
of the terms in the right-hand side of (5.3). However, the obtained expression would be
very long and complicated. In [21] we provide the expression under the assumption that the
Whittaker support of 1 consists of orbits with Bala—Carter labels A; and 2A. Since these
orbits are PL orbits, in this case we obtain an expression for 7 in terms of its Whittaker
coefficients.

For groups of type D, Sect. 4.4 would provide us with a different formula, but we still
prove formula (5.3) for all cases for its uniformity, beauty, and future applications.

Remark 5.1.8 Here we elaborate a little on the structure of the Fourier expansion (5.3) and
comment on the relation to previous works on Heisenberg expansions. The semisimple
element S, defines a Heisenberg parabolic subgroup P, C G with Levi decomposition
Py = LU. The Lie algebra p, C g of P, exhibits the following grading

Po = g0 © g1 © g2, (5.10)

where the subscripts indicate the values of the inner products ( -, ¢max). Thus g; is spanned
by all roots ¢ such that (&, amax) = 1. Equivalently, these are all roots € such that omax — €
is also a root. Notice that all roots in g; are positive and the only simple root satisfying the
condition (&, amax) = 1 is « itself. Since only € = apax satisfies (g, max) = 2 the space g»
is one-dimensional and equals g, . The zeroth subspace gy is the Lie algebra of the Levi
L C P. The subspace g @ go is thus the Heisenberg nilpotent subalgebra with center g,.
Notice that Zyewa gy is a Lagrangian subspace of g;. Indeed, g1 has a canonical Lagrangian
decomposition

Gi=) 6 ® Y g .11

Yy €Wy ye\l-’é-
where \IJOJ; is the orthogonal complement
\Ili‘ ={roote | (g, ) > 1, (&, amax) = 1}. (5.12)

Note that the root & belongs to W;-. The Fourier expansion (5.3) thus corresponds to the
standard non-abelian Fourier expansion along the Heisenberg unipotent U, which exhibits a
sum over the center g, along with a sum over a Lagrangian subspace W, of g;. The choice
of Lagrangian decomposition is usually referred to as a choice of “polarization”. Similar
kinds of expansions have been treated in several places in the literature; see [2,13,30,31,36]
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for a sample. In the notation of the original paper by Kazhdan and Savin [31], the space ¥,
corresponds to TT# while W corresponds to TT,.

5.2 Whittaker triples

We will now illustrate what type of quasi-Fourier coefficients we are able to describe using
Whittaker triples that are not captured by Whittaker pairs in an example for G = SL4.

Let (S, ¢, ¥) be the Whittaker triple with § = %diag(3, 1,—1,-3),¢ = eq; and ¥ =
me3| +ne4n, where m, n € Kand e;; denote elementary matrices. The S-eigenvalues for the
different elementary matrices can be illustrated by the following matrix

0 2/3 4/3 2
—2/3 0 2/3 4/3
—4/3 =23 0 2/3 |
2 —4/3 -2/3 0

(5.13)

from which we may read out that ¢ has eigenvalue —2 while ¥ has eigenvalue —4/3.
As seen from this matrix we get the following unipotent subgroup (independent of /)

1 0 xo xq
Ns.p = : (1) PR (5.14)
1

and the corresponding Fourier coefficient of an automorphic function 7 can be expressed as

1 0 xo xg
1 0 x _
Fsgulnle) = / " Lo e [ mn b x, s15)
(K\A)3 1

where we recall that x is a fixed non-trivial character on A trivial on K.

From this example we see that we require Whittaker triples in addition to Whittaker pairs
if we want to construct Fourier coefficients with characters that are not only supported on x
but also on x; and x3.

5.3 The case of GL,

LetG := GL,, G := GL,(A),and I' := GL, (K). In this section we will follow Algorithm A
and Sect. 4.4 to present any automorphic function n € C*(I'\G) as a countable linear
combination of its Whittaker coefficients. We will show that our proof amounts in this case
morally to the same decomposition as in [28,34,37].

