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Abstract. In this paper, we analyze Fourier coeflicients of automorphic forms on a finite cover G of an
adelic split simply-laced group. Let 77 be a minimal or next-to-minimal automorphic representation
of G. We prove that any # € 7 is completely determined by its Whittaker coefficients with respect
to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously
to the Piatetski-Shapiro-Shalika formula for cusp forms on GL,. We also derive explicit formulas
expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these
Whittaker coefficients. A consequence of our results is the nonexistence of cusp forms in the minimal
and next-to-minimal automorphic spectrum. We provide detailed examples for G of type Ds and
Eg with a view toward applications to scattering amplitudes in string theory.

1 Introduction and main results
1.1 Introduction

Let K be a number field and A = Ax = []'K, its ring of adeles. Let G be a reductive
group defined over K, G(A) the group of adelic points of G, and G be a finite central
extension of G(A). We assume that there exists a section G(K) — G of the covering
G—G(A), fix such a section and denote its image by I'. This generality includes the
covering groups defined in [BDO01]. By [MW95, Appendix I], the covering G>G(A)
canonically splits over unipotent subgroups, and thus we will consider unipotent
subgroups of G(A) as subgroups of G.

Let # be an automorphic form on G. Let U be a unipotent subgroup of G and yy
be a unitary character of U that is trivial on U n I'. We define the Fourier coefficient of
n associated with U and yy as

an Froln)(@) = [ nlug)po(w) ™ du,
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Fourier coefficients of minimal and next-to-minimal representations 123

where [U] := (UnT)\U denotes the compact quotient of U. Well-studied special
cases of this definition arise when U is the unipotent N of a Borel subgroup and
in that case the Fourier coefficients are called Whittaker coefficients, see (1.5) below.
Another common case is when U is the unipotent of a (nonminimal) parabolic
subgroup P = LU c G, and we shall refer to (1.1) in that case as a parabolic Fourier
coefficient.

Generally, when U is nonabelian, the coefficient #,,, only captures a part of the
Fourier expansion of 7. To reconstruct # from its coefficients, one needs to consider a
series of subgroups U;, = {1} c U;,_1 ¢ --- c U; = U with successive abelian quotients
U;/U;;1. Two examples are the derived series of U, and the lower central series of
U. Denote by X; the set of all nontrivial unitary characters of U; that are trivial on
Ui+ and on U; N T. The complete Fourier expansion of # with respect to U takes the
form

(12) n=Filnl+ 2 Fuo 1]+ 20 Fo, ]+ + 30 Fy, 1],

XEX, XEX, XXy

where #71,[n] is the constant term with respect to U = U;. The simplest case of
a nonabelian U is one that admits a Heisenberg structure, i.e., [U,U] is a one-
dimensional group, and this will be an important tool for us when we analyze groups
of type Eg that do not admit any abelian unipotents U as radicals of parabolic
subgroups. In this case, the lower central series coincide with the derived series.
Namely, we take i = 3 and U, to be [U, U] and call the Fourier coefficients 7, [#]
the abelian Fourier coeflicients and those for U, the nonabelian Fourier coefficients.

A natural approach to studying Fourier coefficients is to try to express them in
terms of simpler coefficients, as in the celebrated results of Piatetski-Shapiro and
Shalika [PS79, Sha74]. Unfortunately, this kind of reduction procedure does not seem
to work in the full generality of (1.1) and no explicit formulas are known in general.
However, the problem becomes more tractable when restricting to the subclass of
coefficients given by Whittaker pairs as in Section 1.2. In this case, the techniques of
[GGS17, GGS] allow one to develop a useful reduction theory, which is studied in the
companion paper [GGK"*].

In this paper, we will analyze Fourier coefficients and expansions in the case of
special classes of automorphic forms on split, simply-laced Lie groups. Specifically,
we consider automorphic forms # attached to so-called minimal or next-to-minimal
automorphic representations mmin and 7mnm of the adelic group G. This means that
all Fourier coefficients attached to nilpotents outside of a union of Zariski closures
of minimal or next-to-minimal nilpotent orbits vanish. We refer to Section 2.1 below
for the precise definitions. We note that in type D, there are two next-to-minimal
complex orbits for n > 4 and three next-to-minimal orbits for D4, while in types A
and E, the next-to-minimal orbit is unique. Minimal orbits are unique in all simple
Lie algebras. A sufficient condition for 7 to be minimal or next-to-minimal is that
one of its local components is minimal or next-to-minimal, see Lemma 2.0.7 below.
For minimal representations, this condition is also shown to be necessary under some
additional assumptions on G, see [GS05, KSI5].

Even though we shall not rely on explicit automorphic realizations of min-
imal and next-to-minimal representations, it might be instructive to indicate
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124 D. Gourevitch et al.

how they can be obtained. Minimal representations of 7, have been studied
extensively in the literature due to their role in establishing functoriality in the
form of theta correspondences. In [GRS97] they were obtained as residues of
degenerate principal series and used to construct global Eulerian integrals; see
also [GRSI11, Gin06, Ginl4]. Next-to-minimal representations have not been ana-
lyzed as extensively though in recent years, this has started to change, partly
due to their importance in understanding scattering amplitudes in string theory
[GMV15, Piol0, FKP14, GKP16, FGKP18]; see Section 1.9 below for more details
on this connection. Next-to-minimal representations exist for all next-to-minimal
orbits, see, e.g., Section 5 below and [FGKP18]. They can be obtained as residues
of degenerate principal series, see [GMV15, Piol0] for type E. In types A, Eg, and
for one of the orbits in type D, there are one-parameter families of next-to-minimal
representations.

In [GGS17, GGS] it was shown that there exist G-equivariant epimorphisms
between different spaces of Fourier coefficients, thus determining their vanish-
ing properties in terms of nilpotent orbits. In [GGK"] we determined exact rela-
tions (instead of only showing the existence of such) between different types
of Fourier coefficients. In this paper, we apply the techniques of [GGK'] to
relate maximal parabolic Fourier coefficients, which are hard to compute, to a
more manageable class of coefficients such as the known Whittaker coefficients
with respect to the unipotent radical of a Borel subgroup. Furthermore, we
express minimal and next-to-minimal automorphic forms through their Whittaker
coeflicients.

In the next subsection, we discuss the class of Fourier coefficients studied in
[GGS17, GGS, GGK']. This class includes parabolic coefficients, coeflicients of lower
central series (but not the derived series) for unipotent radicals of parabolics, and the
coeflicients considered in [GRSI1, Gin06, Ginl4, JLS16].

1.2 Fourier coefficients associated to Whittaker pairs

Assume throughout this paper that G is a split simply-laced reductive group defined
over K. In order to explain our main results in more detail, we briefly introduce some
terminology. Denote by g the Lie algebra of G(K). A Whittaker pair is an ordered
pair (S, ¢) € g x g*, where S is a semisimple element with eigenvalues of ad(S) in Q
and ad”(S)(¢) = —2¢. This implies that ¢ is necessarily nilpotent and corresponds
to a unique nilpotent element f = f;, € g by the Killing form pairing. Each Whittaker
pair (S, ¢) defines a unipotent subgroup N , ¢ G given by (2.2) below and a unitary
character y, on N, by xo(n) = x(¢(logn)) for n € Ng,,.

Our results are applicable to a wide space of functions on G, that we denote
by C*(I'\G) and call the space of automorphic functions. This space consists of
functions f that are left I'-invariant, smooth when restricted to the preimage in
G of TTinfinite v G(K,) and finite under the right action of the preimage in G of
[Tfinite » G(0,) where o is the ring of integers of K. Note that we do not include
the usual requirements of moderate growth and finiteness under the center 3 of
the universal enveloping algebra. Such automorphic functions arise, for example, in
applications in string theory [GV06, DGV15, FGKP18].
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Fourier coefficients of minimal and next-to-minimal representations 125

Following [MW87, GRS97, GRS11, GGS17], we attach to each Whittaker pair (S, ¢)
and automorphic function # on G the following Fourier coefficient

(13) Tsolnl©)= [ n(ng) xp(m) ™ dn.

[NS,lp]

We note that the integrals we consider in this paper are well-defined for automor-
phic functions as they are either compact integrals or represent Fourier expansions of
periodic functions.

Remark 1.2.1 Note that the unipotent group Ny, is not necessarily the unipotent
radical of a parabolic subgroup of G. Consider, for example, the case of G = Eg and
let P = LU c Eg be the Heisenberg parabolic such that the semisimple part of the
Levi is E; and the unipotent radical U is the 57-dimensional Heisenberg group with
one-dimensional center C = [U, U]. Then the Fourier coefficient s , can include
the “nonabelian” coefficient corresponding to N, = C and , a nontrivial character
on C. This case is relevant for applications to physics; see Section 1.9 below.

If a Whittaker pair (4, ¢) corresponds to a Jacobson-Morozov sl,-triple (e, h, f,),
we say that it is a neutral Whittaker pair and call the corresponding coefficient a
neutral Fourier coefficient. This is the class studied in [GRSII, Gin06, Ginl4, JLS16]
and referred to there simply as a Fourier coeflicient.

We denote by WO(#) the set of nilpotent orbits O such that there exists a neutral
pair (h, ¢) such that 7, ,[#] # 0 and ¢ € O, see Definition 2.0.6 below. It was shown
in [GGS17, Theorem C] that the vanishing of 7 ,[#] implies the vanishing of any
Fs.o[n] where (S, ¢) is a Whittaker pair that is not necessarily neutral. Let WS(#)
be the set of maximal elements in WO(#) called the Whittaker support of n. If an
automorphic function #min has a Whittaker support which contains a minimal orbit
but no larger orbit, we say that it is a minimal automorphic function and similarly for
a next-to-minimal automorphic function fnm as detailed further in Section 2.1.

1.3 Statement of Theorem A

Choose a K-split maximal torus T c G and a set of positive roots. Let b be the Lie
algebra of T nT". For a simple root «, we denote by P, the corresponding maximal
parabolic subgroup, by L, is standard Levi subgroup, and by U, its unipotent radical.
In other words, u, := Lie U, is spanned by the root spaces whose expression in terms
of simple roots contains « with positive coefficient. Define S, € [) by

(1.4) a(Sy) =2and B(S,) = 0 for all other simple roots S.

It will follow from the definition of N, that for any ¢ € g* such thatad” (S,)¢ = —2¢,
we have that N, , = U,. This means that the Fourier coefficient s, , is the parabolic
Fourier coefficient with respect to the unipotent subgroup U, and the character y,.
Let Sty := Y yemr S«» where IT s the set of all simple roots. Then the associated unipotent
subgroup is the radical N of the Borel subgroup defined by the choice of simple roots.
For any ¢ € g* with ad”(Si1)¢ = —2¢, and any automorphic function # defines the
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associated Whittaker coefficient by
(15) Woln] = Fsnolnl-

Theorem A Let iy be a minimal automorphic function on a simply-laced split
group G and (S, ¢) a Whittaker pair with S,, determined by a simple root a as above.
Depending on the orbit of ¢, we have the following statements for the corresponding
Fourier coefficient.

(i) The restriction of Fs,,0[fmin] to the Levi subgroup L is a minimal or a trivial
automorphic function.

(il) If ¢ is minimal, then there exists yo € I' N L, that conjugates ¢ to an element ¢’ of
weight —a by Ad”™ (yo)¢ = ¢ and for any such y, we have

(1.6) 7:So,,q3[77min](g) = (qu’[”/min]()’Og) .
(iii) If ¢ is not minimal and not zero then Fs, o[ Hmin] = 0.

For part (i), we remark that Fs_ o[ #min | is the usual constant term in a maximal
parabolic. For Eisenstein series, it can be computed using the results of [MW95]. It
can also be expressed through Whittaker coefficients using Theorem B below.

Remark 1.3.1 We note that the formula (1.6) is compatible with the expected
equivariance of the Fourier coefficient Fs_ o [#min](g), i.€., it satisfies

(L7) 7:Sa,<p[”lmin](”g) = X¢(”)Tsa,<p[’7min](g)>

for all u € U,,. For this to hold, one requires that y;'uy, € U, for all u € U, and
(1.8) Xo (1) = X (5" uyo),

which indeed holds due to the fact that yg € I' N L.

Remark 1.3.2  The notation Ws , and ‘W, are used in [GGS17, GGS] to denote
something quite different. The present notation is however consistent with [FGKP18].

Remark1.3.3  One can show that if [G, G] is simple, then Fs_ o[ #/min | is necessarily
a minimal automorphic function on the Levi subgroup L. This does not necessarily
hold for general G. For example, if G = GLy(A) x GL,(A), #min depends only on
the variable of the second factor, and « is a root of the second copy of GL,, then
F5.,.0[#imin ] is constant. Furthermore, if the restriction of #yi, to the second copy
of GL,(A) is cuspidal, then Fs, o[ #min ] vanishes.

One can also obtain an expression for the minimal automorphic function itself.
This is the subject of the next subsection.

1.4 Statement of Theorem B

For any root ¢, denote by
gr={weg"|ad”(h)w=e(h)w forall h e h}

the corresponding subspace of g* and by g; the set of nonzero elements of this
subspace. Note that g; is a one-dimensional linear space over K. We say that a simple
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An Dn (1’1 > 4) E6 E7 Eg
Abelian All A1, Oy, Oy a, ag | oy -
Heisenberg - o o a og

Table 1: Quasi-abelian roots

oo oo oo o HHLO---H

1 2 n—1n n—1n
n—1

Figure I: Bourbaki labeling of the simple roots for simple, simply laced root systems of types
Ay, Dy, and E,, (from left to right).

root « is an abelian or a Heisenberg simple root in g if 11, is an abelian or Heisenberg
Lie algebra, respectively, or, equivalently, if [1,, 11, ] has dimension zero or one. If « is
either abelian or Heisenberg we call it quasi-abelian. The classification of such roots
reduces to simple components of g, for which the explicit answer is given by Table 1
with roots labeled in the Bourbaki numeration shown in Figure 1.

To derive Table 1, we note that the abelian roots are those that appear with
coeflicient one in the highest root. By [Bou75, Section VIII.3] the abelian roots are
precisely those that can be conjugated to the affine node by an automorphism of the
affine Dynkin diagram. The Heisenberg roots are determined in [GGK", Lemma 5.1.2].
There are no such roots in type A,, while in types D, or E,,, this is the unique root
that connects to the affine node in the affine Dynkin diagram.

LetI=(f,..., ) bean enumeration of the simple roots of g in some order, and
let I; be the Levi subalgebra with simple roots {1, . . ., 8 }. We will say that I is abelian
if each f; is abelian in [;, and that I is quasi-abelian if each f3; is quasi-abelian in [;.
From the table, we see that the Bourbaki enumeration is quasi-abelian if g = Eg and
abelian if g is simple (simply-laced) and different from Eg. We also note that [; c [; for
i<j.

Let I = (Bi,...,B,) be any quasi-abelian enumeration of the simple roots of g.
Given an automorphic function # on I'\G, we define functions A;[#], B;[#], and
Ci[#] on G as follows.

