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ABSTRACT

The 1971 Fortuin-Kasteleyn-Ginibre inequality for two monotone functions on a distributive lattice is well known and has seen many appli-
cations in statistical mechanics and other fields of mathematics. In 2008, one of us (Sahi) conjectured an extended version of this inequality
for all n > 2 monotone functions on a distributive lattice. Here, we prove the conjecture for two special cases: for monotone functions on the
unit square in R¥ whose upper level sets are k-dimensional rectangles and, more significantly, for arbitrary monotone functions on the unit
square in R?. The general case for R¥, k > 2, remains open.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065285

. INTRODUCTION

For functions f, g on a probability space (L, ), their expectation and correlation are defined by

E(f) =&(f) = fodM and  Ex(f.g) = &(fg) - €(f)&(g) (1.1)
Now suppose further that L is a distributive lattice® and that the probability measure y satisfies

p(avb)u(anb) > u(a)u(b). (12)

In this situation, if f, g are positive monotone (decreasing) functions’ on L, then one has

Ei(f)20 and E(f.g)20. (1.3)

The first inequality is obvious, while the second is the celebrated FKG inequality of Fortuin-Kasteleyn-Ginibre' that plays an important role

in several areas of mathematics/physics. We will refer to a distributive lattice L with probability measure y satisfying (1.2) as an FKG poset.
In formulating (1.2), we have tacitly assumed that the poset L is a discrete set. However, the FKG inequality also has important continuous

versions, which can be proved by a discrete approximation. For example, if Q = [0,1]* is the unit hypercube in R¥ equipped with the partial
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order: x > y if and only if x; > y; for all i, then the FKG inequality holds for the Lebesgue measure and, more generally, for any absolutely
continuous measure whose density function satisfies (1.2).

In Ref. 5, Sahi introduced a sequence of multilinear functionals E,(fi, ..., fu),n =1,2,3,. .., generalizing E; and E, (see Definition 3.1)
and proposed the following conjecture:

Conjecture 1.1 (Ref. 5, Conjecture 5). If fi,..., fx are positive monotone functions on an FKG poset, then

En(f1s---» fu) 2 0. (1.4)

Sahi® proved the conjecture for the lattice {0,1} x {0,1} and for a certain subclass of positive monotone functions on the general
power set lattice {0,1}* equipped with a product measure. Since the functionals E, satisfy the following “branching” property (Ref. 5,
Theorem 6)

En(fis- s fams1) = (0= 2)Eni (fro- o fua), (15)

the inequalities (1.4) form a hierarchy in the following sense: if C, denotes the n-function positivity conjecture, then C,, implies C,—1 for n > 2.

The work of Sahi was inspired by that of Richards® who first had the idea of generalizing the FKG inequality to more than two functions.
A natural first candidate for such an inequality is the cumulant (Ursell function) «,, but an easy example shows that the inequality already
fails for 3. Nevertheless, Richards [Ref. 4, Conjecture 2.5] conjectured the existence of such a hierarchy of inequalities, although without an
explicit formula for E,,.

Indeed for n = 3,4, 5, Sahi’s functional E, coincides with the “conjugate” cumulant «;, introduced by Richards [Ref. 4, formula (2.2)],
although for n > 6 one has E,, # «,,. We note also that Ref. 4 contains two “proofs” of the positivity of «3, x}, ks—one for a discrete lattice and
the other for a continuous analog. However, it seems to us that both proofs have essential gaps. Thus, beyond the special cases treated in Ref. 5,
Conjecture 1.1 remains a conjecture, even forn = 3,4,5.

In this paper, we provide further evidence in support of Conjecture 1.1. We consider the continuous case of the Lebesgue measure on
the unit hypercube Q; = [0, 1] in R¥, and we prove the inequalities (1.4) for the following two additional cases:

e for arbitrary positive monotone functions on the unit square in R* and
e for monotone characteristic functions of k-dimensional rectangles in [0,1]* and, by multlinearity of E,,, for functions whose level sets
are (not necessarily homothetic) rectangles.

First, we treat the case of three functions on R? in Sec. II. This introduces several key ideas, including a reduction to a non-linear
inequality involving decreasing sequences. In Sec. 111, we define E, for arbitrary n and prove Conjecture 1.1, first for characteristic functions
of k-dimensional rectangles and then for general monotone functions on R?, that is, we extend Sec. 11 to all n > 3. This requires additional
ideas involving the symmetric group S, and an intricate induction on n. Subsections I1I A and I1I B are written in complete generality, and we
hope these ideas will help in the eventual resolution of Conjecture 1.1.

