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A B S T R A C T   

Fluctuations in temperature and precipitation are expected to increase with global climate change, with more 
frequent, more intense and longer-lasting extreme events, posing greater challenges for the security of global 
food production. Here we proposed a generic framework to assess the impact of climate-induced crop yield risk 
under both current and future scenarios by combining a stochastic model for synthetic climate generation with a 
well-validated statistical crop yield model. The synthetic climate patterns were generated using the extended 
Empirical Orthogonal Function method based on historically observed and projected climate conditions. We 
applied our framework to assess the corn and soybean yield risk in the U.S. Midwest for historical and future 
climate conditions. We found that: (1) in the U.S. Midwest, about 45% and 40% of the interannual variability in 
corn and soybean yield, respectively, can be explained by the climate; (2) the risk level is higher in the southwest 
and northwest regions of the U.S. Midwest corresponding to 25% yield reduction for both corn and soybean 
compared to other regions; (3) the severity for the 1988 and 2012 major droughts quantified by our method 
represent 21-year and 30-year events for corn, and 7-year and 12-year events for soybean, respectively; (4) the 
crop yield risk will increase under a future climate scenario (i.e., Representative Concentration Pathway 8.5 or 
RCP 8.5 at 2050) compared with the current climate condition, with averaged yield decreases and yield vari
ability increases for both corn and soybean. The framework and the results of this study enable applications for 
risk management policies and practices for the agriculture sectors.   
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1. Introduction 

Climate fluctuations are expected to increase under future warming 
climates, with more frequent, more intense and longer-lasting extreme 
climate events (e.g., heatwaves, droughts and floods) (Meehl and 
Tebaldi, 2004; Deryng et al., 2014), which pose great challenges for the 
security of global food production (Kang et al., 2009; Challinor et al., 
2014; Rosenzweig et al., 2014). The risk of crop yield loss will increase 
with greater frequencies of such extreme climate events, especially in 
rainfed croplands. Previous studies showed that about one third of yield 
variability was explained by the interannual climate variability at the 
global scale (Lobell and Field, 2007; Ray et al., 2015); for the U.S., about 
39% of corn yield variability and 35% of the soybean yield variability 
was explained by variation in climate (Ray et al., 2015). As one of the 
world’s largest crop production areas, the U.S. Midwest produces about 
85% of U.S. corn and soybean (USDA, 2020), the majority of which is 
from rainfed farmland. Thus, an assessment of the impact of 
climate-induced crop yield risk under both current and future climate in 
the U.S. Midwest is urgently needed to ensure the security of global food 
production, especially in the rainfed agricultural landscape. In addition, 
the climate-based crop yield risk assessment is a useful tool to support 
decision making for farmers, the agricultural industry, and government 
agencies for climate changes. The risk level of crop production and how 
it will change in the future is essential for both policy makers and crop 
(re)insurance companies to understand and manage crop insurance 
risks, and could be used to optimize the agriculture supply chain 
(Benami et al., 2021). 

The data-driven crop yield risk analysis method is the most direct 
way to obtain the yield risk based on empirical or fitted distributions of 
crop yield from the historical records (Pease, 1992; Goodwin and Ker, 
1998; Sherrick et al., 2004). This method is straightforward to apply but 
its accuracy largely depends on the length and quality of the records 
(Stojanovski et al., 2015). However, long-term records of crop yield are 
rare around the world, limiting the application of this method for crop 
yield risk assessment. Although about 80 years of county scale crop yield 
data has been provided by the United States Department of Agriculture 
(USDA), it is still insufficient to capture the most extreme events. 
Furthermore, crop varieties have changed significantly during the past 
80 years, and older varieties may not have the same responses to climate 
variability as modern varieties, due to the improvements in various crop 
traits, such as canopy and root architectures, maturity group, and crop 
management practices (Hammer et al., 2009; Lobell et al., 2014). In 
general, only the most recent 30-year record represents modern vari
eties, making the dataset even smaller. Clearly, the 30-year record is not 
long enough to fully capture the different climate conditions and their 
impacts on crop yield loss, especially in the extreme years. In addition, 
this method is based on the yield data under historical climate condi
tions, which is not applicable in the future climate scenarios due to the 
shift of climate conditions. Thus, the data driven crop yield risk analysis 
method has been rarely used to assess the climate-induced crop yield 
risk at high spatial resolution with reasonable accuracy in the U.S. 
Midwest. 

Another approach to assess the yield risk is to use models, either 
process-based or empirical statistical models (Li et al., 2009; Rosenzweig 
et al., 2014; Jin et al., 2017). Although the process-based models have 
more comprehensive mechanism processes, various types of un
certainties (e.g., model structure, model parameters, and model input) 
may compromise its ability in assessing climate risks on crop yield 

(Maiorano et al., 2017; Tao et al., 2018). To properly run the 
process-based models usually requires observational constraints and 
mathematical methods to integrate data and model, both of which are 
hard to achieve at the county scale, especially for risk assessments with 
multitudinous climate scenarios (Peng et al., 2020; Zhou et al., 2021). 
The empirical statistical crop yield models, based on the historical 
climate observations and yield measurements, provide an alternative 
way to connect the crop yield and climate variables (Lobell and Burke, 
2010), which can also be applied to analyze the near term future (i.e., 
2050) climate scenarios (Lobell et al., 2006). However, it is hard to get a 
sufficiently long record of historical climate and yield observations for 
crop yield risk assessment, especially under extreme conditions, even for 
data-rich countries such as U.S. Thus, the crop yield model and climate 
observations-based approach still can not fully capture crop yield vari
ability under both current and future climate scenarios. 

