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AbstractÐ We consider the controllability problem for
the continuity equation, corresponding to neural ordinary
differential equations (ODEs), which describes how a prob-
ability measure is pushedforward by the flow. We show
that the controlled continuity equation has very strong con-
trollability properties. Particularly, a given solution of the
continuity equation corresponding to a bounded Lipschitz
vector field defines a trajectory on the set of probability
measures. For this trajectory, we show that there exist
piecewise constant training weights for a neural ODE such
that the solution of the continuity equation corresponding
to the neural ODE is arbitrarily close to it. As a corollary to
this result, we establish that the continuity equation of the
neural ODE is approximately controllable on the set of com-
pactly supported probability measures that are absolutely
continuous with respect to the Lebesgue measure.

Index TermsÐ Distributed parameter systems, Machine
learning, Neural networks.

I. INTRODUCTION

In recent years, there has been a considerable amount of

work on deep neural networks, due to the flexibility they

provide for training purposes. Continuum limits of such neural

networks has lead to a wide literature on the so-called Neural

ordinary differential equations (ODEs) [4], [13], [25], with

a major upshot being that tools from dynamical systems and

control theory can be used to understand and develop methods

to train and synthesize neural networks. This includes exten-

sions to stochastic settings [23], and higher order dynamical

variants [21].

Control-theoretic tools have recently been utilized to ad-

dress questions related to training neural networks. In [22],

the authors use differential geometric techniques to establish

the controllability properties of the underlying neural ODE

and leverage that to obtain uniform approximation results.

Controllability properties of neural ODEs on the group of

diffeomorphisms has also been investigated in [1]. In addition

to this, optimal control theory has been leveraged to train
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neural networks, and this direction has been an original

motivation for neural ODEs, see [4], and also [3], [15], [18].

An interesting property that is the focal part of this paper

is that data classification and universal approximation capa-

bilities of neural ODEs can be related to problems arising in

optimal transportation theory [2], where one aims to take a

given probability density to another. Such transport problems

also naturally arise for density estimation problems in machine

learning, such as normalizing flows [16]. This insight has been

used to leverage tools from optimal transportation theory [2]

to find numerically efficient methods to train neural ODEs

[12]. The resulting transport problems can be analyzed in

terms of a controlled continuity equation, which describes how

a probability density evolves under the action of flow of a

differential equation. This motivates us to study the approxi-

mation capabilities of neural ODEs for density estimation, by

studying the control properties of the corresponding continuity

equation for which the vector-field is given by that of a

neural ODE. Most closely related to our work, the authors

in [20] establish approximate controllability of the underlying

controlled continuity equation on the space of probability

measures. Particularly, given a initial and final measure, it

is shown that there exist weight parameters of the neural

ODE that can be chosen such that the final condition of the

continuity equation is arbitrarily close to the target probability

measure in the Wasserstein-1 distance.

Statement of Contributions: We study the approximation

capabilities of the continuity equation corresponding to a

neural ODE. We show one can construct a sequence of

control inputs such that the solutions of the continuity equation

corresponding to the neural ODE uniformly converge to the

solution of the continuity equation corresponding to any given

Lipschitz vector field. This controllability property of the

system is challenging to attain due to the low number of

control parameters at hand, attributed to the limited width

of the neural network. In general, it is not possible to select

the control parameters in a way that the approximating vector

fields are strongly converging to the original one. The key

idea behind our result is the observation that one can instead

construct admissible vector fields that are weakly converging

to the original one, and more importantly, that this is sufficient

to achieve uniform convergence of the curves on the set of

probability measures.
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II. PROBLEM FORMULATION AND MOTIVATION

Let σ : R → R be a given activation function. We define

the map Σ : Rd → R
d by

Σ(x) = [σ(x1), ..., σ(xd)]
T .

An example of the class of activation functions that we con-

sider is sigmoidal functions with globally bounded derivatives.

An activation function σ is said to be sigmoidal if its range

lies in [0, 1],

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1.