In [34,37], n is first restricted to the mirabolic nilradical, i.e.

o Id,,_1 *
U_{( 0 1)} (5.16)

and decomposed into Fourier series with respect to U. Our algorithm does the same thing,
but in several steps. First let (h, ¢) = (0, 0). Let N > 0,

z1 :=diag(0, —1, =N, ..., —=N"73, =N"7?), (5.17)
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and consider the deformation S; := z1. Under this deformation, the first thing that happens
is that the highest root space (spanned by ej,) enters gf’. At this point n decomposes into

a sum of quasi-Fourier coefficients. At the next step ey, enters gg‘, and the quasi-Fourier
coefficients become Fourier coefficients. For the constant term, we continue with the same
deformation, until e,, enters. For the non-constant term we have to change the deformation
into something that will commute with the corresponding new ¢. This ¢ can be identified
with aey, under the trace form, for some a € K*. We take the deformation by

2 i=diag(-N""%, =1, —=N,..., —N""* —N"73 —N"72), (5.18)

and continue in the same way. Eventually, all of U enters and all possible characters (including
the trivial one) appear.

Let us now analyze the summands. The constant term is F;;, o for t = 2/ (N"—2 —
N"~3), and we can continue the deformation along z;. Any non-trivial character of U can be
conjugated using GL,,—; (embedded into the upper left corner) to the one given by e, ,—1.
We can now choose the deformation

23 i=diag(—1, =N, ..., =N""* —N"73 _N"73), (5.19)

In the same way as above, it will give a decomposition of F;,, o into Fourier series with
respect to the columnn — 1, i.e.

Idn,Q * 0
U = 0 10 . (5.20)
0O 01
Continuing in this way we obtain
@)= Y. Y Fselnlre, (5.21)
xealn=1l yer'
where [n — 1] denotes the set {1,...,n — 1}, 2[n=11 denotes the set of all its subsets, S =

diag(n —1,n —3,...,3—n,1 —n), and for any x € 2ln—=11 Yy = Ziex ei+1,; and Iy is
a certain subset of I".

For cuspidal n and x # [n — 1], we have Fg o [n] = 0 and (5.21) becomes the formula
in [34,37]. For n in the discrete spectrum, Fg , [n] vanishes for many x by [28, Lemma
3.2], and (5.21) reflects the formula in [28, Theorem 3.3]. If » is minimal then Fs o [7n] = 0
for |x| > 1 and if 5 is next-to-minimal then Fg 4 [n] = O for |x| > 2. These cases were
computed in [1], motivated by applications in string theory.

5.4 Examples for Sp,

Let G := Spy(A), I' := Spy(K) and let n € C*°(I'\G). In this section we express 1 in
terms of its Levi-distinguished Fourier coefficients, providing an example for Algorithm A
and Remark 4.4.8. Let g := Lie(I"), realized in gl by the 2 x 2 block matrices

A B=B'
(c Zo a ) (5.22)
Letn C gbe the maximal unipotent subalgebra spanned by the matrices e12» —e43, €13, €24,

e14 + ex3 and let N := Exp(n(A)). For any a, b € K denote by x, 5 the character of n given
by xa.»(€12 —es3) = a and x, (e24) = b, and let W, ;, denote the corresponding Whittaker
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coefficient. Let u C n be the Siegel nilradical, i.e. the normal commutative subalgebra
spanned by the matrices €13, €24, €14 + €23 and let U := Exp(u(A)). Let L denote the Siegel
Levi subgroup of I' given by diag(g, (g')~!), where g € GL,(A). Using the trace form on
g, we can identify u* with the nilradical u of the opposite parabolic, i.e. with the space of
matrices of the form (5.22) with A = B = 0. Note that it = Sym?(K?), and L acts on it by
the standard action on symmetric forms. For any ¢ € u* = &t = Sym?(K?), denote by Fu,p
the corresponding parabolic Fourier coefficient.