Since the FKG inequality has many applications in probability, combinatorics, statistics, and physics, it reasonable to suppose that the
generalized inequality will likewise prove to be useful in one or more of these areas. Although we do not have a compelling application in
mind, we feel that it is important to find such an application. Indeed, the right application might provide additional insight into Conjecture 1.1
and perhaps even suggest a line of attack.

To end this section, we tantalize the reader with an interesting reformulation of the inequalities E, > 0 in terms of a formal power series
from Ref. 5. First, if F(x) is a positive function on a probability space L, then it is natural to define the geometric mean of F by

G(F) = exp(&(log F)). (1.6)
Now, suppose F(x, t) is a power series of the form
F(x,t) =1- fi(x)t = fo(x)t> —- - (1.7)
Then, log(F(x,t)) is a well defined power series, and formula (1.6) gives

G(F) = exp(8(log(F(x,1))) = 1 —cit —cat” — - -+, (1.8)

where the constants ¢; are certain algebraic expressions in various &(fi, fi, - - - fi, )-
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Conjecture 1.2 (Ref. 5, Conjecture 4). If the f1(x), f2(x), . .. is a sequence of positive monotone functions on an FKG poset, then c, > 0 for
all n.

It turns out that Conjectures 1.1 and 1.2 are equivalent. One implication has already been established in Sec. III of Ref. 5, and we prove
the other direction in the Appendix. We also refer the reader to Refs. 6 and 7 for related inequalities in an algebraic setting.

Il. THE INEQUALITY FOR THREE FUNCTIONS

For three functions, the multilinear functional E, introduced in Ref. 5 is given by

Es(f.8h) = 28(fgh) + 8())&(g)&(h) - E(f)&(gh) - E(g)E(fh) - E(h)E(fg). 2.1)

We note that E3 is different from the cumulant (Ursell function), which is given by

13(f.8h) = E(fgh) +28(f)E(g)E(h) - E(f)E(¢h) - E(2)E(fh) - E(h)E(f)- (2.2)

We will consider the functional E; for functions on the unit hypercube,

Qe=[0,11"={x=(x1,...,x)| 0<x; < 1} (2.3)

equipped with the Lebesgue measure and the usual partial order: x < x” if and only if x; < x{ for all i. We say that a real valued function f on
Qy is monotone (decreasing) if x < x” implies f(x) > f(x). We note that the FKG inequality is usually stated for monotonically increasing
functions, but this is a somewhat arbitrary choice. Indeed, FKG and our theorems for decreasing functions are equivalent to the corresponding
results for increasing functions. For a general FKG poset, this follows by reversing the partial order, and for Q, this follows by the change of
variables x; — 1 — x;. We also note that monotonicity for Q; has the usual 1-variable meaning of a decreasing function.

Theorem 2.1. If f, g, h are positive monotone functions on [0,1)?, then Es(f, g, h) > 0.

The generalization of Theorem 2.1 to n functions is given in Theorem 3.6. We now reduce Theorem 2.1 to characteristic functions
xs>S © Q. These are defined by ys(x) = 1if x € Sand ys(x) = 0if x ¢ S. We will say S is monotone if ys is monotone.

Lemma 2.2. It suffices to prove Theorem 2.1 for ys, x, xu for all monotone S, T, U.

Proof. Any positive f can be written as an integral over the characteristic functions of its upper level sets. Thus, f(x) = [;™&(x)ds, with
&(x) = 1if f(x) > s and 0 otherwise (see the “layer cake principle” in Ref. 2). If f is monotone, then &, is monotone for every s. Since Es is
multi-linear in f, g, h, this reduces Theorem 2.1 to the case of monotone characteristic functions. [ ]

We now describe a further reduction of Theorem 2.1 to a discrete family of characteristic functions. Let &/ = &/ (m) be the set of
decreasing m-tuples of integers, each between 0 and m,

d(m)={aeZ” |m>ay > >am>0}. (2.4)

For each a € o/, we define a monotone subset S, of Q; = [0, 1]* as follows. Divide Q, uniformly into " little squares, write D;; for the square
with top right vertex (i/m,j/m), and set

Sa=Ujcy Dij» Xa = Xs.- (2.5)

Then, S, is a monotone subset of Q2, and, conversely, any monotone union of D;; is of this form.

