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ABSTRACT

The 1971 Fortuin±Kasteleyn±Ginibre inequality for two monotone functions on a distributive lattice is well known and has seen many appli-
cations in statistical mechanics and other fields of mathematics. In 2008, one of us (Sahi) conjectured an extended version of this inequality
for all n > 2 monotone functions on a distributive lattice. Here, we prove the conjecture for two special cases: for monotone functions on the

unit square in R
k whose upper level sets are k-dimensional rectangles and, more significantly, for arbitrary monotone functions on the unit

square in R
2. The general case for Rk, k > 2, remains open.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065285

I. INTRODUCTION

For functions f , g on a probability space (L, μ), their expectation and correlation are defined by

E1( f ) ≙ ℰ( f ) ∶≙ ∫
L
fdμ and E2( f , g) ≙ ℰ( f g) −ℰ( f )ℰ(g). (1.1)

Now suppose further that L is a distributive lattice8 and that the probability measure μ satisfies

μ(a ∨ b)μ(a ∧ b) ≥ μ(a)μ(b). (1.2)

In this situation, if f , g are positive monotone (decreasing) functions9 on L, then one has

E1( f ) ≥ 0 and E2( f , g) ≥ 0. (1.3)

The first inequality is obvious, while the second is the celebrated FKG inequality of Fortuin±Kasteleyn±Ginibre1 that plays an important role
in several areas of mathematics/physics. We will refer to a distributive lattice L with probability measure μ satisfying (1.2) as an FKG poset.

In formulating (1.2), we have tacitly assumed that the poset L is a discrete set. However, the FKG inequality also has important continuous

versions, which can be proved by a discrete approximation. For example, if Qk ≙ ∥0, 1∥k is the unit hypercube in R
k equipped with the partial
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order: x ≥ y if and only if xi ≥ yi for all i, then the FKG inequality holds for the Lebesgue measure and, more generally, for any absolutely
continuous measure whose density function satisfies (1.2).

In Ref. 5, Sahi introduced a sequence of multilinear functionals En( f1, . . . , fn),n ≙ 1, 2, 3, . . ., generalizing E1 and E2 (see Definition 3.1)
and proposed the following conjecture:

Conjecture 1.1 (Ref. 5, Conjecture 5). If f1, . . . , fn are positive monotone functions on an FKG poset, then

En( f1, . . . , fn) ≥ 0. (1.4)

Sahi5 proved the conjecture for the lattice {0, 1} × {0, 1} and for a certain subclass of positive monotone functions on the general

power set lattice {0, 1}k equipped with a product measure. Since the functionals En satisfy the following ªbranchingº property (Ref. 5,
Theorem 6)

En( f1, . . . , fn−1, 1) ≙ (n − 2)En−1( f1, . . . , fn−1), (1.5)

the inequalities (1.4) form a hierarchy in the following sense: if Cn denotes the n-function positivity conjecture, then Cn implies Cn−1 for n > 2.
The work of Sahi was inspired by that of Richards4 who first had the idea of generalizing the FKG inequality to more than two functions.

A natural first candidate for such an inequality is the cumulant (Ursell function) κn, but an easy example shows that the inequality already
fails for κ3. Nevertheless, Richards [Ref. 4, Conjecture 2.5] conjectured the existence of such a hierarchy of inequalities, although without an
explicit formula for En.

Indeed for n ≙ 3, 4, 5, Sahi’s functional En coincides with the ªconjugateº cumulant κ′n introduced by Richards [Ref. 4, formula (2.2)],
although for n ≥ 6 one has En ≠ κ

′

n. We note also that Ref. 4 contains two ªproofsº of the positivity of κ′3, κ
′

4, κ
′

5Ðone for a discrete lattice and
the other for a continuous analog. However, it seems to us that both proofs have essential gaps. Thus, beyond the special cases treated in Ref. 5,
Conjecture 1.1 remains a conjecture, even for n ≙ 3, 4, 5.

In this paper, we provide further evidence in support of Conjecture 1.1. We consider the continuous case of the Lebesgue measure on

the unit hypercube Qk ≙ ∥0, 1∥k in R
k, and we prove the inequalities (1.4) for the following two additional cases:

● for arbitrary positive monotone functions on the unit square in R
2 and

● for monotone characteristic functions of k-dimensional rectangles in ∥0, 1∥k and, by multlinearity of En, for functions whose level sets
are (not necessarily homothetic) rectangles.