Let L;_; be the Levi subgroup of G with Lie algebra [;_;, and let Q;_; be the parabolic
subgroup of L;_; whose Lie algebra is given by the nonpositive eigenspaces of ad ()
inl;_;.In Lemma 3.2.1 below, we show that Q;_; is the stabilizer in L;_; of the root space
gfﬁi, as an element of the projective space of I}. WeletT';_; = (L;-;nT)/(Q;o1nT),
and putforie{l,...,n}

(1.9) Ailnl(g) = Y D, W,lnl(yg),

yer,'_l ‘Peq_gx

where [y = {1}.
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Remark 1.4.1  Note that although y is a coset, the inner sum Z‘Pegfp,. W, nl(yg)

is independent of the choice of a representative for y, since Q;_; N I" stabilizes g* Bir

Thus, A;[#] is well-defined. We will use similar summations over cosets in the future
without further comment.

If B; is a Heisenberg root of [;, then we define

(110)  Bg, = {positive roots B of I; : (B;, f) =1}, Q;:= Exp( P gﬁ) .
ﬁeBpi

max
the simple component of I; containing f3;, and let sg, and s,;  denote the reflections

Note that Q; is a commutative subgroup of I'. Denote by a/ ., the highest root for

i
max*

We fix a representative y; € I for sg,s,: sp, and

with respect to the roots ; and « Then sp,s4i _sp, is an involutive Weyl group

i

element that switches 3; and «

define -
(L11) Biln](8) = 3 2 Wolnl(wyig).
weQ; geg”,
Finally, we define
Ain] if §; is abelian

(L12) Ci[n] = {Af[ﬂ] +B;[n] if B; is Heisenberg.

Theorem B Let #min be a minimal automorphic function on G. Then, for any choice
of a quasi-abelian enumeration, we have

r

Il
—_

(113) Hmin = (WO[VImin] + Ci [i/lmin] .

1
Example 1.4.2  Let G = SO4,4(A) with T' = SO44(K) and #min @ minimal auto-
morphic function on G. We take the quasi-abelian enumeration I = (81, 82, 83, 84) =
(o1, a3, a4, ) Where «; is given by the Bourbaki labeling. Note that 84 = a, is a
Heisenberg root in G, while §; for 1 < i < 3 is an abelian root for the Levi subgroup L;
with simple roots fi, . .., fi. Using Theorem B we get that

Wmin(g) = (W[”/min](g) + B4[’7min](g) + ZAi[”/min](g)

i=1
(114)
4

=Wminl(@) + D, 2 Woltminl(@pag) +>. D> > Whmin](¥),

weQy (‘Kgih i=1 yEFi—l gaegfﬁi

where Q4 is defined in (1.10), y4 is defined above (1.11), and I';_; above (1.9). For
this example, we get that the Lie algebra of Q4 is g_4,_4, ® 0_y,-a; ® gy, @
9-20,-ay-as—ay> V4 1S a representative of the Weyl word s;535,545,5153 in I" with simple
reflections s;, and 'y = I'; = T, = {1} while I'; = (P'(K))>.

We picked the above example to illustrate the appearance of a Heisenberg term
A; + B; in (1.13) and because the right-hand side of (1.14) is manifestly triality
invariant.
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Remark 1.4.3  As one can see from Table 1, every simple group of type different
from A has a unique Heisenberg root. This can also be shown conceptually. This fact
gives a way to choose an almost canonical quasi-abelian enumeration in the following
inductive way. Let f3; be the Heisenberg root of any simple component g’ of g which is
not of type A. If there are no such components, let 3; be a; in any simple component
of g. Then, let g, be the Levi subalgebra of g obtained by excluding the root f5;, choose
the root f3; of g, in the same way and continue by induction. This enumeration is
closely related to the notion of Kostant’s cascade, as well as to H-tower subgroups
[Sal07, Section 3.2].

Let us now formulate analogs of Theorems A and B for next-to-minimal automor-
phic functions.

1.5 Statement of Theorem C

As before, let a be a simple root of g, and let (S,, ) be a Whittaker pair such
that y € g*, and S, is given by (1.4) associated to the maximal parabolic subgroup
corresponding to «. Let I“%) = (B,,...,B,.) be a quasi-abelian enumeration of the
simple roots orthogonal to a which is always possible to find, see Table 1. For any
1< i< m, we also define I';_; and y; as above, but with the enumeration I (+%) and
given an automorphic function 7 on I'\G we set

(1.15) Allnl(9) = Y D Wylnl(ye).

yGF,',l <P€Qfl;i

Forany1 < i < m with ; a Heisenberg root in the Levi subalgebra given by 34, . . ., i,
we furthermore set

(1.16) BY[n1(g) = > > Wyrolnl(wyig).

weQ); (peg;_
1

Finally, we define

(1.17) C'n] = {AT[W] if B; is abelian

AY[n]+BY[n] if B; is Heisenberg.

Furthermore, let b be the Lie algebra of the negative Borel spanned by §) and the
root spaces of negative roots. For an element y € I', we define

(1.18) v, = ng”_I nb and V,:=Exp(v,(A)),
where g, for a semisimple element S denotes the sum of all eigenspaces of ad S with

eigenvalue > 1, see (2.1).

Remark 1.5.1 Since I'; is a partial flag variety for L;, it coincides with the group of
K-points of the corresponding projective algebraic variety. By the valuation criterion
for properness [Har77, Chapter II, Theorem 4.7], it then coincides with the (integral)
Ok -points of the same variety.
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Theorem C  Let Nyem be a next-to-minimal automorphic function on G, let (Sq, ¢) bea
Whittaker pair with S, as above and I = (By, ..., Bm) a quasi-abelian enumeration
as above. Depending on the orbit of ¢, we have the following statements for the
corresponding Fourier coefficient.

(i) For trivial ¢ = 0, the restriction of Fs, o[ fntm ] to the Levi subgroup L, is a trivial,
or minimal, or next-to-minimal automorphic function.

(ii) For ¢ in the minimal orbit, there exists yo € Lo N T such thaty := Ad” (yo)¢ € g*,,.
For any such yg € Ly N T, we have

(119) FSargp[Mntm](€) = Wy nm](y0g) + i CY [Mntm](y0g) -

(iii) If ¢ is next-to-minimal, then there exist orthogonal simple roots o' and o', and
an element yo € I that is a product of an element of Ly NT" and a Weyl group
representative, such that v ::Ad*(yo)(p €9, + 08" . For any such y, o, and
a, we have

all

(1.20) 7jSo‘,<p[’7ntm](g):v/(VVV/[Wntm](V)’Og) dv.

VV 0

(iv) If g isnotin the closure of any complex next-to-minimal orbit, then Fs, o[ fintm] = 0.

Colloquially, we will refer to the condition in (iv) as ¢ being in an orbit larger than
next-to-minimal.

Remark1.5.2 (i) For Theorem C(i), we remark that the coefficient F_ o[ #ntm | is
the usual constant term that can be determined for Eisenstein series using the
results of [MW95]. We note also that the restriction of Fs, o[ #ntm | to the Levi
subgroup L, can be expressed through Whittaker coefficients using Theorem B
above and Theorem D below.

(ii) Different choices of yo can lead to spaces V,, of different dimensions, some
of which may be simpler for explicitly evaluating the integral, see for example
(5.10).

(iil) We stress that, similarly to (1.6), the right-hand side of the formula (1.20) is
compatible with the equivariance of the Fourier coeflicient, i.e., satisfies

(1.21) 775m<p[’7ntm](”g) = X(p(”)?_sa,(p[ﬂntm](g)

for all u € U,. Equivariance of the Fourier coefficient is ensured by the integra-
tion over V.

Example 1.5.3 Let G =S044(A) with T'=S044(K) and #um a next-to-
minimal automorphic function on G. Let « = «; and take the abelian enumera-
tion J(+®) = (B1>B2) = (@3, ay). Fix a minimal element ¢pmin € 8%, _,, and let yin
be a representative of the simple reflection s, in I' which means that ymi, :=

Ad"(Y5™) Pmin € 874,
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Fourier coefficients of minimal and next-to-minimal representations 131

From Theorem C(ii), we get that

2
F Sy [t 1(€) = Wi [10tm ] (157°8) + 2 AY™ [0t | (15" 8)

i=1
2

= Wy [aem](7878) D7 Y Y Wyro [ 1 (75" 8)
i=1 }IEF,‘,l (pegfﬁi

= Wyasa [om ] (7578) + 35 Woasarolam (15" 2)

peaZa,

(1.22) + Z (Wv/minﬂp[ﬂntm]()’gﬂng) .

pea’y,

In order to obtain the last line, we note that I';_; is defined above (1.9) replacing I with
1¢+%) and evaluates to Iy = I'; = {1} in this case.
Now, fix a next-to-minimal element ¢nim € 6%, 4, _a, + %4, _a,_a, and let y§™ be
a representative of the Weyl word s,s; such that Y, = Ad™ (5™ ) @nim € 6° w T 0,
Using Theorem C(iii), we get that

(123 Fsup o ] (8) = [ W i) (1958
Vyx(-)nm

where Vymn is defined in (1.18) and its Lie algebra here evaluates to g ,,(A) @
Oay-a, (A).

There are in fact three next-to-minimal (complex) orbits which are all related
by triality. If the Whittaker support of #nm does not include the orbit of ¢pim,
the corresponding Fourier coefficient ¥, ¢, [#ntm] is trivial and so is also the
Whittaker coefficient Wy, . [#ntm . The result (1.23) is therefore only nontrivial when
the Whittaker support includes this orbit.

Example 1.5.4 Let us also consider G and #ntm as above but now with a = a;. We
have that 1(+%2) ig empty. Thus, for any minimal @ui,, with an associated element

Yo' € T" and canonical form Ymin := Ad"(y5"™) @min € 8*,,, we get from Theorem
C(ii) that
(1.24) 7-5,,2 »Pmin [Mntm | (g) = W min [#ntm ] (y:)ning) :

Remark 1.5.5 One can show that if [G, G] is simple and L, is not of type A,, then
Fs..0[ fintm ] is necessarily a next-to-minimal automorphic function on L,. If [G, G]
is simple and L, is of type A,, then F, o[ #ntm ] is minimal. If G = G; x G, with G, of
type Ay, and #nem = 11 * 2 with 777 minimal, and « is a root of Gy, then Fs_ o[ #ntm | is
either zero (if #, is cuspidal), or Fs, o[ #ntm | is proportional to the minimal function
mion Ly = Gy.

Remark 1.5.6 It is interesting to ask which Fourier coeflicients are Eulerian
[Gin06, Ginl4]. The expectation, based on the reduction formula of [FKP14] for
Eisenstein series and explicit examples checked there, is that Whittaker coefficients
W, [n] of an Eisenstein series # on a group G are Eulerian if the orbit of ¢ is
lies in WS(#). In general, the reduction formula expresses ‘W [#] through a sum
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of nondegenerate Whittaker coefficients on a semisimple group determined by ¢. If
g € WS(#), this sum collapses to a single term in all known examples and since
nondegenerate Whittaker coefficients on the subgroup are Eulerian; this implies the
same for ‘W, [n].

For example, in the case of Eisenstein series attached to the minimal representation
of Eg, E7, Eg, it was shown in [FKP14] that ‘W, [#] is given by just a single Whittaker
coefficient on SL;, which is well known to be Eulerian. See also [FGKP18, Chapter 10]
for more details on these and other examples. By Theorem A, this implies that
the parabolic Fourier coefficient ¥, o [#min] of an Eisenstein series in the minimal
representation calculated in the unipotent of a maximal parabolic determined by «
should be Eulerian for simply-laced split groups.

Conversely, [KSI5] shows that if G is linear, simply connected and absolutely
simple, and the form #m;n, generates an irreducible representation 7 = ® 7, with all
local components 7, minimal then Fs, ¢ [#min ] is Eulerian for any abelian root « and
nonzero ¢ with ad* (S, )¢ = —2¢. By Theorem A, this implies that the corresponding
Whittaker coefficient is Eulerian.

We expect that Theorem C will be useful to prove similar Eulerianity results
for next-to-minimal representations. By contrast, if ' ¢ WS(#), the Whittaker
coefficients and Fourier coefficients corresponding to ¢ are not expected to be
Eulerian. In a follow-up paper [GGK*20], we prove the Eulerianity of various
types of Fourier coefficients, along the lines suggested above. In particular, we
deduce from [FKP14, FGKP18, KS15] that maximal rank Whittaker coefficients
of minimal and next-to-minimal Eisenstein series on simply-laced groups are
Eulerian.

We can also express any next-to-minimal automorphic function in terms of its
Whittaker coefficients, similar to Theorem B that treats the case of minimal automor-
phic functions. This is the subject of the next subsection.

1.6 Statement of Theorem D

Notation 1.6.1  Let o be a simple root.

(i) Let Q4 denote the parabolic subgroup of L, with Lie algebra (Ia)gg By Lemma
3.2.1 below, Qq is the stabilizer in Lo, of the line g* , as an element of the projective
space of a*. Let Ty, denote the quotient of Lo NI by Qu NT.

(ii) Let G4 denote the subgroup of G corresponding to the simple component of g
corresponding to a. Let otpqy denote the highest root of G.

(iii) We say that a is nice if one of the following holds:
(a) « is an abelian root.
(b) Gy is of type E and « is a Heisenberg root.
We exclude the Heisenberg root in type D, for several reasons. One is that it does
not correspond to an extreme node in the Dynkin diagram. We shall explain others
in Section 4.3 below, see in particular Remark 4.3.8 and Lemma 4.3.3.

(iv) If a is an abelian root, define 8y := amax. If a is a nice Heisenberg root, define
Ou = @max — & — Ba, where B is the only simple root nonorthogonal to «. One
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can see that B is unique by Table 1. For more details on 8, and the proof that it is
a root, see Section 4.3 below. .

(v) Let R, denote the parabolic subgroup of Ly with Lie algebra (1, )2‘5. Denote Ay =
(LanT)/(Qun Ry NT). In Section 4.3.1 below, we show that Qu N Ry NT isa
subgroup of index 2 in the stabilizer in Ly N T" of the plane g, @ g* 5 as a point
in the Grassmanian of planes in g*.

(vi) Let M, denote the Levi subgroup of G given by simple roots orthogonal to «. Denote
My = (MynT)/(My n Ry NT). In Section 4 below, we show that My "R, N T
is the stabilizer in Mo N I" of the plane g, @ g* .

(vii) If « is a Heisenberg root, we define

(1.25) By := {positive roots B : (a, f) = 1}, Qg = Exp( P g_ﬁ) .

BeBa

We also fix a representative y, € I" for the Weyl group element s,s,,, Sa» Where s
and s, denote the corresponding reflections.

Theorem D Let #m be a next-to-minimal automorphic function on G, and let o be
a nice simple root of g.

(i) If « is an abelian root and (&, amax) > O then H,m = A, where

(1.26) A = Fsp0[Mntm] + z Z ﬁa,¢[nntm](yg)-
yel"., peg’,

(ii) If « is an abelian root and (&, dmay) = 0 then 4 = A+ B, where

(1.27) B=23 T S e peslum] (78).