Lemma 2.3. It suffices to prove Theorem 2.1 for Ya, Xp» Xc ; @, b, c € of (m); for all m.

Proof. By Lemma 2.2, it suffices to consider monotone characteristic functions ys, yr, yv. Divide Q, uniformly into m? little squares
Dij as before, and let ", T™, U™ be the unions of the D;; contained in S, T, U, respectively; then, these are monotone subsets of Q; of the
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form (2.5). Moreover, ysu, ysnyrm, etc., converge to xs, ¥sy1» etc., in L' as m — oo. Thus, if Es(ysn, ym, yun ) 2 0, then we get Es(xs, y1»xv)
= limpm— oo E3 (Y5, Y1, YU ) = 0. m
A. Proof of the three function inequality in two dimensions

We now prove Theorem 2.1 for xa, x5, Xc» which suffices by Lemma 2.3. To simplify the notation, we work directly with a, b, ¢ and we
define the product ab, expectation &(a), etc., as follows:

(ab)i = min{a;, bi}, (2.6)
Ei(a) = 8@) = (ar +- -+ am)/m’, (2.7)
Ex(a,b) = &@ab) — &@)&(b), (2.8)
Es(a,b,c) =2&(abc) + E(a)E(b)E(c) — &(a)&(bc) — &(b)&(ac) — E(c)&(ab). (2.9)

Then, we have y,p, = Xaxp» €(a) = &(xa), E2(a,b) = E2(Xa> x1)> E3(a, b,¢) = E3(Ya» Xo> Xc)-
In particular, by the FKG inequality, we obtain the following lemma:

Lemma 2.4. Foralla,bin of , we have E;(a,b) > 0. [ |

To study Esz(a, b, c), we consider certain perturba;ions of a. We say that a € ¢/ has a descent at i if a; > a;;1, and in this case, we can
define three new sequencesa” =a™", at =a™ a* =a™, also in o, in which the following changes, and only these, are made to a:

— + *
a; =0ai+1, Qip1 = qi,  Qjy1 = dip1 + 1 (2.10)

Lemma 2.5. If a has a descent at i, but b does not, then we have &(a*b) + &(a™b) = 2&(ab).

Proof. Let b; = biy1 = B, say, then we have

(a*b)i = (a"b)ir1 = min{a;, B} = (ab)i, (2.11)
(a_b)i = (a_b)i+1 = min{aiﬂ,ﬁ} = (ab)i+1. (2.12)
Since the three sequences a*h, a” b, and ab coincide except at i,i + 1, the result follows. [ ]

Proposition 2.6. If a has a descent at i, but b and c do not, then

Es(a”,b,c) + Es(a ,b,c) = 2E3(a, b, c). (2.13)

Proof. Each term of (2.9) has a unique factor involving a, which is of the form &(ad), where d = 1,b, ¢, bc is a sequence in & that does
not have a descent at i. By Lemma 2.5, we get

&(a*d) + (a~d) = 2&(ad). (2.14)

The result now follows from formula (2.9). [ ]
Lemma 2.7. If a,b have a descent at i and bi11 < ai+1, then a*b = ab.

Proof. Evidently, (a*b); = (ab); forj # i + 1, and since bi+1 < air1, we also have

(a"b)is1 = bis1 = (ab)is1. (2.15)
Thus, we get a*b = ab, as claimed. [ ]

Proposition 2.8. If a and b have a descent at i and by < aii1, then we have a*b = ab and

Es(a”,b,c) <Es(a,b,c)  forallc. (2.16)

Proof. By Lemma 2.7, we get &(a*b) = &(ab), &(a*bc) = &(abc), and it follows that

J. Math. Phys. 63, 043301 (2022); doi: 10.1063/5.0065285 63, 043301-4
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Es(a,b,c) — Es(a",b,c) = Ex(b,c)[&(a”) - &(a)] + &(b)[&(a"c) - &(ac)]. (2.17)

Evidently, we have &(a*) > &(a) and &(a"¢) > &(ac), and by the FKG inequality, we also have E; (b, ¢) > 0. Thus, all terms on the right-hand
side of (2.17) are positive, which proves the result. [ |

Theorem 2.9. Foralla,b,cin &, we have E3(a,b,c) > 0.