One such sigmoidal function is

σ(x) =
1

1 + e−x
. (1)

Another important example of an activation function is the

Rectified Linear Unit (ReLU) function defined by

σ(x) =

{

x x > 0,

0 otherwise.
(2)

We consider the neural ODE given by

ẋ(t) = A(t)Σ(W (t)x+ θ(t)), (3)

where A : [0, T ] → R
d×d, W : [0, T ] → R

d and θ : [0, T ] →
R

d are the control inputs or weights for the neural network.

See [4], [13], [20], [22] for a discussion on the relation

between the above ODE and deep residual neural networks.

Suppose that the initial condition x(0) of (3) is chosen at

random from a distribution with a probability density function

ρ0. The uncertainty in the state x(t) is determined by the time-

dependent probability density ρ(t) which evolves according to

the continuity equation,

∂ρ

∂t
+∇ ·

(

(

A(t)Σ(W (t)x+ θ(t))
)

ρ
)

= 0, (4)

ρ(0) = ρ0.

In density estimation problems such as the ones considered

in [4], [12], the goal is to construct weight functions (or control

inputs) A(·),W (·), θ(·) so that the endpoint of the solution

ρ(T ) of (4) is approximately equal to an unknown probability

distribution ρf , using available samples of ρf . From a control-

theoretic point of view, it is natural to ask for which class

of target distributions ρf , solutions of (4) can be controlled

to ρf within final time T . This problem has been recently

considered in [20], for the special case of ReLU activation

functions and d ≥ 2, where it has been shown that ρ(T ) can

be made arbitrarily close to any given compactly supported ρf

in the Wasserstein 1-metric. The purpose of this short paper is

to consider the more general trajectory approximation problem

stated below.

Problem II.1. Given a curve on the set of probability densities

t 7→ ρ̃(t), can we construct control inputs A(·),W (·), θ(·)
such that the solution of (4) is arbitrary close to ρ̃(t) in a

suitable sense, for all t ∈ [0, T ]?

We answer this problem affirmatively in Theorem IV.1 for

the case when the curve t 7→ ρ̃(t) is the pushforward of the

flow of a uniformly Lipschitz bounded vector field. Then we

show that the controllability result in [20] can be derived as a

Corollary to our main result, for general activation functions

that satisfy Assumption III.2. Few motivations for considering

the more general trajectory approximation problem include

interpolation of data lying on the set of probability measures

[5], identifying dynamical systems from population data [26],

and control of large swarms [9].

III. NOTATION AND PRELIMINARIES

In this section, we define some notation that will be used

throughout the paper. We refer the readers to [2] for more de-

tails. Let P2(R
d) denote the set of Borel probability measures

on R
d with finite second moment:

∫

Ω
|x|2dµ(x) < ∞. For

a given Borel map T : Rd → R
d we will denote by T# the

corresponding pushforward map, which maps any measure µ
to a measure T#µ, where T#µ is the measure defined by

(T#µ)(B) = µ(T−1(B)), (5)

for all Borel measurable sets B ⊆ R
d. For µ, ν ∈ P2(R

d), we

denote the set of transport plans from µ to ν by

Γ(µ, ν) := {γ ∈ P(Rd × R
d)|π1

#γ = µ, π2
#γ = ν}, (6)

where πi : Rd × R
d → R

d are the projections on to the ith
coordinates, respectively. We will define the 2−Wasserstein

distance between two probability measures µ, ν as the follow-

ing

W2(µ, ν) = min
γ∈Γ(µ,ν)

(

∫

Rd×Rd

|x− y|2dγ(x, y)

)1/2

. (7)

The set C([0, T ],P2(R
d)) will refer to the set of continuous

curves t 7→ µt in P2(R
d) with respect to the topology

induced by the 2−Wasserstein distance. We will say that a

sequence {µN}N∈Z+ in C([0, T ];P2(R
d)) converges to µ ∈

C([0, T ];P2(R
d)) if limN→∞ supt∈[0,T ] W2(µ

N
t , µt) = 0.

