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Abstract—Protection systems are one of the most critical com-
ponents in the transmission system and are becoming more digital
with ongoing automation. These digital systems are prone to vul-
nerabilities/attacks, and exploitation of these vulnerabilities may
cause major impacts on the electric grid performance. Multiple
alarms reported in the control center could be a result of the
faults (expected operations) or failures in the protection system
(anomalies/ unexpected operation). Situational awareness gained
through sensors such as a phasor measurement unit (PMU) and
data acquired through the cyber system provide an opportunity to
develop continuous cyber-physical monitoring of the system. Note
that relay data are not reported in the control center continuously.
This paper presents a cyber-physical data analytics based technique
to monitor transmission protection system and detect malicious
activity. Initially, continuous monitoring of PMU data is utilized
for data anomaly detection, which includes bad or missing data
using long short-term memory (LSTM). Then, PMU data of inter-
est are utilized for failure diagnosis, using a semisupervised deep
autoencoder model. In this research, cyber anomalies are modeled
by manipulating the setting/logic design of protective devices, and a
ridge regression based classifier with a feature engineering pipeline
is used to detect cyber anomalies. The results from the deep autoen-
coder model and ridge regression based classifier are then utilized
for detailed investigation to find the root causes of the observed
events assisted by the cyber log data from the protection devices.
The algorithm is validated using a real-time simulation of the IEEE
test system with industrial hardware relays and PMUs in the loop.
Data analytics algorithm running on server utilizes these real-time
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data continuously for anomaly detection and classification for the
developed use cases.

Index Terms—Cyber anomalies, cyber-physical systems, cyber
security, data analytics, digital protection, transmission protection
systems.

I. INTRODUCTION

PROTECTION system is a critical component in the power
grid, which isolates the faulty components from the healthy

system as quickly as possible. Malfunctions or failures in the
protective devices can lead to isolation of some components of
the healthy system along with the faulty components. Protection
system maloperation has been ranked as the number one concern
by the North American Electric Reliability Corporation to cause
power blackouts [1]. Diagnosis of the root cause leading to fail-
ures in protection system is very important to restore the system
to its normal operating condition. A part in protection system is
said to maloperate, if it operates unintentionally or outside of its
expected zone of protection. Such maloperations could be due to
physical failures or cyber-induced reasons. With the increasing
automation and digitization in the power grid, there are higher
risks of cyber anomaly induced protection system maloperations
and failures. Cyber-induced power system blackouts have been
recently reported in the literature [2], including the attack on
Ukrainian power grid [3]. On December 23, 2015, a group
of attackers successfully intruded the Ukrainian substation and
created an impact on a large regional distribution area followed
by another attack in 2016. These attackers were able to manip-
ulate the grid without the need of sophisticated cyber-physical
malware payloads, such as those used in Stuxnet [2].

The impact of the protection system and hidden failures
on bulk power system reliability was investigated in the work
presented in [4]. A breaker-oriented bulk power system network
model has been developed, which includes substation configura-
tion as well as corresponding protection schemes. Yu and Singh
[5], [6] have presented the vulnerability analysis of protection
system failures. In [7], neural networks have been used to model
the uncertainties involved in the relay and breaker operation
messages to estimate the faulted section. A decision support
system using the circuit breaker information for online fault
section estimation in power systems has been presented in [8].
The existing methods for power system fault diagnosis do not
systematically address the possible malfunctions or failures of
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protective devices [7], [9]. When a fault occurs in the system
along with protection system failures, conflicting information
and alarms makes the problem identification difficult for sys-
tem engineers/operators. Therefore, an automated algorithm is
required for protection system failure diagnosis, in order to
precisely identify the malfunctions and failures of protective
devices. Phasor measurement units (PMU) send streaming data
and provide an opportunity to develop a failure diagnosis method
in a dynamic environment. In [10], a real-time tool was pre-
sented to detect, classify, and locate transmission line faults,
and indicate whether the line was tripped due to a maloperation
of protective relays. Synchrophasor measurements were used to
prevent zone 3 maloperations in [11]. Temporal causal diagram
has been introduced in [12] for the root cause analysis in the
power system.

