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ABSTRACT A wide range of atrial arrythmias are caused by molecular defects in proteins that regulate calcium (Ca) cycling. In
many cases, these defects promote the propagation of subcellular Ca waves in the cell, which can perturb the voltage time
course and induce dangerous perturbations of the action potential (AP). However, subcellular Ca waves occur randomly in cells
and, therefore, electrical coupling between cells substantially decreases their effect on the AP. In this study, we present
evidence that Ca waves in atrial tissue can synchronize in-phase owing to an order-disorder phase transition. In particular,
we show that, below a critical pacing rate, Ca waves are desynchronized and therefore do not induce substantial AP fluctuations
in tissue. However, above this critical pacing rate, Ca waves gradually synchronize over millions of cells, which leads to a
dramatic amplification of AP fluctuations. We exploit an underlying Ising symmetry of paced cardiac tissue to show that this
transition exhibits universal properties common to a wide range of physical systems in nature. Finally, we show that in the heart,
phase synchronization induces spatially out-of-phase AP duration alternans which drives wave break and reentry. These
results suggest that cardiac tissue exhibits a phase transition that is required for subcellular Ca cycling defects to induce a
life-threatening arrhythmia.

SIGNIFICANCE In this study, we identify a novel mechanism that explains how molecular scale defects within cells can
induce an arrhythmia in the heart. The main finding is that heart cells can synchronize via an order-disorder phase
transition driven by the coupling between chemical and electrical activity. By exploiting the symmetries inherent in a
periodically driven heart tissue, we show that this transition can be mapped to a well-studied phase transition observed in
ferromagnetic systems. Finally, we demonstrate that this phase transition provides a mechanism for molecular scale
defects to induce dangerous electrical excitations in the heart.

INTRODUCTION tens of thousands of individual proteins within each cell.
Each protein fluctuates between conformational states on
the submillisecond time scale, and it is the behavior of large
populations of interacting proteins that dictates the cellular
response. Furthermore, cells are electrically coupled in car-
diac tissue, and it is the aggregate behavior of hundreds of
thousands of coupled cells that determines the tissue
response. Thus, it is crucial to understand cause and effect
relationships across a vast range of space and time scales
to uncover the mechanisms underlying life-threatening car-
diac arrhythmias.

Atrial fibrillation is the most common cardiac arrhythmia,
and it is associated with a high degree of mortality (1). How-
ever, despite decades of work, the underlying mechanisms
are still not fully understood (2). This is because atrial fibril-
lation involves a breakdown of tissue-scale electrical activ-
ity, and it is difficult to identify the molecular scale
processes that promote this condition. This difficulty arises
because a cardiac cell is regulated by the coordination of
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(3). There is now an extensive body of work linking Ca
cycling abnormalities to atrial fibrillation (1,4,5). At the
center of these studies is the ryanodine receptor 2 (RyR2),
which controls the flow of Ca from the main intracellular
store called the sarcoplasmic reticulum (SR) (6). RyR2s
are Ca sensitive and transition from a closed to open state
at a nonlinear rate that increases with the local Ca concen-
tration. Thus, a small Ca concentration change in the vicin-
ity of an RyR2 can be amplified by stimulating more Ca
release. In a cardiac cell, RyR2s form clusters such that
Ca release from one receptor typically induces all other re-
ceptors in the cluster to fire. In turn, RyR2 clusters are
spatially distributed within the three-dimensional (3D) vol-
ume of the cell, and under certain conditions, a Ca release at
one cluster can ignite neighboring clusters to form an ex-
panding front of Ca release that can propagate across the
cell. This process is referred to as a Ca wave, and it is
well established that these waves play a crucial role in car-
diac arrhythmias (7-9). It is generally believed that the Ca
released during a wave can activate depolarizing currents,
such as the sodium-Ca exchanger (NCX), and thus perturb
the action potential (AP). It is these perturbations that are
believed to cause ill-timed electrical excitations that can
propagate and induce atrial fibrillation.

Ca waves have been studied extensively within single
cells, and it is known that their timing and magnitude is sto-
chastic and highly variable from cell to cell (7,10,11). This
is because Ca wave nucleation depends on both the fluctua-
tions of individual RyR2s and on the local arrangement of
RyR2 clusters within the cell. In cardiac tissue, cells are
electrically coupled via gap junctions so that electrical per-
turbations at the cellular scale are averaged over a large pop-
ulation of cells. Thus, at a given beat, cells that exhibit Ca
waves are electrically coupled to cells that are quiescent.
This coupling will substantially decrease the depolarizing
effect of those cells in tissue that exhibit Ca waves since
quiescent cells will act as a current sink. Therefore, it is un-
clear how these stochastic Ca waves can induce electrical
excitations that can substantially perturb the voltage time
course. This is a fundamental problem that must be ad-
dressed in all attempts to explain arrhythmias that are
caused by a subcellular defect in the Ca cycling system (12).