To overcome the above limitations, we developed a generic risk 
assessment framework by integrating a stochastic model for synthetic 
climate generation and a statistical crop yield model for corn and soy
bean in the U.S. Midwest under both current and future climate sce
narios. The synthetic county-scale rainfed yield databases for corn and 
soybean were built based on the crop yield model and generated climate 
patterns under both current and future climate scenarios. Two widely 
used risk metrics, i.e., (i) return period of crop yield loss, and (ii) coef
ficient of variation of crop yield, had been calculated based on the 
synthetic crop yield databases to quantify the risk level of rainfed corn 
and soybean yield reduction in the U.S. Midwest. Return period focuses 
on the left-tail behavior of crop yield, which has a direct implication for 
premium rating in the crop insurance system (Wouter Botzen, 2013). 
Coefficient of variation, on the other hand, captures the overall variation 
of the crop yield, which can provide storage and logistics guidance to the 
agriculture supply chain (Crane-Droesch et al., 2019). Through the 
analysis, we focus on the following key questions: (1) How much 
interannual variability of corn and soybean yield is explained by the 
climate variability, and how does this vary spatially? (2) What is the risk 
level of 1988 and 2012 droughts in terms of the corn and soybean yield 
loss? (3) What are the impacts of climate change on the crop yield risk in 
the U.S. Midwestern rainfed cropland? 

2. Materials and methods 

2.1. Study area 

This study assessed the climate-induced rainfed corn and soybean 
yield risk in the U.S. Midwest (Fig. 1), where corn and soybean dominate 
the landscape, producing about one third of global corn and soybean. 
The climate within this area shows some heterogeneity, covering four 
different Köppen-Geiger climate zones with precipitation ranging from 
200 to 450mm from northwest to southeast (Fig. 1a) and temperature 
from 15 to 25◦C from north to south (Fig. 1b) during the growing season. 
The heterogeneous climate and soil conditions in this area result in 
varying crop production potential and crop yield interannual variability, 
with higher production in Illinois, Iowa, and Indiana, and lower pro
duction over other areas. Most counties within the U.S. Midwest have 
long corn and soybean production records, and we selected the counties 
with corn or soybean planting records for at least 35 years for the 
following analysis. 
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2.2. Data 

2.2.1. Precipitation Regression on Independent Slopes Model (PRISM) 
dataset 

Monthly temperature and precipitation data from the Precipitation 
Regression on Independent Slopes Model (PRISM) (Daly et al., 2008, 
2015) was used as the major historical climate dataset. This dataset was 
used together with historical crop yield records to build the 
climate-based statistical crop yield model and to generate synthetic 
climate patterns. PRISM is based on quality-controlled observations 
from the weather stations network throughout the Contiguous U.S. 
(CONUS), and a climate–elevation regression was used to generate a 
suite of gridded (i.e., 4 km) high-accuracy climate variable datasets by 
considering location and topographic information (Daly et al., 2008, 
2015). For generating the synthetic climate patterns, we used all the 
data throughout the CONUS with a time period covering 1895 to 2018 to 
capture the impacts of both large-scale climate dynamics (such as El 
Niño) and the local-scale climate events as much as possible. Although 
the temperature increased globally in the past 100 years, the change of 
temperature in the U.S. Midwest was smaller due to the cooling effects of 
agricultural intensification (Alter et al., 2018; Li et al., 2020), which 
ensures the useability of such long-term climate data for climate pattern 
generation. Considering the computational resources and memory issue 
as well as the spatial variance of climate variables at county scale, the 
PRISM dataset was regrided to 0.5◦ (approximately to a county in 
Midwest) by averaging the PRISM grids within the target grid for syn
thetic climate patterns generation. To build the crop yield model, we 
averaged the 4 km PRISM monthly temperature and precipitation 
dataset from 1981 to 2018 across the county-scales to be consistent with 

crop yield records. 

2.2.2. Coupled model intercomparison project phase 5 (CMIP5) data 
We used an ensemble dataset of 15 CMIP5 Atmosphere-Ocean Gen

eral Circulation Models (AOGCMs) (Wang et al., 2016) for the climate 
scenarios in the future for the following analysis. The multi-model 
averaged and downscaled monthly temperature and precipitation data 
for the decade of 2050 in Representative Concentration Pathway (RCP) 
8.5 were used to analyze the risk of crop yield reduction under future 
climate scenarios. This dataset is based on the CMIP5 database for the 
future climate scenarios, and PRISM and WorldClim for current climate 
using the locally downscaled method with the inputs of location and 
elevation (Wang et al., 2016). Both the RCP 8.5 of the future period 2050 
and current climate (1981–2010) were resampled to 0.5◦, and the 
change of temperature and precipitation (absolute difference for tem
perature and relative difference for precipitation) between future and 
current climate (Hijmans and Graham, 2006) were calculated and 
applied to the historical monthly PRISM dataset for the synthetic climate 
generation under future scenarios. 

2.2.3. Crop yield data 
County level corn and soybean yields in the U.S. Midwest from 1981 

to 2018 were collected from USDA National Agricultural Statistics Ser
vice (NASS). This dataset was used for building the county scale 
statistical-based crop yield model, and also used as the benchmark for 
historical crop yield interannual variability. Since irrigation may influ
ence the impacts of climate (i.e., drought) on crop yield loss, we only 
focused on the rainfed yield in this study. If the NASS crop yield record 
was not designated as either irrigated or non-irrigated conditions, we 

Fig. 1. The location of the study area and its climate conditions. (a) Spatial pattern of growing season (June to September) accumulated precipitation in the U.S. 
Midwest during 1981–2018, (b) spatial pattern of growing season averaged temperature in the U.S. Midwest during 1981–2018, and (c) corn and soybean planting 
area fraction in the Contiguous U.S. (CONUS), and the location of the U.S. Midwest (12 states highlighted in black lines). 
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treated it as rainfed yield data. 