Proof. Let % be the set of triples (a,b,c) in o for which Ez(a,b,c) attains its minimum, and let 7" be the subset of % for which the
quantity &(a) + &(b) + &(c) attains its maximum.

We claim that if (a,b,¢) € 7/, then a, b, c are constant sequences. If this is not the case, then g, say, has a descent at some i. If b, ¢ do not
have a descent at 7, then by Proposition 2.6 we get

Es(a,b,c) = (Es(a’,b,c) + Es(a ", b,c))/2.

By minimality, E3(a,b,c) < Es(a*,b,c), which forces E3(a,b,c) = Es(a*,b,c). Replacing a by a*, we reach a contradiction since
&(a*) > &(a).

If b, say, also has a descent at i, then by symmetry we may assume b;.1 < a;+1. Then, by Proposition 2.8, Ez(a”, b, c) < E3(a, b, c), and we
again reach a contradiction since &(a”) > &(a).

Now, we may assume 4, b, ¢ are constant sequences and, by symmetry, further assume that

a=ma,b=mp,c=my, 0<a<f<y<l,

and it follows that E3(a,b,¢) = 2a + affy — (aff + oS + ay) =a(1 =) (2-y) > 0. [ ]
This proves Theorem 2.1 for ya, xp, xc and, thus, by Lemma 2.3, in general.

Ill. THE INEQUALITY FOR n FUNCTIONS
A. The definition of E,

In this subsection and Subsection I1I B, we work with arbitrary functions on a probability space. We start by recalling the definition of the
multilinear functional E,(fi,. .., fu) from Ref. 5. This involves the decomposition of a permutation ¢ in the symmetric group S, as a product
of disjoint cycles,

0= (i, erip) (o enjg) e+ - (3.1)

For o as in (3.1), we write C, for the number of cycles in o and we set

Eo(f'sen f") = E(f" - & - )+ (3.2)
Then, the following definition is due to Sahi.”

Definition 3.1. For functions f',..., f” on a probability space X, we define

En(f'nf") = D s, GO E(f e ). (33)

Using (3.3), one can easily verify that Ei, Es, E5 coincide with their earlier definitions. We note that the factor of 2 in the term 2E(f" f2f*)
in formula (2.1) comes from the two 3-cycles (123) and (213). More generally, E, will have repeated terms because E, is unchanged if we
rearrange the indices within a cycle. For example, for n = 4, we have

E(fL 50 ) =68(f 21 - 2[8(fHE(F 1) + € 1)+ ]
+[&NHEEL ) + E(fHESHES )+ ]
-8 B+ &(F LIEF ) + - EHEF)ES)E().

J. Math. Phys. 63, 043301 (2022); doi: 10.1063/5.0065285 63, 043301-5
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We now give an explicit formula for E, in a special case.

Lemma 3.2. Let X = [0,1] be the unit interval equipped with Lebesgue measure, and let f* be the characteristic function Xoa] 0Sai<],
with0 < a; <---<ay < 1. Then, we have

En(fl,--~,f")=a1(1—a2)~--(n—1—an).

We note that the above formula implies that E, is positive, i.e., Conjecture 1.1 holds for the Lebesgue measure on [0, 1]. While it is easy
enough to give a direct proof the lemma, we prefer to postpone the proof to Subsection III B where we will derive it as a consequence of a
more general result.

B. Algebraic properties of E,

We first prove a recursive formula relating E,, to E,,_1.

Proposition 3.3. We have E,,(fl,. .. ,f"fl,f) =e1+---+ey_1 — ey, where

B Y ifl<i<n-1, (.4
S EAUSLY E) if i=n. '
Proof. We write f = f" and consider expression (3.3) for E,(f',..., f") as a sum over the symmetric group S,. We decompose S, as a
disjoint union,
Sp=8Mu..us™, sD = fges,|a(i)=n). (3.5)
Then, $™ is a subgroup of S,,, naturally isomorphic to S,1. By (3.3), we have
Eo(f' o f) =2t et 2, 2= DT E(f L ). (3.6)

To study ', we consider the map ¢ ~—  defined by dropping # from the cycle decomposition of ¢. Thus, for n = 5, we have (13)(245)
~ (13)(24), (12)(34)(5) ~ (12)(34), etc. Then, o ~ G defines a bijection from each S to S,. If ¢ is in $” and i # n, then i and n occur in
the same cycle of 0, and dropping n does not change the cycle count. This gives

Co=GCo E(f's i f ) =E(f e f o f)

which implies =° = e;. If ¢ is in S, then (1) occurs as a separate cycle in o and we get

Co=Co+l Eo(f.of ")) =E(f. .../ )ES)

which gives " = —e,.. This proves the proposition. [ |
Lemma 3.2 is now an easy consequence.