With the increased deployments of the digital measurement
devices, such as PMUs on the transmission systems, increasingly
growing data have initiated a serious concern [13]. Especially,
in a scenario of simultaneous multiple failures happening in a
network, because of the increasing number of PMUs, relays, and
breakers, it will be difficult to pinpoint the actual event, so a data
analytic tool seems to be necessary. Manual failure diagnosis
using such data can be more difficult, owing to the large number
of data sources and protection devices. Recently, there has
been a surge in research dedicated to measurement driven grid
operation analysis using big data technologies for smart grid
applications [13], [14]. Data analytic based approaches reduce
human tuning efforts. As physical sensors, PMUs often contain
imperfections that can result in bad or missing data. These
incorrect data can be considered noise and can interfere with the
analysis of actual event data. Hence, identifying anomalies in
power grid data is extremely important for performing accurate
analysis. Unfortunately, outlier detection in PMU data is a
multifaceted problem. Since bad and missing data can take on
any value, finding all anomalies is difficult since some of them
could be nearly identical to the expected value. Even when the
majority of anomalies fall far from the expected value, individual
methods such as Chebyshev and linear regression have been
only moderately accurate on their own, as in [15]. Therefore, it
is important to develop anomaly detection algorithms to detect
and filter any bad data in the measurements, before they are
deployed for further applications, as proposed recently by many
researchers.

Supervised methods, which include Bayesian methods [16],
[17], support vector machines [17]–[20], nearest neighbor meth-
ods [17], [18], and AdaBoost [17] are implemented for anomaly
detection. However, one major drawback of supervised methods
is that they are only useful if the attack is previously observed.
Detecting new attacks require the ability to establish the baseline
of normal data and detect deviations of the new data from normal
data.

In this paper, a data analytic approach using PMUs, breaker
status, and streaming data has been developed for the failure
diagnosis in transmission protection systems. This paper extends
our algorithms in [21] by introducing long short-term memory
(LSTM) networks to identify the anomalies in the PMU data
stream. LSTM networks use a combination of all previous

Fig. 1. Various possible failure cases in protection systems.

data to predict future values, with older inputs fading into a
smaller proportion to impact the prediction over time. Then, a
semisupervised deep learning algorithm “Deep Autoencoder”
for detecting anomalies in PMU data is proposed A ridge re-
gression based classifier with a feature engineering pipeline is
proposed for detecting unauthorized intrusion on relay using
the cyber data, which acts as ground truth for anomalies found
in the PMU data. Finally, the outcomes from the analysis of
physical data and cyber data are aggregated for further investi-
gation and decision. The algorithms are designed to run in the
control center after a fault has occurred in the presence of the
malfunctioning protective system and specifying the reasons for
the failure (physical induced or cyber attack induced). The final
root cause is determined using the results from the data analytic
algorithm, which is further validated using relay log files. The
main contributions of this paper are as follows.

1) To propose LSTM networks to identify bad data in the
PMU data stream.

2) To implement cyber attack models to simulate/emulate
protection system maloperation due to cyber attacks.

3) To propose a semisupervised deep learning algorithm for
detecting an anomaly in the PMU data.

4) To propose a ridge regression based classifier with a
feature engineering pipeline for detecting an intrusion in
digital relay.

5) To validate the algorithm on a real-time testbed incorpo-
rating with real-time digital simulator (RTDS), hardware
relays, and proposed cyber attack models.

II. FAILURE IN PROTECTION SYSTEMS

The possible cases in protection system operations are shown
in Fig. 1. These anomalies can change the topology of the trans-
mission grid. Following sections briefly describe the various
modes of protection system operations.

A. Case A: Physical Faults Leading to Normal Protection
System Operation

In this case, the protection systems normally function in
response to a fault in the power system. This could be a relay
operation in zone 1, 2, or 3. The fault is cleared by opening of
the circuit breaker.
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Fig. 2. Schematic of the proposed solution strategy.

B. Case B: Physical Faults Leading to Abnormal Protection
System Operation

In this case, the protective systems do not respond normally
to the fault. This could be a failure in the protection system due
to following reasons.

1) Physical reasons such as bush failure and breaker mecha-
nism failure [22]. Such malfunctions can usually be easily
diagnosed.

2) Cyber attacks leading to the maloperation of the protection
system. In this case, the attacker gains access into the
substation control and protection network, and issues a
malicious control command to operate a circuit breaker.
Maloperations due to a cyber attack can be hard to be
diagnosed. This may require both physical and cyber data.

3) Protection systems may fail due to both 1) and 2). Out
of the maloperation, the attacker can maliciously control
few protection systems and the rest can maloperate due
to physical reasons. This scenario may need extensive
analysis to arrive at a correct reason for the failure.