2.3. Methods 

2.3.1. Overview of proposed framework 
Three major steps were taken to conduct the crop yield risk assess

ment in this study (Fig. 2). In the first step, we used the extended 
Empirical Orthogonal Function (EOF) to generate synthetic climate 
patterns based on the PRISM dataset for current climate conditions or 
RCPs-adjusted PRISM dataset for future scenarios. In the second step, we 
used a well-validated statistical crop yield model (Peng et al., 2018; Li 
et al., 2019a) to predict county-scale crop yield in the U.S. Midwest with 
growing season monthly temperature and precipitation as inputs. In the 
third step, we obtained estimates of possible crop yield under both 
current and future climate scenarios by combining the generated climate 
patterns and the crop yield model, and used it for crop yield risk 
assessment. 

2.3.2. A stochastic model for synthetic climate generation 
For generating climate patterns, we (1) used the extended EOF to 

decompose the history or RCPs-adjusted climate observations (see sec
tion 2.2.2), and generated synthetic climate patterns based on the 
decomposed components; (2) built a residual model to reproduce 
climate variability that was not captured in (1), and added it into the 
generated climate patterns; (3) applied two different distribution test 
methods to verify the similarity of the distributions of climate variables 
between the original and generated datasets.  

(1) Using extended EOF for climate pattern generation 

The EOF method is a statistical method to transform variables from 
the original dimensions to uncorrelated dimensions, and identify tem
poral and spatial patterns of variability as well as their importance 
(Björnsson and Venegas, 1997; Kim et al., 2011). The extended EOF is an 
extension of the simple EOF, putting multivariate data together for the 
transformation. Compared to the simple EOF, the extended EOF can take 

Fig. 2. The risk assessment framework to assess climate-induced risks of crop yield, by integrating stochastic generation of climate patterns and statistical crop yield 
modeling. T, P, EOF, and PC in this figure mean the monthly temperature, monthly precipitation, eigenvectors of EOF decomposition, principal components of EOF 
decomposition, respectively. 
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both the spatial and temporal correlation of the variables as well as their 
intercorrelation into account (Weare and Nasstrom, 1982). In this study, 
the multi-year averaged monthly climate data was subtracted from the 
resampled climate datasets to remove the seasonal cycle of temperature 
and precipitation. The anomalies of temperature and precipitation were 
normalized at each grid for each month using the Z-Score Normalization 
method, respectively. The normalized anomalies of temperature and 
precipitation from June to September at different grids were put into a 
single data matrix F as Eq. (1), and decomposed using EOF decomposi
tion methods to obtain EOFs and the corresponding principal compo
nents (PCs). We fitted the distribution of each PCs using the Gamma 
distribution (Fig. S1, fitted with shift and scale using Python SciPy 
package, https://www.scipy.org/), and got 10,000 PCs sampled from 
the fitted PCs’ distributions. The first k EOFs (the k was determined 
when about 70% of the variance explained by the first k EOFs) (Kim 
et al., 2011; Stojanovski et al., 2015; Zhou et al., 2019) and the corre
sponding sampled PCs were used to generate the possible temperature 
and precipitation patterns using Eq. (2). 

F =

⎡

⎣
T1,Jun ⋯ T1,Sep
⋮ ⋱ ⋮
Tn,Jun ⋯ Tn,Sep

P1,Jun ⋯ P1,Sep
⋮ ⋱ ⋮
Pn,Jun ⋯ Pn,Sep

⎤

⎦ (1)  

where Ti,j is the normalized anomaly of monthly temperature at grid i 
and month j, Pi,j is the normalized anomaly of monthly precipitation at 
grid i and month j, n is the total number of grids used for the calculation. 

[
TJun… TSep, PJun… PSep

]
=

∑k

i=1
PC̅→

i × EOFT
i + ε (2)  

where EOFi is the ith EOF, PC̅→
i is the ith principal component of EOFs, and 

ε is the residual that was not captured by the first k EOFs.  

(2) Building the residual model to generate uncaptured climate 
variability of EOF 

Eq. (3) was used to build the multivariate normal distribution model 
(Papoulis and Unnikrishna Pillai, 2002) to fit the distribution of residual 
ε in Eq. (2) at each month for temperature and precipitation respec
tively, taking the intercorrelation of ε in different grids into account. The 
fitted residual distribution models were used to generate temperature 
and precipitation residuals for each grid at each month, which were 
added back to Eq. (2) to get the final climate patterns. 

f

⎛

⎜
⎝ε1, ε2, ..., εn

⎞

⎟
⎠ =

exp
(

− 1
2(ε − μ)

T Σ−1
(

ε − μ
))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)
k
|Σ|

√ (3)  

where μ is the mean value of ε, Σ is the covariance matrix of ε, and εi is 
the residual vector at grid i.  

(3) Assessing the generated climate pattern 

We used two different distribution test methods (i.e., Kolmogor
ov–Smirnov test and Anderson–Darling test) to assess the similarity of 
the distributions between original and generated climate variables at 
each grid. These two methods are widely used to test whether a sample 
of data comes from a certain population. They show different sensitivity 
to different parts of the distribution. The Kolmogorov–Smirnov test 
(Massey, 1951; Hodges, 1958) is most sensitive when the empirical 
cumulative distribution function differs in a global fashion near the 
center of the distribution; while the Anderson–Darling test (Scholz and 
Stephens, 1987) places more weight to the tails of the distribution. 