Let us now outline the strategy for this subsection. According to Sect. 4.4 we should
choose a generic element z of the Cartan. Choose it to be 1 on the long simple root iy = 2¢2
that defines U and a small positive rational number on the short simple root. Then, the first
steps of the algorithm will provide us with decomposition of 7 into Fourier series along the
abelian unipotent radical U. The coefficients will be parameterized by characters of u, that
can be identified with quadratic forms on K2. For the zero form we can just continue the
deformation all the way to a Whittaker coefficient. All forms of rank one are conjugate, so
we can conjugate them to a convenient form and again continue the deformation, obtaining
a Whittaker coefficient. The same goes for split forms of rank two. The non-split forms of
rank two belong to K-distinguished orbits, and thus the corresponding Fourier coefficients
are already Levi-distinguished.

We will now give all the details of the decompositions we just mentioned. We will do this
in elementary terms in a self-contained way.

Since U is abelian, the Fourier decomposition on it gives

n= Y Fuell. (5.23)

peu*

We now decompose this sum into three different terms, by the rank of ¢, viewed as
a quadratic form. Let us first analyze the constant term Fy, o[n]. We restrict it to L, and
decompose to Fourier series on the abelian group N N L. We obtain

Fuolnl =Y Waolnl. (5.24)
aekK

Next, any ¢ of rank one is conjugate under L to ¢ := ( (1) 8) This ¢ is normalized by

N, and thus we can again decompose Fy »[n] on N N L. We obtain

Fugnl =Y Wailnl. (5.25)
aek

The non-degenerate forms (i.e. those of rank two) can be divided into two subsets: split
and non-split. All the split ones are conjugate under L to @2 := (91). Let w € I denote
a representative for the Weyl group element given by the simple reflection with respect to
the long simple root oy = 2¢7, e.g. w = diag(1, 1, 1, —1)024, Where 094 is the permutation
matrix on indices 2 and 4. Then u” = Span(e|, — e43, €13, e42), and ¢}’ equals the restriction
to u” of x1,0. Using Corollary 3.1.2, we can express Fyw y, , through F/ , ;, where v’ =
Span(ejr> — es3, €13, e24) C n. The integration will be over matrices of the form v, =
Id +xez4 € G. Using Fourier expansion by the remaining coordinate of ej4 + €23 € n, we
obtain

Fuplnl(@) =/W1,a[n](vxw8)dX- (5.26)
A
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Finally, let X C & = u* denote the set of anisotropic non-degenerate forms. For ¢ € X, we
have no expression of 7, 4[] in terms of Whittaker coefficients. However, any ¢ € X is
K-distinguished. Indeed, let 2 := Id € [. Then (&, ¢) is a neutral pair, and its centralizer is
anisotropic. By Lemma 4.4.2 applied to (&, ¢) and Z := 0, ¢ is K-distinguished.

Combining (5.23)—(5.26) we obtain the following theorem, that exemplifies Algorithm A
and Remark 4.4.8.

Theorem 5.4.1 Foranyn € C*°(I'\G) and g € G, n(g) equals

> fu,w[n]<g)+2( > / Wialnlxwy @)dx+Y  Wa [77]()/8)+Wa,0[77](g)>,
peX aeK “yeL/0(1,1) yeL/(NNL)

(5.27)
where O (1, 1) C L denotes the stabilizer of the split form ¢;.

If n is cuspidal then Wy 4[n] = Wa.0ln] = 0. If n is non-generic, then Wy 4[n] =
Wa.1[n] = 0, unless a = 0. Thus Theorem 5.4.1 implies the following corollary.