Proof of Lemma 3.2. Let fi = x[q,4,]- Since a; < ay, for all i, we get

fifn = X10.03X10.0,] = X[0.0,] = fi-

Now applying Proposition 3.3 with f = f,,, we deduce that

Ea(f'enf) = ((n=1) = 8(f")Esr (f's- oo f"7) = (n=1=an)Esr (f'. ., f171).

The result follows by a straightforward induction on #. [ |
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Published under an exclusive license by AIP Publishing



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

We next establish a useful formula for the partial sum P, of E, over the set of permutations containing a fixed cycle c.

Proposition 3.4. Let S° denote the set of permutations o €S, that contain a fixed cycle ¢ = (i1,...,ip) and let Jc = {ji,j2 ...}
={L,...,n}\{i1,...,ip}, then we have

Poi= S (D) B (f. . f") = (3.7)

oest

{g(f"‘-~-f"")Enp(fjl,sz,---) ifp<n,
E(f'--- M if p = n.

Proof. The set S° consists of a single permutation if p = n. Otherwise, it consists of permutations of the form ¢ = ¢ - 7, where 7 is a
permutation of J. Evidently, the number of cycles in 0 and 7 are related by C; = C; — 1. Thus, in this case, we have

(D) E(ff o f1) = =& D) T (L ). (3.8)

Now, the result follows by summing (3.8) over 7. [ ]

C. Proof of the n function inequality for rectangles in any dimension

By a rectangle in dimension k or a k-rectangle, we mean a subset of [0, 1]¥ of the form
[0,r1] x--+x[0,7,], O<r,...,re< 1.

Theorem 3.5. If f' are characteristic functions of k-rectangles, then E,(f',. .., f") 2 0.

Proof. We proceed by induction on k > 1 and for a given k by induction on #n > 1. The base cases k = 1 and n = 1 are straightforward and
the former by Lemma 3.2. Thus, we may assume k > 1 and # > 1, and we can write

fl = gl X X[0.a,]>
where g’ is the characteristic function of a (k — 1)-rectangle. By symmetry of E,, we may assume
0<a;<---<ap<1. (3.9)

We note that the assumption (3.9) on a; means that we have

G- ") = a&(g"---g"), I=minfii,...,ip}. (3.10)
Moreover, it follows from (3.3) and (3.10) that ifa; = - - - = a, = 1, then we have
E.(f'....f") = aiEa(g', .. .. g"). (3.11)

We now fix an index i > 1 and let C(i) denote all set of all cycles containing i, then we have

B f") = Dy P

where P, is as in Proposition 3.4. If i is not minimal in ¢, then P, is independent of a; by (3.10). If i is minimal in ¢, then 1 ¢ ¢; hence, ¢ has
length p < n, and by (3.7) and (3.10), we get

J. Math. Phys. 63, 043301 (2022); doi: 10.1063/5.0065285 63, 043301-7
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P =—aibe, be=8(g" - g")Ewp(f', 2,..).

By induction on 1, we have b. > 0 for such c. This means that E, (f Lo, f™) decreases as we increase az, . . . , a, subject, of course, to condition
(3.9). In particular, E, decreases as we successively increase

a, 71, ay, 71, ..., ay 71

By (3.11), we get En(fl,. .o f") 2 a1Ex(g15 - - - > gn), which is positive by induction on k. [

If f is the characteristic function of a rectangle, then any level set of f is either the same rectangle or empty. However, using the layer-cake
principle’ and multilinearity as in the Proof of Lemma 2.2, we obtain the following immediate extension of the previous result.