2.3.3. Statistical crop yield model 
We used the statistical crop yield model developed by Li et al. 

(2019a) and Peng et al. (2018) for crop yield prediction. Growing season 
monthly temperature and precipitation from 1981 to 2018 and county 
level rainfed corn and soybean yield during the same period in the U.S. 
Midwest were used to build a statistical crop yield model. The crop yield 
increase trend was obtained by fitting the relationship between crop 
yield and years using the linear regression (Eq. (4)). The yield anomaly 
(Eq. (5)) was obtained by removing the overall trend yield, and 
modelled using universal temperature and precipitation response curves 
(fitted using piecewise linear spline method with growing season 
monthly temperature and precipitation) and county-wise fixed effects 
(Eq. (6)) (Peng et al., 2018; Li et al., 2019a). The distribution of residuals 
of the model in Eq. (6) was fitted using the multivariate normal distri
bution, similar to Eq. (3). Crop yield predicted by the statistical-based 
crop yield model and the residual generated from the normal distribu
tion model were added together as the final predicted crop yield for the 
crop yield risk assessment. 

Ytrend = A × Year + B (4)  

where Ytrend is the trend yield, A is the yield increase trend, and B is the 
constant intercept. 

Let Y be the measured yield in each county and each year, the yield 
anomaly can be obtained as following, 

Yanomaly = Y − Ytrend (5)  

where Yanomaly is the detrend yield in each county. 

Yanomaly =
∑8

m=6
spline(Tm) +

∑9

m=6
spline(Pm) + C(FIPS) + ε (6)  

where Tm and Pm are the temperature and precipitation at month m, C 
(FIPS) is the fixed effects at each county, which is the time-invariant and 
location-specific characteristics (i.e., soils, management practices, seed 
varieties) that are not reflected in climate data, ε is the residual of the 
crop yield model. 

For crop yield predicted in future scenario, the impacts of CO2 con
centration ([CO2]) on crop yield was calculated based on the meta- 
analysis of elevated [CO2] on crop yield in Free-air concentration 
enrichment (FACE) (Long et al., 2006), with response ratio of crop yield 
under elevated [CO2] (550 ppm) and ambient [CO2] (380 ppm) as 0.99 
(with 90% confidence intervals (CI) ranges 0.94–1.05) and 1.13 (with 
90% CI ranges 1.11–1.15) for corn and soybean, respectively. To 
consider the CO2 fertilizer effects on yield in the future scenario, we 
calculated the response ratio and its uncertainties (based on 90% CI) 
based on the [CO2] difference in future and climate conditions, and 
applied that ratio to adjust crop yield from Eq. (6) for corn and soybean, 
respectively. This approach is commonly adopted in crop models that do 
not consider the [CO2] effects explicitly (Tubiello et al., 2007; Lobell and 
Field, 2008). To derive the impacts of technical improvement on yield, 
we adjusted the historical yield to the [CO2] level in 2000 based on the 
yearly [CO2] data (http://www.pik-potsdam.de/~mmalte/rcps) and 
the response ratio of crop yield to [CO2]. The historical technical 
improvement on yield was obtained from the historical [CO2] adjusted 
yield using the linear regression, and we assumed the future technical 
improvement on yield will be the same or half as that in historical period 
to consider the uncertainty of technical improvement in the future 
(Burchfield et al., 2020; Ortiz-Bobea and Tack, 2018). Since the statis
tical models may not be extrapolated to the distant future which may be 
outside the range of historical climate conditions (Jones et al., 2017), we 
only studied the next 30 years until 2050. 

2.3.4. Risk measures of crop yield under different climate conditions 
Two yield risk measures, return period and coefficient of variation of 

crop yield, were applied to quantify the crop yield risk level under 
different climate conditions (Fig. 3). A recurrence interval of yield 
reduction higher than a certain value was defined as the return period 
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here, which corresponds to the cumulative distribution of the crop yield 
reduction (Fig. 3a). A small return period for a certain level of crop yield 
reduction means such yield reduction is more likely to happen, therefore 
indicating a higher yield risk level. We calculated the return period 
corresponding to 25% yield reduction, which is close to the overall U.S. 
corn yield reduction in the U.S. 2012 drought (Rippey, 2015), based on 
the predicted yield using the generated 10,000 years of climate patterns 
for each county in the U.S. Midwest, and used these return periods to 
study the spatial distribution of corn and soybean yield risk. To assess 
the overall crop yield loss risk in the Midwest, the county level crop yield 
from each simulation was aggregated to regional weighted average crop 
yields for the entire Midwest with the planting acreages of each county 
used as weights. The return period of the historical extreme drought year 
1988 (Kogan, 1995) and 2012 (Mallya et al., 2013) in this region were 
also obtained based on the yield simulations. We also analyzed the 
changes of return periods of crop yield loss events under the future 
climate scenarios with both CO2 fertilizer effect and technical 
improvement taking into account as well. 

The coefficient of variation (CV), defined as the ratio of standard 
deviation to mean value of crop yield (Bindu et al., 2019), is another 
widely-used measure of crop yield risk level in the literature (Crane-
Droesch et al., 2019). For a specific county, if the average yield becomes 
lower or the yield variance becomes larger, the coefficient of variation of 
crop yield will become larger, which indicates increased yield risk 
(Fig. 3b). To evaluate the impacts of climate change on crop yield risk, 
we compared the changes of average yield, yield variance, and coeffi
cient of variation of yield under future and current climate scenarios for 
both corn and soybean. 