First, we treat the case of three functions on R
2 in Sec. II. This introduces several key ideas, including a reduction to a non-linear

inequality involving decreasing sequences. In Sec. III, we define En for arbitrary n and prove Conjecture 1.1, first for characteristic functions
of k-dimensional rectangles and then for general monotone functions on R

2, that is, we extend Sec. II to all n > 3. This requires additional
ideas involving the symmetric group Sn and an intricate induction on n. Subsections III A and III B are written in complete generality, and we
hope these ideas will help in the eventual resolution of Conjecture 1.1.

Since the FKG inequality has many applications in probability, combinatorics, statistics, and physics, it reasonable to suppose that the
generalized inequality will likewise prove to be useful in one or more of these areas. Although we do not have a compelling application in
mind, we feel that it is important to find such an application. Indeed, the right applicationmight provide additional insight into Conjecture 1.1
and perhaps even suggest a line of attack.

To end this section, we tantalize the reader with an interesting reformulation of the inequalities En ≥ 0 in terms of a formal power series
from Ref. 5. First, if F(x) is a positive function on a probability space L, then it is natural to define the geometric mean of F by

G(F) ≙ exp(ℰ(log F)). (1.6)

Now, suppose F(x, t) is a power series of the form

F(x, t) ≙ 1 − f1(x)t − f2(x)t2 − ⋅ ⋅ ⋅ . (1.7)

Then, log(F(x, t)) is a well defined power series, and formula (1.6) gives

G(F) ≙ exp(ℰ(log(F(x, t))) ≙ 1 − c1t − c2t2 − ⋅ ⋅ ⋅ , (1.8)

where the constants cj are certain algebraic expressions in various ℰ( fi1 fi2 ⋅ ⋅ ⋅ fip).
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Conjecture 1.2 (Ref. 5, Conjecture 4). If the f1(x), f2(x), . . . is a sequence of positive monotone functions on an FKG poset, then cn ≥ 0 for
all n.

It turns out that Conjectures 1.1 and 1.2 are equivalent. One implication has already been established in Sec. III of Ref. 5, and we prove
the other direction in the Appendix. We also refer the reader to Refs. 6 and 7 for related inequalities in an algebraic setting.

II. THE INEQUALITY FOR THREE FUNCTIONS

For three functions, the multilinear functional En introduced in Ref. 5 is given by

E3( f , g,h) ≙ 2ℰ( f gh) +ℰ( f )ℰ(g)ℰ(h) −ℰ( f )ℰ(gh) −ℰ(g)ℰ( f h) −ℰ(h)ℰ( f g). (2.1)

We note that E3 is different from the cumulant (Ursell function), which is given by

κ3( f , g,h) ≙ ℰ( f gh) + 2ℰ( f )ℰ(g)ℰ(h) −ℰ( f )ℰ(gh) −ℰ(g)ℰ( f h) −ℰ(h)ℰ( f g). (2.2)

We will consider the functional E3 for functions on the unit hypercube,

Qk ≙ ∥0, 1∥
k
≙ {x ≙ (x1, . . . , xk)∣ 0 ≤ xi ≤ 1} (2.3)

equipped with the Lebesgue measure and the usual partial order: x ≤ x′ if and only if xi ≤ x
′

i for all i. We say that a real valued function f on
Qk is monotone (decreasing) if x ≤ x′ implies f (x) ≥ f (x′). We note that the FKG inequality is usually stated for monotonically increasing
functions, but this is a somewhat arbitrary choice. Indeed, FKG and our theorems for decreasing functions are equivalent to the corresponding
results for increasing functions. For a general FKG poset, this follows by reversing the partial order, and for Qk, this follows by the change of
variables xi ↦ 1 − xi. We also note that monotonicity for Q1 has the usual 1-variable meaning of a decreasing function.

Theorem 2.1. If f , g,h are positive monotone functions on ∥0, 1∥2, then E3( f , g,h) ≥ 0.

The generalization of Theorem 2.1 to n functions is given in Theorem 3.6. We now reduce Theorem 2.1 to characteristic functions
χS, S ⊂ Qk. These are defined by χS(x) ≙ 1 if x ∈ S and χS(x) ≙ 0 if x ∉ S. We will say S ismonotone if χS is monotone.

Lemma 2.2. It suffices to prove Theorem 2.1 for χS, χT , χU for all monotone S,T,U.