Corollary 5.4.2 Letn € C*°(I'\G) and g € G.
(i) If nis cuspidal then

(@) =Y Fuglnl@+ ) ( > / Wi alnl(ewy g)dx+ Wa,l[nl(m) :

peX aeK* “yeL/O(1,1) j yeL/(NNL)
(5.28)

(ii) If n is non-generic then

(@) =Y Fuylnl@)+ > fwl,o[n](vxwyg)dx + Y Woalnl(yg)

peX yeL/O(11) i yeL/(NNL)
+> Waolnl(g). (5.29)
aeK

(iii) If n is cuspidal and non-generic then n = Z¢ex Fuplnl.
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Appendix A. On PL-orbits

A complex orbit is a PL-orbit if and only if its Bala—Carter label has no parenthesis. In
particular, all complex minimal and next-to-minimal orbits are PL. The classification of PL
orbits of complex classical groups in terms of the corresponding partitions is given in [22,
Sect. 6].

The classification of rational PL-orbits is a more complicated task. In this subsection we
discuss the PL property for small K-rational orbits of simple split groups. A complex orbit
Oc may include several or even infinitely many rational orbits. If O¢ is non-PL then all
its rational orbits are non-PL. If O¢ is PL then it includes at least one rational PL-orbit,
but can also include non-PL rational orbits. In type A,, all rational orbits are PL. Let us
now describe the PL properties of minimal and next-to-minimal orbits. Here, minimal and
next-to-minimal refers to the closure order on the complex orbits, which might be coarser
than the order defined in Definition 2.4.1.

All minimal rational orbits are PL. Indeed, for classical groups it is easy to establish
the Levi in which they are principal: for SO, , it is SOz ; x (GL)"" !, for Sp,,, it is
Sp, x(GL1)"~! and for SO, , it is SO22 x(GL 1)"~2. For exceptional groups, the rational
minimal orbit is unique and thus PL. This uniqueness was explained to us by Joseph Hundley.
Let us now deal with the next-to-minimal orbits.

Lemma A.1 All next-to-minimal rational orbits for SO, , and SO, , are PL.

Proof One can give a classification of the rational orbits in the spirit of the classification of
real orbits given in [11, Sect. 9.3]. Namely, a K-rational orbit with a given partition is defined
by a collection of quadratic forms Q»; 1 on multiplicity spaces of the odd parts. If we add
a hyperbolic form to the direct sum of these forms we get the initial form, which is also
hyperbolic. Here, a hyperbolic form is a direct multiple of the 2-dimensional quadratic form
given by H (x, y) = xy. By Witt’s cancellation theorem this implies that the direct sum of
the forms on multiplicity spaces of the odd parts is hyperbolic.

An orbit for SO, , is PL if and only if all Q5; are hyperbolic, except Q311 for a single
index j > 1, whichis adirect sum of a hyperbolic form and a one-dimensional quadratic form.
For SO, , there are two next-to-minimal partitions. One of them is 241218 Forit, Q1 hasto
be hyperbolic. The other next-to-minimal partition is 312*~3. Thus Q3 is one-dimensional.
Now, note that H" = Q3 ® — 03 ® H"!. Thus, 03 ® 01 = 03 ® —03 & H" ! and thus
Q1 = (—03) @® H" !, i.e. 0y is a direct sum of a hyperbolic form and a one-dimensional
quadratic form.

Similarly, it is easy to see that the next-to-minimal orbits for SO, , are principal in
Levis isomorphic to (GL»)? x (GL)"* or SO 1 x(GL)"~ L. O

However, Sp,,, (K) has infinitely many rational next-to-minimal orbits, already for n = 2.
Moreover, there exist cuspidal next-to-minimal representations of Sp, (A). Note that cuspidal
non-generic automorphic forms cannot expressed through their Whittaker coefficients, since
the latter coefficients have to vanish on such forms. See [16, Sect. 4] for a discussion of
cuspidal representations, in particular those of Sp,(A).

As for the exceptional groups, Joseph Hundley showed that the next-to-minimal orbit is
unique, and thus PL, for E¢, E7, Eg and G, [27].