Given a vector-field V : [0, T ] × R
d → R

d, we will consider

solutions µ of the continuity equation,

∂µ

∂t
+∇ ·

(

Vt(x)µ
)

= 0, (8)

µ(0) = µ0.

Naturally, we say that µ ∈ C([0, T ],P2(R
d)) is a weak

solution, or a solution in the sense of distributions [2, Section

8.1] of the continuity equation (8) if

∫ T

0

∫

Rd

(

∂ϕ(t, x)

∂t
+∇ϕ(t, x) · Vt(x)

)

dµt(x)dt

= −

∫

Rd

ϕ(0, x)dµ0(x), (9)

for all compactly supported real-valued functions ϕ ∈
C∞([0, T )× R

d). We make the following assumption.

Assumption III.1. The vector field V : [0, T ] × R
d → R

d is

such that t 7→ Vt(x) is measurable for every x ∈ R
d and it is

uniformly Lipschitz in x. That is, there exists K > 0 such that

|Vt(x)− Vt(y)| ≤ K|x− y|,
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for all x, y ∈ R
d and all t ∈ [0, T ].

In addition to this, we will need some mild assumptions on

the activation function σ : R → R. For this purpose, let us

define the set of functions

F =
⋃

m∈Z+

{

m
∑

i=1

αiσ(w
T
i x+ θi) | αi ∈ R, wi ∈ R

d, θi ∈ R}.

Note that the set F is the set of arbitrarily wide single-hidden

layer neural networks.

Assumption III.2. We make the following assumptions:

1) (Regularity) The activation function σ is globally Lips-

chitz, that is, there exists K > 0 such that

|σ(x)− σ(y)| ≤ K|x− y|, (10)

for all x, y ∈ R.

2) (Density of superpositions) The set of functions F is

dense in C(Rd;R) in the uniform norm topology on com-

pact sets. Particularly, given a function f ∈ C(Rd;R),
for each compact set Ω ⊂ R and δ > 0, there exists a

function g ∈ F such that

sup
x∈Ω

|f(x)− g(x)| < δ.

It is well-known that the Logistic function (1) and the ReLU

function (2) satisfy the density property, see [7], [17]. Given

Assumption III.2, it is easy to see that the subset of vector-

valued functions Fd defined by

Fd =
⋃

m∈Z+

{

m
∑

i=1

AiΣ(Wix+ θi) | Ai,Wi ∈ R
d×d, θi ∈ R

d},

is dense in C(Rd;Rd) in the uniform norm topology on

compact sets.

IV. ANALYSIS

In this section, we perform our controllability analysis. We

show that given a solution of the continuity equation (8), we

can approximate the solution arbitrarily well using solutions

of the equation (4).

Theorem IV.1. (Main Result) Suppose that Assumptions III.2

and III.1 hold and µ0 ∈ P2(R
d) has compact support. Let µ be

the weak solution of the continuity equation (8) corresponding

to the vector field V . Additionally, suppose that V is uniformly

bounded in space and time. Then for every ϵ > 0, there exist

piecewise constant control inputs Aϵ(·),W ϵ(·) and θϵ(·), such

that the corresponding weak solutions µϵ of (4) satisfy

sup
t∈[0,T ]

W2(µ
ϵ
t, µt) ≤ ϵ. (11)

As a consequence, we obtain the following result which was

established as [20, Theorem 5].

Corollary IV.2. (Approximate Controllability) Suppose that

Assumption III.2 holds and µ0, µ
f ∈ P2(R

d) have compact

supports, and are absolutely continuous with respect to the

Lebesgue measure. Then for every ϵ > 0, there exist piecewise

constant control inputs Aϵ(·),W ϵ(·) and θϵ(·), such that the

corresponding weak solutions µϵ of the equation (4), satisfy

W2(µ
ϵ
T , µ

f ) ≤ ϵ. (12)

In order to prove the main result and its corollary, we will

need some preliminary results. The idea behind the proof is

that due to Assumption III.2, the convex closure of the set of

admissible vector fields includes V . This is a well-known idea

in theory of differential inclusions and relaxed controls [10].