Proof. Any positive f can be written as an integral over the characteristic functions of its upper level sets. Thus, f (x) ≙ ∫ ∞0 ξs(x)ds, with
ξs(x) ≙ 1 if f (x) > s and 0 otherwise (see the ªlayer cake principleº in Ref. 2). If f is monotone, then ξs is monotone for every s. Since E3 is
multi-linear in f , g,h, this reduces Theorem 2.1 to the case of monotone characteristic functions. ■

We now describe a further reduction of Theorem 2.1 to a discrete family of characteristic functions. Let 𝒜 ≙𝒜(m) be the set of
decreasingm-tuples of integers, each between 0 andm,

𝒜(m) ∶≙ {a ∈ Zm ∣ m ≥ a1 ≥ ⋅ ⋅ ⋅ ≥ am ≥ 0}. (2.4)

For each a ∈𝒜 , we define a monotone subset Sa of Q2 ≙ ∥0, 1∥2 as follows. Divide Q2 uniformly intom2 little squares, write Di,j for the square
with top right vertex (i/m, j/m), and set

Sa ≙⋃j≤ai
Di,j, χa ≙ χSa . (2.5)

Then, Sa is a monotone subset of Q2, and, conversely, anymonotone union of Di,j is of this form.

Lemma 2.3. It suffices to prove Theorem 2.1 for χa, χb, χc ; a, b, c ∈𝒜(m); for all m.

Proof. By Lemma 2.2, it suffices to consider monotone characteristic functions χS, χT , χU . Divide Q2 uniformly into m2 little squares
Di,j as before, and let Sm,Tm,Um be the unions of the Di,j contained in S,T,U, respectively; then, these are monotone subsets of Q2 of the
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form (2.5). Moreover, χSm , χSmχTm , etc., converge to χS, χSχT , etc., in L1 as m→∞. Thus, if E3(χSm , χTm , χUm) ≥ 0, then we get E3(χS, χT , χU)
≙ limm→∞E3(χSm , χTm , χUm) ≥ 0. ■

A. Proof of the three function inequality in two dimensions

We now prove Theorem 2.1 for χa, χb, χc, which suffices by Lemma 2.3. To simplify the notation, we work directly with a, b, c and we
define the product ab, expectation ℰ(a), etc., as follows:

(ab)i ≙ min{ai, bi}, (2.6)

E1(a) ≙ ℰ(a) ≙ (a1 + ⋅ ⋅ ⋅ + am)/m2
, (2.7)

E2(a, b) ≙ ℰ(ab) −ℰ(a)ℰ(b), (2.8)

E3(a, b, c) ≙ 2ℰ(abc) +ℰ(a)ℰ(b)ℰ(c) −ℰ(a)ℰ(bc) −ℰ(b)ℰ(ac) −ℰ(c)ℰ(ab). (2.9)

Then, we have χab ≙ χaχb, ℰ(a) ≙ ℰ(χa), E2(a, b) ≙ E2(χa, χb), E3(a, b, c) ≙ E3(χa, χb, χc).
In particular, by the FKG inequality, we obtain the following lemma:

Lemma 2.4. For all a, b in𝒜 , we have E2(a, b) ≥ 0. ■

To study E3(a, b, c), we consider certain perturbations of a. We say that a ∈𝒜 has a descent at i if ai > ai+1, and in this case, we can
define three new sequences a− ≙ a−,i, a+ ≙ a+,i, a⋆ ≙ a⋆,i, also in𝒜 , in which the following changes, and only these, are made to a:

a
−

i ≙ ai+1, a
+

i+1 ≙ ai, a
⋆

i+1 ≙ ai+1 + 1. (2.10)

Lemma 2.5. If a has a descent at i, but b does not, then we have ℰ(a+b) +ℰ(a−b) ≙ 2ℰ(ab).

Proof. Let bi ≙ bi+1 ≙ β, say, then we have

(a+b)i ≙ (a+b)i+1 ≙ min{ai,β} ≙ (ab)i, (2.11)

(a−b)i ≙ (a−b)i+1 ≙ min{ai+1,β} ≙ (ab)i+1. (2.12)

Since the three sequences a+b, a−b, and ab coincide except at i, i + 1, the result follows. ■

Proposition 2.6. If a has a descent at i, but b and c do not, then

E3(a+, b, c) + E3(a−, b, c) ≙ 2E3(a, b, c). (2.13)

Proof. Each term of (2.9) has a unique factor involving a, which is of the form ℰ(ad), where d ≙ 1, b, c, bc is a sequence in 𝒜 that does
not have a descent at i. By Lemma 2.5, we get

ℰ(a+d) +ℰ(a−d) ≙ 2ℰ(ad). (2.14)

The result now follows from formula (2.9). ■

Lemma 2.7. If a, b have a descent at i and bi+1 ≤ ai+1, then a⋆b ≙ ab.