3. Results 

3.1. Climate pattern generation based on the extended EOF 

The growing season monthly climate patterns were generated based 
on the EOFs and PCs obtained from 124 years of historical monthly 
climate data which was described in section 2.3.2. The percentage of 
climate spatial-temporal variance represented by the EOFs, the first EOF 
of temperature and precipitation, and corresponding PC were provided 
in Fig. S2. Most temperature and precipitation variance can be explained 
by the first few EOFs (Fig. S2a), covering the patterns of the frequently 
happening climate events indicating the impacts of large-scale 

atmospheric circulation over this region. Specifically, 9.2% variability of 
the temperature and precipitation over CONUS can be explained by the 
first EOF component, indicating the impacts of large-scale climate 
events on the spatial-temporal distribution of temperature and precipi
tation (Fig. S2d). To maintain the major variance of temperature and 
precipitation, 29 EOFs were selected for the climate patterns generation, 
which can explain 70% variance of the temperature and precipitation in 
the past 124 years (Fig. S2a). 

10,000 years of temperature and precipitation patterns were gener
ated by combining the PCs sampled from the fitted PCs distribution 
(Fig. S1) and the corresponding EOFs, adjusted by residuals generated 
from the residual model (Eq. (2)). At both 0.05 and 0.01 significance 
levels, the False Discovery Rate (FDR) adjusted p value of Anderson- 
Darling test and Kolmogorov-Smirnov test failed to reject the null hy
pothesis that the generated and observed temperature and precipitation 
data comes from the same distribution (Fig. S3). For temperature, no 
significant (i.e., p-value > 0.1) difference between the distribution of the 
generations and observations was found throughout CONUS using these 
two different test methods; for precipitation, the difference of the 
generated and observed distributions was not significant (i.e., p-value >
0.1) in most regions of CONUS. The Western U.S. was the exception, but 
was not considered in the crop yield risk analysis in this study. The 
consistency of the distributions of generated and observed climate over 
the U.S. Midwest ensured the climate variables were realistic for the 
crop yield distribution prediction in the following analysis. 

3.2. Assessing the performance of the statistical-based crop yield model in 
the U.S. Midwest 

To evaluate the crop yield model performance, we used the county- 
scale crop yield data in odd years during 1981–2018 for model training 
and even years for model validation. The model performance was 
evaluated at both the county scale and Midwest scale for corn and 
soybean, respectively (Fig. 4). The validation results showed that the 
adopted crop yield model had a high performance in both corn and 
soybean yield prediction with monthly temperature and precipitation as 
inputs, with high R2 and low RMSE at both the county scale and the U.S. 
Midwest scale. For the county scale, the RMSE and R2 were 1.15 t/ha 
(18.32 Bu/Acre) and 0.79 for corn, and 0.36 t/ha (5.35 Bu/Acre) and 
0.75 for soybean, respectively. For the whole Midwest, the RMSE and R2 

were 0.68 t/ha (10.83 Bu/Acre) and 0.85 for corn, and 0.20 t/ha (2.97 

Fig. 3. The conceptual diagram of crop yield risk measures adopted in this study. (a) The conceptual diagram of return period, and its relationships with crop yield 
reduction and cumulative probability; (b) The conceptual diagram of the relationship between the coefficient of variation (CV) of crop yield and crop yield risk. 
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Bu/Acre) and 0.87 for soybean, respectively. The high R2 and low RMSE 
of the crop yield model within the U.S. Midwest supported further use of 
this model for the crop yield risk assessment within this region. 

3.3. Crop yield risk assessment over the U.S. Midwest 

3.3.1. Comparing the observed and generated crop yield patterns 
The spatial distribution of crop yield and its interannual variance can 

be recovered by the proposed framework (Fig. 5), by integrating the 
EOF-based climate pattern generation method, statistical crop yield 
model, and crop yield residual model. We reconstructed the historical 
yield using the proposed crop yield model (including the crop yield re
sidual model) and historical climate data from 1981 to 2018, and 
generated 10,000 years of synthetic crop yield data based on the crop 
yield model (including the crop yield residual model) and the EOF-based 
synthetic climate patterns. The multi-year averaged crop yield from the 
NASS observation, historical crop yield reconstruction, and synthetic 
yield generation showed similar spatial patterns (Fig. 5a and b), indi
cating the proposed method can capture the general distribution of crop 
yield with small biases. In both observed, reconstructed, and generated 
crop yield, higher yields appeared in the northern and central parts of 
Iowa, Illinois, and Indiana for both corn and soybean. The standard 
deviation of crop yield from observation, reconstruction, and generation 

also showed similar spatial patterns (Fig. 5c and d), indicating that the 
proposed method captured the interannual variance of crop yield over 
the region. In all of these three data sources, the southern part of the 
study region showed larger crop yield variance for corn, and the western 
part showed larger crop yield variance for soybean. The similar standard 
deviation of crop yield was obtained from different approaches indi
cating the proposed method can capture the spatial heterogeneity of 
crop yield variances, justifying the reliability of the crop yield risk 
analysis in section 3.3.2. 