III. PROPOSED SOLUTION APPROACH

Given a large number of protective devices in the power
grid, it is usually hard to perform failure diagnosis manually.
This (manual procedure) may involve an extensive postfailure
analysis using relay log files and other data. Given the stream-
ing physical data (from PMUs and other sensors) and with
the advent of state-of-the-art data science techniques, the failure
diagnosis can be made efficient. Fig. 2 shows the architecture
of the proposed solution and the following sections describe
the various steps in the proposed strategy for protection system
failure diagnosis.

A. LSTM Network for PMU Anomaly Detection

An LSTM is a type of recurrent neural network composed of
LSTM cells. They are well suited for analyzing sequential data,
which helps in learning important events that are few and far
between, as proved in [23]. In an LSTM cell, sequential nature
of inputs is propagated to the adjacent future time steps as shown
in Fig. 3. A layer of LSTM cells can be stacked onto another

Fig. 3. LSTM layers.

layer of LSTM cells, which further aids the LSTM network to
learn the sequential latent structure of the data.

Inside each hidden layer, the LSTM cell contains a forget gate,
candidate layer, input gate, and an output gate. The forget, input,
and output gates concatenate the dot product of the input vector
Xt and a weight vector U with the dot product of the previously
hidden state Ht−1 and another weight vector W ; then, the
sigmoid activation function is applied to the computed values.
Equation (1) of the forget gate and the other gates use similar
operations but with different weight vector values. The equation
that determines the candidate layer is also identical to (1), but
uses the hyperbolic tangent (tanh) as the activation function.
The computations in the gates are performed as element-wise
operations

ft = σ(x) = σ(Xt ∗ Uf +Ht−1 ∗Wf ) (1)

where
Xt input vector;
Uf weight vector of input at time step t in the forget gate
ft;
Ht−1 previous hidden state vector;
W f weight vector of previous hidden state in the forget gate
ft;
σ(f(x)) activation function applied element wise at each
neuron of the encoder.

Each of the gates calculates the current memory state Ct and
current hidden state Ht according to the following equations:

Ct = ft ∗ Ct−1 + It ∗ Ct (2)

where
f t forget gate (sigmoid function);
Ct−1 previous current memory state vector;
It input gate (sigmoid function);
Ct candidate layer (tanh function)

Ht = Ot ∗ tanh(Ct) (3)
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where
Ot output gate (sigmoid function);
Ct current memory state vector.

B. Triggering the Data Analytics for Failure Diagnosis

A trigger-based approach is used to initiate the proposed
failure diagnosis approach. Continuous monitoring of circuit
breaker status is done, which is typically available every few
seconds. When the breaker status changes, physical and cyber
data are acquired from the database server in the cloud (usually
a few seconds after the event of breaker status change). The deep
autoencoder algorithm then analyzes the physical data, and the
ridge regression based classifier algorithm analyzes the cyber
network data.

C. Hypothesis Generation

When a fault occurs in a network, under normal condition,
it is expected that both relays at each end of the fault line
trip their corresponding breakers. However, if at least one of
these relays/breakers mal-operate because of a physical/cyber
anomaly, then it is usually not easy to determine the reason of
the failure, and several failure reasons can be interpreted based
on the status of relays and breakers.

In the proposed failure diagnosis approach, the first step is to
create these scenarios and develop Protection Network (ProNet)
consisting of all lines and nodes (buses) adjacent to an open
breaker. Each line with at least one open breaker can be a
candidate for fault location. Based on other breakers’ status,
whether the current scenario can explain the current topology
needs to be analyzed. Doing this by manual investigation can
be cumbersome, as there may be many protective devices in the
network.

D. Data Analytic Based Decision Making

The possible root causes of the failure can be further simplified
with the help of data science techniques. This section describes
the anomaly detection using streaming cyber and physical data.

1) Anomaly Detection Over PMU Using Deep Autoencoder:
Deep Autoencoder is a feed-forward neural network consisting
of three types of layers, namely input layer, hidden layer, and
output layer connected in a sequential order, respectively, as
shown in Fig. 4. A deep autoencoder comprises two symmetrical
deep-belief networks that have multiple hidden layers [24].

The proposed deep autoencoder model, used in this paper, is
used to label the PMU readings as normal (0) or as an anomaly
(1), and it forms the primary basis for anomaly detection over
PMU data. Encoder and decoder are two significant components
of deep autoencoder, as shown in Fig. 4. The encoder compresses
the input feature vector (input data) x to a compressed code
represented as “φ,” as shown in Fig. 4, whereas the decoder
reconstructs the compressed code “φ” and outputs a recon-
structed feature vector x̂, which is of the same shape as the
original input feature vector (input data) x. The proposed deep
autoencoder model consists of seven stacked fully-connected
neural network layers representing a combination of encoder

Fig. 4. Proposed architecture of the autoencoder model.

and decoder. The proposed autoencoder architecture consists of
seven layers consisting of 12, 10, 5, 2, 5, 10, and 12 number of
neurons, respectively, as shown in Fig. 4.