Proof. Evidently, (a⋆b)j ≙ (ab)j for j ≠ i + 1, and since bi+1 ≤ ai+1, we also have

(a⋆b)i+1 ≙ bi+1 ≙ (ab)i+1. (2.15)

Thus, we get a⋆b ≙ ab, as claimed. ■

Proposition 2.8. If a and b have a descent at i and bi+1 ≤ ai+1, then we have a⋆b ≙ ab and

E3(a⋆, b, c) ≤ E3(a, b, c) for all c. (2.16)

Proof. By Lemma 2.7, we get ℰ(a⋆b) ≙ ℰ(ab), ℰ(a⋆bc) ≙ ℰ(abc), and it follows that
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E3(a, b, c) − E3(a⋆, b, c) ≙ E2(b, c)[ℰ(a⋆) −ℰ(a)] +ℰ(b)[ℰ(a⋆c) −ℰ(ac)]. (2.17)

Evidently, we haveℰ(a⋆) ≥ ℰ(a) andℰ(a⋆c) ≥ ℰ(ac), and by the FKG inequality, we also have E2(b, c) ≥ 0. Thus, all terms on the right-hand
side of (2.17) are positive, which proves the result. ■

Theorem 2.9. For all a, b, c in𝒜 , we have E3(a, b, c) ≥ 0.

Proof. Let 𝒰 be the set of triples (a, b, c) in 𝒜 for which E3(a, b, c) attains its minimum, and let 𝒱 be the subset of 𝒰 for which the
quantity ℰ(a) +ℰ(b) +ℰ(c) attains itsmaximum.

We claim that if (a, b, c) ∈𝒱, then a, b, c are constant sequences. If this is not the case, then a, say, has a descent at some i. If b, c do not
have a descent at i, then by Proposition 2.6 we get

E3(a, b, c) ≙ (E3(a+, b, c) + E3(a−, b, c))/2.

By minimality, E3(a, b, c) ≤ E3(a±, b, c), which forces E3(a, b, c) ≙ E3(a±, b, c). Replacing a by a+, we reach a contradiction since
ℰ(a+) > ℰ(a).

If b, say, also has a descent at i, then by symmetry we may assume bi+1 ≤ ai+1. Then, by Proposition 2.8, E3(a⋆, b, c) ≤ E3(a, b, c), and we
again reach a contradiction since ℰ(a⋆) > ℰ(a).

Now, we may assume a, b, c are constant sequences and, by symmetry, further assume that

a ≡ mα, b ≡ mβ, c ≡ mγ, 0 ≤ α ≤ β ≤ γ ≤ 1,

and it follows that E3(a, b, c) ≙ 2α + αβγ − (αβ + αβ + αγ) ≙ α(1 − β) (2 − γ) ≥ 0. ■

This proves Theorem 2.1 for χa, χb, χc and, thus, by Lemma 2.3, in general.

III. THE INEQUALITY FOR n FUNCTIONS

A. The definition of En

In this subsection and Subsection III B, we work with arbitrary functions on a probability space. We start by recalling the definition of the
multilinear functional En( f1, . . . , fn) from Ref. 5. This involves the decomposition of a permutation σ in the symmetric group Sn as a product
of disjoint cycles,

σ ≙ (i1, . . . , ip)( j1, . . . , jq) ⋅ ⋅ ⋅ . (3.1)

For σ as in (3.1), we write Cσ for the number of cycles in σ and we set

Eσ( f 1, . . . , f n) ≙ ℰ( f i1 ⋅ ⋅ ⋅ f ip)ℰ( f j1 ⋅ ⋅ ⋅ f jq) ⋅ ⋅ ⋅ . (3.2)

Then, the following definition is due to Sahi.5

Definition 3.1. For functions f 1, . . . , f n on a probability space X, we define

En( f 1, . . . , f n) ≙∑σ∈Sn
(−1)Cσ−1Eσ( f 1, . . . , f n). (3.3)

Using (3.3), one can easily verify that E1,E2,E3 coincide with their earlier definitions. We note that the factor of 2 in the term 2E( f 1 f 2 f 3)
in formula (2.1) comes from the two 3-cycles (123) and (213). More generally, En will have repeated terms because Eσ is unchanged if we
rearrange the indices within a cycle. For example, for n ≙ 4, we have

E4( f 1, f 2, f 3, f 4) ≙ 6ℰ( f 1 f 2 f 3 f 4) − 2[ℰ( f 1)ℰ( f 2 f 3 f 4) +ℰ( f 2)ℰ( f 1 f 3 f 4) + ⋅ ⋅ ⋅ ]

+ [ℰ( f 1)ℰ( f 2)ℰ( f 3 f 4) +ℰ( f 1)ℰ( f 3)ℰ( f 2 f 4) + ⋅ ⋅ ⋅ ]

− [ℰ( f 1 f 2)ℰ( f 3 f 4) +ℰ( f 1 f 3)ℰ( f 2 f 4) + ⋅ ⋅ ⋅ ] −ℰ( f 1)ℰ( f 2)ℰ( f 3)ℰ( f 4).
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We now give an explicit formula for En in a special case.