In this article, we show that, in paced atrial tissue, Ca
waves can be synchronized by the bidirectional coupling be-
tween membrane voltage and subcellular Ca. This transition
occurs at a critical pacing rate, above which Ca waves syn-
chronize and form coherent structures over millions of cells
in cardiac tissue. We show further that this transition is
robust, and it depends only on a few physiological relation-
ships that are experimentally known. Also, we demonstrate
that in paced cardiac tissue, the synchronization of Ca waves
leads to large AP perturbations that induce wave break and
the formation of reentrant activity. Thus, our results demon-
strate that Ca waves become arrhythmogenic only above the
critical point of a phase transition in atrial tissue.
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METHODS
Spatially distributed model of the atrial myocyte

To model Ca dynamics, we apply a spatially distributed cell model originally
attributed to Restrepo and Karma (13), which we have previously extended to
describe atrial myocytes (14,15). In this approach, the cell interior is divided
into compartments that contain the key Ca cycling ion channels (Fig. 1 A and
B). The basic unit of the model is referred to as a Ca release unit (CRU),
which is composed of the main compartments that surround a RyR2 cluster
in the cell along with an array of membrane bound ion channels, such as the
L-type Ca channel (LCC) and the NCX. To account for channel stochasticity,
the RyR2 and LCC are described using experimentally based Markovian
models. To describe an atrial myocyte, we note that the cell membrane forms
invaginations into the cell referred to as t-tubules (TTs). In atrial myocytes,
these TTs are sparse and do not penetrate fully into the cell, in sharp contrast
with ventricular myocytes, where the TTs extend deep into the cell interior.
To account for this feature, we allow membrane-bound channels to penetrate
the cell a distance that is taken from an exponential distribution. In this
manner, we allow some degree of invagination that is representative of an
atrial myocyte. Details of our computational model, and the statistical
modeling of the TT system, are given in a recent study (14).

A phenomenological model of Ca cycling

A limitation of the detailed spatial model shown in Fig. 1 A and B is that it is
computationally expensive to model cardiac tissue composed of tens of thou-
sands of cells. Thus, we will apply a phenomenological model of subcellular
Ca that captures the main features of the detailed model. This model was
developed in a previous publication, and it is based on experimental line
scan imaging of Ca release in atrial myocytes (15). In this approach, we
keep track only on the total number of Ca sparks at the cell boundary and
the cell interior. The nucleation and extinction rate of sparks is then described
using phenomenological functions of the Ca concentration in the cytosol and
SR. By tuning the magnitude and rate of these events, we can then reproduce
the qualitative features of Ca wave nucleation and propagation during pacing,
as observed using the detailed spatial model, and experimentally. A summary
of the phenomenological model is presented in the supporting material.

Simulations of two-dimensional cardiac tissue

In this study, we explore the dynamics of electrical propagation in a two-
dimensional (2D) tissue of cells described by our phenomenological model
of atrial tissue. To model electrical propagation, we apply the cable equation

k)% Lion 0’V oV

=Y. D Eq. 1

a G, V(ax2 7)o (Eq- 1)
where  C,, = 1uF/ cm* is  the membrane capacitance, Dy =

2.5 x 10~*cm? /ms is the effective voltage diffusion coefficient, and I, is
the total transmembrane current (17). Ion currents that determine the AP
are modeled using an established model for the atrial myocyte from Grandi
et al. (18). The cable equation is integrated using an operator splitting
approach (19), with a space step Ax = 0.015¢m, and with a variable time
step in the range dt = 0.01 — 0.1ms.

RESULTS

The phenomenology of Ca waves in electrically
paced cardiac cells

In Fig. 1 C, we show a simulated line scan image of a
40 x 20 x 20 array of CRUs representing an atrial cell
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FIGURE 1 (A) An illustration of the ion channels and transporters involved in Ca signaling. RyR2s form clusters on synapse-like protrusions of the SR
network that are near LCC and NCX on the membrane. A small amount of Ca injected into the junctional space by an LCC opening will trigger an auto-
catalytic release from the cluster, which can diffuse and activate neighboring clusters. The NCX transporter extrudes excess Ca in the vicinity of an RyR2
cluster near the membrane. (B) Spatial architecture of the distribution of Ca-V signal transduction in atrial or Purkinje ventricular myocytes. In these cells, the
bulk of the Ca-voltage signaling occurs at junctions at the cell periphery (red squares) while the cell interior contains an array of RyR2 clusters (black
squares) that can sustain wave propagation when the SR load is elevated. (C) A line scan image of a 40 x 20 x 20 computational cell model that is paced
to steady state at 7 = 300ms. The line scan is located at the center of the cell and oriented along the long axis of the cell. Ca release is visualized by plotting
the average Ca concentration, denoted as c;, in the vicinity of RyR2 clusters on the computational grid. Ca waves are visualized as diagonal lines on the line
scan. Bottom trace corresponds to the voltage time course V(z). (D) A line scan image when the cell is paced at T = 200ms. Ca waves, which appear as
U-shaped excitations, occur only on alternate beats. (E) Visualization of 2D image of subcellular Ca for the time duration indicated, showing that the
U-shaped trace on the line scan corresponds to a centripetal Ca wave that propagates from the cell periphery to the cell interior. (F) Plot of the probability
that a Ca wave propagates (Pqy.) vs SR load, for three different values of the strength of /¢,. In this simulation, all LCCs have been removed except within a
20 x 20 sarcomere at one end of the cell. An AP is applied to the cell to initiate wave propagation from one end, and /¢, strength is modulated by changing the
conductance of LCC channels. The default ion channel strength which was tuned to reproduce experimentally measured Ca release in atrial myocytes is
shown in black (16). The red and blue curve correspond to reductions in /¢, conductance to 50% and 25%.
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model, along with the membrane voltage, that is paced for
15 beats at 300ms (Fig. 1 C) and 200ms (Fig. 1 D). At a pac-
ing rate of 300ms, we find that Ca wave propagation is sto-
chastic and occurs intermittently over several beats (Fig. 1
C). However, when the pacing cycle length is decreased,
we find that Ca waves tend to propagate only on alternate

beats (Fig. 1 D) and that this sequence can be sustained
over several beats. A closer examination reveals that the
large Ca release beat is due to a Ca wave that originates at
the cell boundary and propagates to the cell interior in a cen-
tripetal fashion (Fig. 1 E). Note also that the alternating
sequence of a wave followed by quiescence corresponds
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with a long and short AP duration (APD). This is because,
when a Ca wave occurs, it stimulates an inward current
owing to NCX, which slows AP repolarization and increases
the APD on that beat. Subsequently, on the next beat, the SR
is depleted so that the cell interior is refractory, no waves
occur, and the APD is short. Thus, the APD alternates
with the same phase as the subcellular Ca waves propa-
gating into the cell interior.