These existing results are not directly applicable to (4). That

being said, we adapt the arguments to prove the above results.

We first observe some regularity properties of the solution

of the continuity equation (8), with respect to the time variable,

which will be used later to invoke compactness of certain

approximating sequences.

Lemma IV.3. Suppose that µ0 ∈ P2(R
d) has compact support

and V is a Borel measurable vector field for which µ ∈
C([0, T ];P2(R

d)) is a solution of the continuity equation.

Suppose there exists C > 0 such that |Vt(x)| ≤ C for µt

almost every x ∈ R
d, for (Lebesgue) almost every t ∈ (0, T ).

Then the curve µ is Lipschitz:

W2(µt, µs) ≤ K|t− s|, (13)

for all 0 < t ≤ s < T , where K is a positive constant that

depends only on C.

Proof. From [2, Theorem 8.3.1], we know the curve µ is

absolutely continuous in the sense of [2, Definition 1.1.1],

since
∫

Rd ∥Vt(x)∥
2dµt(x) is essentially bounded over (0, T ).

Moreover, from [2, Theorem 8.3.1], the metric derivative of

µ defined by

|µ′(t)| := lim
s→t

W2(µt, µs)

|t− s|
,

is essentially bounded by
( ∫

Rd ∥Vt∥
2dµt(x)

)1/2
. Since,

|Vt| ≤ C for µt almost every R
d, for (Lebesgue) almost

every t ∈ (0, T ), from [2, Theorems 1.1.2 and 8.3.1], we

have that W2(µ(t), µ(s)) ≤
∫ t

s
|µ′(τ)|dτ ≤ K|t − s| for all

0 < t ≤ s < T . This concludes the result.

Next, we observe some classical properties on the relation

between solutions of the continuity equation (8) and an asso-

ciated ODE. This result enables some control on the growth

of the support of the solution of the continuity equation, due

to the Caratheodory existence theorem for solutions of ODEs.

This, again, will be used later to establish the compactness of

certain sequence of curves on P2(R
d). In what follows, we

denote by Bc(0) := {x ∈ R
d; |x| ≤ c} the closed ball of

radius c > 0 centered at the origin.

Proposition IV.4. Suppose that Assumption III.1 holds and

µ0 ∈ P2(R
d) has a compact support. If r,R,C > 0 are such

that supp µ0 ⊂ Br(0), |Vt(x)| < C for all (t, x) ∈ [0, T ] ×
BR+r(0) and T < R+r

C . Then there exists a unique solution

µ to the continuity equation (8). Additionally, the solution µ
is given by µt = (Xt)#µ0 for all t ∈ [0, T ], where X :
[0, T ]× R

d → R
d is such that

dXt(x)

dt
= Vt(Xt(x)); X0(x) = x.
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Moreover, supp µt ⊂ BR+r(0) for all t ∈ [0, T ].

Proof. Due to Assumption III.1, for each x ∈ Br(0), there

exists a unique local solution y(t), of the differential equation

dy(t)

dt
= Vt(y(t)); y(0) = x.

From the assumption that there exist r,R,C > 0 such that

x ∈ Br(0), |Vt(x)| < C for all (t, x) ∈ [0, T ] × BR+r(0)
and T < R+r

C , and Caratheodory’s existence theorem on the

existence of solutions to ODEs [11, Chapter 1, Theorem 1], we

can conclude that the solution y of the above ODE is defined

over the interval [0, T ] and y(t) ∈ BR+r(0) for all t ∈ [0, T ].
Hence, for µ0 every x ∈ R

d, the solution of this ODE is well

defined over the interval [0, T ] and the result then follows from

[2, Lemma 8.1.6].

In the next proposition we prove the straightforward idea

that given a vector-field we can approximate the solution of (8)

using piecewise constant in time vector fields.

Proposition IV.5. Suppose that V satisfies Assumption III.1,

is uniformly bounded in space and time and µ0 ∈ P2(R
d) has

a compact support. Then there exists a sequence {V N}N∈Z+

of piecewise constant in time vector fields V N : [0, T ]×R
d →

R
d such that, the sequence of weak solutions {µN}N∈Z+ ,

corresponding to these vector-fields, converges to the weak

solution µ corresponding to the vector field V .