The output “φ” of the encoder can be represented as

φ = σ(f(x)) = σ(W ∗ x+ b) (4)

where
b bias vector for encoder;
W weight matrix for encoder;
x input feature vector for encoder;
σ(f(x)) activation function applied element wise at each
neuron of the encoder.

The output x̂ of the decoder can be represented as

x̂ = σ̂(g(φ)) = σ̂(Ŵ ∗ φ+ c) (5)

where
c bias vector for decoder;
W weight matrix for decoder;
σ̂(g(φ)) activation function applied element wise at each
neuron of the decoder;
φ compressed output of the encoder, which act as an input
feature vector for the decoder.

All neurons in the proposed architecture of deep autoencoder
apply rectified linear unit [25] activation function to their respec-
tive inputs, except those neurons in the output layer as they apply
“Sigmoid” [26] activation function to their respective inputs.
Key points for deep autoencoder can be defined as follows.

1) Input feature selection for training Deep Autoencoder:
Selection of input features plays an imperative role during
training a machine learning algorithm. However, in deep
neural network, the hidden layers automatically learn the
underlying latent structure of the data. The proposed deep
autoencoder model is provided with 12 input features of
PMU data, which include 3-phase voltage and current
phasor readings of PMU except the true label, which
indicates that a particular PMU reading in the dataset is an
anomaly (1) or not (0) as it is a semisupervised approach
proposed in this research.
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2) Normalizing selected input features: PMU data consist
of voltage, current values that are of varying magnitude
(scale). Algorithms such as neural network, which impose
weights to input values, do not perform well with unnor-
malized (varying scale) input values. Hence, in order to
optimize the performance of the proposed deep autoen-
coder model, the values in the input feature vector are
normalized to the mean of zero and standard deviation of
one, which helps the algorithm to learn faster during back
propagation.

3) Training of Deep Autoencoder: During the process of
training, in the proposed deep autoencoder model, a
purity-based approach is used, i.e., only normal PMU
measurements are used to train the model and the param-
eters (W , b, Ŵ , c) are evaluated, optimized, and updated
during back-propagation process using a stochastic opti-
mization algorithm known as adaptive moment estimation
(ADAM) [27]. ADAM optimizer [27] minimizes the re-
construction error loss between x and x̂, which is evaluated
using the mean squared error (MSE) given as follows:

MSE =
1
n

n∑

i=1

(x− x̂i)
2. (6)

The proposed deep autoencoder model is built using
state-of-the-art Python deep learning libraries “Keras” and
“Tensorflow.” While building the proposed architecture
early stopping is also implemented to prevent overfitting.
The additional hyper parameters of the model such as
learning rate and number of epochs for training the deep
autoencoder model are set beforehand. Various values of
hyper parameters are used to train the model to obtain
the best performance, and the hyper parameters that give
the best performance are chosen for training the deep
autoencoder.

2) Intrusion Detection on Relay Using Ridge Classifier With
a Feature Engineering Pipeline: Analyzing network traffic in
order to identify regular and abnormal packet interactions plays
an important role while detecting a cyber attack over a network.
In the proposed cyber attack model, the attacker uses a shell code
injection to take control over the control network. Finally, the
attacker uses the manufacturing message specification (MMS)
protocol to modify the relay configuration and opens the circuit
breaker maliciously. Each network packet consists of protocols
(GOOSE and MMS) that defines properties associated with the
respective network packet. The attacker modifies MMS proto-
col, which includes various properties associated with network
packet like IP address, port number, sequence, and acknowledge
number, etc. To detect an intrusion in the protection system, this
research proposes a ridge regression based classifier integrated
with a feature engineering pipeline.

Network packets from the relay first pass into a feature en-
gineering pipeline before being analyzed by the ridge classifier
model. Feature engineering pipeline transforms the features of
an individual network packet into a feature vector. The network
packet consists of various properties associated with it, but five
features that can be leveraged from the properties are “frame

Fig. 5. Network packet properties before feature engineering.