We also partitioned the crop yield interannual variance into the 
variance explained by the crop yield model and variance explained by 
the residual model based on the generated crop yield dataset (Fig. 6). 
The yield interannual variance explained by the crop yield model in
dicates the yield variance induced by climate fluctuation, while variance 
explained by the residual model is attributed to pests, disease, nutrition, 
or other factors. The percentages of the crop yield variance explained by 
these two different models vary across the region. For example, most of 
the interannual yield variance was explained by the crop yield model in 
the southern part, while most of the yield variance was explained by the 
residual model in the northern part for both corn and soybean, which 
means that the climate fluctuation more directly influenced crop pro
duction in the southern part than that in the northern part of the U.S. 
Midwest. 

Fig. 4. Evaluating the performance of the statistical-based crop yield model at the county scale and the Midwest scale using the odd years data for model training and 
even years data for model validation. (a) and (b) are the model validation performance at the county scale for corn and soybean, respectively; (c) and (d) are the 
model validation performance at the regional scale (Midwest) for corn and soybean, respectively. 
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Fig. 5. Comparing the mean and standard deviation (std) of trend-adjusted (i.e., trend-adjusted to 2018) rainfed observed (1981–2018) and simulated (for both 
1981–2018 and 10,000 generated years) yield for both corn and soybean. 
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Fig. 6. Partitioning the total crop yield variance into variance explained by the statistical crop yield model and the crop yield residual model for both corn and 
soybean based on the generated crop yield dataset. The variances of crop yield model and residual model were calculated based on the yield generated from crop 
yield model (Var(Yieldc)) and crop yield residual model (Var(Yieldr)), respectively. The total variance (Var(Yieldc+ Yieldr)) was calculated based on the sum of yields 
generated from crop yield model and the crop yield residual model. The plots in right panels of (a) and (b) show the distributions of percentage of crop yield variance 
explained by crop yield model and crop yield residual model within different latitude fitted using the gaussian kernel density estimates. 
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3.3.2. Estimating crop yield risk under current and future climate scenarios 
Based on the 10,000-year crop yield simulations, the county-specific 

crop yield risk level under current climate conditions was calculated. 
Specifically, the return periods corresponding to 25% yield reduction 
(Fig. 7) and the yield under different risk levels (i.e., with return periods 
ranging from 5 to 100 years, Fig. S5) over the U.S. Midwest were ob
tained for each county for corn and soybean, respectively. The return 
period corresponding to 25% yield reduction is smaller in the southwest 
and northwest periphery of Midwest compared to the core part of the 
corn belt for both corn and soybean (Fig. 7), indicating crop production 
is riskier in those regions. Counties in the southwest periphery usually 
have hotter summers with higher interannual variability of precipita
tion, therefore crops planted in those counties are more likely to be 
exposed to heat and severe drought stresses during the critical growth 
stages. Meanwhile, crop production in the northwest periphery is more 
likely to suffer from unexpected cold waves and frost damage before 
harvest and excessive rainfall due to volatile precipitation patterns, 
which may cause higher yield reduction risk in these regions (Li et al., 
2019b). 

The crop yield risk will increase under future climate scenario 
compared with current climate when considering the CO2 effects but 
without technical improvements for RCP 8.5 (Fig. 8) scenario in 2050. 
For both corn and soybean, the averaged crop yield will decrease and 
yield variability will increase under the future climate scenario (Fig. 8a 
and b). The crop yield risk will increase more for corn than that for 
soybean under future climate scenario. The overall crop yield reduction 
is about 30% and 10% for corn and soybean, respectively, with CO2 
effects but without technical improvement, with higher yield loss in the 
southwest part and lower yield loss in the northeast part for both corn 
and soybean (Fig. 8c and d). The standard deviation (Fig. 8e and f) and 
coefficient of variation (Fig. 8i and j) of yield will increase in the U.S. 
Midwest with climate change. The change of crop yield coefficient of 
variation is higher in the southwest Midwest compared to other regions, 
and is higher for corn than for soybean (Fig. 8g and h). 

The overall crop yield of the U.S. Midwest under different risk levels 
were obtained from the 10,000-year county scale crop yield simulations 
weighted by the crop area from NASS Quick Stats. The Midwestern crop 

yield reduction risk under both current and future climate scenarios was 
calculated (Fig. 9). For both corn and soybean, the yield reduction 
increased rapidly with the increase of return period when the return 
period was shorter, while the increase of crop yield reduction rate 
slowed down when the return period was longer. Under extreme years (i. 
e., return period about 100-years), about one fifth of the yield was lost 
for corn and soybean. Specifically, two severe droughts occurred in 2012 
and 1988, resulting in huge crop yield loss in the U.S. Corn Belt. By 
comparing the simulated yield in these two years (trend adjusted) with 
the generated crop yield reduction-return period curves, we estimated 
the return period and its uncertainty in these two extreme years (Fig. 9). 
The uncertainty was obtained from the standard deviation of the pre
dicted yield in these extreme years with 10,000-year crop yield residual 
data generated from the residual model. The return period of 2012 is 
about 30 years for corn and about 12 years for soybean, respectively; 
while for 1988, the return period is about 21 years for corn and about 7 
years for soybean, respectively. For the future climate scenario, the 
reduction of corn and soybean yield will become larger compared with 
current conditions (Fig. 9a and d) with the increase of temperature and 
decrease of precipitation during the growing season for RCP 8.5 at 2050 
when the CO2 fertilization effect and technology improvement were not 
considered. For example, the yield loss for corn at a 50-year return 
period will be 58.8% under RCP 8.5; while for soybean, the yield loss 
will be 35.0% at a 50-year return period under RCP 8.5. The yield 
reduction will be reduced with the increase of [CO2] (Fig. 9b and e) for 
soybean, and may be inverted with the technical improvements for both 
corn and soybean (Fig. 9c and f). For example, when considering the CO2 
fertilization effect but not considering the technology improvement, the 
yield loss for corn and soybean at a 50-year return period will be 57.4% 
and 28.8% under RCP 8.5, respectively. While considering both the CO2 
fertilization effect and technology improvement, the yield loss for corn 
at a 50-year return period will be 19.5% under RCP 8.5. But for soybean, 
the yield reduction may be inverted and the yield may increase 5.0% at a 
50-year return period under RCP 8.5. 