Yeha peg, yeaXs
(iii) If « is a Heisenberg root, then 4y = A + B + C, where
(1.28)

c=> X (Tsa,go[ﬂmm](wyocg)+ > o> Tsa,w[ﬂmm](ywyag))-

weQq geg”, yeMa yeg®s

Part (i) of the above theorem only arises in type A when « is an extreme root of the
diagram, part (ii) applies to all other roots in type A and to all abelian roots in types D
and E. Part (iii) only applies to type E and more specifically to root «, for Eg, root o
for E; and root ag for Eg using Bourbaki numbering. Note that §, appearing in parts
(ii) and (iii) are as defined in Notation 1.6.1(iv) and differs in the two parts.

The right-hand sides of (1.26), (1.27), and (1.28) can be expressed in terms of
Whittaker coefficients. Indeed, ¥, g+y/[#ntm] and Fs, o [ #inim | can be expressed using
Theorem C, while F, o[ #ntm | defines a next-to-minimal function on L, that can then
be further decomposed using Theorem D by induction on the rank of G. To present
this decomposition, we will need some further notation.
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1.7 Statements of Theorems E, F, and G

Notation 1.71  Let f, ..., 3, be a quasi-abelian enumeration such that B, ..., a1
is an abelian enumeration for L,_,. In this notation, we define the terms A;j, B, to be
used in the next two theorems.

(i) Forany i < n, we define A;; in the following way. Let al .. denote the highest root
for the simple component of |; containing B;. If B; is abelian in 1; and af , is not
orthogonal to f3; ,we set A;; = 0. Otherwise, we define §; to be the root 8, of ;,
and fix a g; € I that normalizes the torus and conjugates f3; and §; to orthogonal

simple roots. Such a g; exists by Corollary 3.0.4. Define V,, as in (1.18) and set

1 ~
(1.29) Ajj= z z Z Z [(WAd*(gi)(¢+w)[Wntm](vgiyg) dv,

Pehp; geaZy, weui5ivgi

where Ag, is the quotient of L;_y N T" defined as in Notation 1.6.1(v) above. As in
Remark 1.5.2(ii), the definition is independent of the choice of g;.
(ii) Let j < i such that (i, 8;) = 0. We define

(1-30) Aij["]]: Z Z Z Z (th+w[’7ntm:|(yy,g)'

y'eli oeaXy yel'jy wegi,;j

(iii) If Bn is Heisenberg fix a representative y, € I' for the Weyl group element
SB,San _Sp,» where sg and sqn_denote the corresponding reflections.
(iv) We will write j1i if (8, Bi) = 0.

(v) For any index j with jin, we define B,; in the following way. If B, is abelian, we
set Byj := 0. For Heisenberg B, we define L’ to be the Levi subgroup of G given by
the roots i with k < jand k1n, Q}_; to be the subgroup of L'._, that stabilizes the
root space 8”5 , and [y = (L, nT)/(Qj,nT). Set

(1.31) Byj = Z Z Z Z W¢+w[’1ntm]()/w)/ng)~

ey peaZy, yel " veaZy,

(vi) If B, is abelian, we define B, to be zero. If B, is Heisenberg and nice, we define

13) Bu= 2 ¥ X Y [ Wt Uil (giiorag)dv,

weQy jeMp, (pegfﬂn u/egfsn Ve

which is again independent of the choice of g,.

Recall also the notation A;, B; from (1.9) and (1.11). Applying Theorem D by
induction and using also Theorems B and C, we obtain the following theorem.

Theorem E  Fix a quasi-abelian enumeration P, ..., B, such that B, ..., B, is an
abelian enumeration for L,_y, and f3,, is a nice quasi-abelian root. Let 1,1, be a next-
to-minimal automorphic function on G. Then

(1.33) qntm:’M/o[qntm]+Z(Ai+Aii+ > Aij)+By+Buy+ Y Byj.

j<iyjLi jin
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We note that if g has at most one component of type Es, then an enumeration as in
Theorem E is always possible. For example, one can take the Bourbaki enumeration on
each component. Note that the right-hand side of (1.33) is entirely expressed in terms
of Whittaker coefficients.

One can simplify the expression in (1.33) by allowing oneself to use in the final
expression not only Whittaker coefficients but also constant terms with respect to
parabolic nilradicals, that in turn can be determined for Eisenstein series using
[MWO5]. In this way, one obtains the following statement.

Theorem F Assume that (g, g] is simple of rank n, and fix the Bourbaki enumeration
of its simple roots. Let 1 be a next-to-minimal automorphic function on G. Then

(i) In type A, we have

Nntm = qun,o[ﬂntm] +A, + ZAnj~

jin
(ii) In types D, Eg, and E;, we have

Nntm = TSD,",O[’/]ntm] + An + z Anj + Ann .

jin
(iii) In type Eg, we have

Hatm = 7:8,,",0[77ntm:| +An + ZAn] +Ann +Bn + Z an +Bnn .

jin jin

Using Lemma 2.0.7 below on the connection of Fourier coefficients to wave-front
sets of local components, we derive from Theorem E the following one.

Theorem G Let the rank of G be greater than 2 and let 7t be an irreducible representa-
tion of G with decomposition n = @ m, into local components. Suppose that there exists
v such that w, is minimal or next-to-minimal. Then m cannot be realized in cuspidal
automorphic forms on G.

Remark 1.7.2  For classical groups, stronger statements are known for cuspidal rep-
resentations. Namely, in type A, all cuspidal representations were shown to be generic
by Shalika and Piatetski-Shapiro [Sha74, PS79]. For other classical groups, cuspidal
representations are nonsingular, by [Li92]. This means that they possess nonvanishing
Fourier coefficients with respect to nondegenerate characters of the Siegel parabolic.
Thus, they cannot have minimal or next-to-minimal local components if the rank of
G is greater than 2 (and G is classical).

For G of type E¢ or E7, the case of minimal representations of Theorem G is proven
in [MS12].

It is possible that Theorem G holds for all quasi-split groups of rank greater than
2, not only simply-laced ones. In light of the result [Li92] mentioned above, it is left
to prove it for F4. This case might follow from [GGS, Theorem 8.2.1(ii)], which states
that Whittaker supports of cuspidal representations consist of K-distinguished orbits.

For statements on the possibility of decomposing 7 = ® m, into local factors for
covering groups, see [Weil8, Section 8].
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1.8 Illlustrative examples

Theorems A and B build upon and extend the results of [GRS97, MSI2, AGK*18]
for automorphic forms in the minimal representation. For the next-to-minimal
representation, Theorems C and D were established in [AGK*18] for SL, and are
here generalized to arbitrary simply-laced split Lie groups G. Together with Theorem
E, they provide explicit expressions for the complete Fourier expansions of next-to-
minimal automorphic forms on all split simply-laced groups.

In order to illustrate our results, we give below the explicit Fourier expansion for
minimal and next-to-minimal automorphic forms on Eg using the ag parabolic. For
a minimal automorphic form, one obtains

(1.34)
Wmin(g) = 7—-Sa8,0[’7min](g) + Z Z (th[nmin]()’g) + Z Z (Ww[”/min](w)’Sg)>

yel'; peaZ,, wellg pegX,
while for a next-to-minimal automorphic form, we have a slightly more complicated
expression

6

Mot () = Fse0(8)+ D0 Y Wo(y)+2. > > > > Wo(»yY'9)

yel'; peaZ,, J=lyrell; peaXog yel') wegf,;j

Ag Asj

1 -
32 T T [ W (sidre T3 Wylong)

Pehag peaZy, yeaXs weQs peg

Ass Bs

DD VD DS Wad* (g5) (pry) (VEsT@Ys g)dv

weQg ?EMD,S q)egflxs wegfas Veg

Bss
(1.35)

TY T T Y Wenhens)

Jj=1 weQs pegX ygr;_l ‘I/EQfl;j

Bs;

All coeflicients are evaluated for the automorphic form # = #ntm. The elements gg and
yg are defined in Section 1.7 and Section 1.4, respectively.
We shall compare these to other results available in the literature in Section 5.2.2.

1.9 Motivation from string theory

The results of this paper have applications in string theory. In short, string theory
predicts certain quantum corrections to Einstein’s theory of general relativity. These
quantum corrections come in the form of an expansion in curvature tensors and their
derivatives. The first nontrivial correction is of fourth order in the Riemann tensor,
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d |Ein(R) Kan(R) Eq1(Z)
0 [SLy(R) SO, (R) SL,(Z)
1 [SLy(R) xR, $SO,(R) SL»(2)
2 [SLy(R) xSLs(R) | SO(R) x SO5(R) |SLy(Z) x SLs(Z)
3 |SLs(R) SOs(R) SLs(Z)
4 Spin, 5(R) Sping(R) x Spin; 5(Z)
Spins (R)
5 Es(R) USpg(R)/Z, Es(Z)
6 |E;(R) SUs(R)/Z, E;(Z)
7 Es(R) Spin¢(R)/Z, Es(Z)

Table 2: Table of Cremmer-Julia symmetry groups E,(R), n = d + 1, with compact
subgroup K,(R) and U-duality groups E,(Z) for compactifications of IIB string
theory on a d-dimensional torus T¢ to D = 10 — d dimensions

denoted schematically R*, and has a coefficient which is a function #,, : E,/K, — R,
where E,, /K, is a particular symmetric space, the classical moduli space of the theory.
The parameter n = d +1 contains the number of spacetime dimensions d that have
been compactified on a torus T¢. The groups E, are all split real forms of rank
complex Lie groups (see Table 2).

In the full quantum theory, the classical symmetry E,, (R) is broken to an arithmetic
subgroup E,(Z), called the U-duality group, which is the Chevalley group of integer
points of E, [HT95]. Thus, the coefficient functions #, are really functions on the
double coset E, (Z)\E,(R)/K, and, in certain cases, they can be uniquely determined.
For the two leading order quantum corrections, corresponding to R* and 9*R*,
the coeflicient functions #, are, respectively, attached to the minimal and next-to-
minimal automorphic representations of E, [Piol0, GMV15]. Fourier expanding #,
with respect to various unipotent subgroups U c E, reveals interesting information
about perturbative and nonperturbative quantum effects. Of particular interest are the
cases when U is the unipotent radical of a maximal parabolic P, c G corresponding to
a simple root « at an “extreme” node (or end node) in the Dynkin diagram. Consider
the sequence of groups E, displayed in Table 2 and the associated Dynkin diagram in
“Bourbaki labeling” The extreme simple roots are then a;, a3, and a,, (this is slightly
modified for the low rank cases where the Dynkin diagram becomes disconnected).
The Fourier expansions of the automorphic form # with respect to the corresponding
maximal parabolics then have the following interpretations (see Figure 2 for the
associated labeled Dynkin diagrams):

o P = P,,: String perturbation limit. In this case, the constant term of the Fourier
expansion corresponds to perturbative terms (tree level, one-loop, etc.) with respect
to an expansion around small string coupling, g; — 0. The nonconstant Fourier
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2
o—o—i—g o0—o0 SOn_1n-1 C E,
. 1 3 4 5 o _r_z “1n string perturbation limit
2
o—o—l—o o0—o0 SL, C E,
) 1 3 4 5 o _T_L 1 n M-theory limit
2
(c) o—o—I—Q ----- o—e En 1 CEy
1 3 4 5 n—1 n decompactification limit

Figure 2: The various string theory limits associated with different maximal parabolic sub-
groups Ps. Roots are labeled in the Bourbaki ordering.

coefficients encode nonperturbative effects of the order e /¢ and e/ & arising
from so-called D-instantons and NS5-instantons.

o P =P,,: M-theory limit. This is an expansion in the limit of large volume of the
M-theory torus T“*!. The nonperturbative effects arise from M2- and M5-brane
instantons.

o P =P, :Decompactification limit. This is an expansion in the limit of large volume
of a single circle S! in the torus T% (or T%*! in the M-theory picture). The
nonperturbative effects encoded in the nonconstant Fourier coefficients correspond
to so called BPS-instantons and Kaluza-Klein instantons.

For the reasons presented above, it is of interest in string theory to have general
techniques for explicitly calculating Fourier coefficients of automorphic forms with
respect to arbitrary unipotent subgroups.

In string theory, the abelian and nonabelian Fourier coefficients of the type defined
in (1.1) typically reveal different types of nonperturbative effects (see for instance
[PP09, BKN10, Per12]). The archimedean and nonarchimedean parts of the adelic
integrals have different interpretations in terms of combinatorial properties of instan-
tons and the instanton action, respectively. For example, in the simplest case of an
Eisenstein series on SL,, the nonarchimedean part is a divisor sum oy (1) = ¥4/, dk
and corresponds to properties of D-instantons [GG97, GG98, KV98, MNS00] (see
also [FGKP18] for a detailed discussion in the present context). Theorem F provides
explicit expressions for the Fourier coefficients of the automorphic coupling of the
next-to-minimal 9*R* higher derivative correction in various limits; see Section 5.2
for a more detailed discussion in the case of Eg.

Remark 1.9.1 Theorem G resolves a long-standing question in string theory which
concerns the possibility of having contributions from cusp forms in the R* and 0*R*
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amplitudes. The theorem ensures that this can never happen as there are no cusp forms
in the minimal or next-to-minimal spectrum.

1.10 Structure of the paper

In Section 2, we give the definitions of the notions mentioned above.

In Section 2.2, we introduce the results of [GGK™] that relate Fourier coeflicients
corresponding to different Whittaker pairs, in particular Theorem 2.2.6, which is the
main tool of the current paper. Two more results from [GGK'] that we recall in
Section 2.2 and heavily use in the rest of the paper are Proposition 2.2.7 that expresses
any automorphic function through Heisenberg parabolic Fourier coefficients and a
geometric Lemma 2.2.8.

In Section 3, we deduce Theorems A-C from Section 2.2. For Theorem A (i) we show
that any Fourier coefficient s ,, of the constant term equals a Fourier coefficient %y,
of 1 for some H, and thus vanishes unless y is minimal or zero. We first deduce from
Lemma 2.2.8 that any minimal ¢ € (¢*)4 can be conjugated into g*,, using L, N T
(Corollary 3.1.3). This, together with Theorem 2.2.6, implies Theorem A(ii). Part (iii)
of Theorem A follows from the definition of minimality and Corollary 2.2.5, which
says that any Fourier coeflicient is linearly determined by a neutral Fourier coeflicient
corresponding to the same orbit.

To prove Theorem B, assume first that « := f8,, is an abelian root. In this case,
we decompose the form #m;n into Fourier series with respect to U,. Each Fourier
coefficient is of the form ¥, ,. For ¢ = 0, the restriction of this coefficient to L, is
minimal and we use the theorem for L, (by induction on rank). For nonzero and
nonminimal ¢, ¥, , vanishes by Theorem A(iii). For minimal ¢, the expressions for
Fs..¢ are given by Theorem A(ii). We group them together using Corollary 3.1.3. If &
is a Heisenberg root, we express #mi, through parabolic Fourier coefficients ¥,
using Proposition 2.2.7. For ¢ # 0, Fs,,, is given by Theorem A, and for ¢ = 0 by
induction.