Proof. Define V N by

V N
t (x) =















N
T

∫
nT

N

(n−1)T
N

Vτ (x)dτ ; t ∈ [ (n−1)T
N , nT

N )

for n = 1, .., N − 1,
N
T

∫ T
(N−1)

T

Vτ (x)dτ ; t ∈ [ (N−1)T
N , T ],

for all x ∈ R
d. By Lemma A.1 t 7→ V N

t (x) weakly converges

to t 7→ Vt(x) in L1(0, 1;Rd) for every x ∈ R
d. Moreover, it

is easy to verify that the vector-fields V N satisfy Assumption

III.1 Let XN be the flow corresponding to the vector fields

V N , for each N ∈ Z+. It follows [19, Lemma 2.8] that

µN
t = (XN

t )#µ0 are converging to µt = (Xt)#µ0 in the

weak topology of measures, for each t ∈ [0, T ], as N tends

to ∞. Invoking Proposition IV.4, that there exists a compact

set Ω such that the supports of µN
t , µt are contained in Ω

for all t ∈ [0, T ] and for all N ∈ Z+. Therefore, since

convergence in the weak topology is equivalent to the conver-

gence in the 2-Wasserstein distance for probability measures

with compact support [24, Theorem 6.9], this implies that

{µN
t }N∈Z+

converges to µt in P2(R
d), for each t ∈ [0, T ].

Moreover, due to the uniform bound |V N
t (x)| ≤ C, Lemma

IV.3 implies that {µN}N∈Z+ are uniformly Lipschitz in the

time variable and hence, invoking the Arzelà-Ascoli theorem,

there exists a subsequence of {µN}N∈Z+ that is converging

to µ̃ in C([0, T ],P2(R
d)). But we know that {µN

t }N∈Z+

converges to µt in P2(R
d), for each t ∈ [0, T ]. Therefore,

it must be that µ̃ = µ. This concludes the proof.

Proposition IV.6. Suppose that µ0 ∈ P2(R
d) has a compact

support, and that V : [0, T ]×R
d → R

d is uniformly bounded

in space and time and satisfies Assumption III.1. Additionally,

assume that the vector field is piecewise constant in time.

Given Assumption III.2, for N ∈ Z+, there exist vector fields

QN that are piecewise constant and such that QN
t ∈ Fd for

all t ∈ [0, T ], and the sequence of weak solutions {µN}N∈Z+
,

corresponding to the vector-fields {QN}N∈Z+
, converges to

the weak solution µ corresponding to the vector field V .

Proof. Suppose that the support of µ0 lies in Br(0) for some

r > 0. Since the vector-field V is uniformly Lipschitz and

bounded, the support of µt lies in BR+r(0) for all sufficiently

large R > 0. Choose R such that T < R+r
C+δ for some δ >

0 and the support of µt lies in BR+r(0) for all t ∈ [0, T ].
Define Ω := BR+r(0). By Assumption III.2, we can construct

approximating vector-fields QN such that QN are piecewise

constant in time, for N ∈ Z+, QN
t ∈ Fd for all t ∈ [0, T ],

and {QN}N∈Z+
strongly converges to V uniformly in time

and space on compact sets:

lim
N→∞

sup
(t,x)∈[0,T ]×Ω

∥Vt(x)−QN
t (x)∥∞ = 0.

and |QN (t, x)| < C+δ for all (t, x) ∈ [0, T ]×Ω and all N ∈
Z+. We can conclude µN

t is contained in Ω for all t ∈ [0, T ]
and all N ∈ Z+ , due to Proposition IV.4. Due to the uniform

bound on the velocity fields on Ω, Lemma IV.3 implies that

{µN}N∈Z+ are uniformly Lipschitz in time. Therefore, there

exists a subsequence of {µN}N∈Z+ that converges to a limit µ̃
in C([0, T ];P2(R

d)). Next, we will verify that µ̃ is the weak

solution of the continuity equation (8) corresponding to the

curve V . Let ϕ ∈ C∞([0, T )×R
d) be a compactly supported

function. Since the supports of µN and µ̃ are contained in the

compact set Ω,

∫ T

0

∫

Rd

(

∂ϕ(t, x)