Alternating Ca release and their association with Ca waves
have been well studied experimentally. Their behavior is
attributed to the fact that the probability of a Ca wave occur-
ring has a nonlinear dependence on the SR load (20-22). In
Fig. 1 F, we compute the probability of wave propagation, de-
noted as P, by stimulating one side of the cell and
computing the probability that a Ca wave forms and propa-
gates 15 sarcomeres along the long axis of the cell. Indeed,
we find a sigmoid dependence of P,,,,, on the SR load, where
the probability of wave propagation increases from 0O to 1
over a range of SR concentrations that is much smaller than
the dynamic range of SR concentration during pacing. This
nonlinear dependence has been experimentally confirmed
in a variety of cell types and conditions and is believed to
drive the nonlinear beat-to-beat behavior (20,23). The initia-
tion of Ca waves also depends on the number of Ca sparks
that are ignited at the cell boundary in response to the AP up-
stroke. This release of Ca is mostly dictated by the whole cell
LCC current (Ic,), since more Ca entry triggers more Ca
sparks at the cell periphery. In fact, it is well known that
the amount of Ca released in the cell increases in proportion
to the Ca entry via I¢,. This is a basic relation in excitation-
contraction coupling, and it is referred to as graded release
(24). Thus, the probability that a Ca wave is ignited depends
on how much /¢, triggers Carelease in the cell. In Fig. | F, we
have plotted P,,4,. as a function of SR load for three different
strengths of the boundary /¢, current. Indeed, we find that
P\yave shifts to the left with increasing /¢, since the necessary
threshold for Ca wave nucleation is decreased. Thus, Ca wave
propagation into the cell interior is sensitive to both the SR
load and the amount of /., inducing Ca release in the cell.

Electrical coupling in tissue suppresses the effect
of Ca waves

In this section, we apply our phenomenological model to
study the spatial distribution of Ca waves in cardiac tissue.
This phenomenological model captures the essential fea-
tures of Ca release owing to triggered Ca sparks and Ca
waves, and can be used to determine how these events are
distributed in cardiac tissue. As a starting point we will first
consider tissue sizes such that spatial variations in voltage
are small, so that all cells are driven by the same voltage
time course. Note that during the APD voltage will diffuse
in cardiac tissue a distance of / ~ v/DyAPD, where APD de-
notes the AP duration. Taking values in the range APD ~
100 — 300ms gives [ ~ 2mm — 6mm. For simplicity, we
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will approximate cells in the tissue to be a square with
side d ~ 70um, which is roughly the average of a typical
cardiac cell diameter ~ 20um and length ~ 120um. Thus,
the length [/ corresponds to roughly 30 — 80 cells. Thus,
for square tissue smaller than 30 x 30 cells, the voltage is
effectively spatially uniform and can be described using a
single voltage that satisfies

av o1 1
Y L+ I+ =51 410 Eq. 2
dr CWZ<N+K+N;C"+NCX’ (Eq. 2)

where C,, is the membrane capacitance, and the superscripts
k,lrun over an N = L x L lattice of cells. Note that only Ca-
sensitive currents such as I, and Iycx differ from cell to
cell, so that the voltage is dictated by the spatial average
of these currents in the tissue. To keep track of the Ca activ-
ity in the tissue, we compute the average Ca concentration in
the cell interior defined as

1
c = _chlv
N kl

(Eq. 3)

where ¢;; denotes the Ca concentration c¢; in the interior of cell
kl. To characterize the response of the tissue to pacing, we
measure the maximum value of ¢ , denoted as Cpq, during
each paced beat. In Fig. 2 A, we plot the C¢q for the last 15
beats, after a tissue of N = 30 x 30 cells is paced to steady
state (100 beats) at a cycle length T. Here, we find that the
Cpear undergoes a period-doubling bifurcation at a cycle length
of T, ~ 375ms. To analyze the underlying dynamics, we plotc¢
and V(¢) for the last 15 beats after pacing at T = 385ms and
T = 370ms. As expected, for T>T, the average Ca in tissue
(¢) and the AP is periodic from beat to beat (Fig. 2 B). In
contrast, for T<T,, both the average Ca and the APD alternate
from beat to beat (Fig. 2 C). To understand how the single cell
activity generates the spatially averaged alternating signal, we
plot the internal Ca concentration (cy;) of three cells in the tis-
sue in Fig. 2 Bi—iii and Ci—iii. At the cellular level, we find that
cells exhibit a large-small-large release pattern that corre-
sponds with a beat-to-beat alternating pattern of a large Ca
release representing a Ca wave, which we will designate as
"w," followed by a beat with no Ca wave in the cell interior,
which is designated as "n," Thus, each cell exhibits a transient
pattern of alternating sequences of the form ...nwnw.... How-
ever, it is unclear why the Ca transient, averaged over all cells
in tissue, alternates below, and not above, the critical pacing
rate T..