Fig. 6. Network packet properties after feature engineering.

length,” “source IP,” “destination IP,” “source port number,” and
“destination port number,” to detect an intrusion. The pipeline
holds all the authorized IP addresses and port numbers. For
every network packet, the pipeline checks if the “source IP,”
“destination IP,” “source port number,” and “destination port
number” belong to the authorized pool of IP addresses and
port numbers, if yes then it assigns the id associated with the
respective IP address and port number, else it assigns 0 indicating
an unauthorized IP address and port number. This research
considers the ordinal relationship of the “source IP,” “destination
IP,” “source port number,” and “destination port number,” since
communication verification happens in an ordinal manner and
hence these features are not converted into one-hot encoded
vectors. Fig. 5 shows network packet properties before feature
engineering pipeline and Fig. 6 shows the properties after feature
engineering pipeline.

The output of the feature engineering pipeline goes to ridge
classifier for intrusion detection, which either outputs “0” indi-
cating no intrusion or “1” indicating an intrusion. Ridge classifier
is trained using five features, which include “frame length,”
“source IP,” “destination IP,” “source port number,” and “destina-
tion port number,” which are obtained from feature engineering
pipeline. Ridge classifier [28] is basically a generalized repre-
sentation of regularized linear regression. In ridge classifier, the
classification probabilities are estimated by minimizing the least
square cost function with L2 norm defined as

argmin
θ

n∑

i=1

||θx(i) − y(i)|| + λ||θ||22 (7)

where λ greater than 0 is a regularization term, which prevents
overfitting. In ridge classifier [28], estimation of the parameters
and conversion of probabilities to crisp values for classification
is done using a solver called “stochastic averaging gradient
descent.”
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TABLE I
LIST OF HYPOTHESIS

Fig. 7. Schematic of real-time simulation testbed.

E. Final Decision and Control

Based on the results from physical and cyber data analytics,
various conclusions can be drawn as shown in Table I. These
results can further be validated using log files from relays, etc.
It is to be noted that data analytics helps in making the anomaly
detection faster by reducing the possible scenarios. However,
the final conclusion and appropriate control decisions can be
taken based on further manual validation using the log files of
the relays. The advantage is that the operator does not have to
look manually into log data of all the protective devices, but only
of those devices, which the algorithm reports to be malicious.

IV. REAL-TIME TESTBED

The real-time simulation testbed used to validate the proposed
algorithm consists of three layers, namely physical layer, cyber
layer, and data analytics layer as illustrated in the Fig. 7.

The physical layer is simulated in real time. It consists
of RTDS, which implements custom hardware and software,
specifically designed to perform real-time electromagnetic tran-
sient simulations and is used to simulate the power system
network interfaced with a high-speed distance and directional
protection relay. Current and voltage signals from RTDS are
sent to relay using analog output channels in RTDS. Breaker
trip and reclose signals from the physical relay are sent back to
the RTDS. One of the circuit breakers in the RTDS simulation
is controlled by a software relay model in RTDS, and the other
is controlled by the physical relay connected to the simulator
in hardware in the loop. The protective relay output contacts
are connected to the RTDS simulator’s digital interface panel to
communicate breaker commands.

The cyber layer is simulated in real time. In cyber layer, the
control center is running a protection software and Wireshark
software. Wireshark software continuously extracts the network

Fig. 8. Cyber event anomalies.

packets and streams them to the database in the data analytics
layer.

The data analytics layer is near real time as the analysis on
the data from physical and cyber layer is only triggered after
a trigger event detection (change in breaker status). The data
analytics layer is implemented on high performance computing
server. The streaming data from physical layer (PMU: 3-phase
voltage and current values) and data from cyber layer (Wire-
shark: network packets) are streamed and stored in the database
and continuously monitored for an event breaker status change.
As soon as the breaker status change event is detected, the data
stored in the database are queried and analyzed for the final
decision on event analysis.

V. CYBER ATTACK MODELING

The substation communication network has a remote access
point such as virtual private network (VPN), dial-up, or wireless
for control center operator or site engineer. An intruder always
tries to access those points and may perform malicious cyber
attack on substation protection relay and eventually trip the
circuit breaker, which could result in a substantial blackout. In
this paper, a prototype cyber attack similar to the Ukrainian event
[3] is implemented in RTDS.

A. Cyber Anomalies

The substation automation system (SAS) is a target for cyber
attack due to more substantial information and communication
technology dependencies [29]. The SAS is equipped with dif-
ferent types of devices, such as network devices, user interface,
server, global positioning system, firewall, intelligent electronic
devices (IEDs), and remote access points. All these devices are
vulnerable to various types of cyber attack such as data spoofing,
man-in-the-middle attack, and data sniffing attack. Fig. 8 shows
different types of cyber event anomalies that may exist in the
SAS.