∂t
+∇ϕ(t, x) ·QN

t (x)

)

dµN
t (x)dt

−

∫ T

0

∫

Rd

(

∂ϕ(t, x)

∂t
+∇ϕ(t, x) · Vt(x)

)

dµ̃t(x)dt =

∫ T

0

∫

Ω

(

∂ϕ(t, x)

∂t
+∇ϕ(t, x) ·QN

t (x)

)

dµN
t (x)dt

−

∫ T

0

∫

Ω

(

∂ϕ(t, x)

∂t
+∇ϕ(t, x) · Vt(x)

)

dµ̃t(x)dt. (14)

Since {QN}N∈Z+
is uniformly converging to V on [0, T ]×

Ω, we can conclude that the terms

(

∂ϕ
∂t + ∇ϕ · QN

)

are

uniformly converging to

(

∂ϕ
∂t +∇ϕ · V

)

on [0, T ]×Ω, as N

tends to ∞. Moreover, the sequence {µN}N∈Z+
is converging

to µ̃ in C([0, T ];P2(R
d)). By an application of the Dominated

Convergence Theorem, (14) converges to 0 as N tends to ∞.

This implies that µ̃ is the weak solution of the continuity

equation (8) corresponding to the velocity field V since we

conclude that
∫ T

0

∫

Rd

(

∂ϕ(t, x)

∂t
+∇ϕ(t, x) · Vt(x)

)

dµ̃t(x)dt

= −

∫

Rd

ϕ(0, x)dµ0(x),
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for all compactly supported functions ϕ ∈ C∞([0, T ) × R
d).

The solution µ to the continuity equation (8) is unique.

Therefore, µ̃ = µ.

Next, we show that given a vector field that is a superposi-

tion of functions of the form Σ(W ·+θ), we can construct an

oscillating sequence of admissible vector fields that converge

to the superposition weakly in time.

Lemma IV.7. Let Ai,Wi ∈ R
d×d, θi ∈ R

d be weight

parameters for i = 1, ...,m. For each N ∈ Z+. Let QN be a
T
N -periodic vector field defined by

Qt+nT

N

(x) = mAiΣ(Wix+θi), t ∈ [
iT

mN
,
(i+ 1)T

mN
), (15)

for all n ∈ {0, ..., N − 1}, i ∈ {0, 1, ...,m− 1} and x ∈ R
d.

Then, for each x ∈ R
d, t 7→ QN

t (x) weakly converges to
∑m

i=1 AiΣ(Wix + θi) in L1(0, T ;Rd) for all x ∈ R
d, as N

tends to ∞.

Proof. We note that 1
T

∫ T

0
QN

t (x) =
∑m

i=1 Aiσ(Wix + θi)
for all x ∈ R

d and all N ∈ Z+. The weak convergence of

t 7→ QN
t (x) to

∑m
i=1 AiΣ(Wix + θi) in L1(0, T ;Rd), for

each x ∈ R
d, as N tends to ∞, follows from [6, Theorem

8.2]. Note that the latter result is stated of functions that are

p-integrable for p > 1. However, since
∑m

i=1 AiΣ(Wix+ θi)
is essentially bounded, the result applies.

Proposition IV.8. Let µ0 ∈ P2(R
d) have a compact support.

Suppose Assumption III.2 holds. Let Q : [0, T ]×R
d → R

d be

a piecewise constant in time vector field such that Qt ∈ Fd

for all t ∈ [0, T ]. Then there exist vector fields QN : [0, T ]×
R

d → R
d that are of the form of the right hand side of (3)

for piecewise constant controls AN (·),WN (·), θN (·) such that

the sequence of solutions {µN}N∈Z+
of (4) for these choices

of weights, converges to the solution µ, corresponding to the

vector field Q, in C([0, T ];P2(R
d)).