Theorem C(i) is proven similarly to Theorem A(i). To prove Theorem C(ii), we
restrict s, o[ #ntm ] t0 Lo, show that it is a minimal automorphic function, and apply
Theorem B. Theorem C(iii) and C(iv) follow from Theorem 2.2.6 and Corollary 2.2.5,
respectively. For Theorem C(iii), we also use a geometric lemma saying that any next-
to-minimal ¢ € (g*)f‘; can be conjugated into g*, + gfﬁ for some positive root f3
orthogonal to « using L, N I" (Lemma 3.3.6).

In Section 4, we first prove Theorem D using the same strategy as in the proof of
Theorem B. However, we need two additional geometric propositions (Propositions
4.0.1 and 4.1.2) that describe the action of L, on next-to-minimal elements of (g* )f‘;
We prove these in Section 4.3. In Section 4.2, we derive Theorems E, F, and G from
Theorems B, C, and D.

In Section 5 we provide examples of Theorems A-D for groups of type Ds and
Eg computing the expansions of automorphic function and Fourier coeflicients with
respect to different parabolic subgroups of interest in string theory and compare our
Ejg results to the available literature [BP17, GKP16, KP04].
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2 Definitions and preliminaries

We use a similar setup as in the companion paper [GGK"] but from Section 2.1 and
onwards, we will restrict to split simply-laced groups. Let K be a number field, A = Ag
its ring of adeles and o its ring of integers. Fix a nontrivial unitary character y of A,
which is trivial on K. This additive character y defines an isomorphism between A and
A via the map a  y,, where the hat denotes the character group and y, (b) = y(ab)
for all b € A. The map a — y, restricts to an isomorphism ARz {reh :rg=1}=
{{a:aekK}zK

Let G be a reductive group defined over K, G(A) the group of adelic points of G and
G a finite central extension of G(A). We assume that there exists a section G(K) - G
of the covering p : G - G(A), and we fix such a section and denote its image by I'.
For any unipotent subgroup U c G, p has a canonical section on U(A) by [MW95,
Appendix I] and we use this to identify U(A) with a subgroup of G.

Let g denote the Lie algebra of G(K) 2 I. If G is simply-laced, the connected
components of g are of Cartan types A, D, or E. For a nilpotent subalgebra v c g,
we denote by Exp(v) the unipotent subgroup of I' obtained by exponentiation of
v. Similarly, we denote by V := Exp(v(A)) the unipotent subgroup of G obtained
by exponentiation of the adelization v(A) := v ®g A. Let g* be the vector space
dual of g.

Definition 2.0.1 A Whittaker pair is an ordered pair (S, ¢) € g x g* such that Sisa
rational semisimple element and ad* (S)¢ = —2¢.

Recall that a semisimple element S is called rational if ad(S) has eigenvalues in Q.
For any rational semisimple S € g and i € Q, we set

(2.1) gl ={Xeg:[S,X]=iX}, o= P g]S., and g5, := g} @S,
j>ieQ
We will also use similar notation for (g*)$.

We will say that an element of g* is nilpotent if it is given by the Killing form pairing
with a nilpotent element of g. Equivalently, ¢ € g is nilpotent if and only if the Zariski
closure of its coadjoint orbit includes zero. Because of the eigenvalue equation for ¢
in Definition 2.0.1, if (S, ¢) is a Whittaker pair, then ¢ is nilpotent.

For any ¢ € g*, we define an antisymmetric form w, of by w, (X, Y) = ¢([X, Y])
and given a Whittaker pair (S, ¢) on g, we set 1 := g3, @ g} and define

(22) mge={Xeu:wy(X,Y)=0forall Y eu} andNg,:=Expngq(A).
By [GGS17, Lemma 3.2.6],
2.3) Mis,p = 93, @ (87 N 8p),

where g, is the centralizer of ¢ in g under the coadjoint action. Note that g, is
nilpotent, an ideal in 1 with abelian quotient, and that ¢ defines a character of ng,,.
Define an automorphic character on N , by x4 (exp X) := x(¢(X)).

We call a function on G an automorphic function if it is left I'-invariant, finite under
the right action of the preimage in G of [Tgpite » G(0y), and smooth when restricted
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to the preimage in G of [Tiyfinite » G(K,). We denote the space of all automorphic
functions by C*(T'\G).

Definition 2.0.2  For an automorphic function #, we define the Fourier coefficient of
1 with respect to a Whittaker pair (S, ¢) to be

@9 Foolnl@) = [ n(ng) xo(m)™dn,

[Ns,o]
where, for a unipotent subgroup U c G, we denote by [U] the quotient (U n T")\U.

Definition 2.0.3 A Whittaker pair (H, ¢) is called a neutral Whittaker pair if either
(H,¢) =(0,0), or H can be completed to an sl,-triple (e, H, f) such that ¢ is the
Killing form pairing with f. Equivalently, H can be completed to some sl,-triple and
the map X ~ ad”(X)¢ defines an epimorphism gi'—(g* ).

See for example [Bou75, Section 11] for details on sl,-triples over arbitrary fields of
characteristic zero.

Definition 2.0.4  We call a Whittaker pair (S, ¢) standard if N, is the unipotent
radical of a Borel subgroup of G. By [GGK", Corollary 2.1.5], a nilpotent ¢ € g* can
be completed to a standard Whittaker pair if and only if it is a principal nilpotent
element of some K-Levi subgroup of G. Here, principal means that the dimension of
its centralizer equals the rank of the group. We call such ¢ PL-nilpotent and their orbits
PL-orbits . For a standard pair (S, ¢), we call the Fourier coefficient ¥, a Whittaker
coeflicient and denote it ‘W, , or ‘W, if S defines the fixed Borel subgroup, see (1.5).

Remark 2.0.5

(i) In [GGS17, Section 6] the integral (2.4) above is called a Whittaker-Fourier
coefficient, but in this paper, we call it Fourier coefficient for short. The Whittaker
coeflicients are called in [GGS17, Section 6] principal degenerate Whittaker—
Fourier coefficients. The notations ‘W , and ‘W, are used in [GGS17, GGS] to
denote something quite different.

(if) Note that for G = GL,,, all orbits O are PL-orbits. In general, this is, however, not
the case, see [GGK", Appendix A].

(iii) We refer the readers interested in the definitions of principal nilpotents, PL-
nilpotents, and standard pairs for nonquasi-split groups to [GGK", Section 2.1].

In [GGK", Section 2.3] we defined a partial order for I'-orbits which will be used
in the following definition. It is a refinement of the partial order for complex orbits
defined by the Zariski closure.

Definition 2.0.6  Let i be an automorphic function. We denote by WO(#) the set
of nilpotent I'-orbits O in g* such that 7 ,[#] # 0 for some neutral Whittaker pair
(h, ) with ¢ € O. Furthermore, we define the Whittaker support of 5, denoted by
WS(#), to be the set of maximal elements in WO(#).

The following well-known lemma relates these notions to the local notion of wave-
front set. For a survey on this notion, and its relation to degenerate Whittaker models,
we refer the reader to [GS19, Section 4].
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Lemma 2.0.7  Suppose that 1 is an automorphic form in the classical sense, and that
it generates an irreducible representation m of G. Let m = @, 7, be the decomposition
of 7 to local factors. Let O € WO(#). Then, for any v, there exists an orbit O, in the
wave-front set of m, such that O lies in the Zariski closure of O.. Moreover, if v is
nonarchimedean, then O lies in the closure of O, in the topology of * (K., ).

Proof Acting by G on the argument of 7, we can assume that there exists a neutral
pair (h, ¢) with ¢ € O such that 7, ,[#](1) # 0. Moreover, decomposing # to a sum of
pure tensors, and replacing # by one of the summands, we can assume that # is a pure
tensor and 74,4, [#](1) # O still holds. Let # = ®,, v,, be the decomposition of  to local
factors. Consider the functional & on 7, given by {(v) = Fi,o (v ® (&), vu)) (1).
Substituting the vector v,, we see that this functional is nonzero. It is easy to see that
this & is (exp (1, (K, )), xo)-equivariant. The theorem follows now from [MW87,
Proposition L11] and [Varl4] for nonarchimedean v, and from [Ros95, Theorem D]
and [Mat87] for archimedean v. [

It is useful to fix a complex embedding o : K—C which will allow us to speak about
the complex nilpotent orbit corresponding to an orbit O of I in g. The structure of
complex orbits is well understood; see for example [CM93]. Using [Dok98], one can
show that the complex orbit corresponding to O does not depend on o, although
we shall not use this fact. None of our statements depends on the choice of complex
embedding o.

2.1 Minimal and next-to-minimal representations

From now on, we assume that G is simply-laced. We call a nonzero complex orbit in
0*(C) minimal if its Zariski closure O is a disjoint union of O and the zero orbit. We
call a complex orbit O next-to-minimal if O does not intersect any component of g of
type A,, and Oisa disjoint union of O, minimal orbits, and the zero orbit.

Lemma 2.1.1  Let g be simple and let O c g*(C) be a complex nilpotent orbit. Then O
is minimal if and only if it has Bala-Carter label A, and next-to-minimal if and only if
it has Bala-Carter label A, x Aj.

Proof Follows from the Hasse diagrams for the closure order on nilpotent
orbits. |

Remark 2.1.2

(i) Lemma 2.1.1 only holds for simply-laced Lie algebras. Indeed, already for C,, the
minimal orbit is represented by the long root and the next-to-minimal by the
short root. Both roots of course lie in Levi subalgebras of type A;.

(ii) We exclude the regular orbit of A, because it does not behave like a next-to-
minimal orbit. This behavior is manifested by Lemma 2.1.1.

Lemma2.13 Letg =@ q;, withg; simple. Then the minimal orbits of g* (C) are of
the form X{;II{O} x O x X;‘:J.H{O}, with O a minimal orbit in g;. The next-to-minimal
orbits of ¢*(C) are either of the same form with O next-to-minimal, or of the form
X{;II{O} x O x XiZh {0} x O" x x*_,, {0}, where O and O are minimal orbits in gj

and g, respectively.
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Proof Ifg=g,xg,and O =0, xO, thenO = O x O,. [ |

We call a (rational) element of * or a rational orbit in g* minimal/next-to-minimal
if its complex orbit is minimal/next-to-minimal.

Let Oyoy be the set containing only the zero G(K)-orbit in g*, let Oy be the union
of Ogg} and the set of minimal G(K)-orbits, and similarly let O(,; be the union of
O¢0y> Oy1y and the set of next-to-minimal orbits.

We say that an automorphic function # is minimal if WO(#) is a subset of Oy,
but not of Oyy. By [GGS17, Theorem C] (or by Proposition 2.2.4 below), this implies
that F,4[#] = 0 for any Whittaker pair (H, ¢) with ¢ nonzero and nonminimal. We
call an automorphic function # trivial if WO(#) = Oyoy. By [GGS17, Corollary 8.2.2],
the semisimple part of G acts on any trivial automorphic function by +Id. We call
a representation of G in automorphic functions minimal if all the functions in this
representation are minimal or trivial.

We say that an automorphic function # is next-to-minimal if WO(#) is a subset of
Oy2) but not of Oyyy. Again, by [GGS17, Theorem C] (or by Proposition 2.2.4 below),
this implies that 7, ,[#] = 0 for any Whittaker pair (H, ¢) with ¢ higher than next-
to-minimal. We call a representation 7 of G in automorphic functions next-to-minimal
if it includes a next-to-minimal function, and all the functions in this representation
are next-to-minimal, minimal, or trivial. By Lemma 2.0.7, if 7r consists of automorphic
forms in the classical sense, is nontrivial, irreducible, and has a minimal local factor,
then it is minimal. Similarly, if it has a next-to-minimal local factor, then it is minimal
or next-to-minimal.

2.2 Relating different Whittaker pairs

Lemma 2.2.1 ([GGK", Lemma 3.3.1]) Let (S, ¢) be a Whittaker pair, y an automor-
phic function and y € I'. Then,

(2.5) Fs.0l11(8) = Fad(y)s,ad*(y)e[1](78) -

Definition 2.2.2  Let (H, ¢) and (S, ¢) be Whittaker pairs with the same ¢. We will
say that (H, ¢) dominates (S, ¢) if H and S commute and

(2.6) gy N g; c gigH.

The following lemma provides two fundamental special cases of domination.

Lemma 2.2.3 ([GGK", Corollary 3.2.2 and Proposition 3.2.3]) Let (S,¢) be a
Whittaker pair. Then
(i) (S, ) is dominated by a neutral Whittaker pair.
(ii) If ¢ is a PL-nilpotent then (S, ¢) dominates a standard Whittaker pait.
The importance of the domination relation is due to the next three statements.

Proposition 2.2.4 ([GGK', Proposition 4.0.1]) Let (H, ¢) and (S, ¢) be Whittaker
pairs such that (H, ¢) dominates (S, ¢), and let n be an automorphic function with
Fi,pl1] = 0. Then Fs »[n] = 0.
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Corollary 2.2.5  Let 1 be an automorphic function and let (S, ¢) be Whittaker pair,
with T'g ¢ WO(#). Then Fp,o[1] = 0.

Theorem 2.2.6 (|[GGK", Theorem C(i)]) Let 1 be an automorphic function on G, and
let ¢ € WS(n). Let (H, ¢) and (S, ¢) be Whittaker pairs such that (H, ¢) dominates
(S, ¢). Denote

(2.7) v:=g2 ngd), and V= Exp(v(A)).

IfgH = g5 = 0, then

28) Fingln)(9) = [ VFsglnl(v)dv.

We emphasize that the integral over V is an adelic integral.

For the next proposition, recall from Section 1.4 that we say that a simple root « is
a Heisenberg root if the nilradical of the maximal parabolic subalgebra defined by «
is a Heisenberg Lie algebra. All such roots for simple (simply-laced) Lie algebras are
listed in the second row of Table I in Section 1.4.

Proposition 2.2.7 ([GGK", Proposition 5.1.5]) Let a be a Heisenberg root, and let
max denote the highest root of the component of g corresponding to a. Let Q) denote the
abelian group obtained by exponentiation of the abelian Lie algebra given by the direct
sum of the root spaces of negative roots f3 satisfying (e, ) = 1. Let y be a representative
of a Weyl group element that conjugates & t0 &max. Let

W, :={roote| (e, a) <0, e(Sy) =2}
Then
29) (@)= X Fspll@+ X X X Fsuerylnl(wyag).

pe(or)’e $e0Zy 0€Qa YeDeey, 97,

Lemma 2.2.8 (|[GGK',LemmaB.0.3]) LetS, Z € g be rational semisimple commuting
elements, let ¢ € g5 N g%, and ¢’ € g%, N g5,. Assume that ¢ is conjugate to ¢ + ¢’ by
G(C). Then there exist X € g%y n g5 and v € Exp(g%, N g5) such that ad* (X)(¢) = ¢’
andv(p) =+ ¢’

3 Proof of Theorems A, B and C

For the whole section, we assume that G is split and the Dynkin diagram of g is simply-
laced, i.e., all the connected components have types A, D, or E. As in Section 1.4, let, for
any root §, g denote the corresponding root-subspace of g* and g5 the set of nonzero
elements of this subspace.