We prove the following lemma in AppendixThe group Fj has infinitely many rational
next-to-minimal orbits. We expect that infinitely many of them are not PL.
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Appendix B. Some geometric lemmas

In this appendix we show some properties of the partial order on rational nilpotent orbits
defined in Definition 2.4.1.

LemmaB.1 Let Z € g be rational semi-simple, let ¢ € gg and ¢’ € gfo. Assume that ¢
is conjugate to ¢ + ¢' by G(C). Then there exist X € 950 such that ad*(X)(¢) = ¢’ and
v € Exp(g%) such that Ad* (v)(¢) = ¢ + ¢'.

Proof Decompose ¢’ = Zle ¢! where ¢! € (g*)fi and A| < Ap < -+ < A € Q- are all
the positive eigenvalues of Z.

Let us first construct X using the fixed complex embedding o : K< C from Sect. 2. For

any ¢ € R, we have the following identity in g*(C) := g* ®4 ) C:
k
Ad*(exp(t2)) (¢ + ¢') = ¢ + Y Ad*(exp(thi))@} . (B.1)
i=1

Thus, ¢ + >_; Ad*(exp(t1;))¢; € G(C)g. Differentiating by 7 at 0 we obtain that ) ; A;¢;
lies in the tangent space to the orbit G(C)¢ at ¢. This tangent space is the image of ¢
under the coadjoint action. Thus there exists Y¢ € g(C) with ad*(Yc)(¢) = > ; )Ll-golf . Since
both ¢ and ), A;¢; lie in the K-points g*, there exists ¥ € g satisfying the same linear
equation. Decompose Y =Y’ + )", ¥; with ¥; € gfi . Since ¢ commutes with Z, we obtain
ad*(Y;)(¢) = Aip,. Now we take X := ) kl._] Y € g%,

We now prove the existence of v by descending induction on the maximal index i such
that ¢ € gfki. The base case i = k has ¢’ = 0. For the induction step, let i < k such that
= gfki. Then Ad*(exp(—X))(¢ + ¢') = ¢ + V¥, where ¥ € gflm. By the induction
hypothesis, ¢ + ¥ € Ad*(Exp(gZ,))¢. O

CorollaryB.2 Ler O # O’ be two nilpotent T-orbits with (O, O') € R (see Definition 2.4.1),
and let Oc, Of. denote their complexifications. Then dim O¢ < dim O..

Proof By Lemma 2.4.2 we have O¢ C Of. Thus either diim O¢ < dim O or O¢ = Of. If
Oc = O then, by the definition of R, there exist a rational semi-simple Z € g, € ON gg ,
and ¥ € gfo such that ¢ + ¢ € Oc, but ¢ + ¢ ¢ O. This contradicts Lemma B.1. O

Corollary B.3 Definition 2.4.1 indeed defines an order relation.

Proof We have to show that if O > ©" and O < O’ then O = O’. By Lemma 2.4.2 the
complexifications O(’C and Oc¢ coincide. Moreover, there exist orbits O' such that O! = O,
O" = O and (Oi+1, O") € R with the same complexification. By Lemma B.1, all these
orbits are the same. |

LemmaB.4 Let Z, S € g be commuting rational semi-simple elements, let ¢ € Q and let
@ € gg N gg and ¢' € g%, N gg. Assume that ¢ is conjugate to ¢ + ¢’ by G(C). Then
there exist X € gfo N gg such that ad*(X)(¢) = ¢’ and v € Exp(gf0 N g(s)) such that
Ad*(W)(@) =¢ +¢".