Ca waves in atrial tissue synchronize via a phase
transition

To analyze the nature of the period doubling bifurcation, we
introduce an order parameter that captures the degree of
synchronization of Ca waves in cardiac tissue. To proceed
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FIGURE 2 (A) Plot of steady-state average peak
B (] T =370 Ca Cpear of a 30 x 30 array of cells as a function of
= = ms
T = 385ms the pacing period 7. A steady state is achieved after
c — I 1uM 100 beats and the peak of the Ca transient of the
V(t) — K SL SLSULSLS L last 15 beats is plotted as a function of 7. (B)

The average voltage and Ca concentration of the
array of cells shown for the last 10 beats when
the tissue is paced at T = 385ms. (i-iii) The inte-
rior Ca concentration within cells (5,5), (10, 10)
and (20,20). A large Ca release with ¢;>1uM is
designated as a Ca wave and indicated with a red
"w," while a small internal (¢; <1uM) release is de-
noted by a blue "n." (C) Same simulation as (B),
but where the array of cells is paced at T =
370ms. Steady state APD and average Ca alternate
with the same phase. APD alternates in a pattern of
...LSLS..., where L(S) denotes a long(short) APD.

in this direction, we follow previous studies (25,26) and
define a quantity

+1 Ac{}(n)>.§

si(n) = 0 |Adi(n)] <¢ (Eq. 4)
-1 Adi(n)<—¢
where
Aci(n) = (=1)"((n) — &(n — 1)), (Eq. 5)

and where cj(n) is the peak of the interior Ca transient at
beat n and cell ij. Here, we have introduced a factor (—1)"
to keep track of the phase of the alternating response owing
to Ca waves i.e., a sequence ...nwnw... is assigned a value
s;j = +1, while the opposite phase ...wnwn... is assigned
s;j = — 1. Also, in the absence of Ca waves, the difference
in Ca transient from one beat to the next, given by ] Ac,;,-(n) |,
is small, and we assign a phase of s;; = 0. In this study, we
fix £ = 0.5uM, although, as we will see later, our key find-
ings are independent of the precise value of this choice of
parameter In Fig. 3 A, we show a snapshot of the spatial dis-
tribution of s;; when the tissue is paced to steady state at the
indicated cycle length (T'). Here, we find that, above T, the

tissue is dominated by cells that did not exhibit Ca waves so
that most cells have phase s; = 0 (orange). However, as the
cell was paced faster, more cells acquire the phase s = +1
(black), indicating that Ca waves are more synchronized
from beat to beat. In Fig. 3 B, we plot the beat-to-beat evo-
lution of the average phase at each beat defined as

|
s(n) = 5D sin) (Eq. 6)
ij

Here, we see that s(n) ~ 0 above the transition (T = 380ms,
red line), and s(n) ~ 1 below the transition (T = 370ms,
black line). However, close to the transition (T = 375ms,
blue line) the average phase exhibits large fluctuations
over the 10,000 beats shown. This feature is reminiscent
of the phenomenon of critical slowing down, which is
known to occur near a continuous phase transition (27).
To characterize the dependence of the order parameter on
the pacing rate, we have also computed

(s = D> _Is(®)l; (Eq. 7)

where the sum is over M = 20, 000 paced beats. In Fig. 3 C,
for system sizes of L = 10, 15, and 20 cells, we plot {|s|) vs
T, which shows a gradual increase in the average phase as
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(A) Snapshot of the order parameter in our tissue of 30 x 30 cells. Tissue is paced at the indicated cycle lengths, and the order parameter s;; is

computed at steady state after 100 paced beats. (B) The average order parameter s(n) plotted as a function of beat number 7. (C) The order parameter averaged
more than 20, 000 beats for system sizes L = 10, 15 and 20. Error bars are estimated by computing the standard deviation of 4 sets of 5000 beats. (D) The

susceptibility x as a function of pacing period for the same system sizes.

the cycle length is decreased. In Fig. 3 D, we plot the sus-
ceptibility, defined as x = L?({s*) — (s)z), which increases
with system size L close to T.. This result indicates that the
susceptibility diverges in the thermodynamic limit, which is
a hallmark of a phase transition. These numerical results
provide evidence that Ca waves in atrial tissue can synchro-
nize above a critical pacing rate T, via an order-disorder
phase transition.

Coupled map reduction and critical exponents

In this section, we develop a coupled map model that cap-
tures the beat-to-beat dynamics of Ca waves and voltage.
The motivation for this map is two-fold. First, the phenom-
enological model applied in the previous section is compu-
tationally demanding, and therefore it is not suited to
analyze dynamics near 7., which requires averaging over
tens of thousands of paced beats. Second, the detailed
computational model involves numerous physiological ion
currents and Ca fluxes, which makes it difficult to isolate
the essential features that underlie the synchronization tran-
sition. Thus, we follow our previous work (28) and develop

388 Biophysical Journal 121, 383-395, February 1, 2022

a coupled map model that will yield insight into the mech-
anism driving the synchronization transition. To proceed,
we introduce a new variable x;;(n) to be the total amount
of Ca ions in the SR at cell ij, and at the beginning of beat
n (see Fig. 4 A). In addition, c¢;(n) represents the total Ca
in the cytosol before Ca is released. Here, we will assume
for simplicity that total Ca is conserved from beat to beat
so ¢;j(n) + x;;(n) = 1. Also, the voltage dynamics of the tis-
sue is characterized by the APD and the diastolic interval
(DI), which are denoted at a given beat n as A, and D,,
respectively. The beat-to-beat evolution of the SR load is
given by

xij(n+1) = x;(n) = Ryj(n) + Uy(n), (Eq. 8)
where R;;(n) is the total Ca released during beat n, and
Uijj(n) is the total Ca pumped back into the SR. To describe