Lemma 3.0.1 If[g,g] is simple, then any two roots are Weyl-conjugate.

Proof Any root is Weyl-conjugate to a simple root, and any two simple roots in a
connected simply-laced diagram are Weyl-conjugate. [ ]

Corollary 3.0.2  For any root 8, any ¢ € gy lies in a minimal orbit.

Corollary 3.0.3  Assume that g is simple.
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(i) If g is of type A or E, then any two pairs of orthogonal roots are Weyl-conjugate.
(ii) Ifgis of type D, with n > 5, then any pair of orthogonal roots is Weyl-conjugate to
exactly one of the pairs (a1, a3) and (ety_1, Ay ).
(iil) Ifais of type Dy, then any pair of orthogonal roots is Weyl-conjugate to exactly one
of the pairs (a1, a3), (a1, aq), and (a3, ag).

Proof Intypes A and E, we apply Lemma 3.0.1 that implies that each of the two pairs
can be Weyl-related to a pair where one of the roots is the highest root and the other
is orthogonal to it. Since the Dynkin diagram of the root system consisting of roots
orthogonal to the highest one is still connected, the stabilizer of the highest root acts
transitively on it and one can relate the other elements of the pairs as well, showing
that it is possible to relate any two pairs of orthogonal roots.

In type D,,, we use the standard realization of roots as

(31) {:tS,‘ j:Ej,},

where ¢; denotes the unit vector in R”. The Weyl group acts by permutation of the
indices, and even number of sign changes. The usual choice of simple roots is

(3.2) 0= €& =€y vvs Op_]'=Ep_1—E€py Opi=Ep_1+Ey.

Using reflections, we can conjugate any pair of orthogonal roots to a pair of orthogonal
positive roots. The pairs of orthogonal positive roots have one of the two forms

(1) (ei+ej,ei —€j) or (¢; —€j, & +¢j), with i < j.

(2) (ei£¢j,ex ) with i < jand k < [ all distinct.

We can conjugate any pair of type (1) to (a1, &) = (€4-1 — €n, €n—1 + €,). Forn > 5,
any pair of type (2) is conjugate to (a1, a3) = (& — €2, &3 — €4). For Dy, we have two
nonconjugate pairs of type (2): (ay, a3) = (61 — €2, €3 —€q) or (a1, s) = (&1 — €2, €3 +
€4). It is easy to see that one cannot conjugate a pair of type (1) into a pair of
type (2). [ ]

We remark that in type D,,, the pairs (a;, a3) and (a,-1, @, ) correspond to two dis-
tinct next-to-minimal orbits, given by the partitions 2412”8 and 31*"73, respectively.

Corollary 3.0.4  Any pair of orthogonal roots in g is Weyl-conjugate to a pair of
orthogonal simple roots.

Proof If [g,g] is not simple and the roots lie in different simple components, this
follows from Lemma 3.0.1 by conjugating each of them to a simple root. If the roots
lie in the same component, this follows from Corollary 3.0.3. [ ]

3.1 Proof of Theorem A

Throughout the subsection fix a simple root a. Define S, €l) by a(S,) =2 and
y(S4) = 0 for any other simple root y.

As mentioned in the introduction, if a Fourier coefficient ¥, is a Whittaker
coefficient, i.e., N, is the unipotent radical of a Borel subgroup, we will denote it by
“Ws,», where we may drop the S if it corresponds to a fixed choice of Borel subgroup
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and simple roots. In other words, we define Sp € ) by Sip(y) = 2 for any simple root y
and write Wy, o, = W,.

Lemma 3.1.1  If n is a minimal automorphic function and ¢ € %, then Fs, o[n] =
Wo[n].

Proof Wehave g = {0} = g% n g, which implies the lemma by Theorem 2.2.6 m
Let L, denote the Levi subgroup of the parabolic subgroup P, of G.

Lemma 3.1.2  Any root § with §(S,) = =2 can be conjugated to —a using the Weyl
group of L.

Proof We can assume that g is simple. This statement can be proved using the
language of minuscule representations, i.e., representations such that the Weyl group
has a single orbit on the weights of the representation. By [Bou75, Section VIIL3] these
are the fundamental representations corresponding to the abelian roots (see Table 1).

It suffices to show that the representation of the Levi L, on the first internal Cheval-
ley module V, := uy/[1g, 11y ] is minuscule. These modules are explicitly computed in
[MSI12, Section 5] and this can be checked case-by-case. For completeness, we give a
conceptual argument.

We claim first that V, is irreducible with lowest weight «. Evidently, « is a weight
of V,, with multiplicity one. Also any positive root f of L, involves only simple roots
different from «, and thus a — f3 is not a root. Hence « is a lowest weight of V,,. On the
other hand, any weight of Vj, is of the form « + y, where y is a sum of positive roots
from L. Thus, « is the unique lowest weight of V.

The Dynkin diagram of L, is obtained from that of G by removing «, and each
component has exactly one simple root adjacent to «, which is easily checked to be an
abelian root for the component. Thus, the corresponding fundamental representations
are minuscule, and thus so is their tensor product W,. However, W, has highest weight
—a, since (—a, B) is 1if 8 is adjacent to « and zero otherwise. It follows that V,, ~ W,
and hence V, is minuscule. ]

Corollary 3.1.3  Let R denote the set of minimal elements in (g*)%.

(i) R=(LanT)(8",)
(i) RN (8%, + Peew, 8*,) = 9%, where

(3.3) W, :={roote| (e a)<0,e(Sy) =2}.

Proof (i) Let z be a generic element of §) that is 0 on « and negative on other
positive roots. Decompose (g*)% = ®_ Vi by eigenvectors of z, with eigenvalues
0=ty<t <<ty Note that Vo =g*,. Let X € (g*)f“2 be a minimal element and
X = Y; X; its decomposition by eigenvalues of z. By Lemma 3.1.2, we can assume, by
replacing X by its L, N I'-conjugate, that X, # 0. By Lemma 2.2.8, X is conjugate to
Xo using Exp((I4)%p) € Ly N T

(ii)LetY = Y'+Y" € R,where Y’ € g, and Y" € @,y, o*,.Identify Y’ with some
f € a_, using the Killing form, and complete f to an sl,-triple e, h, f with e € g,. Then
Y" € (g*)¢, since for every root ¢ € ¥y, a — ¢ is not a root. Thus, Y belongs to the

https://doi.org/10.4153/S0008414X20000711 Published online by Cambridge University Press



Fourier coefficients of minimal and next-to-minimal representations 147

Slodowy slice Y’ + (g*)¢, that is transversal to the orbit of Y”. Since the orbit of Y is
minimal, Y’ must lie in the same orbit and thus Y” = 0. n

Lemma 3.1.4  Let 1c g be a K-Levi subalgebra, and let O be the minimal nilpotent
orbit in g. Then O N Lis either empty or the minimal orbit of 1.

Proof Suppose the contrary. Let O, denote the minimal orbit of I. Then O lies in the
Zariski closure of O N 1. Thus there exists an sl, triple (e, h, f) in I such that f € Oy,
and the Slodowy slice f +1° to O at f intersects O. Namely, there exists a nonzero
X e 1° with f + X € O. This contradicts the minimality of O, since f + I° is transversal
to the orbit of f. [

Proof of Theorem A Part (iii) follows from Proposition 2.2.4 and the minimality
of 1.

Part (ii) follows from Corollary 3.1.3(i), and Lemmas 3.1.1 and 2.2.1.

For part (i), suppose that there exists a Whittaker pair (H, y) for L, with v # 0
such that Fg,[Fs,.0[#7]] # 0. Then, for T big enough, we have Fy [Fs, 0[7]] =
FH+1Sq,w[1]- Thus, the orbit of y is minimal in g* and thus by Lemma 3.1.4
alsoin[}. ]

3.2 Proof of Theorem B

Let # be a minimal automorphic function.
As above, for any simple root «, let L, be the Levi subgroup of P,. Let Q, c L, be
the parabolic subgroup with Lie algebra (1, )g;

Lemma 3.2.1 The stabilizer in Ly, of the line g%, as an element of the projective space

of g% is Q.

Proof Foranyroote, e(a") < 0ifand onlyif e — a is notaroot. Thus, the Lie algebra

of the stabilizer of g, is the parabolic subalgebra (Ia)g; of 1,. Thus, the stabilizer

is Qq. [ ]
LetTy:=(Ly nT)/(QunT).

Proposition 3.2.2  Let o be a (simple) abelian root. Then

(3.4) 1(g) = Fsaolnl(@) + 2 D Wolnl(yg).

yel'y 9eaZy

Proof By definition of an abelian root, the group U, is abelian. Decompose # into
Fourier series on U,. The coefficients in the Fourier series will be given by Fs, o/ [#]
with ¢’ € (6*)%3. Note that this coefficient vanishes unless ¢’ is minimal or zero, and
that by Corollary 3.1.3, all minimal ¢’ € (g*)®} can be conjugated into g*,, using Ly N
I". Thus, we have

G5 (@)= Y. Fsuelnl(g) =TFs.olnl(@) + Y. > Fsaelnlyg).

9'e(9*)% yel o pea”,

Lemma 3.1.1 and the minimality of # imply that Fs_ ,[#7](yg) = W, [n](yg). ]
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Proof of Theorem B The proof is by induction on the rank of G, that we denote by
n. The base case of rank 1 group is the classical Fourier series decomposition. For the
induction step, let us show that

(3.6) 1= Fsp0l1] + Caln].
For that purpose, assume first that the root « := 8, is abelian. By Proposition 3.2.2,
we have
B37)  n(g) =Fsoolnl(@) + 2 X Welnl(yg) = Fs.olnl(g) + Anlnl(g)
yel'o pesa
= Fswoln](8) + Calnl(g) -

If « := B, is a Heisenberg root, then by Proposition 2.2.7, we have

1) = Y. Fsuelnl@+ 2 D > Fswerylnl(@yag)

pe(a*)%s 9ea”, WEQa Ye@, ey, 97,
(38) = Fsa0[11(g) + An[n](g) + Bu[n](g) = Fs..0[n1(g) + Culnl(g) .-

Formula (3.6) in now established. By Theorem A(i), Fs,,0[#] is @ minimal automor-
phic function on L,. As before, let Sp1 € h denote the element that is 2 on all positive
roots. Note that for any ¢ € (13)%1, we have (W;, [Fs..0[n]] = Woe[n] where the prime
denotes a Whittaker coefficient with respect to L. This implies that C}[Fs, o[#]] = C:
for any i < n. From the induction hypothesis and (3.6), we obtain

(39)  n(g) = Fs,, 0[] + Co = Wolnl(g) + 3. Ci + Cu = Woln1(g) + z Ci.

i=1

3.3 Proof of Theorem C

Suppose that rk(g) > 2. Let # be a next-to-minimal automorphic function. Let a be a
simple root and let y € g .

Lemma 3.3.1  Let y # a be a positive root, and let ¢’ € g* . Let O denote the orbit
of v+ ¢'. Then O is minimal if («,y) > 0, O is next-to-minimal if («,y) = 0 and O is
neither minimal nor next-to-minimal if (&, y) < 0.

Proof By Lemma 2.1.3, we can assume that [g,g] is simple. Let b’ c ) be the
simultaneous kernel of & and y, and let [ be its centralizer in g. Then b’ has codimension
at most 2 in b, hence lis a Levi subalgebra of semisimple rank < 2 whose roots include
« and y. Note that O n [is a principal nilpotent orbit in I. By a straightforward rank 2
calculation, we see that [ has type A; if (&, y) > 0, type Ay x A; if («, y) = 0, and type
A, if {a,y) < 0. The lemma follows now from Lemma 2.1.1. |

Notation 3.3.2  Denote by A, the set of simple roots orthogonal to a. Define S € b to
be 0 on any simple root € € Ay, and 2 on other simple roots.

Proposition 3.3.3  We have Fs, y[1] = Fs,y[1] for any v € g*,.
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Proof Note that S, dominates S and that g;* =g} = gi‘{ ngS, ={0}. Thus, the
statement follows from Theorem 2.2.6. [}

Let G’ c G be the Levi subgroup given by A,.

Proposition 3.3.4  The restriction Fs,y[n]|c: is a minimal or a trivial automorphic
function on G'.

For the proof, we will need the following geometric lemma.

Lemma 3.3.5 Let ¢’ €' be nilpotent such that ¢’ + v belongs to a next-to-minimal
orbit in g*. Then ¢’ belongs to the minimal orbit of g'".

Proof Clearly ¢’ # 0. If the orbit of ¢’ is not minimal, then it belongs to the Slodowy
slice of some element ¢’ of the minimal orbit of (¢")*. Then ¢’ + y' belongs to a next-
to-minimal orbit of g*, and ¢’ + ¥ belongs to the Slodowy slice of ¢’ + ' and thus lies
in an orbit that is higher than next-to-minimal. [ ]

Proof of Proposition 3.3.4 Let Z := § — S,. Note that Z vanishes on simple roots in
A4 and on « and is 2 on other simple roots. Suppose that there exists a Whittaker pair
(H,y") with ¢ # 0 such that 7y [ Fs,y[#]] # 0. Then, for T big enough, we have

TH’W' [fs,w[l’]]] = 7'5+TZ+H,|//+1;/’ [7’]]

By Proposition 2.2.4 and Lemma 3.3.5, y lies in the minimal orbit of g [ ]

Lemma 3.3.6 (See Section 3.4 below) For any next-to-minimal element ¢ € (g*)5%,
there exist yg € Ly N T and a positive root § orthogonal to a:s.t. Ad* (yo) g € g*, + 9%5c

8, ® 0%,
Remark 3.3.7  The above lemma only establishes that any next-to-minimal ¢ can be
mapped to two orthogonal root spaces by L, n I". However, the action of L, N T is

often even transitive on (g*)%, giving a single orbit. One can show that this happens
in all cases except for:

o Ajzand node «;.

o Dy and nodes o, a3, oy (all related by triality).

o D, and when the two orthogonal roots («, 8) are Weyl conjugate under D, to
(a1, ay), see Corollary 3.0.3, corresponding to the orbit 312”73, This happens for
n > 4 always for node a; as well as for nodes «; with 2 < i < n -2 if ¢ belongs to
that orbit.

For instance, for A3 and node «,, one has that next-to-minimal are ¢ € g*, +¢*,..
The torus element for node i scales elements in g, by rational squares (i = 1,3) while
keeping the other space unchanged. The torus element for node 2 scales both spaces by
rational elements in the same way, and so one cannot use the torus actionin Ly, N T°
to arrive at a unique representative. The other cases can be seen to reduce to the same
phenomenon.

For A, with n > 4 and all exceptional cases, there is a unique rational representative
for next-to-minimal nilpotents in (g*)%.
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Proof of Theorem C Part (iv) follows from Proposition 2.2.4, since 7 is a next-to-
minimal function.