Proof To construct X we proceed in the same way as in the proof of Lemma B.1, and then
decompose it with respect to eigenspaces of S and take projection on the 0 eigenspace. Then
we construct v in the same way as in the proof of Lemma B.1. O
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Lemma 4.2.1 follows now from Lemma B.4 (with ¢ = 2) and Corollary B.2.
We would now like to relate the notion of dominance to dimensions. For any Whittaker
pair (S, ¢) define
d(S, ¢) := (dimng , + dim(g;l))/Z (B.2)

Example B.5 1f (S, ¢) is a neutral pair then d(S, ¢) = (dimT¢)/2. If (S, ¢) is a Levi-
distinguished pair corresponding to a nilpotent orbit O in a Levi subalgebra [ C g then
d(S,¢) = (dimg — dim[ 4 dim O)/2. Furthermore, if gls = {0}, as in for example a
parabolic Fourier coefficient, then d(S, ¢) = dimng .

Lemma B.6 The number d(S, ¢) equals the dimension of any maximal isotropic subspace of
S
ug = gzl'

Proof Any such subspace includes ng ,, and the quotient is Lagrangian in the symplectic
space ug/ng ,. ]

We study Fourier coefficients with respect to maximal isotropic subspaces, so-called
Fourier—Jacobi coefficients, in [20].

LemmaB.7 Let (H, ¢) and (S, @) be Whittaker pairs with the same .

(i) If (H, ¢) dominates (S, ¢) then d(H, ¢) < d(S, ¢).
(ii) If (S, @) is Levi-distinguished then dimng , < dimng 4.

Proof For part (i) let Z := S — H and choose a Lagrangian subspace a C (g{f N gg)/(gf{ N
gg N gy). Let a’ denote the preimage of a in gf N gg. For any rational ¢ € [0, 1] denote
H; := H+tZ, and define [; and t; as in (3.16). Define also ['** := [, +a’ and ¢/"** := v, +a’.
Then both ["** and ¢/*** are maximal isotropic subspaces in ugy, := gf’l with respect to the
anti-symmetric form w, : g x g — K defined by w,(X,Y) = ¢([X, Y]). Indeed, the
symplectic space upy, /n, o is naturally isomorphic to t, /(to, Ng,), where v, := g?’. Note
that (m,)g = gfl N gg for all . Now, v, = (mt)g ® (m,)io e (m,)fo, with (m,)io and
(m,)fo both isotropic and orthogonal to (mt)g with respect to w,,. Let m;" and 1o, denote
the images of (mt)io and (m,)fo in o, /(vo; N gy).

Since [ projects onto tv; Ga and t™ projects onto tv;" Ga, both project to Lagrangian
subspaces of ug, /ng, » = t;/(w; Ngy), and thus are maximal isotropic. Hence, by Lemma
B.6, we have

d(H;, ¢) = dim [™ = dim ¢]"**. (B.3)

Now let0 =1y < t; < --- < t, = 1 be all the critical numbers in the interval [0, 1]. Then
by (3.18) for every i we have v, C [, thus rg‘ax C lglfi‘ and thus d(H,;, ¢) < d(H,,, ¢).
Since H;, = H and H;, = § part (i) follows.

For part (ii), let Z’ be as in Notation 4.4.3, and let S’ := H + T Z’ with T large enough
as in Lemma 4.4.5. Then gls/ - gf{ and thus

d(H, ) —dimng , < d(S', ¢) — dim ng g. (B.4)
Furthermore, by Lemma 4.4.4, (H,¢) dominates (S’, ). Part (i) implies now that
dimng 4 < dimn(gy ). Finally, by Lemma 4.4.5 the pair (§’, ¢) is Levi-distinguished,
and thus, by Lemma 2.3.10, we have dimng , = dimng . O
Remark B.8 In a previous arXiv preprint version of this paper we claimed that if (H, ¢)
dominates (S, ¢) then dimng , < dimng ,, and that therefore dimng , is minimal for a

neutral pair (H, ¢). Unfortunately, these statements are wrong. Indeed, it is possible that two
pairs (H, ¢) and (S, ¢) dominate each other, with (H, ¢) neutral, and dimng , > dimng ,.
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