The SAS facilities use the IEC 61850 based protocol
(GOOSE, SMV, and MMS) [30]. It is possible to perform a
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Fig. 9. Data spoofing attack on substation architecture.

cyber attack on substation and control center through IEC 61850
protocol as it uses Ethernet-based communication and also lacks
the encryption in field devices in the substation. GOOSE mes-
sages are used to send trip signals to the circuit breakers. By
spoofing the MMS packet, an attacker can monitor and control
the protection relay. MMS packet contains information such
as TCP flag session (e.g., port number, sequence number, Ack
number), IP address, and MMS field information (e.g., itemID,
read/write status, etc.). All these information are vulnerable to
cyber attack. In this paper, we mainly focus on cyber event
anomalies related to the data spoofing attack on IEC 61850
protocol.

B. Cyber Attack Modeling

The modeling of cyber attack defined in this section is divided
into three parts: first, a shell code injection, in which an email
with malware is sent to the control center computer to gain
unauthorized access over them; second, after getting access of
two-level password of the email recipient’s control center PC, the
attacker analyzes the IEC 61850 protocol (GOOSE and MMS)
packets to access the relay configuration session information.
Finally, the attacker manipulates the relay configuration and
opens the circuit breaker, causing disruptions in the power
grid. Fig. 9 shows the overall view of data spoofing attack on
substation architecture.

VI. SIMULATION RESULTS

To validate the effectiveness of the proposed approach, IEEE
14-bus system is modeled as shown in the Fig. 10. Note that
protection anomalies is expected in small subset of the system
and not in large number of substations. Each PMU is receiving
3-phase voltage and current as listed in Table II.

A. LSTM-Based PMU Anomaly Detection

Data from Table II was acquired at a rate of 30 samples per
second. Data anomalies were generated through the algorithm
given in [15]. Modified values were inserted into normal PMU

Fig. 10. Location of the PMUs and relays in IEEE 14-Bus System.

TABLE II
PMU INFORMATION

TABLE III
LSTM ACCURACY

data at various percentages, with some variation in the exact
number of outliers generated. Additionally, these outliers could
be made close to or far away from the normal values. In these
experiments, anomalies were generated that differed from the
expected value from 10% to 30 %. The LSTM network was first
trained using a system of 30 hidden layers. The network was run
on several different sets of anomalous data. Each set is focused
on anomalies in a particular measurement, and the precision and
recall were calculated accordingly. The network successfully
identified anomalies in the magnitude of the voltage and current,
as demonstrated in Table III. These results indicate that this
network is excellent for identifying errors in relatively constant
data. However, it marked many time stamps as anomalous. Since
the network bases its predictions largely on its most recent input,
training it for time stamps proposes some issues. The phase
angles of the voltage and current readings suffered a similar
problem. Similar to the issues with the time stamps, the LSTM
recognizes the small increases between short portions of data.
The identified anomalous data were replaced by most recent
correct data. Advanced methods to replace the missing or bad
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Fig. 11. IEEE 14-bus power system in abnormal condition.

data are currently being developed. These corrected data are,
then, fed to the data analytics module.

B. Actual Scenario

For simulation purposes, it has been assumed that a fault
occurred on line 2–3, but only breaker 8 has tripped to clear
the fault. It is also assumed that the breaker 7 maloperated due
to a cyber attack on the relay 7, which affected its functionality.
In order to isolate the fault, relays 3, 10, and 12 responded to the
fault in their zone 2 and tripped their corresponding breakers.
Breaker 1 also malfunctioned because of the physical anomaly
of the breaker. Hence, breaker 6 has tripped to isolate the fault.
This is considered to be the actual scenario that had occurred as
shown in the Fig. 11.

C. ProNet Formation and Hypothesis Formation

As a first step to correctly arrive at this conclusion (It is to be
noted that the actual scenario is known for study purposes. In
the actual case, the operator is unaware of the actual cause of
the failure.), a ProNet has been created as shown in the Fig. 12.
In this case, several possible scenarios can be interpreted based
on the status of breakers (see Fig. 12). All these lines with at
least one open breaker can be a candidate for the fault location.
All possible scenarios explaining the current topology have been
listed in Table IV. The actual event (Scn 0), that had occurred
has been highlighted in Table IV.

D. Cyber Attack Implementation

For cyber attack, it has been assumed that no mitigation
scheme have been employed. Initially, a brute force attack
using a Telnet session to get access the two-level password
of human–machine interface (HMI) was performed. After ac-
cessing the HMI, attack on MMS protocol is implemented.
In this step, the MMS packet is scanned to determine the
logical nodes (itemID) required to be manipulated to open

Fig. 12. ProNet and the status of the breakers.