For part (iii), by Lemma 3.3.6, we may assume ¢ € g”,, + g7, for some positive roots
B orthogonal to a. By Corollary 3.0.4, one can conjugate the pair of roots («, 8) to
a pair of orthogonal simple roots (&', a"), using the Weyl group. Let a be the joint
kernel of «’ and a” in b, and let z € a be a generic rational semisimple element. Let
Sr=a' +a” + Tz for T> 0eQ, where o’ and a" are the dual coroots. Since
no linear combination of &’ and &’ lies in a, St is a generic element of a and thus
for T big enough, qgg is a Borel subalgebra of g that contains ). Thus, it is conjugate
under the Weyl group to our fixed Borel subalgebra. The statement follows now from
Theorem 2.2.6. We note that different choices for z may give V of different dimensions.

For part (ii), Proposition 3.3.3 implies Fs,,y[#] = Fs,y[#]. By Proposition 3.3.4,
1" := Fs,y[n]le is a minimal or a trivial automorphic function on G’. The statement
follows now from Theorem B applied to " together with the fact that its Whittaker
coefficients, obtained by integration over the maximal unipotent subgroup N’ = N n
G’, are, in fact, equal to the Whittaker coefficients ‘W, [#] due to the extra integral
present in the definition of #’.

Part (i) is proven very similarly to Theorem A(i). [ ]

3.4 Proof of Lemma 3.3.6

Let a be a simple root. We assume that g is simple.

Note that in simply-laced root systems, orthogonal roots are strongly orthogonal,
and thus the sum of two roots is a root if and only if they have scalar product —1. Also,
for any two nonproportional roots, the scalar product is in {-1,0,1}. For any root ¢,
we denote by " the coroot given by the scalar product with e.

Notation 3.4.1 Denote z := a — Sy and u, := (1,)%,, and U, := Exp(u,) c Ly N T.
Note that 1, = (1,)* and g*,, c (g*)3.

Lemma3.4.2 Letgeg”, andye (g*)%n (6%)% c (g%)%. Then there exists v € U,
such that Ad* (v)p = ¢ + .

Proof Casel. y € g, for some &: By the assumption that y € (g*)ﬁ; and Lemma

3.3.1, ¢ + y is conjugate to ¢ over C. By Lemma 2.2.8, there exists v € U, such
that Ad"(v)p = ¢ + y.

Case 2. General: We can assume y # 0. Let H € ) be a generic element that has
distinct negative integer values on all positive roots. Note that u, c g* and
v e (g%)H). Decompose v = ¥, ¥, where y; € (g%)H. We prove the lemma
by descending induction on the minimal j for which v; # 0. The base of the
induction is j that equals the maximal eigenvalue of ad” (H). In this case, y =
v;jand we are in Case 1. For the induction step, let jbe minimal with y; # 0. By
Case 1, there exists v; € U, with Ad"(v1)¢ = ¢ — y;. Then Ad™ (v1)(¢ + y) =
¢ + X5 ¥, for some y; € (¢*)}". By the induction hypothesis, there exists
v, € U, such that Ad* (v2)¢ = Ad" (v;) (¢ + y). Take v := v 'v,. [
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Proof of Lemma 3.3.6 Let ¢ € (g*)®$ be next-to-minimal. Decompose ¢ = ¥, ¢,
where ¢, € g*,. Let F:= {¢| ¢, # 0}. By Lemma 3.1.2, we can assume « € F. Using
Lemma 3.4.2, we can assume that for any other ¢ € F, we have {(«a,¢) <0, ie., Fc
{a} U¥,, where ¥, is as in (3.3), namely

(3.10) WY, = {roote]| (e a) <0,e(Sa) =2}.

Assume first that there exists € F with («, ) = 0,andlet Z := o + ¥ - S,,. Then

(3.11) a(Z)=p(Z) =0, and e(Z) <0 for any € € F\{«, 8}.
Indeed,
e(Z)=(a,e) +(B,e)—2<0+1-2=-1.

By (3.11), we see that ¢, + ¢ lies in the closure of the complex orbit O of ¢. Now, by
Lemma 3.3.1, ¢, + ¢p is next-to-minimal and thus lies in O. Thus, Lemma 2.2.8 and
(3.11) imply that ¢ is conjugate to ¢, + ¢g under L, N T

Let us now show that € F with (a, ) = 0 indeed exists. Assume the contrary, i.e.,
(a,€) = -1 for all € € F. Note that F is not empty, since ¢ is not minimal. Pick any
weFandletZ' :=a¥ +w¥ - S,/2. Then

(3.12) a(Z')=w(Z") =0, and e(Z") < 0 for any ¢ € F\{a, w}.
Indeed,
e(Z") =(a, &) +{w,e) 1< -1+1-1=-1.

By (3.11), we see that ¢4 + ¢, lies in the closure of the complex orbit O of ¢ and thus
is minimal or next-to-minimal. This contradicts Lemma 3.3.1 since {a, w) < 0.

Thus, there exists § € F with («, ) = 0, and as we showed above, ¢ is conjugate to
¢o +@punder Ly N T [ ]

4 Proof of Theorems D, E, F, and G

Let a be a nice root. Denote by R the set of minimal elements in (%)% and by X
the set of next-to-minimal elements in (g*)f‘;. Let amax be the highest root of the
component of g that includes «. Recall that §, denotes amay if « is an abelian root and
denotes amax — @ — 8, where f3 is the only simple root nonorthogonal to «, if « is a
nice Heisenberg root. Denote 0 := §,. See Section 4.3 below for more details on this §
in the Heisenberg case.

We will use the following geometric propositions, that we will prove in Section 4.3
below.

Proposition 4.0.1 (i) If « is abelian and (a, amax) > 0, then X is empty.
(ii) If (&, @max) = 0 or if a is a nice Heisenberg root, then X = (Lo N T") (8%, +8%4).

Note that this implies that at most one next-to-minimal orbit can intersect X.
For the next proposition, we assume that either (a, amax) =0 or a is a nice
Heisenberg root. Recall that in these cases , R, denotes the parabolic subgroup of L,
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with Lie algebra (I5),, and let RQ, = Ry N Q4. Denote further by St, the stabilizer
in Ly n T of the plane g*, ® g”, as an element of the Grassmanian of planes in g*.

Proposition 4.0.2 RQ, NI is a subgroup of St of index 2.
4.1 Proof of Theorem D

Let # be a next-to-minimal automorphic function on G.
Suppose first that « is an abelian root, i.e., the nilradical U, of the maximal
parabolic P, is abelian. Using Fourier transform on U, we obtain

(4.1) 1(8) = Fs,0[n1(8) + D Fsuolnl(€) + Y Fsurolnl(g) -

@€eR peX

By Corollary 3.1.3, R = (Lo, n ") (g*, ). By Lemma 3.2.1, Q, is the stabilizer in L,
of the line g* , (as a point in the projective space of g*). Thus,

(4.2) > Fswoltl(@) = 2 Y Fsuplnl(v8),

$eR yel 'y poes,

where I',, denotes the quotient of Ly n T by Q, N T. If (&, dtmax) > 0 then by Propo-
sition 4.0.1, X is empty. This implies part (i) of Theorem D. Let us now assume
(a0, @max) = 0 and prove part (ii) of Theorem D. By Proposition 4.0.1, X = (Ly N
I')(gX, +8X4). Recall that we denote by A, the quotient of L,nI" by RQ, NT. By
Proposition 4.0.2, we have

(4.3) > Fsaoln (g)— 2 2 2 Fsagnlnl(re).

peX yeAu PegX, yegX,
From (4.1), (4.2), and (4.3), we obtain
(4.4)
1) = Fsaolnl+ 25 D Fsuolnl(ye)+3 Y >, 2 Fuprynl(yg)= A+ B,
yel', peaX, yeAa pegX, yegX,

as required where A and B are defined in the statement of Theorem D.

Suppose now that « is a nice Heisenberg root. Let y, be a representative of the Weyl
group element sS4, Sqo, where s, and s, denote the corresponding reflections.
Since («a, cxmax) =1, y, conjugates & t0 dmay. Thus, by Proposition 2.2.7,

45 (@)= Y Tsaelnl@+ 2 D Y Fseenlnl(wyag).

(pe(g*)i‘; pegX, WeQa YeD, ey, 8%,

We call the first sum the abelian term, and the second sum the nonabelian term. In the
same way as above, we obtain

(4.6) Y. Fsoelnl(g) =A+8.
pe(ar)e

To determine the nonabelian term, we will need a further geometric statement.
Recall that M, c L, denotes the Levi subgroup generated by the roots orthogonal to
«. Note that M, is the standard Levi subgroup of the parabolic Q, of L.
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Lemma 4.1.1  The group M, n R, N T is the stabilizer in M N T of the line g* ; and of
the plane g* , @ g7 .

Proof The first assertion follows from Lemma 3.2.1 applied to the root §. The second
one follows from Proposition 4.0.2, since M, N R, is a parabolic subgroup of M,. m

Denote by X the set of next-to-minimal elements in g%, + @.cy, 87,.
Proposition 4.1.2 (See Section 4.3 below) X = (MynT)(a%, +a%;).

Recall that M, denotes the quotient of M, N I"by M, N R, N I'. By Theorem C(iv),
Proposition 4.1.2, Lemma 4.1.1, and Corollary 3.1.3(ii) we have, for any w € Q,,

Z Z Fsanpry[](wsg) =

9egX, YeD ey, 97,
(4.7)
Y Fswolnl(@sg)+ D0 D0 Y Fowpryln] (¥ 0yag) -

PegX, V' eMa pegX, yegX,
From (4.5), (4.6), and (4.7), we obtain

(4.8)

n(g)=A+B+ ). ZTsw Hwyag)+ D D0 Y Fsweruln] (Y wyag)|s

weQq \ peg*, Y eMq pegX, 1;/6;:;:s
as required.

4.2 Proof of Theorems E, F, and G

Proof of Theorem E We proceed by induction on the rank of g. The base case is
rank 1, that has no next-to-minimal forms, and the statement vacuously holds. For the
induction step, let 7 be a next-to-minimal automorphic function. Let I = {31, ..., 8.}
be a convenient quasi-abelian enumeration of the roots of g. Denote « := f3,,. Theorem
C provides the expressions for all the terms in the right-hand side of the expressions in
Theorem D, except the constant term. By Theorem C(i), the restriction of the constant
term F, 0[#7](g) to the Levi subgroup L, is next-to-minimal or minimal or trivial.
Thus, we can obtain the expressions for the constant term by Theorem B and the
induction hypothesis. Applying Theorem C(ii) to Fs,,, for any ¢ € g*,, we get, in the
notation of Theorem C, yo = 1, ¥ = ¢, C;f’[n] = A?[ﬂ] foralll1< j<n-1,and

(4.9) Fsuoln](v8) = Wolnl(yg) + ZA"’ 1(yg) -

Thus,

(4.10) YD Fsaplnl(y8) = An+ 3 Auj.
ysr peg’, jin
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Further, for any ¢ € g, and y € g*, , Theorem C(iii) provides an expression for
FSa,p+v[1]- This expression implies

(4.11) Y2 Y Fseerulnl(yg) = Aun.

yeha peg™, yeg

®max

Assume first that « := 8, is an abelian root. Then, using Theorem D, (4.10), (4.11), and
the induction hypothesis, we obtain

(412) n= 7:5“,0[1’]] +An + ZA,,] +Ann = (Wo[f’]] + Z (A, +Aii + Z Az]) ,

jin i=1 j<i,jLi

as required.
Suppose now that « is a nice Heisenberg root. Then we need to add the expressions
for the nonabelian term in (4.8). These are also provided by Theorem C. Namely,

(4.13) > 2 Fsoulnl(wyag) = Bu+ Y Buj,

weQ, peg”, jin

(4.14) Z Z Z Z Tsu,¢+w[”](ylwyng):Bnn-

weQ, y'eMy gegX, wegfaa

The theorem follows now from Theorem D and (4.10)-(4.14). [

Theorem F follows in a similar way but without using the induction and omitting
some terms that vanish.

Proof of Theorem G Suppose the contrary. Embed 7 into the cuspidal spectrum
and let # # 0 € 7. By Lemma 2.0.7, # is either minimal or next-to-minimal. If g
has a component of type Eg, we let G’ c G be the subgroup corresponding to this
component. Otherwise, we let G’ := G. Let 1’ be the restriction of #; to G'. Note that #’
is still minimal or next-to-minimal, and that it is cuspidal in the sense that the constant
term of %’ with respect to the unipotent radical of any proper parabolic subgroup of
G’ vanishes. Thus, for any two simple roots ¢;, £;, and any ¢ € g7 @ g}, the Whittaker
coefficient ‘W, [#'] vanishes identically. Since all the terms in the right-hand sides
of Theorems B and E are obtained from such Whittaker coeflicients by summation,
integration, and shift of the argument, we obtain from those theorems that #’ vanishes
identically. This implies #(1) = 0. Replacing # in the argument above by its right shifts,
we obtain 77 = 0, reaching a contradiction. [ ]

4.3 Proof of geometric propositions

In this subsection, we assume that g is simple, since for Propositions 4.0.1, 4.0.2, and
4.1.2, it is enough to consider this case.

4.3.1 Proof of Proposition 4.0.2

Lemma 4.3.1  There exists w in the Weyl group of Ly such that w* = Land w(a) = 8,.
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Proof We can assume that g is simple. If « is abelian, we take w to be wg, where wy
is the longest element in the Weyl group of L. Since « is the lowest weight of the first
internal Chevalley L,-module 1y, and 8y = dpay is its highest weight, wo (a) = 8.
If « is Heisenberg, we take w to be sgwg, where § is the only root attached to a.
In this case, the highest weight of 1y is amax — «, while the lowest weight is still «.
Thus, wo (&) = dmax — . Since « is a Heisenberg root, f3 is orthogonal to ayax. Thus,
S (¥max = &) = Amax = & = {@Xmax — &, B) = Amax — & — § = §4. To prove that w is an
involution, we will show that wo(f8) = —1. To see this, we apply the well-known fact
that —wy is a graph automorphism of the Dynkin diagram. For g of type Es, we have
a = ag, L, is of type E7, and the Dynkin diagram has no automorphisms. For g of type
E;,wehave a = oy, L, is of type Dg, and wy is known to be —1. In the remaining case of
g of type Eg, we have a = a,, f = ay, Ly is of type As, and —w, induces the nontrivial
graph automorphism, which however fixes f3. [ ]

Proof of Proposition 4.0.2 We first note that St, preserves the union of coordinate
axis in g*, ® g*, since this union is also the union of {0} with the set of minimal
elements in g*, ® g”,. Since the action of St, on g*, ® g*; is linear, any g € St,
either preserves the line g*, or sends all its elements to elements of g* 5. Thus, by
Lemma 4.3.1, exactly one of the elements {g, wog} preserves both lines g*, and g* .
By Lemma 3.2.1, Q, N I" is the stabilizer of the line g* . By the same lemma applied to
0, Ry N T is the stabilizer of the line g* 5. Thus, RQ, N T is the joint stabilizer of both
lines and has index 2 in St,. ]

4.3.2 Preparation lemma

Assume g is not of type A,, and let « be a quasi-abelian root. If g is of type D, we
assume further that « is an abelian root. By Table 1, these assumptions imply that «
corresponds to an extreme node in the Dynkin diagram, i.e., there exists a unique
simple root 8 not orthogonal to a. Thus M, = L, N Lg. Denote

(4.15) @, = {roote| (e, a)=0,e(Sy)=2}.
Lemma 4.3.2  The Weyl group of M, acts transitively on @,.