Proof. From Lemma IV.7 it follows that, for Q given, there

exist weakly approximating admissible vector-fields QN , of

the form in the right hand side of (3), by repeating the con-

struction in (15) over the time intervals on which Q is constant

and concatenating the approximating vector fields. Moreover,

from the construction in Lemma IV.7, the map t 7→ QN
t (x)

weakly converges to t 7→ Qt(x), for each x, in L1(0, T ;Rd),
as N tends to ∞. From [19, Lemma 2.8], it follows that

{µN
t }N∈Z+ converges to µt in P2(R

d), for each [0, T ]. From

the construction of the weakly converging vector fields QN

in Lemma IV.3, the vector fields QN are uniform bounded

on compact sets and therefore, it follows that the curves µN

are uniformly Lipschitz in time. As a result, there exists a

subsequence of {µN}N∈Z+ converging in C([0, T ];P2(R
d)).

But we have already established that {µN
t }N∈Z+

converges to

µt in P2(R
d), for each [0, T ]. Therefore, the convergence of

{µN
t }N∈Z+

to µt must be uniform in the time variable, and

hence {µN}N∈Z+
converges to µ in C([0, T ];P2(R

d)).

Now, we are ready to prove our main result on approximate

controllability of (4) about trajectories of (8).

Proof of Theorem IV.1. The result follows by applying Propo-

sition (IV.5) to approximate V using a vector fields that are

piecewise constant in time and, then using Proposition IV.8

to approximate the piecewise constant approximations using

vector fields of the form in the right-hand side of (3).

Finally, owing to an existing result on the approximate

controllability of the continuity equation (8) proved in [8],

we can establish approximate controllability of (4).

Proof of Corollary IV.2. According to [8, Proposition 3.1], it

is known that, for every ϵ > 0, there exists a uniformly

bounded vector field V satisfying Assumption III.1 such that

the solution µ of (8) satisfies W2(µT , µf ) ≤ ϵ/2. Then,

due to Theorem IV.1, there exist piecewise constant control

inputs Aϵ(·),W ϵ(·) and θϵ(·), such that the corresponding

weak solutions µϵ of the equation (4), satisfies

W2(µ
ϵ
T , µT ) ≤ ϵ/2. (16)

Using the triangle inequality property of the W2-distance, we

can conclude that W2(µ
ϵ
T , µ

f ) ≤ ϵ. This concludes the proof.

V. CONCLUSION

We demonstrated how neural ODEs can be used to approx-

imate solutions of the continuity equation with a uniformly

Lipschitz bounded vector field. Interesting future directions

include extending the result to vector fields that are not

Lipschitz, such as those arising from solution of the Benamou-

Brenier formulation of optimal transport. Lastly, one could

also consider similar approximation results for stochastic and

higher order dynamical variants of neural ODEs.
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APPENDIX

Lemma A.1. Let f ∈ L1(0, T ;Rn). Suppose that there exists

a constant C > 0 such that |f(t)| < C for almost every

t ∈ (0, T ). For each N ∈ Z+, consider fN ∈ L1(0, T ;Rd)
defined by

fN (t) =
N

T

∫

(n)T
N

(n−1)T
N

f(τ)dτ ; t ∈ [
(n− 1)T

N
,
nT

N
), (17)

for n = 1, .., N . Then the sequence {fN}N∈Z+ weakly

converges to f in L1(0, T ;Rd) as N → ∞.

Proof. By the Lebesgue differentiation theorem [14, Theorem

2.3.4], {fN (t)}N∈Z+ converges to f(t) for almost every t ∈
(0, T ). Since |f(t)| and |fN (t)| are bounded by C for almost

every t ∈ (0, T ), it follows from the dominated convergence

theorem that

lim
N→∞

∫ T

0

|f(t)− fN (t)|dt = 0.

Therefore, {fN}N∈Z+
converges to f in the strong topology

in L1(0, T ;Rd) and hence, also in the weak topology.
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