Lemma 3.2. Let X ≙ ∥0, 1∥ be the unit interval equipped with Lebesgue measure, and let f i be the characteristic function χ∥0,ai∥, 0 ≤ ai ≤ 1,
with 0 ≤ a1 ≤ ⋅ ⋅ ⋅ ≤ an ≤ 1. Then, we have

En( f 1, . . . , f n) ≙ a1(1 − a2) ⋅ ⋅ ⋅ (n − 1 − an).

We note that the above formula implies that En is positive, i.e., Conjecture 1.1 holds for the Lebesgue measure on ∥0, 1∥. While it is easy
enough to give a direct proof the lemma, we prefer to postpone the proof to Subsection III B where we will derive it as a consequence of a
more general result.

B. Algebraic properties of En

We first prove a recursive formula relating En to En−1.

Proposition 3.3. We have En( f 1, . . . , f n−1, f ) ≙ e1 + ⋅ ⋅ ⋅ + en−1 − en, where

ei ≙

⎧⎪⎪⎨⎪⎪⎩

En−1( f 1, . . . , f i f , . . . , f n−1) if 1 ≤ i ≤ n − 1,

En−1( f 1, . . . , f n−1)ℰ( f ) if i ≙ n.
(3.4)

Proof. We write f ≙ f n and consider expression (3.3) for En( f 1, . . . , f n) as a sum over the symmetric group Sn. We decompose Sn as a
disjoint union,

Sn ≙ S
(1)
∪ ⋅ ⋅ ⋅ ∪ S

(n)
, S

(i)
≙ {σ ∈ Sn ∣ σ(i) ≙ n}. (3.5)

Then, S(n) is a subgroup of Sn, naturally isomorphic to Sn−1. By (3.3), we have

En( f 1, . . . , f n) ≙ Σ1
+ ⋅ ⋅ ⋅ + Σ

n
, Σ

i
≙∑σ∈S(i)

(−1)Cσ−1Eσ( f 1, . . . , f n). (3.6)

To study Σi, we consider the map σ ↦ σ defined by dropping n from the cycle decomposition of σ. Thus, for n ≙ 5, we have (13)(245)
↦ (13)(24), (12)(34)(5)↦ (12)(34), etc. Then, σ ↦ σ defines a bijection from each S(i) to Sn−1. If σ is in S(i) and i ≠ n, then i and n occur in
the same cycle of σ, and dropping n does not change the cycle count. This gives

Cσ ≙ Cσ , Eσ( f 1, . . . , f n−1, f ) ≙ Eσ( f
1
, . . . , f

i
f , . . . , f

n−1),

which implies Σi
≙ ei. If σ is in S(n), then (n) occurs as a separate cycle in σ and we get

Cσ ≙ Cσ + 1, Eσ( f 1, . . . , f n−1, f ) ≙ Eσ( f
1
, . . . , f

n−1)ℰ( f ),

which gives Σn
≙ −en. This proves the proposition. ■

Lemma 3.2 is now an easy consequence.

Proof of Lemma 3.2. Let fi ≙ χ∥0,ai∥. Since ai ≤ an for all i, we get

fi fn ≙ χ∥0,ai∥χ∥0,an∥ ≙ χ∥0,an∥ ≙ fi.

Now applying Proposition 3.3 with f ≙ fn, we deduce that

En( f 1, . . . , f n) ≙ ((n − 1) −ℰ( f n))En−1( f 1, . . . , f n−1) ≙ (n − 1 − an)En−1( f 1, . . . , f n−1).

The result follows by a straightforward induction on n. ■
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We next establish a useful formula for the partial sum Pc of En over the set of permutations containing a fixed cycle c.

Proposition 3.4. Let Sc denote the set of permutations σ ∈ Sn that contain a fixed cycle c ≙ (i1, . . . , ip) and let Jc ≙ { j1, j2, . . .}
≙ {1, . . . ,n}/{i1, . . . , ip}, then we have

Pc ∶≙ ∑
σ∈Sc
(−1)Cσ−1Eσ( f 1, . . . , f n) ≙

⎧⎪⎪⎨⎪⎪⎩

−ℰ( f i1 ⋅ ⋅ ⋅ f ip)En−p( f j1 , f j2 , . . .) if p < n,

ℰ( f 1 ⋅ ⋅ ⋅ f n) if p ≙ n.
(3.7)

Proof. The set Sc consists of a single permutation if p ≙ n. Otherwise, it consists of permutations of the form σ ≙ c ⋅ τ, where τ is a
permutation of Jc. Evidently, the number of cycles in σ and τ are related by Cτ ≙ Cσ − 1. Thus, in this case, we have

(−1)Cσ−1Eσ( f 1 ⋅ ⋅ ⋅ f n) ≙ −ℰ( f i1 ⋅ ⋅ ⋅ f ip)(−1)Cτ−1Eτ( f j1 , f j2 , . . .). (3.8)

Now, the result follows by summing (3.8) over τ. ■

C. Proof of the n function inequality for rectangles in any dimension

By a rectangle in dimension k or a k-rectangle, we mean a subset of ∥0, 1∥k of the form

∥0, r1∥ × ⋅ ⋅ ⋅ × ∥0, rk∥, 0 ≤ r1, . . . , rk ≤ 1.