Proof By the defining property of minuscule representations, it is enough to show
that @, corresponds to the set of weights of a minuscule representation of M,. Note
that for any root ¢, (a, &) = &(Sa) — £(Sp)/2. Thus, ¢ € @, if and only if £(Sp) = 4. In

other words, @, is the set of roots of the Lg -module gjﬁ , described in [MS12, Section 5]
where it is called the second internal Chevalley module, therefore we have to show that
the second internal Chevalley modules that arise are minuscule.

The second Chevalley module for the node f is given by all roots of g with
coefficient 2 along f. This can never happen for g of type A, so the second Chevalley
module is trivial. For types D and E, and « an extreme node of the Dynkin diagram,
not necessarily nice, the second Chevalley module for the adjacent Ly is irreducible
[MSI12]. This irreducible representation can be found uniformly by finding the lowest
root 6 of g with coefficient 2 along 8. This root 6 is equal to the highest root of
the smallest D-type diagram that can be embedded in the diagram of g such that
B is the second node (in Bourbaki enumeration) of that D-type diagram. With this
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Table 3: Diagrammuatic list of all Levi subgroups M, and second internal Chevalley
modules 7 as a fundamental representation of M, determined by a set I of filled nodes.
The extreme node « and its neighboring node 3 appear with a dotted pattern, while
M, is obtained from the remaining, solid part of the diagram

characterization, 0 is zero on torus elements y" for all simple roots different from
and the set of nodes I directly attaching to the embedded D-type diagram. The root 6
is -1 on the generators a ( i € I), thus making the restriction of 6 a lowest weight of
Mp. In particular, 6 is trivial on a” and by inspection one finds the following list of
modules 7 of M, when « is nice. The same information is also illustrated in Table 3.
Case D, a = oy, § = a3, I = 0, m=one-dimensional representation of My = D,,_,.
Case D, a = ay_q (or a = ay,), B = a,_p, [ = {n — 4}, m=exterior square of the stan-
dard representation of M, = A,_;.

Case Eg, a = a, = a4, I = {1, 6}, n=tensor product of the vector representation with
the contragredient vector representation of M, = A; x A;.

Case Eg, a = a1 (a6), f = a3 (a5), I = {6} ({1}), m=standard representation of M, =
A4.

Case E7, a = oy, f = a3, [ = {6}, m=exterior square of M, ¥ As.

Case E7, a = a7, B = ag, I = {1}, m=standard representation of M, = Ds.

Case Eg: a = ag, f§ = a7, I = {1}, m= 27-dimensional representation of M, 2 Es.

All the modules listed are minuscule by [Bou75, Section VIII.3]. On the weights @,
of such modules, the action of the Weyl group of M, is transitive. [ ]

4.3.3 Proof of Proposition 4.0.1

Let « be a nice root, i.e., an abelian root for any g, or a Heisenberg root in types
Es, E7, Eg. Let X denote the set of next-to-minimal elements in (g* )f‘;

Lemma 4.3.3  Assume g is of type A,, and o = o in the Bourbaki enumeration with
k ¢ {1,n}. Then, the stabilizer of a in the Weyl group of L, acts transitively on ©.

Proof Inthe e notation, we have a = ¢ — £¢,1,and @, consists of all the roots &; — ¢;
with i < k < k +1 < j. The stabilizer of « in the Weyl group of L, permutes all i < k
and all j > k +1 independently. |
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Proof of Proposition 4.0.1 (i) If « is abelian and (o, dmax) > 0, then g is of type A,
and « is either &, or @, in the Bourbaki enumeration. In both cases, (6*)%\{0} is
given by trace pairing with rank one matrices and thus has only minimal orbit and
X =0.

(ii) We have § € ®,, and Lemma 3.3.1 implies that X is nonempty. Further, by
Lemma 3.3.6, any ¢ € X can be conjugated by L, n I" into ¢*, + g%, for some w € ®.
By Lemmas 4.3.2 and 4.3.3, we can assume w = 0. [ ]

4.3.4 Proof of Proposition 4.1.2

By the assumption of the proposition, « is a nice Heisenberg root. In other words, «
is a Heisenberg root, and g is of type E,, for n € {6,7,8}. Recall that

(4.16) V¥, ={roote| (e, a)<0,e(Sy) =2}.

and that X denotes the set of next-to-minimal elements in g%, + @cy, 67,. Let dmax
denote the maximal root of g. Since « is a Heisenberg root, (a, dmax) = 1 and thus
Y = @max — & iS a root.

Lemma4.3.4 (i) Vo= O, U {y}.

(ii) For any ¢ € ¥y, € — a is not a root.

Proof (i) For any e € ¥,\®,, a+¢ is a root and (a +¢)(S,) = 4. Since « is a
Heisenberg root, this implies & + &€ = ayax. (ii) (¢, —a) > 0 by definition of ¥,. [

As in Section 4.3.2, let 3 be the unique simple root not orthogonal to a. Note that
(B,y) = —(B,a) =1and thus § := y — B is a root.

Lemma 4.3.5  Let A be a root with A(Sy) = 0. Then

(i) (A, a)- (A, B)<0.
(ii) If(\,a) #0and 6 + A € ¥, then A = B.

Proof (i) Suppose the contrary. Then, A ¢ {za, +8}. Also, replacing A by -1 if
needed, we may assume that (1, ) = (A, §) = -1. Thus, A + fisarootand (a, A + 8) =
—2. Thus, A + 8 = —a. This contradicts (1 + 8)(S,) = 0. (ii) Since 6 + A € ¥, (a, 8 +
1) £0.But (&, 8) =0 and (a, 1) # 0, thus (@, 8 + 1) < 0 and thus 6 + A € ¥, \D,. By
Lemma 4.3.4(i), this implies § + A = y and thus A = 3. [

Recall that X denotes the set of next-to-minimal elements in g*, + @y, a7,. As
before, for any root €, let € denote the coroot given by the scalar product with e. Note
that M, N T preserves X, since ¥,, is the set of roots on which S, — a" is at least 2 and
S« is 2, and M, is the joint centralizer of «¥ and S, . For the rest of this section, let
(4.17) Z:=pY+27'S,.

Note that a(Z) = §(Z) = 0.
Lemma 4.3.6 (i) Lete+ 8 €¥Y,. Thene(Z) € {1,2}.

(ii) The maximal eigenvalue of Z on g is 2.

Proof (i) Suppose the contrary. Since e(S,) = 2 and ¢ # +f3, this implies (8, €) = -1,
and thus ¢ + f8 is a root. Then (a, ¢ + ) < 0, and by Lemma 4.3.4(i), ¢ + f§ = y. Thus
€=y - =9, contradicting the assumption.
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(ii) We have to show that for any root g, y(Z) < 2. If g = amay, then p(27'S,) =
2 and p(BY)=0.If y=p, then u(27'S,) =0 and u(B") =2. For any other g,
max(u(27'S,), u(BY)) <1. n

We are now ready to prove Proposition 4.1.2. Let x € X and decompose it to a sum of
root covectors X = Xq + Y.y, Xe With x, € g*,. Let F := {e € ¥, |x, # 0}. By Lemma
3.3.1, F intersects @, and thus, by Lemma 3.1.2, we can assume § € F. Decompose x =
X + X1 + X, with x; € (q*)IZ We have x( = x4 + x5. Applying Lemma 2.2.8 to § := S,
and Z, we obtain that there exists a nilpotent X € (1, )%, with

(4.18) ad™ (X)(x¢) = x1 + x3.

Decompose X to a sum of root vectors X = 3.y X3, X) # 0 € g_, where ¥ is some
set of roots. Choose some X ¢ (I,)%, satisfying (4.18) such that the cardinality of ¥ is
minimal possible.

Lemma 4.3.7 X € m:= Lie(M,).

Proof Since X € (I,)%,, we have (,1) > 0 for any A € V. Suppose by way of con-
tradiction X ¢ m. Then («a, 1) # 0 for some A € ¥. Fix such A. Then Lemma 4.3.5(i)
implies (&, 1) < 0 and thus {(«, 1) = —1 and thus A + « is a root and [ X, x,] # 0. By
Lemma 4.3.4(ii), a + A ¢ ¥4, and thus this term has to be canceled by [X,, x5] for
some y € ¥. Thus, 4 = « + A — § is a root and thus (& + A, §) = 1. But this contradicts

(a+1,8)=(A,8) =M amax—a—B)=0+1-(1,B) <0. m

Thus, X € m%,. But m%, = mZ. Thus ad*(X)(xo) € (¢*)# and thus x, =0 and
ad”(X)xg = x1. Let

(4.19) y = Exp(~=X)x — xo = —ad* (X) (x1) + 1/2(ad* (X))*(xo).

The right-hand side of (4.19) has only these two terms because X ¢ glz , X € ng and
g = g%,. Since ad” (X)) raises the Z-eigenvalues by 1, we get that y € (g*)%. Note that all
the roots of y still lie in ¥, \{d}, since X € m. Thus, xo + y € X. By the same argument
as above, there exists Y € mZ such that ad*(Y)(x,) = y. However, ad*(Y)(xo) €
(¢*)Z and thus y = 0. Thus, Exp(-X)x = x9 = X, + X5, i.e., we can conjugate x using
Exp(-X) € My nT into g*, + g*. This proves Proposition 4.1.2. O

Remark 4.3.8 The assumption that G, is not of type D,, is necessary, since in type
D, the Heisenberg root is a, and the set ®,, c ¥,, intersects both complex next-
to-minimal orbits. Indeed, let A := a; + &, + a3 and p = oy +2 27;32 o+ 0pog + Oy
Then g, +g*, belongs to the orbit given by the partition 2*1"™*, and g*,, + 9%,
belongs to the orbit given by the partition 31" 2. To see this note that in the ¢ notation,
wehavea = ¢y — €3, A = &1 —¢eg, and g = &5 + ¢3.

5 Detailed examples

In this section, we will illustrate how to use the framework introduced above to
compute certain Fourier coeflicients in detail, many of which are of particular interest
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)
1 2 3 4

Figure 3: Root labels used for Ds.

in string theory. In particular, we will in Section 5.1 show examples for D5 with detailed
steps and deformations that reproduce the results of Theorems A, B, and C, while in the
following sections, we will illustrate how to apply these theorems in different examples.

As in previous sections, we will here often identify ¢ € g¢* with its Killing form dual
fo € g. Since we have also seen that it is convenient to specify a Cartan element S € b
by how the simple roots «; act on S, we will make use of the fundamental coweights
w}/ € b satisfying oc,'(w}/) = 0ij.

5.1 Examples for Ds

In the following examples, we will consider G = Spin; ;(A) with T" = Spin; ;(K). We
use the conventional Bourbaki labeling of the roots shown in Figure 3. The complex
nilpotent orbits for D5 are labeled by certain integer partitions of 10 with a partial
ordering illustrated in the Hasse diagram of Figure 4 where Oy is the trivial orbit
and Oj2;s the minimal orbit. Note that this ordering is based on the closure on
complex orbits and not on the partial ordering that we introduced in [GGK*]. There
is no unique next-to-minimal orbit, and both 0,42 and O3z can occur as Whittaker
supports of automorphic forms arising in string theory. These two complex orbits
are usually denoted (2A4;)" and (24;)” in Bala-Carter notation [CM93] with 24,
indicating two orthogonal simple roots and the primes distinguish the two possible
pairs (up to Weyl conjugation, see Lemma 3.0.4).

We will focus on examples of importance in string theory. In particular, we consider
expansions in the string perturbation limit associated to the maximal parabolic
subgroup P,, and the decompactification limit associated to P,, discussed in section
1.9. The Fourier coefficients computed in (5.3) and (5.8) below have previously been
computed for particular Eisenstein series in [GMV15] equations (4.84) and (4.88),
respectively, although with very different methods using theta lifts. While the Fourier
coeflicient (5.3) for a minimal automorphic form is readily checked to be of the same
form as [GMV15, (4.84)], the comparison between Fourier coefficient (5.8) for a next-
to-minimal automorphic form and [GMV15, (4.88)] is a bit more intricate and will be
discussed further in Remark 5.1.1 below.

5.1.1 Minimal representation

We will start with considering a minimal automorphic function #mi, on G =
Spins 5(A). Such a minimal automorphic form can for instance be obtained as a
residue of a maximal parabolic Eisenstein series [GRS97, GM V15, FGKP18]. We will
compute the Fourier coefficients of #min with respect to the unipotent radical of
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Figure 4: Hasse diagram of nilpotent orbits for D5 with respect to the closure ordering on
complex orbits. There are two nonspecial orbits given by 32°1* and 52%1.

the maximal parabolic subgroup P,, associated to the root a, which is the string
perturbation limit discussed in Section 1.9, and the corresponding Levi subgroup Ly,
has semisimple part of type Ds.

We may describe such Fourier coefficients by Whittaker pairs (Sq,,¢) where

Sey =2w) and ¢ € g*)f“zl. Indeed, the associated Fourier coefficient ¥, ,, is then the
expected period integral over N, ,, = Uy,, the unipotent radical of Py,, where we
recall that N, ,, is given by (2.3).

1) Foolminl (@)= [ timin (ug) ()™ du.
(U ml_')\U,,,1

As in previous sections, we will use the shorthand notation [U] = (U nT")\U for the
compact quotient of a unipotent subgroup U.

Since #fmin is minimal, Theorem A(iii) gives that Tsal,q,[r]mm] is nonvanishing
only if ¢ € Opin = Ox25s or ¢ = 0. We will now consider the former. The latter can
be computed using Theorem B with G of type D4 or the results from [MW95] for
Eisenstein series.
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By Corollary 3.1.3(i), ¢ € Omin can be conjugated to ¢’ = Ad*(yo)¢ € g%, by an
element yy € Ly, N I". This conjugation leaves the integration domain invariant, or,
equivalently, we may use Lemma 2.2.1 to obtain

(5.2) 7‘-Sa‘l,rp[ﬂmin](g) = 7__Sa1,go’[’7min](y0g)-

The unipotent radical U,, is a subgroup of the unipotent radical N of our fixed
Borel subgroup, and we may make further Fourier expansions along the complement
of Uy, in N. Of these Fourier coefficients, only the constant term survives since such
nontrivial characters, combined with ¢, are in a larger orbit than Op;, and therefore
do not contribute according to Corollary 2.2.5. By repeating these arguments, or
equivalently use Lemma 3.1.1 based on a special case of Theorem 2.2.6 (where V is
trivial), we obtain that

(5.3) ?-Sql,fp[’?min](g) = Wo[fmin](yog) = f ’7min(”)’0g)‘Pl(”)_1 dn,
(NN

confirming Theorem A(ii) for this case.