Fig. 7. Crop yield risk measures based on the return periods for corn and soybean corresponding to 25% yield reduction under current climate conditions based on 
the generated crop yield dataset. 
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Fig. 8. Difference between the crop 
yield predicted in current climate and 
2050 for the RCP 8.5 scenario (with 
CO2 effects but without technical im
provements effects). (a) and (b) are the 
distributions of the U.S. Midwest crop 
yield (calculated based on the pre
dicted county-scale yield weighted by 
the planting area of 2018) under cur
rent and future climate (RCP 8.5 at 
2050) scenarios for corn and soybean, 
respectively; (c) and (d) are the spatial 
distribution of yield difference be
tween current and future climate sce
narios for corn and soybean, 
respectively; (e) and (f) are the ratio of 
predicted crop yield standard devia
tion in 2050 for the RCP 8.5 scenario 
and historical climate scenarios for 
corn and soybean, respectively; (g) 
and (h) are the change of yield coef
ficient of variation in 2050 RCP 8.5 
comparing with current climate sce
narios for corn and soybean, respec
tively; (i) and (j) are the distribution of 
yield coefficient of variation (each 
county) in historical climate and 2050 
for the RCP 8.5 scenario scenarios for 
corn and soybean, respectively. The 
distributions of data in (a), (b), (i), and 
(j) were fitted using the gaussian 
kernel density estimates.   
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Fig. 9. The estimated rainfed corn and soybean yield reduction (the baseline is 2018) in the U.S. Midwest under different return periods in historical climate and 
2050 for the RCP 8.5 scenario. Positive value means yield decrease and negative value means yield increase compared to averaged crop yield (adjusted yield trend to 
2018) generated from the current climate condition. The x-axis of all the subplots were in base 10 logarithmic scale. The error bars in (a) and (b) show the standard 
deviation of crop yield prediction in 1988 and 2012. (a)–(c) and (d)–(f) are the yield reduction without both the [CO2] effects and technical improvement effects, 
with the [CO2] effects but without technical improvement effects, with both [CO2] effects and technical improvement effects for corn and soybean, respectively. In 
(b) and (e), the shaded regions were obtained based on the 90% confidence intervals of [CO2] effects on corn and soybean yield; The shaded regions in (c) and (f) 
were obtained assuming the technical improvement on yield is consistent with the current or half as current. 
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4. Discussion 

In this study, we developed a generic framework to evaluate rainfed 
corn and soybean yield risk in the U.S. Midwest for both current and 
future climate scenarios by integrating the extended EOF based syn
thetic climate patterns generation and a well-validated statistical crop 
yield model. Although this study only focused on the risk assessment of 
corn and soybean yield in the U.S. Midwest, the framework proposed 
here can also be easily applied to other regions and other crops with long 
term (i.e., >30 years) climate and crop yield observations. 

We noted some limitations in this study regarding the data avail
ability and models. For the data, we only used 39 years of crop yield data 
for crop yield model building and 124 years of climate data for synthetic 
climate pattern generation. Although these are the longest and best 
climate and crop yield data publicly available and the data period 
covered some historical extreme years (i.e., 1988 and 2012), it is still 
somewhat limited for risk assessment. For the crop yield model, we used 
a statistical model with only climate data as predictors. There is a caveat 
that the statistical model may not be the best option for extrapolation 
under future climate conditions. However, the impact of this issue was 
largely mitigated by focusing on relatively short-term future climate 
conditions until 2050. Besides, our statistical crop model had a strong 
prediction performance with validation R2 of 0.79 and 0.75 for corn and 
soybean, respectively. This suggests that our model can capture the re
sponses of crop yield to climate variability, ensuring the application of 
the proposed framework for climate-induced rainfed crop yield risk 
assessment. We also noted the CO2 fertilization and technical improve
ment effects were considered in our framework just using a simple sta
tistical approach as a first-order approximation, which may lead to 
uncertainties in our risk assessment results. In the following discussion, 
we synthesized our results to answer the questions raised in the intro
duction section of the paper. 

4.1. How much interannual variability of corn and soybean yield is 
explained by the climate variability, and how does this vary spatially? 

Using our framework, we found that about 45% and 40% of crop 

yield interannual variability in corn and soybean can be explained by the 
climate in the U.S. Midwest (Fig. 6). The remaining portion of crop yield 
variability can be explained by the residual model and its covariations 
with the climate-based crop yield model, which may indicate the in
fluence of pest, diseases and its covariations with climate, and other 
natural disasters (e.g., hail and wind storm) on crop yield loss. The 
percentages of corn and soybean yield interannual variability explained 
by climate variability from our study are consistent with previous 
studies (Lobell and Field, 2007; Ray et al., 2015), which found that 
interannual yield variability explained by climate variability was ~41% 
and 36% in the U.S. and 39% and 35% at the global scale for corn and 
soybean, respectively. The variance of crop yield that can be explained 
by climate variables decreased from the southern part to the northern 
part of the Midwest for both corn and soybean. This could be because it 
may be easier for crops to suffer from the heat stress in the southern part 
of Midwest than the northern part (Schlenker and Roberts, 2006; Zhu 
et al., 2019). In the higher temperature regions, small increases in 
temperature may cause a degree of “heat stress”. While in the northern 
part, the normal condition is still below the “maximum-rate or optimal 
temperature” for crop growth. So even though the temperature increases 
a little bit, it is still under the thermal optimum in the northern part of 
the region. Another possibility is that the planting dates have changed 
more in the north growing region than in the southern growing region, 
which may also result in different overall effects of climate change on 
yield (Egli and Cornelius, 2009). 