Ca waves, we will describe Ca release into the cell using

R(n) = rmy(n) x;(n), (Eq. 9)

where 7 is a constant, and where 7;;(n) is a random variable
generated at each beat that satisfies



A beatn B
ey

(Isl)

0.5

Synchronization of calcium waves in tissue
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describe the beat-to-beat evolution of the APD
(A,), the DI (D,), the SR load x;(n), and the dia-

() cn+1)
440 460
T

cj(n) cj(n+1)

m 20

30 A = 40

480 500

5op  Stolic Ca ¢;j(n). The peak of the internal Ca concen-
tration is denoted as c{;(n) (B) The average order
parameter (|s|) as a function of pacing rate. (C)
The susceptibility x computed for the indicated sys-
tem size L. (D) A plot of the Binder cumulant U.
Intersection point is indicative of a phase transition
at T.. All averages are computed using 10® beats
with a standard error that is smaller than the symbol
size.

479 480 481 482

i

{ 1 with probability P4, (D,,_l,x,;,-(n))
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(Eq. 10)
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where P, denotes the probability that a wave occurs dur-
ing beat n. Here, we have included a dependence on the SR
load x;;(n) and the previous DI D,,_;. The later dependence
is because the DI determines the strength of the L-type Ca
current (Ic,), which triggers Ca release on the next beat.
For simplicity, we will consider a functional form

Pwave = PV(DIHI)PSI* (xij(n))a (Eq 11)

where the function Py, describes the SR load dependence
and Py describes the dependence on the membrane voltage.
Following our previous work, we model the voltage depen-
dence to have the form Py(D) = 1/(14+A exp( — D /7)),
where 7y is determined by the time scale of the recovery of
Icq, and where A is an adjustable constant that depends on
the details of the current kinetics. To model the SR load
dependence, we use a sigmoid curve that is motivated by
our numerical computation of P,,,. from the detailed
subcellular model (Fig. 1 D). Thus, we use
Py (xi) = 1/(1 4+(x* /x,j)‘;) where ¢ is the Hill coefficient
that controls the strength of the nonlinearity and where x*
is the threshold SR load. Now, once Ca is released into
the cell owing to a wave, the SR Ca?"-ATPase pumps Ca
back into the SR during one pacing interval 7. It is well
known that the total uptake increases in proportion to the
peak of the Ca transient and the period T over which Ca

is pumped back into the SR. Thus, we use Uj;(n) =
aT cﬁ}e“k(n), where a is a proportionality constant and
cfjeak(n) = ¢;(n) + R;j(n). The last step of our nonlinear
map determines how the Ca release couples to the APD
on that beat. This is given by A, = Fy(D,_1) + oR(n)
where

= 1

R(n) = 5> Ri(n), (Eq. 12)

i
and where o is a constant that determines the sign of the
coupling between Ca release and the APD, i.e., whether or
not a large Ca release increases (o>0) or decreases
(6 <0) the APD. Note that this coupling is largely dictated
by the NCX current, which provides a depolarizing current
in response to Ca release in the cell. In most physiological
conditions (29), a large Ca release tends to induce an in-
crease in the APD, so we will take ¢>0.
To analyze the spatiotemporal behavior of this coupled

map model, we will introduce an order parameter defined as

+1 Any(n)>0

si(n) = ¢ 0 | An(n)] =0 (Eq. 13)
-1 An;(n)<0
where
An;(n) = (=1)"(ny(n) — ny(n —1)). (Eq. 14)

This choice is more suited for this discrete approach
because it keeps track directly of the phase of release events
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without reference to the Ca transient. In Fig. 4 B, we plot
<|s|) versus T for a system of size L = 40, and where the
average is computed over 10% beats. In Fig. 4 C, we show
the susceptibility x = L2((s?) —(s)*) for a range of system
sizes, which indicates that this quantity diverges near T, in
the thermodynamic limit.

The main advantage of the coupled map is that we can
now average over many more beats and thus identify the
critical exponents of the phase transition. To proceed, we
first assume a finite size scaling ansatz

() = L% F{(T _ TC)L%}, (Eq. 15)

where the critical exponents dictate the system behavior
near criticality in the thermodynamic limit (L — o) (27).
The scaling ansatz predicts that the Binder cumulant U =
-3+ <s4>/(52>2 is independent of system size. In Fig. 4
D, we have computed the Binder cumulant by averaging
over 10 beats for system sizes L = 20 — 80, indicating
that there is indeed a clear intersection point at 7,. At the
critical point, finite size scaling predicts that (|s|) ~ L=/,
x ~ LY" and [0U /0T];, ~ LY where @,7,v are critical
exponents that characterize the universality class of the
phase transition (30,31). Numerical evaluation of these
exponents is straight forward and gives (/v = 0.487 =

0.021, v/v =1.017£0.022, 1/v =0.986+0.016 , which
describes the phase transition in the thermodynamic limit.