TABLE IV
POSSIBLE SCENARIOS

the circuit breaker. Wireshark has been used to extract the
MMS packets. Fig. 13 shows the MMS packet information for
a particular time stamp. In this particular time stamp, the log-
ical node BRK1CSWI1$Co$Pos$Oper$ refers the breaker
switch controller that is required to open the circuit breaker. Fi-
nally, the data spoofing attack on GOOSE protocol is performed
to open the circuit breaker.

E. Data Analytics Approach for Failure Diagnosis

In the next step of the solution approach, data analytics
analyzes the physical data from PMU and cyber data to arrive at
most possible explanation for the current network topology, as
observed from the breaker status.

1) Physical Data Analytics: The physical data provided from
PMU consist of 12 features, which includes 3-phase voltage and
current phasor values. The physical dataset consist of 37500
PMU readings, which is further divided into three subdatasets
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Fig. 13. MMS packer information of a particular time stamp.

TABLE V
DATASET DESCRIPTION

TABLE VI
TYPES OF VALIDATION DATASET

namely training, testing, and validation dataset as shown in
Table V. The training and testing dataset consist of no anomalies,
but the validation dataset consist of 4000 PMU readings out of
which 21 readings represent anomalous PMU readings.

The validation dataset described in Table VI is unbalanced as
it contains 3979 normal (majority) and 21 anomaly (minority)
PMU readings. In order to balance out minority and majority
PMU readings in the validation dataset, a state-of-the-art “syn-
thetic minority oversampling technique” (SMOTE) presented in
[31] is used, which helps in better evaluation of proposed deep
autoencoder model in terms of accuracy, precision, recall, and
F-measure.

In physical system, the deep autoencoder model shown in
Fig. 2 is trained beforehand on training dataset from all eight re-
spective PMUs for anomaly detection over the physical system.
During an attack, “breaker status change” as shown in Fig. 2
acts as an initiating trigger event that initiates deep autoencoder
model, which analyzes PMU data. The proposed deep autoen-
coder model is trained on training data and tested on test data as
given in Table V and validated on “SMOTE validation dataset”
as described in Table VI. The fundamental principle of training
deep autoencoder on normal PMU measurements is to make the
model learn and update weights of the neurons in the model
during back propagation, such that the model is only able to
reconstruct normal PMU values. Training the deep autoencoder
only on normal measures of PMU will limit the model only to
reconstruct normal measures of PMU, such that if an anomaly

Fig. 14. Distribution of MSE for normal and anomaly values.

Fig. 15. Deep Autoencoder performance on varying threshold.

occurs over the system the deep autoencoder model will not be
able to reconstruct the anomalous PMU readings. The metric
MSE is also used to evaluate reconstruction error between input
and output data. MSE is also used to decide a threshold value
depending on the distribution and how well MSE for normal and
anomalous readings are separated, as shown in Fig. 14.

The threshold for reconstruction error (MSE) is set empir-
ically as discussed in [32]. The fundamental idea is to find a
threshold point that best separates MSE of normal from that
of anomalous readings, as shown in Fig. 14. Based on the
selected threshold value of MSE, the PMU readings are labeled
as normal-(0), which are less than threshold, and anomaly-(1),
which are greater than threshold, during validation. Depend-
ing on the selected threshold value, the evaluation metrics
like accuracy, precision, recall, and F-measure can vary. In
Fig. 14, extreme left histogram represents MSE distribution
for normal PMU readings and two histograms on extreme
right show MSE distribution of anomalous PMU readings and
the empty space between them represents the separation of
normal-MSE and anomaly-MSE. To label a PMU reading in
the validation dataset as normal-(0) or an anomaly-(1), three
threshold values are evaluated as minimum, average, and maxi-
mum of test data MSE. Fig. 15 shows how accuracy, precision,
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TABLE VII
DEEP AUTOENCODER PERFORMANCE

Fig. 16. Reconstruction error (MSE) for PMU 2, PMU 3, PMU 7, and
PMU 8.

TABLE VIII
DEEP AUTOENCODER PERFORMANCE

recall, and F-measure can vary depending on selected threshold
value.

Table VII further describes Fig. 15 about varying performance
of the deep autoencoder model on the basis of the selected
threshold value.

As observed from Table VII, maximum performance is
achieved when maximum of MSE (test data) is selected as a
threshold value. Hence, while detecting an anomaly over the
physical system (PMU) maximum of test data, MSE is set as a
threshold in order to obtain maximum accuracy.