4.2. What is the risk level of the 1988 and 2012 droughts in terms of the 
corn and soybean yield loss? 

Based on our framework, we calculated the risk level for the two 
major droughts that happened in the U.S. Midwest regions for rainfed 
corn and soybean. For corn, the return periods are about 21 and 30 years 
for 1988 and 2012, respectively; while for soybean, the return periods 
are about 7 and 12 years for 1988 and 2012, respectively. The crop yield 
return period is larger in 2012 than 1988 for both corn and soybean, and 
is larger for corn than soybean in both two extreme years. The spatial 
pattern of the return period in these two extreme years is different for 

Fig. 10. Return period for corn and soybean yield reduction in the drought year 1988 and 2012.  
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both corn and soybean (Fig. 10). For the 1988 drought, the return period 
of both corn and soybean is larger in the northern part of the Midwest; 
while for the 2012 drought, the return period is larger in the southern 
part for both corn and soybean. This is consistent with the drought 
severity patterns during these two extreme years (Zhou et al., 2020). 

4.3. What are the impacts of climate change on the crop yield risk in the 
U.S. Midwest? 

From our framework, when considering the climate change and CO2 
fertilization effect but without the technical improvement, the averaged 
crop yield will decrease and yield variability will increase for most parts 
of the Midwest under RCP 8.5 scenario in 2050 for both corn and soy
bean (Fig. 8). The crop yield reduction is about 30% and 10% for corn 
and soybean with CO2 effects but without technical improvement, 
respectively, which is consistent with previous studies (Cai et al., 2009; 
Lobell and Asseng, 2017), with higher yield loss in the southwest part 
and lower yield loss in the northeast part for both corn and soybean. For 
the northeast part, the growth period will be extended with higher 
temperature, and may compromise the influence of crop yield loss 
caused by the reduction of precipitation (Southworth et al., 2000); while 
in the southwest part, with the increase of temperature and decrease of 
precipitation, the frequency of heat stress and drought will increase 
(Southworth et al., 2000). The crop yield variance and crop yield risk 
will increase for both corn and soybean under RCP 8.5, and corn will 
experience higher yield loss compared with soybean especially in the 
southwest part of the Midwest. 

4.4. Practical implications of this study 

We adopted two crop yield risk measures analyzed in this paper, i.e., 
(1) return period and (2) coefficient of variation. Both risk measures 
have significant implications for different aspects of the risk manage
ment policies and practices in agriculture. First, the return period of 
disastrous events is critical to determine the future premium rate for the 
U.S. federal Multi-Peril Crop Insurance (MPCI), and consequently is 
essential for crop (re)insurance companies to assess the risk level of their 
crop insurance portfolios. The U.S. MPCI program is the biggest crop 
insurance program in the world, which has an annual premium size of 
$10 billion. The correctly determined premium rates help to protect U.S. 
farmers at a reasonable cost of government subsidy (Goodwin and 
Smith, 1995; Shields, 2015). The current premium rating system is only 
based on the previous loss experience in a short time window (less than 
30 years for yield protection policies, less than 20 years for revenue 
protection policies), which, as many have argued (Coble et al., 2010), 
can be misleading due to rare disastrous events such as the 2012 Mid
west drought in the recent history. The return period analysis in this 
paper, especially how these return periods will change under the future 
climatic conditions, will be essential for both policy makers and crop 
(re)insurance companies to understand and manage crop insurance 
risks. 

Coefficient of variation, on the other hand, captures not only the left- 
tail behavior but also the overall variations of crop yield. Better 
knowledge of such variations helps to optimize the agriculture supply 
chain. For example, when one selects among the locations for building a 
new food processing or ethanol plant, the region with low coefficient of 
variation is preferred, as the low interannual variation saves the 
adjustment and transportation cost to secure the stable feedstock supply. 
Furthermore, understanding how yield variation can evolve under 
future climate conditions enables the agriculture supply chain com
panies to redesign their storage and transportation structure to mitigate 

supply-side risks incurred by future climate change. For example, an 
increasing crop yield variation might suggest an investment in storage 
facilities or transportation capacity be profitable in the future. 

5. Conclusion 

In conclusion, by combining a stochastic climate pattern generation 
method and a statistical crop yield model, we proposed a general 
framework for climate induced crop yield risk assessment and applied it 
in the U.S. Midwest in both current and future climate scenarios. Based 
on our framework, we found that (1) about 45% of corn and 40% of 
soybean yield interannual variability can be explained by the climate, 
and explained interannual yield variance by climate variables decreased 
from the southern to the northern part in the Midwest; (2) the southwest 
and northwest regions of the U.S. Midwest has higher yield loss risk 
compared with other regions; (3) the crop yield loss risk will increase 
under future climate scenario for both corn and soybean, with averaged 
yield decrease and yield variability increase. The results of this study can 
be used for the crop insurance policy establishment in this region, as 
well as the assessment of crop yield risk under climate change. 
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