Corollary 3.6. If f',...,f" are positive, monotone functions whose level sets are (not necessarily homothetic) rectangles, then

E.(fY....f") =0. [

D. Proof of the n function inequality in two dimensions

Our main result is as follows:

Theorem 3.6. If f',..., f" are positive and monotone on [0,1]%, then E,(f',..., f") 2 0.

As before, we can deduce this from the special case of x, as in (2.5).

Lemma 3.7. It suffices to prove Theorem 3.6 for yy1, . .., xa, @ € & (m), for all m.

Proof. This is proved along the same lines as Lemmas 2.2 and 2.3. [ |

In this section, we work with o/ = & (m) and to simplify the notation for a', ..., a" in o, we set

Eo(a's..a") = E(xans s X )Eans - s X ) -+ (3.12)
En(a',...,a") =Y (-1)“'Es(a',...,a"). (3.13)

Then, we have E,(y1, .. -» Xa") = En(al, cooah).
To study the positivity of E,,, we first consider a special case.

Proposition 3.8. If a' = ma; are constant sequences with1 <o <--- < a, <0, then
En(al,...,a"):ocl(l—(xz)--~(n—1—(xn). (3.14)
Proof. Let L, = Eq(a,...,a"). Since &; < &y, we have a'a” = a' for all i. Thus, we get

Li=Y"""Luci ~Lis1&(a") = (n— 1 - au)Lyy

by Proposition 3.3. Now, (3.14) follows by induction on #, the case n = 1 being obvious. [ |

We now prove the generalization of Proposition 2.6.

Proposition 3.9. If a has a descent at i, but a',...,a" ! do not, then we have
2En(a1, .. .,a"ﬁl,a) = En(al, ... ,a"ﬁl,aJr) + En(al, .. ,a”fl,af). (3.15)
Proof. This is proved for each term E, in (3.13) in exactly the same way as Proposition 2.6 by applying Lemma 2.5 to the unique factor
of E; involving a = a" in (3.12). [
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We shall prove the next three theorems together by induction on n.

Theorem 3.10. If a',...,a" %, barein o; S is a subset of Qu; and yuys = 0, then

En(Xats - > Xar-2> X X5) < 0. (3.16)
Theorem 3.11. If al,...,a" % b,carein od; b, c have a descent at i; and bis1 < cir1, then
Eu(a',...,d" %, b,c") <Eq(a',...,d" %, b,o). (3.17)
Theorem 3.12. Foralld',...,a" in o, we have
Eu(a',...,d") >0. (3.18)

Proof. Let us write A(n), B(n), and C(n) for the assertions of Theorems 3.10, 3.11, and 3.12. Then, A(1), B(1) are vacuously true, while
C(1) is evident. Therefore, it suffices to prove the implications A(n - 1) A C(n - 1) = A(n) and A(n) = B(n) = C(n) forall n > 2.

A(n—1)AC(n—1) = A(n): By assumption, we have y,xs =0, and we also have y,xs = ys, where S'=SnS,. Thus, by
Proposition 3.3, we get

En(Xal, - »Xa"*2>Xh>XS) =ey+ --+ey—2+eu—1—é€n
where e := Eyo1(Xai,- - s Xsi>- - s Xa2Xb)> i< H—2,
en1:= Esc1(Xat> - - > Xar-2,0),
en = En1(Xats - - > Xar-2> X)) E(X5)-
Now, e, > 0 by C(n— 1) and e,—1 = 0 by (3.12) and (3.13). In addition, yuxs = (XsXs)xa = 0, and so by symmetry, we can apply A(n—1) to

conclude e; < 0 for i < n — 2. This implies A(n), (3.16).
A(n) = B(n): Define S, S as in (2.5) and put S = S¢+\S, then by Lemma 2.7 we have

xsxp = (Xer = Xe)Xb = Xevb — Xeb = 0.

Thus, by A(n), (3.16), we get En(Xa1> - - - Xar-25 Xp» Xer — Xc) < 0, which implies B(n), (3.17).

B(n) = C(n): This argument is similar to the Proof of Theorem 2.9. Let . be the set of n-tuples a = (a',...,a") in & for which
E.(a) achieves its minimum, and let ¥ be the subset of . for which A(a) = €(a") +--- + &(a") achieves its maximum on ./ . We claim
that for a in /# each a' is a constant sequence; by Proposition 3.8, this clearly implies C(#), Ex(a) > 0.