Statistical mechanics analogy and universality

The presence of a phase transition suggests that it will be
fruitful to find a mapping to an equivalent statistical me-
chanics system. A natural starting point is to map the order
parameter defined in Eq. (13) to an L x L lattice of spin-1
particles. In this regard, we point out that the two alternating
sequences

LW W L

(Eq. 16)

LW WA, (Eq. 17)

differ by a shift of one beat so that both responses are dynam-
ically equivalent (28). Thus, a paced cardiac cell possesses an
exact Ising symmetry, so that at steady state pacing, the prob-
ability of an L x L spin configuration is the same as that with
all the spins reversed. This symmetry was first pointed out by
Restrepo and Karma (32), and it has been applied previously
to show that Ca alternans within a cardiac cell can occur via
an Ising phase transition (26). In cardiac tissue, this symme-
try suggests that the probability of a spin configuration is
dictated by a Hamiltonian, H[s;;], which possesses an Ising
symmetry, so that H[s;;] = H[ — s;;|. To determine how the
spins interact, it is necessary to refer to the bidirectional
coupling between Ca and voltage that can be determined
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from the coupled map model. The key couplings at the
cellular level are (i) a Ca wave on a given beat will tend to
prolong the APD on that beat since >0, and (ii) the pro-
longed APD will lead to a short DI on that beat, which will
decrease the probability of wave propagation on the next
beat. This sequence of events ensures that the APD changes
can amplify the phase of the subcellular Ca waves, which
induce that change. Now, in tissue, the APD is spatially aver-
aged over many cells so that the phase of APD alternans is
simply proportional to the average phase (s) =
(1/N)>_,;sij- These interactions between Ca and voltage in
tissue can be described using an effective Hamiltonian

H = EZSMS) :;V (Z&y)z,

(Eq. 18)

where € is a constant that captures the effective coupling be-
tween Ca and voltage. Here, we note that the APD, which is
proportional to (s), will seek to align local spins s;; via the
coupling between voltage on Ca. This coupling is governed
by the dependence of I, on the previous DI, so that a longer
DI will favor a higher probability of Ca release on the next
beat. Thus, energetically, we require that € ~ OP,,,./0D, so
that the phase of local Ca is driven by the global signal pro-
portional to (s). Likewise, € is also proportional to the
coupling between Ca on voltage, which is governed by the
extent to which Ca release, on a given beat, prolongs the
APD on that beat. Now, since ¢>0 then an alternating
pattern of Ca will drive an alternating pattern of APD
with the same phase. Thus, energetically we require that
exg to favor spin alignment. Thus, it is the bidirectional
coupling between Ca and voltage that dictates the sign of
€, which in turn determines the nature of the transition. Inter-
estingly, for >0, the Hamiltonian given in Equation 18 cor-
responds to the Curie-Weiss model (33), which has a well-
known ferromagnetic transition at temperature T, = 2¢/3,
in units where the Boltzman constant is taken to be k =
1. Indeed, this model is exactly solvable, and the critical ex-
ponents for this model are in the mean-field universality
class where /v = 1/2, v/v =1, v = 1. These exponents
are consistent with our coupled map computation, which in-
dicates that the phase transition is in the mean-field univer-
sality class.

Synchronization transition leads to the formation
of spatially out-of-phase alternans and
arrhythmogenesis in heart tissue

In cardiac tissue with dimension larger than the length scale
| ~ 2 — 6mm, the voltage distribution will not be spatially
uniform. To explore this regime, we have applied our sto-
chastic model of Ca waves to explore the dynamics of a
large 2D tissue composed of 150 x 150 cells (~ 10mm x



10mm). To measure the spatial distribution of the phase of
the APD we compute

da; = (—1)"(A;(n) — Ay(n— 1)), (Eq. 19)

where A;;(n) is the APD at cell ij at beat n. Simultaneously,
we also measure the spatial organization of Ca waves by
computing the order parameter s; in tissue. In Fig. 5 A,
we show s;; and Agy; in a cardiac tissue where all the cells
are paced simultaneously at T = 360ms until a steady state
is reached. Our simulations indicate that at steady state the

Synchronization of calcium waves in tissue

tissue settles into a pattern of spatially out-of-phase APD al-
ternans, where the APD alternates in opposite phase in
different regions of tissue (see inset). This pattern is driven
by the underlying synchronization of Ca waves where
sij = +1 (black) or s; = —1 (white) (on average) within
the corresponding regions of tissue. The length scale of
the observed pattern is determined by voltage diffusion,
which smooths the APD over a length scale roughly
I ~ Smm. Thus, within this length scale Ca waves are syn-
chronized locally, but can be spatially out-of-phase on
longer length scales.