5.1.2 Next-to-minimal representations

Let #atm be a next-to-minimal automorphic form on G = Spin; ;(A). Since there are
two next-to-minimal orbits for Ds, there are two cases to consider. We begin with
automorphic forms associated with the next-to-minimal orbit WS(#pm) = {O317}
that has dimension 16, also known as (24;)’ in Bala-Carter notation. Let also P,, =
Lq, Uy, be the maximal parabolic subgroup of G with respect to the simple root «; such
that the Levi subgroup L, has semisimple part of type D4. Automorphic forms with
the above Whittaker support can, for example, be obtained as generic elements of the
degenerate principal series of maximal parabolic Eisenstein series associated with Py, .

We will now compute the Fourier coeflicients of #nm with respect to Uy, using
Theorem C. These are described by Whittaker pairs (S,,, ¢) where Sy, = 2wy and ¢ €

(g7 )f“zl The case ¢ = 0 can be treated using Theorem D with G of type Dy4. According
to Theorem C or Corollary 2.2.5, we are thus left with ¢ being minimal or next-to-
minimal where the latter in this case only gives nonvanishing Fourier coefficients for
¢ € O317 and not Oysp2.

A minimal element ¢ = @min € Omin = O216 can be conjugated to some standard
form ¥ = Ad™ (Ymin ) Pmin € 8%,, wWhere ymin € Lo, N T using Corollary 3.1.3(i). From
Lemma 2.2.1, we then have that

(54) FSergpmin [ 1Intm ] (€) = Fsy[Mntm ] (Yming) -
Let I+ = (B, B2, B3) = (s, a4, a3) and L; be the Levi subgroup of G obtained
from a subsequence of simple roots (B, ..., ;) of I*®), Each semisimple part of L;

has simple components of type A for which all simple roots are abelian according to
Table 1, and thus I**) is an abelian enumeration. Using Theorem C(ii), we obtain

3
(5.5) 7:5“1 ¢m.n[’7ntm](g) (Ww[”ntm (meg Z ’7ntm ()’mmg)
i=1
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where

(5.6) C:‘V[”/ntm]()’ming) = A];k[”/ntm]()’ming) = Z Z (Wl//+<p’[”/ntm]()’yming)-
yel'iy 9'eaZy,

As explained in Section 1.4, I';_; is defined as follows. Let Q;_; denote the parabolic
subgroup of L;_; given by the restriction of 8} to L;_;. Then Q;_; is the stabilizer in
L;_; of the root space giﬁ,- of L;. Then T';_; = (L;-; nT)/(Q;—1 nT) with T’y = {1}.
Concretely, we may take the representatives

(5.7)
Fo=T1={1} T,={1} UwsExp(8_n,) UwsExp(a_o) Uwaws EXp(8_o, © 0_4;)»

where w; is a representative in I" of the simple reflection corresponding to the simple
root ;. The last equality in (5.7) is the Bruhat decomposition of I'; and is isomorphic
to P'(K) x P'(K).

Let us now consider next-to-minimal characters ¢ = @nem € (g*)f‘;‘ instead. By
Proposition 4.0.1, ¢nim can be conjugated using L, NI into g%, +g%, . In fact,
@ntm € O3y since g, +g%,  can be Weyl reflected to g*,, + ¢*,,, which are known
to be in O3)7. Indeed, by Corollary 3.0.2, there is a Weyl word w that moves the roots
oy and dmay to two orthogonal simple roots, and from the proof of the corollary, we
have that these roots have to be a4 and a5.

Lemma 2.2.1 together with Theorem C(iii) for any of these choices give

F Suys@nim [Mnem](g) = 7:8,,(1 »Ad* (Yntm) Pntm [#ntm ] (Yntmg)
(58) = f (WAd*(Wymm)(Pmm[’/Intm](vantmg) dV
v

with V = Exp(v)(A) where 0 =0_,, ® 8 4, 4, ® gy ap—as-

Remark 5.1.1 'We may now revisit the comparison between (5.8) and the Fourier
coefticient [GM V15, (4.88)] for a particular Eisenstein series. The latter is expressed in
of double divisor sums and a single Bessel function. Specifying to the same Eisenstein
series in (5.8), the Whittaker coefficient on the right-hand side resolves to a product
of two (single) divisor sums and two Bessel functions (see, for example, [FGKP18]).
We expect that the noncompact adelic integral in (5.8) will allow us to relate the two
expressions, something that will require further investigation.

Lastly, we will consider the other next-to-minimal orbit Oy of dimension 20
and Bala-Carter label (2A;)". That is, consider #ptm such that WS(#ntm ) = {Oas12}.
Such an automorphic form can, for example, be obtained as generic elements of the
degenerate principal series of maximal parabolic Eisenstein series associated with P,

or P,.. We showed above that all the next-to-minimal elements in (g* )f‘;l are in O3y7,
and thus the corresponding next-to-minimal Fourier coefficients s, o [#ntm] would
vanish.

Therefore, we will here consider another parabolic subgroup P,, = L, U, associ-
ated with the root a5 such that L,, has semisimple part of type A4. Let Sy, = 2w¥
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and ¢nim a next-to-minimal element in (g*)f‘;‘. By Proposition 4.0.1, there exists
Pntm € Las N T such that Ad™ (yntm ) @ntm € 854, + 0%, -

Furthermore, by Corollary 3.0.4, there exists a Weyl word w; j, and simple roots «;
and «; such that Ad™ (W;;yntm ) @ntm € 9%y, + gfaj with the possible choices listed in
(5.10) below, up to interchanging the two roots. For any (and therefore all) such choices
of simple roots a; and «j, it is known that g* . + ¢ o C 0,412 and thus @pem € Ojap2.

For any of the choices, Lemma 2.2.1 together with Theorem C(iii) gives

7:Sa5 »@ntm [#ntm] (g)= 7:80,5 Ad* (Yntm ) @ntm [#ntm] (Yntmg)
(59) = / (WAd* (Wij)’ntm)(ﬂntm [ﬂntm] (VWinntmg) dV,

Vi)

where V;; = Exp(v;;)(A) and v;; = vj; can be read from the following table using the
notation &, mymsmams = Z§:1 m;o;.

v %] OCJ' U,‘j = Dj,‘

x1 @3 g—0600010 ® g—0101000 ® g—(xomo ® g—l’tmm
(5.10) 01 X1 Boagiee0 D B-aoneo @ S-aoun

® &s D 9y D 9-

*x2 Q4 g—‘xumoo ® g—0100101

*x2 as g*0600100 ® EL0‘10000 ® g*0600110 ® g*0611100 ® g*0111110 ® g*0611211

g-“omoo ®01100 ® g—txomo ® g—Ocmzn

As one can see from the above table, the size of V depends strongly on the choice
of representative roots. The smallest choice is obtained in the fourth row.

5.2 An Eg-example

In this section, we will illustrate our general results in the context of automorphic
forms on Eg. We will give the complete Fourier expansion in the minimal and next-to-
minimal representations along a Heisenberg parabolic subgroup, see Proposition 2.2.7
for a general discussion of such expansions. We also discuss relations with related
results in the literature.

5.2.1 The explicit Fourier expansions of 7y, and #ntm

We will now illustrate Theorems B, E, and F in the case of Eg. According to theorems
B and E, the general structure of the expansions of automorphic forms #min and #pim
attached to the minimal and next-to-minimal representation of Eg are given by

(511) Nmin = TSD,,O[nmin] + An + Bn:

(5.12) Hntm = fsu,o[ﬂntm] +A, A+ Z Anj + By + By, + Z an’
j<n j<n
jin jin

where the notation and the definitions of the individual terms are given in sections 1.4
and 1.7.

To illustrate this more explicitly, we now pick the Bourbaki enumeration as in
Theorem F that is quasi-abelian for Eg. Let P = LU be the Heisenberg parabolic of

https://doi.org/10.4153/S0008414X20000711 Published online by Cambridge University Press



164 D. Gourevitch et al.

Es, with semisimple part of the Levi being E; and the unipotent U a 57-dimensional
Heisenberg group with one-dimensional center C = [U, U]. This corresponds to
expanding with respect to the Heisenberg root & = ag. In its full glory, the expansion
now amounts to the following expression in the minimal case

(5.13)
Amin(8) = Fseg,0[Mmin () + 20 2 Wolminl(y8) + 2 D, Woltminl(@ysg),

yel'; peayg weQs peg .

and for the next-to-minimal representation, we have a slightly more complicated
expression

(5.14)

6

Mntm () = Fseo(8)+ D0 2, Wo(y)+>. > > Y > Wer(1'9)

yel'; pea’g J=lyrel’; 9eaZay yel 'y yeaZs,
Ag Agj
1 .
22 Y Y Wi aidve ¥ Y Wolwysg)
88

f)EA"‘s (pEgias V/égfas weg ‘pegius

Ags Bs

£ Y NN [ Waroeen(asgerg)dy

weQg jeMag pegX, wegf58

Bss

TY T T Y Wealerss),

j=1 weQg (pegfas yeF;,l u/egfaj

By,

where all coefficients are evaluated for the automorphic form # = #u¢m. The elements
gs and yg are defined in Section 1.7 and Section 1.4, respectively.

As discussed in Section 1.1, the expansion can be separated into an abelian contri-
bution and a nonabelian contribution. The form of the expansion given above reflects
this structure, as we now explain in more detail. We focus on the next-to-minimal case
as this is the more complicated case.

Let yy be a unitary character on U(A), trivial on U(K). It is supported only on the
abelianization U*® = C\U. The abelian contribution to the Fourier expansion is then
given by the constant term with respect to the center of the Heisenberg group

5.15 ntm dz,
(5.15) fc L (zg)dz

which can be expanded into a Fourier sum of the form 3, where we sum over
all characters yy. The first term in the expansion s, ,o[#ntm](g) is the constant
term of #nm With respect to U, i.e., corresponding to the contribution with trivial
character yy. The abelian part, corresponding to terms labeled A, of the nontrivial
Fourier coefficients is made up of the second, third, and fourth terms on the right-
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hand side of equation (5.14). The first of these is attached to the minimal orbit Opiy,
while the last two are attached to O,m. These coefficients are not sufficient to recreate
the entire automorphic form #,¢m; we also need to consider the contributions from
nontrivial characters on the center C. Let yc be a nontrivial character on C(A),
trivial on C(K). The nonabelian contribution to the Fourier expansion is then given
schematically by

-1
(5.16) % fc N Mntm (28)¥c(2) dz.

This makes up the remaining three terms in equation (5.14), corresponding to terms
labeled B. We note that the nonabelian terms contain the transformation ys mapping
®max tO ag, signaling the fact they come originally from a nontrivial character on the
center of the Heisenberg group. The first one represents the contribution from Oyin,
while the last two (bottom line) capture the contribution from Op¢m-

5.2.2 Comparison with related results in the literature

Various works have determined similar Fourier coefficients of small representations
in special cases, and we now briefly compare our results to them, with a particular
emphasis on the Eg expansions.

We begin with the example of a minimal automorphic form # on Eg with the
expansion determined in (5.13), that was also studied by Ginzburg-Rallis-Soudry
[GRSI11] and by Kazhdan-Polishchuk [KP04].

In [GRSI11], Ginzburg-Rallis-Soudry showed that the constant term of #mi, with
respect to the center C of the Heisenberg unipotent U of Eg was given by a single
Levi (i.e., E7) orbit of a Fourier coefficient ¥, on U, where y,, is a character on U
supported only on the single simple root ag. This corresponds precisely to the second
term in (5.13). Our results generalize this by also determining %y, explicitly in terms
of Whittaker coefficients W, [ #min].

In [KP04], the authors give an explicit form of the full nonabelian Fourier
expansion of # with respect to U, and our result (5.13) is perfectly consistent with
theirs. Kazhdan and Polishchuk have, however, a different approach, where they first
determine the local contributions (spherical vectors) to the Fourier coefficients and
then assemble them together into a global automorphic functional. To connect the
two results, one must therefore evaluate the Whittaker coefficients in (5.13) and extract
their contributions at each local place. For the abelian terms, this has in fact already
been done in [GKP16] and by combining those results with ours, one achieves perfect
agreement with [KP04]. It remains to evaluate explicitly the Whittaker coefficient in
the last term of equation (5.13), corresponding to Bg, and extract its Euler product.
It would be of particular interest to see if one can reproduce the cubic phase in the
spherical vectors of [KP04] in this way.

Next, we turn to the Fourier expansion of an Eg automorphic form in the next-to-
minimal representation given in (5.14) that has been studied previously by Bossard—
Pioline [BP17]. According to the discussion in Section 1.9, the decomposition in (5.14)
corresponds to the decompactification limit, and an expression for the abelian part of
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the Fourier expansion for the next-to-minimal spherical Eisenstein series on Eg was
given in [BP17, equation (3.15)] that we reproduce here for convenience

(517) 5 =Fs,oln] +16nE(4)R" " OS(F)K4(2”R|Z(F)|)ezmma)

FEL“ |Z(F)|4
I'xI'=0
Ki(2nR|Z(T" ;
F6TEGIR Y oa(1) (ged 1l SEIREDD e
I 1Z()]
Ly
I'xI'=0
+167R™> Z an“@(%)
ez, all"

I'sxI=o0, 1,(IM)=0

Bs/z 32(R2|Z(T)]?, R?\/A(T) p2mi(Toa)
A(F)3/4

Here, explicit coordinates on Eg/(Spin, /Z,) adapted to the E; parabolic are used.
Specifically, R is a coordinate for the GL; factor in the Levi and a denotes (axionic)
coordinates on the 56-dimensional abelian part of the unipotent. £, is a lattice in this
56-dimensional representation of E; and the coordinates on the E; factor of the Levi
enter implicitly through the functions Z(I") and A(T"). We do not require their precise
form for the present comparison. K, denotes the modified Bessel function and #°¢_a
spherical vector in the minimal representation of Eg.

We now establish that (5.17) and (5.14) are compatible. The Fourier expansion in
(5.17) is written in terms of sums over charges I' in the integral lattice £, in the
56-dimensional unipotent and thus resembles structurally (5.14) above as the space

(g* )S"‘ represents the space of characters on this unipotent. The Fourier mode for a

“charge” T is given by e?™( (@) and is the character on (g)3¢. Besides the constant

term Fg,0[7], there is a sum over characters in the minimal and next-to-minimal
orbits within (g*); the last term in our (5.14) is a nonabelian term that was not
determined in [BP17].

Minimal characters correspond to charges I' such that they satisfy the (rank-one)
condition I' x I' = 0 in the notation of [BP17] and looking at (5.17), we see that there are
two contributions from such charges. These correspond exactly to the two terms Ag
and Ag; in the first line of our (5.14): The first term Ag represents the purely minimal
charges, while the second term Ag; in our equation is the second line of (5.17) where a
minimal charge is combined with a minimal automorphic form on E¢. Expanding this
minimal automorphic form on Es leads to Whittaker coefficients of the form W,
as they are given in the third term of the of the first line in (5.14), i.e., corresponding
to Ag;j. The sums over j, I'j_;, and g g, in our expression correspond to the E; orbits
of such charges I'. The term Agg in our formula (5.14) contains a noncompact integral
over Whittaker coefficient ‘W, and corresponds to the last line in (5.17) where a
similar integrated Whittaker coefficient Bs), 3/, appears. The nonabelian terms with
B-labels in the last line of (5.14) have not been determined in [BP17] and are given by
the ellipses in (5.17).
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