Theorem 3.5. If f i are characteristic functions of k-rectangles, then En( f 1, . . . , f n) ≥ 0.

Proof. We proceed by induction on k ≥ 1 and for a given k by induction on n ≥ 1. The base cases k ≙ 1 and n ≙ 1 are straightforward and
the former by Lemma 3.2. Thus, we may assume k > 1 and n > 1, and we can write

f
i
≙ g

i
× χ∥0,ai∥,

where gi is the characteristic function of a (k − 1)-rectangle. By symmetry of En, we may assume

0 ≤ a1 ≤ ⋅ ⋅ ⋅ ≤ an ≤ 1. (3.9)

We note that the assumption (3.9) on ai means that we have

ℰ(f i1 ⋅ ⋅ ⋅ f ip) ≙ alℰ(g
i1
⋅ ⋅ ⋅ g

ip), l ≙ min{i1, . . . , ip}. (3.10)

Moreover, it follows from (3.3) and (3.10) that if a2 ≙ ⋅ ⋅ ⋅ ≙ an ≙ 1, then we have

En(f 1, . . . , f n) ≙ a1En(g1, . . . , gn). (3.11)

We now fix an index i > 1 and let C(i) denote all set of all cycles containing i, then we have

En(f 1, . . . , f n) ≙∑c∈C(i)
Pc,

where Pc is as in Proposition 3.4. If i is not minimal in c, then Pc is independent of ai by (3.10). If i is minimal in c, then 1 ∉ c; hence, c has
length p < n, and by (3.7) and (3.10), we get
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Pc ≙ −aibc, bc ≙ ℰ(gi1 ⋅ ⋅ ⋅ gip)En−p( f j1 , f j2 , . . .).

By induction on n, we have bc ≥ 0 for such c. This means that En( f 1, . . . , f n) decreases as we increase a2, . . . , an subject, of course, to condition
(3.9). In particular, En decreases as we successively increase

an ↗ 1, an−1 ↗ 1, . . . , a2 ↗ 1.

By (3.11), we get En( f 1, . . . , f n) ≥ a1En(g1, . . . , gn), which is positive by induction on k. ■

If f is the characteristic function of a rectangle, then any level set of f is either the same rectangle or empty. However, using the layer-cake
principle2 and multilinearity as in the Proof of Lemma 2.2, we obtain the following immediate extension of the previous result.

Corollary 3.6. If f 1, . . . , f n are positive, monotone functions whose level sets are (not necessarily homothetic) rectangles, then
En( f 1, . . . , f n) ≥ 0. ■

D. Proof of the n function inequality in two dimensions

Our main result is as follows:

Theorem 3.6. If f 1, . . . , f n are positive and monotone on ∥0, 1∥2, then En( f 1, . . . , f n) ≥ 0.

As before, we can deduce this from the special case of χa as in (2.5).

Lemma 3.7. It suffices to prove Theorem 3.6 for χa1 , . . . , χan , a
i
∈𝒜(m), for all m.

Proof. This is proved along the same lines as Lemmas 2.2 and 2.3. ■

In this section, we work with𝒜 ≙𝒜(m) and to simplify the notation for a1, . . . , an in𝒜 , we set

Eσ(a1, . . . , an) ≙ ℰ(χai1 , . . . , χaip )ℰ(χaj1 , . . . , χajq ) ⋅ ⋅ ⋅ , (3.12)

En(a1, . . . , an) ≙∑σ∈Sn
(−1)Cσ−1Eσ(a1, . . . , an). (3.13)

Then, we have En(χa1 , . . . , χan) ≙ En(a
1, . . . , an).

To study the positivity of En, we first consider a special case.