In the physical system, eight different deep autoencoder mod-
els are trained on the respective PMUs and when an anomaly
is triggered in the physical system, the models start analyzing
respective PMU data and the results are shown in Fig. 16.

From Table VIII, data analytics concludes that PMU 2 and
PMU 3 exhibit high MSE as compared to PMU 7 and PMU
8, which are far from the fault location. Further, when log
files of the physical system are checked, it is verified that fault
has occurred between PMU 2 and PMU 3. Fig. 16 shows the
reconstruction error (MSE) scale for PMU 2, PMU 3, PMU 7,
and PMU 8.

Fig. 17. Communication scenario during an attack.

2) Cyber Data Analytics: The IP addresses for system op-
erator, relay, and attacker are 192.168.0.23, 192.168.0.16, and
192.168.0.14, respectively. Fig. 17 shows unauthorized IP ad-
dress taking control over the relay and making a successful attack
attempt over the cyber system. The cyber data (network packet)
provided from relay unit are of “.pcap” format. The properties
associated with the network packets that are extracted are shown
in Fig. 5 and fed into the feature engineering pipeline. The
engineering pipeline outputs formatted features for properties
associated with network packets, as shown in Fig. 6. This is
further fed into the ridge classifier to detect an intrusion. Ridge
classifier is kept pretrained for intrusion detection. During an
attack, it captures the network packets and analyzes them. The
cyber data consist of 1238 network packets out of which 80% are
used for training and 20% are used for testing using a stratified
split. Stratified split is a variant of standard train-test split used in
KFold cross validation, where the folds are made by preserving
the percentage of samples for each class. Ridge classifier obtains
98.32 % accuracy on training data and 97.11 % on testing data.
In the implemented cyber attack model, during the attack sim-
ulation, the cyber data analytic module gets triggered when the
“breaker switch control” event is detected, followed by which,
network packets form all relays are captured and analyzed for
intrusion detection. During the simulation scenario, it was found
that relay 7 was compromised by the attacker.

F. Detailed Investigation and Decision

For final conclusions on the failure diagnosis, consider
Table VIII. It shows that PMU 2 and 3 show highest MSE
among all PMUs, as shown in Fig. 16, although all the ProNet
PMUs were affected by the fault. Based on the PMUs source
information presented in Table II, it can be determined that the
fault could have occurred in the line from bus 2 and 3. Also,
based on the cyber anomaly detection, it can be concluded that
there could have been a cyber attack on relay 7. The cyber data
analytics for breaker 1 indicated that there is no intrusion and
most probable cause for its malfunction could be a physical
fault (insulation failure, etc.). Therefore, Scenario 0 in Table IV
could be the most possible reason for the current topology as is
given by the breaker status. Therefore, it can be concluded that
breakers 1 and 7 have been intruded/maloperated, so the field
engineers are needed to be sent to those exact substations and
read the log files to arrive at the final conclusion.

VII. CONCLUSION

In this paper, a data analytics technique to monitor and detect
malicious activity in the cyber-physical transmission protection
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system are presented. The proposed method utilizes streaming
PMU and cyber data, and breaker status data. Considering that
the breaker status change as a trigger, multiple hypothesis theory
is employed to generate hypothesis, which can explain the
ongoing network condition in the system. First, bad data and
missing data in the streaming PMU data streams are detected
through LSTM networks. Next, the autoencoder model analyzes
the PMU data for anomaly detection. Simultaneously, in cyber
system, the ridge-based regression classifier analyzes network
packets to detect an intrusion. Finally, the analysis of both
modules are aggregated and fed to “most probable event” module
to select the most probable reason for the event from the list of
hypotheses. The final diagnosis and validations are made using
the cyber log data of relays.

The main contributions of this paper are to implement cyber
attack models to simulate protection system maloperation due
to cyber attacks, to implement a semisupervised deep learning
algorithm for anomaly detection over PMU, and to use ridge
classifier for detecting an intrusion in relay. The proposed ap-
proach validated on a real-time testbed consisting of RTDS,
hardware relay, and a cyber-attack model. The simulations on
IEEE test system implemented on the test bed confirm that the
proposed data analytics approach is able to diagnose abnormal
operations in a transmission protection system caused by physi-
cal and cyber events. The proposed approach is scalable as pro-
tection system is local and focus on 3–4 substations for observed
events. Possible future extension of the proposed data analytics
technique includes an online learning technique for training deep
autoencoder model and develop parallel implementation of the
proposed technique.
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