If the claim is not true, then one of the sequences has a descent at some i. First suppose that only one sequence, by symmetry 4" = a,
has a descent at i. By Proposition 3.9 and minimality of E,(a), we deduce E,(a) = E,(a',...,a" ", a*). Thus, replacing a by a* preserves
E,(a) but increases A(a), which is a contradiction. If two sequences have a descent at i, then by symmetry we may assume these are
a"! = b,a" = c with bis1 < cir1. Now, B(n), (3.17), implies that replacing ¢ by ¢* does not increase E,(a), but it does increase A(a), which is a
contradiction. [ ]

This proves Theorem 3.6 for y, and, thus, by Lemma 3.7, in general.
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APPENDIX: THE EQUIVALENCE OF CONJECTURES 1.1 AND 1.2

We start by recalling some basic facts about partitions and permutations. For more background and details involving these ideas, we

refer the reader to Ref. 3.
A partition A of n, of length [, is a weakly decreasing sequence of positive integers,

/\12/\22"-2/11>0 such that /11+--'+Al:1’l,

we say that the A; are the parts of A, and we write I(1) = land |A| = n.

The conjugation action of S, permutes the indices in the cycle decomposition (3.1) of an element ¢. Thus, the class of ¢ is uniquely
determined by its “cycle type,” i.e., the partition A whose parts are the cycle lengths of o, arranged in decreasing order. Moreover, if m; = m;(1)

denotes the number of parts of size i, then the conjugacy class of cycle type A contains n!/z) elements, where

z = Hfz1im‘(mi)'

For a function f on a probability space, we define its moments by the formula

pa(f) = &(f") and  pi(f) = pr (f) - pa(f)-

Lemma A.1. Wehave Ey(f,...,f) =nl¥) 2, (-1)!M=1, ().

(A1)

(A2)

Proof. If 0 is of class A, then the number of disjoint cycles in ¢ is I(1), and by (3.2), we have Eq(f, ..., f) = pa(f). Thus, the sum (3.3)
for Eq(f,...,f) is constant over conjugacy classes, with class A contributing n!/z, identical terms. This implies the result. [ |

If f is as above and u is a parameter, then we can define the formal logarithm
log(1 - uf) = —Zizluifi/i.

Proposition A.2 We have exp(& (log(1 —uf))) =1 - Y5, t"Es(f,..., f)/n!

Proof. Let Z = & (log(1 - uf)), then by (A3) we have

Z= 7Zi21uipi(f)/i'
Writing px = px(f) and py = pa(f) for simplicity, we get

exp(Z) = [0 2,01 (W)™ " mit = 37, (-1) Dz prdl.

Now, the result follows from Lemma A.1.

Proposition A.3. If fi, f2,... are functions on a probability space, then we have

1 - exp(& (log(1 - Zlf,t'))) = anlzil,...,inE"(fil’ e fi )T ),

Proof. Letuswrite A = fit + fot*> + - - -, then by Proposition A.2, we get

1 -exp(&(log(1-A4))) = anlEn(A, .. A) [l

and by multilinearity of E,, we have Ex(A,...,A) = ¥, Ea(fir>. .- s fi, YET

(A3)

(A4)

(A5)
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Theorem A.4. For a set of functions ¥ on a probability space, the following are equivalent:

1. Forall n, we have Ey(fi,...,fn) 20if fi,..., fn€J.
2. The power series 1 — exp(&(log(1 - ¥, fit')) ) has positive coefficients if fi, fo, ... € .7.

Proof. The first statement implies the second by Proposition A.3. The converse was proved in Ref. 5, but we recall it here for
completeness. Let p1, p2, . . ., pn be the first # primes; define

k:p1P2'-'pm k:k/pjr N:k1+...+km

and consider possible solutions of the equation sik; + - - - + s,k, = N, where s1,...,s, are integers >0. If some s; were 0, then p; would

divide the left side but not the right; thus, we must have all s; > 0 and, hence, that s; = --- =5, = 1. Now, it follows from Proposition A.3
that the coefficient of £ in the power series 1 — exp(&(log(1 - Y fith ))) is precisely Eu(fi,. .., fu). Thus, the second statement implies
the first. [ |

The previous theorem proves the equivalence of Conjectures 1.1 and 1.2. In particular, our Theorem 3.6 implies Conjecture 1.2 for the
Lebesgue measure on the unit square in R?.
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