Proposition 3.8. If ai ≡ mαi are constant sequences with 1 ≤ α1 ≤ ⋅ ⋅ ⋅ ≤ αn ≤ 0, then

En(a1, . . . , an) ≙ α1(1 − α2) ⋅ ⋅ ⋅ (n − 1 − αn). (3.14)

Proof. Let Ln ≙ En(a1, . . . , an). Since αi ≤ αn, we have aian ≙ ai for all i. Thus, we get

Ln ≙∑n−1

i≙1
Ln−1 − Ln−1ℰ(an) ≙ (n − 1 − αn)Ln−1

by Proposition 3.3. Now, (3.14) follows by induction on n, the case n ≙ 1 being obvious. ■

We now prove the generalization of Proposition 2.6.

Proposition 3.9. If a has a descent at i, but a1, . . . , an−1 do not, then we have

2En(a1, . . . , an−1, a) ≙ En(a1, . . . , an−1, a+) + En(a1, . . . , an−1, a−). (3.15)

Proof. This is proved for each term Eσ in (3.13) in exactly the same way as Proposition 2.6 by applying Lemma 2.5 to the unique factor
of Eσ involving a ≙ a

n in (3.12). ■
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We shall prove the next three theorems together by induction on n.

Theorem 3.10. If a1, . . . , an−2, b are in𝒜 ; S is a subset of Q2; and χbχS ≙ 0, then

En(χa1 , . . . , χan−2 , χb, χS) ≤ 0. (3.16)

Theorem 3.11. If a1, . . . , an−2, b, c are in𝒜 ; b, c have a descent at i; and bi+1 ≤ ci+1, then

En(a1, . . . , an−2, b, c⋆) ≤ En(a1, . . . , an−2, b, c). (3.17)

Theorem 3.12. For all a1, . . . , an in𝒜 , we have

En(a1, . . . , an) ≥ 0. (3.18)

Proof. Let us write A(n), B(n), and C(n) for the assertions of Theorems 3.10, 3.11, and 3.12. Then, A(1),B(1) are vacuously true, while
C(1) is evident. Therefore, it suffices to prove the implications A(n − 1) ∧ C(n − 1)Ô⇒ A(n) and A(n)Ô⇒ B(n)Ô⇒ C(n) for all n ≥ 2.

A(n − 1) ∧ C(n − 1)Ô⇒ A(n): By assumption, we have χbχS ≙ 0, and we also have χaiχS ≙ χSi , where Si ≙ S ∩ Sai . Thus, by
Proposition 3.3, we get

En(χa1 , . . . , χan−2 , χb, χS) ≙ e1 + ⋅ ⋅ ⋅ + en−2 + en−1 − en,
where ei ∶≙ En−1(χa1 , . . . , χSi , . . . , χan−2 , χb), i ≤ n − 2,

en−1 ∶≙ En−1(χa1 , . . . , χan−2 , 0),
en ∶≙ En−1(χa1 , . . . , χan−2 , χb)ℰ(χS).

Now, en ≥ 0 by C(n − 1) and en−1 ≙ 0 by (3.12) and (3.13). In addition, χbχSi ≙ (χbχS)χai ≙ 0, and so by symmetry, we can apply A(n − 1) to
conclude ei ≤ 0 for i ≤ n − 2. This implies A(n), (3.16).

A(n)Ô⇒ B(n): Define Sc, Sc⋆ as in (2.5) and put S ≙ Sc⋆/Sc, then by Lemma 2.7 we have

χSχb ≙ (χc⋆ − χc)χb ≙ χc⋆b − χcb ≙ 0.

Thus, by A(n), (3.16), we get En(χa1 , . . . , χan−2 , χb, χc⋆ − χc) ≤ 0, which implies B(n), (3.17).
B(n)Ô⇒ C(n): This argument is similar to the Proof of Theorem 2.9. Let ℳ be the set of n-tuples a ≙ (a1, . . . , an) in 𝒜 for which

En(a) achieves its minimum, and let 𝒩 be the subset of ℳ for which λ(a) ≙ ℰ(a1) + ⋅ ⋅ ⋅ +ℰ(an) achieves its maximum on ℳ . We claim
that for a in𝒩 each ai is a constant sequence; by Proposition 3.8, this clearly implies C(n), En(a) ≥ 0.

If the claim is not true, then one of the sequences has a descent at some i. First suppose that only one sequence, by symmetry an ≙ a,
has a descent at i. By Proposition 3.9 and minimality of En(a), we deduce En(a) ≙ En(a1, . . . , an−1, a±). Thus, replacing a by a+ preserves
En(a) but increases λ(a), which is a contradiction. If two sequences have a descent at i, then by symmetry we may assume these are
an−1 ≙ b, an ≙ c with bi+1 ≤ ci+1. Now, B(n), (3.17), implies that replacing c by c⋆ does not increase En(a), but it does increase λ(a), which is a
contradiction. ■

This proves Theorem 3.6 for χai and, thus, by Lemma 3.7, in general.
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APPENDIX: THE EQUIVALENCE OF CONJECTURES 1.1 AND 1.2

We start by recalling some basic facts about partitions and permutations. For more background and details involving these ideas, we
refer the reader to Ref. 3.