A
100ms
i 20mV
|
—100ms
V —85mV
Aag; NSRS
C 30ms 80ms 130ms
D
E

FIGURE 5 Spatial distribution of voltage and Ca in large tissue sizes. (A) Snapshot of s;; and Aa;; on a tissue of 150 x 150 cells. All cells are paced simul-
taneously at 7 = 360ms and the snapshots shown are computed using the 99th and 100th beats. Insets show the AP for the last 4 beats at the indicated cells on
the array. (B) A 150 x 50 strip paced at the bottom edge. A snapshot of s;; is computed using the Ca transients at beat 30 and 31. The three images below are
voltage snapshots at 2-ms intervals following the 30th paced beat. The green line denotes the APD nodal line where Aa;; = 0. (C) Snapshots of the voltage
distribution on a 150 x 150 cell tissue that is paced on a five-cell strip at the bottom edge. The snapshots shown are at the indicated times during the 30th
paced beat. The snapshot for s;; is computed using the 31st and 30th beats. (D) Same simulation but Ca waves have been eliminated by increasing the
threshold for Ca wave nucleation by increasing the parameter pj; (see Supporting material for a detailed description) from 0.45 to 0.9. The parameter pj,
denotes the threshold for Ca sparks, which are triggered at the cell boundary, to nucleate a Ca wave that propagates to the cell interior. (E) Same simulation
but where the recovery from inactivation of /¢, has been reduced by a factor of two.
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In our tissue simulations, we have also found that an AP
wave front is unstable to localized wave break when the sys-
tem is paced at a period T that is less than 7. In Fig. 5 B, we
show a tissue of 150 x 50 cells that is driven at T = 350ms
along a five-cell strip at the bottom edge of the tissue. After
30 beats of pacing, we find that a local region in the tissue
becomes out-of-phase with the surrounding tissue. This re-
gion is demarcated by a nodal line (green curve), where
Aa; = 0, which separates the out-of-phase regions. In this
case, we find that the 31st excitation front undergoes con-
duction block within the demarcated region, which occurs
because the APD in that region was large owing to the sum-
mation of synchronized Ca waves on that beat. Thus, once
local synchronization of Ca waves has occurred, then the
AP perturbations owing to these waves are dramatically
amplified within local regions in tissue. Thus, when cardiac
tissue is driven at cycle lengths T<T,, then local synchroni-
zation will destabilize the propagation of AP wavefronts. To
confirm this insight, in Fig. 5C we plot the spatial distribu-
tion of voltage in a large tissue of 150 x 150 cells. Here, we
show snapshots of the voltage distribution at times 30 ms,
80 ms, and 130 ms after the 30th paced beat. Indeed, we
find that the spatially out-of-phase APD distribution pro-
motes wave break and leads to the induction of reentrant ex-
citations in the tissue. To confirm that the resulting wave
break arises from the underlying Ca waves, in Fig. 5 D,
we show snapshots of the same time points, but where the
threshold for Ca waves has been increased. In this case,
Ca waves do not occur within cells and the AP propagation
is indeed spatially uniform. Alternatively, Ca wave synchro-
nization can be eliminated by adjusting model parameters so
that the onset of synchronization is shifted to higher rates. A
convenient way to do this is to decrease the rate of recovery
from inactivation of I¢,, which decreases the coupling be-
tween voltage and Ca. In Fig. 5 E, we show that when the
recovery from inactivation of I, is decreased by 50%,
then AP wave propagation is spatially uniform for many
beats, even though cells in tissue readily exhibit Ca waves
that are not synchronized in tissue. These results demon-
strate that a synchronization transition at 7., which is sensi-
tive to the bidirectional coupling between Ca and voltage,

A Sijk
m +1
] 0
o -1
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dictates the onset of wave break and reentry in cardiac
tissue.

The spatiotemporal properties of spatially out-of-phase
Ca waves should be sensitive to the geometry of cardiac tis-
sue. To explore the effect of tissue curvature, and the effect
of curved boundary conditions, we have also implemented
our phenomenological model of voltage and Ca in an
anatomically accurate 3D model of the atria. The model
that will be used has been developed previously by Harrild
and Henriquez (34), and details of the 3D simulation method
used have been presented elsewhere (35,36). In Fig. 6 A and
B, we show the distribution of s; and Ag;j on the surface of
the 3D rabbit atria. In this simulation, all cells in the atria are
paced simultaneously at T = 380ms, and s;x and Ag;; are
computed using the 15th and 16th beats. When the atria is
paced rapidly we have found that, similar to the 2D case,
wavebreak and reentry occur in this 3D model. Thus, our
simulations suggest that wave break and reentry in 3D is
likely dictated by the formation of spatially out-of-phase
alternans that occur at pacing rates 7<7.. However, it is
difficult to identify the sites of wave break in the 3D atria,
and a clear association between the synchronization transi-
tion and the initiation of reentry will require further
investigation.

DISCUSSION

It is now well established that a variety of cardiac arrhyth-
mias have been linked to defects in the Ca cycling machin-
ery. However, it is still not understood how these Ca waves
summate to induce dangerous electrical activity in a large
population of electrically coupled cells. In particular, since
Ca waves occur randomly and are uncoordinated between
cells, cells without Ca waves will act as a current sink and
decrease the depolarizing effect of those cells which exhibit
Ca waves. Thus, voltage depolarization in electrically
coupled tissue will be substantially diminished, and it is un-
clear how Ca waves can induce a tissue scale arrhythmia. In
this study, we show that indeed for T>T, Ca waves are un-
coordinated and thus cannot induce AP heterogeneities in
tissue. However, for T<T, Ca waves can synchronize

FIGURE 6 Spatiotemporal distribution of Ca
waves in an anatomically accurate 3D model of
the atria. (A) Distribution of s;; and (B) A on
the surface of the rabbit atria. The atria is paced
simultaneously at 7 = 380ms and beat-to-beat dif-
ferences are computed using the 15th and 16th
beats. The global time step was taken to be 25us,
and the spatial discretization size was 0.7mm. A
uniform isotropic diffusion of 7 x 107™* cm? /ms
was assumed for the tissue. Simulations were per-
formed using WebGL 2.0 as detailed in Ref. (35).
All computations, as well as visualization and
post-processing of the results, were carried out
simultaneously and interactively on a Radeon RX
5700 XT graphic card.