A partition λ of n, of length l, is a weakly decreasing sequence of positive integers,

λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λl > 0 such that λ1 + ⋅ ⋅ ⋅ + λl ≙ n,

we say that the λj are the parts of λ, and we write l(λ) ≙ l and ∣λ∣ ≙ n.
The conjugation action of Sn permutes the indices in the cycle decomposition (3.1) of an element σ. Thus, the class of σ is uniquely

determined by its ªcycle type,º i.e., the partition λwhose parts are the cycle lengths of σ, arranged in decreasing order. Moreover, ifmi ≙ mi(λ)
denotes the number of parts of size i, then the conjugacy class of cycle type λ contains n!/zλ elements, where

zλ ≙∏i≥1
i
mi(mi). (A1)

For a function f on a probability space, we define itsmoments by the formula

pd( f ) ≙ ℰ( f
d) and pλ( f ) ≙ pλ1( f ) ⋅ ⋅ ⋅ pλl( f ). (A2)

Lemma A.1. We have En( f , . . . , f ) ≙ n!∑∣λ∣≙n (−1)l(λ)−1z−1λ pλ( f ).

Proof. If σ is of class λ, then the number of disjoint cycles in σ is l(λ), and by (3.2), we have Eσ( f , . . . , f ) ≙ pλ( f ). Thus, the sum (3.3)
for En( f , . . . , f ) is constant over conjugacy classes, with class λ contributing n!/zλ identical terms. This implies the result. ■

If f is as above and u is a parameter, then we can define the formal logarithm

log(1 − u f) ≙ −∑i≥1
u
i
f
i/i. (A3)

Proposition A.2 We have exp(ℰ(log(1 − u f ))) ≙ 1 −∑n≥1 u
nEn( f , . . . , f )/n!

Proof. Let Z ≙ ℰ(log(1 − u f )), then by (A3) we have

Z ≙ −∑i≥1
u
i
pi( f )/i. (A4)

Writing pk ≙ pk( f ) and pλ ≙ pλ( f ) for simplicity, we get

exp(Z) ≙∏i≥1∑mi≥0
(−1)mi(uipi)mi/imimi! ≙∑λ

(−1)l(λ)z−1λ pλu
∣λ∣
. (A5)

Now, the result follows from Lemma A.1. ■

Proposition A.3. If f1, f2, . . . are functions on a probability space, then we have

1 − exp(ℰ(log(1 −∑i
fit

i))) ≙∑n≥1∑i1 ,...,in
En( fi1 , . . . , fin)t

i1+⋅⋅⋅+in/n!.

Proof. Let us write A ≙ f1t + f2t
2
+ ⋅ ⋅ ⋅, then by Proposition A.2, we get

1 − exp(ℰ(log(1 − A))) ≙∑n≥1
En(A, . . . ,A)/n!,

and by multilinearity of En, we have En(A, . . . ,A) ≙ ∑i1 ,...,in
En( fi1 , . . . , fin)t

i1+⋅⋅⋅in . ■
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Theorem A.4. For a set of functionsℐ on a probability space, the following are equivalent:

1. For all n, we have En( f1, . . . , fn) ≥ 0 if f1, . . . , fn ∈ℐ.
2. The power series 1 − exp(ℰ(log(1 −∑i fit

i))) has positive coefficients if f1, f2, . . . ∈ℐ.

Proof. The first statement implies the second by Proposition A.3. The converse was proved in Ref. 5, but we recall it here for
completeness. Let p1, p2, . . . , pn be the first n primes; define

k ≙ p1p2 ⋅ ⋅ ⋅ pn, kj ≙ k/pj, N ≙ k1 + ⋅ ⋅ ⋅ + kn,

and consider possible solutions of the equation s1k1 + ⋅ ⋅ ⋅ + snkn ≙ N, where s1, . . . , sn are integers ≥0. If some sj were 0, then pj would
divide the left side but not the right; thus, we must have all sj > 0 and, hence, that s1 ≙ ⋅ ⋅ ⋅ ≙ sn ≙ 1. Now, it follows from Proposition A.3

that the coefficient of tN in the power series 1 − exp(ℰ(log(1 −∑n
j≙1 fjt

kj))) is precisely En( f1, . . . , fn). Thus, the second statement implies
the first. ■

The previous theorem proves the equivalence of Conjectures 1.1 and 1.2. In particular, our Theorem 3.6 implies Conjecture 1.2 for the
Lebesgue measure on the unit square in R

2.
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