+100ms



gradually over millions of cells in tissue and induce large
beat-to-beat AP perturbations in tissue. We have analyzed
the mechanism for this transition in detail to show that it
is robust, and it depends only on several known properties
of cardiac cells. These are:

i. A nonlinear sigmoid dependence on the SR load of the
probability that a Ca waves occurs on a given beat:
The sensitivity of Ca wave propagation on the SR load
is well-known, and it has been experimentally measured
in cardiac cells (23). This functional relationship is
because the nucleation of a Ca wave is highly sensitive
to the Ca content in the SR (21,37).

ii. A dependence of the Ca wave probability on the DI This
coupling arises from the fact that, during an AP, LCCs
open and initiate Ca release in the cell. Thus, the proba-
bility of Ca wave propagation will increase with the
amount of Ca entry owing to I¢,. Now, it is well known
that /¢, inactivates, and its strength on the next beat de-
pends on recovery from inactivation, which is sensitive
to the DI. Thus, the probability that a Ca wave occurs
on a given beat will increase with the DI from the previ-
ous beat.

iii. An increase of the APD in response to Ca released
during a Ca wave: This coupling is attributed to the
NCX, which is an electrogenic pump which produces
a depolarizing membrane current in response to a rise
in the Ca transient in the cell (38-40).

The results of this study demonstrate that these three
properties of cardiac cells are sufficient to provide a mech-
anism for Ca waves to synchronize in cardiac tissue.
Furthermore, we have mapped our system to the Curie-
Weiss model in statistical mechanics, which has been used
to describe ferromagnetic spin systems with long-range
coupling (33). This mapping indicates that the synchroniza-
tion transition observed here exhibits universal properties
that are common to a wide range of physical system in na-
ture, and can be studied using the framework of equilibrium
statistical mechanics. The universal nature of the transition
indicates that the driving mechanism is robust and depends
only on the underlying Ising symmetry and qualitative
features of the coupling between voltage and Ca. In partic-
ular, the Ising Hamiltonian given in Equation 18 suggests
that it is the sign of the Ca-V coupling that is crucial to
the existence of the transition. Thus, even though the syn-
chronization transition is demonstrated using a specific
computational model, our analysis suggests that the mecha-
nism for the transition is largely model independent.

In this study, we have demonstrated that the synchroniza-
tion transition at T, is highly arrhythmogenic since it pro-
vides a mechanism for Ca waves to fire in unison, and
thus, substantially perturb the AP in tissue. This result sug-
gests that it may be possible to develop pharmacological in-
terventions that specifically target the onset of Ca wave
synchronization. Our work suggests that a potential target

Synchronization of calcium waves in tissue

to prevent synchronization is the rate of recovery from inac-
tivation of I¢,. In particular, decreasing the time scale for re-
covery should decrease the dependence on the previous DI
and, therefore, abolish wave synchronization in tissue.
Indeed, we find, in Fig. 5 E, that when the recovery from
inactivation of I, is decreased, then AP wave propagation
is spatially uniform, even though cells in tissue readily
exhibit Ca waves. Thus, our finding suggests that shortening
the recovery from inactivation of Ic, should prevent Ca
wave synchronization, and therefore decrease the likelihood
of arrythmias. This approach to target Ca wave synchroniza-
tion has not been proposed previously and may hold promise
as an antiarrhythmic strategy.

In this study, we have shown that when cardiac tissue is
paced at T>T,, Ca waves are spatially desynchronized and
spatial averaging substantially dampens electrical pertur-
bations. Thus, at these pacing rates, a subcellular defect
that makes cells prone to Ca waves is unlikely to induce
AP fluctuations that can cause an arrhythmia. In contrast,
when subcellular Ca waves are synchronized, they can
have a substantial effect on the voltage distribution in tis-
sue. In particular, AP wavefronts propagating in tissue
can undergo localized conduction block in regions formed
by spatially out-of-phase APD alternans that are induced
by Ca wave synchronization. These regions of out-of-phase
APD alternans are generated by regions of tissue that syn-
chronize to the opposite phase. We point out here that there
is a global Ising symmetry so that a region of tissue, of size
smaller than /, with average phase (s), and APD alternans
amplitude a, is dynamical equivalent to tissue with phase
—(s) and alternans amplitude — a. Thus, since regions
separated by d>I ~ 2 — 6mm are independent, then these
regions have an equal likelihood of being out-of-phase
rather than in-phase. Thus, we expect Ca waves in cardiac
tissue to coarsen into regions of spatially out-of-phase re-
gions separated by a length scale /. This effect has been
previously reported in numerical studies where unstable
Ca cycling induces alternans at the cellular scale (41).
However, it was not understood that this effect is due to
a synchronization transition that occurs only above a crit-
ical pacing rate T,. Interestingly, similar complex patterns
of out-of-phase Ca and voltage in cardiac cells have been
observed experimentally in the rabbit ventricle (42,43).
In particular, in the study of Uzelac et al. (43) Langen-
dorff-perfused rabbit hearts were paced at gradually
decreasing cycle lengths and spatially discordant patterns
of Ca release were detected at cycle lengths in the range
350-140 ms. They found that the complexity of the spatial
pattern increased with pacing rate until conduction
block and reentry was initiated in the 150-130 ms range.
However, further experimental work is needed to confirm
that the spatial patterns observed in this study are due to
the phase transition identified here. Also, it is not estab-
lished whether the onset of reentry is directly related to
the spatial heterogeneity that is caused by these spatially
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discordant patterns. Thus, further work is needed to deter-
mine if the spatial patterns observed in these rabbit hearts
are caused by the phase transition reported here.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
2021.12.040.
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