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Abstract—We consider the controllability problem for
the continuity equation, corresponding to neural ordinary
differential equations (ODEs), which describes how a prob-
ability measure is pushedforward by the flow. We show
that the controlled continuity equation has very strong con-
trollability properties. Particularly, a given solution of the
continuity equation corresponding to a bounded Lipschitz
vector field defines a trajectory on the set of probability
measures. For this trajectory, we show that there exist
piecewise constant training weights for a neural ODE such
that the solution of the continuity equation corresponding
to the neural ODE is arbitrarily close to it. As a corollary to
this result, we establish that the continuity equation of the
neural ODE is approximately controllable on the set of com-
pactly supported probability measures that are absolutely
continuous with respect to the Lebesgue measure.

Index Terms— Distributed parameter systems, Machine
learning, Neural networks.

I. INTRODUCTION

In recent years, there has been a considerable amount of
work on deep neural networks, due to the flexibility they
provide for training purposes. Continuum limits of such neural
networks has lead to a wide literature on the so-called Neural
ordinary differential equations (ODEs) [4], [13], [25], with
a major upshot being that tools from dynamical systems and
control theory can be used to understand and develop methods
to train and synthesize neural networks. This includes exten-
sions to stochastic settings [23], and higher order dynamical
variants [21].

Control-theoretic tools have recently been utilized to ad-
dress questions related to training neural networks. In [22],
the authors use differential geometric techniques to establish
the controllability properties of the underlying neural ODE
and leverage that to obtain uniform approximation results.
Controllability properties of neural ODEs on the group of
diffeomorphisms has also been investigated in [1]. In addition
to this, optimal control theory has been leveraged to train
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neural networks, and this direction has been an original
motivation for neural ODEs, see [4], and also [3], [15], [18].

An interesting property that is the focal part of this paper
is that data classification and universal approximation capa-
bilities of neural ODEs can be related to problems arising in
optimal transportation theory [2], where one aims to take a
given probability density to another. Such transport problems
also naturally arise for density estimation problems in machine
learning, such as normalizing flows [16]. This insight has been
used to leverage tools from optimal transportation theory [2]
to find numerically efficient methods to train neural ODEs
[12]. The resulting transport problems can be analyzed in
terms of a controlled continuity equation, which describes how
a probability density evolves under the action of flow of a
differential equation. This motivates us to study the approxi-
mation capabilities of neural ODEs for density estimation, by
studying the control properties of the corresponding continuity
equation for which the vector-field is given by that of a
neural ODE. Most closely related to our work, the authors
in [20] establish approximate controllability of the underlying
controlled continuity equation on the space of probability
measures. Particularly, given a initial and final measure, it
is shown that there exist weight parameters of the neural
ODE that can be chosen such that the final condition of the
continuity equation is arbitrarily close to the target probability
measure in the Wasserstein-1 distance.

Statement of Contributions: We study the approximation
capabilities of the continuity equation corresponding to a
neural ODE. We show one can construct a sequence of
control inputs such that the solutions of the continuity equation
corresponding to the neural ODE uniformly converge to the
solution of the continuity equation corresponding to any given
Lipschitz vector field. This controllability property of the
system is challenging to attain due to the low number of
control parameters at hand, attributed to the limited width
of the neural network. In general, it is not possible to select
the control parameters in a way that the approximating vector
fields are strongly converging to the original one. The key
idea behind our result is the observation that one can instead
construct admissible vector fields that are weakly converging
to the original one, and more importantly, that this is sufficient
to achieve uniform convergence of the curves on the set of
probability measures.
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Il. PROBLEM FORMULATION AND MOTIVATION
Let 0 : R — R be a given activation function. We define
the map ¥ : R? — R? by
S(@) = [o(21), - o (za)]T-

An example of the class of activation functions that we con-
sider is sigmoidal functions with globally bounded derivatives.
An activation function ¢ is said to be sigmoidal if its range
lies in [0, 1],

mgrflooa(x) =0 and wlirrgc o(xz)=1.

One such sigmoidal function is

1
T ltec
Another important example of an activation function is the
Rectified Linear Unit (ReLU) function defined by

o(z) = {33 z >0, @)

0 otherwise.

(D

o(x)

We consider the neural ODE given by
&(t) = A()BW(t)x +6(1)), 3)

where A : [0,T] — R4 W :[0,7] — R? and 6 : [0,T] —
R? are the control inputs or weights for the neural network.
See [4], [13], [20], [22] for a discussion on the relation
between the above ODE and deep residual neural networks.
Suppose that the initial condition z(0) of (3) is chosen at
random from a distribution with a probability density function
po- The uncertainty in the state x(¢) is determined by the time-
dependent probability density p(t) which evolves according to
the continuity equation,
% v ((Amswe+om)s) =0, @
p(0) = po.

In density estimation problems such as the ones considered
in [4], [12], the goal is to construct weight functions (or control
inputs) A(-), W(-),6(-) so that the endpoint of the solution
p(T) of (4) is approximately equal to an unknown probability
distribution p/, using available samples of p/. From a control-
theoretic point of view, it is natural to ask for which class
of target distributions pf, solutions of (4) can be controlled
to p/ within final time 7. This problem has been recently
considered in [20], for the special case of ReLU activation
functions and d > 2, where it has been shown that p(T") can
be made arbitrarily close to any given compactly supported p/
in the Wasserstein 1-metric. The purpose of this short paper is
to consider the more general trajectory approximation problem
stated below.

Problem IL.1. Given a curve on the set of probability densities
t — p(t), can we construct control inputs A(-), W (-),0(-)
such that the solution of (4) is arbitrary close to p(t) in a
suitable sense, for all t € [0,T)?

We answer this problem affirmatively in Theorem IV.1 for
the case when the curve ¢ — 5(t) is the pushforward of the
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flow of a uniformly Lipschitz bounded vector field. Then we
show that the controllability result in [20] can be derived as a
Corollary to our main result, for general activation functions
that satisfy Assumption III.2. Few motivations for considering
the more general trajectory approximation problem include
interpolation of data lying on the set of probability measures
[5], identifying dynamical systems from population data [26],
and control of large swarms [9].

I1l. NOTATION AND PRELIMINARIES

In this section, we define some notation that will be used
throughout the paper. We refer the readers to [2] for more de-
tails. Let P2(R%) denote the set of Borel probability measures
on R? with finite second moment: [, [#|?du(z) < oo. For
a given Borel map 7 : RY — R? we will denote by Ty the
corresponding pushforward map, which maps any measure p
to a measure Tl u, where Tl is the measure defined by

(Tgp)(B) = u(T~1(B)), (5)

for all Borel measurable sets B C R<. For y, v € Pa(R?), we
denote the set of transport plans from u to v by

L(p,v) = {y € PR x RY)|wly = p, 7%y = v},  (6)

where 7% : R? x R? — R? are the projections on to the ith
coordinates, respectively. We will define the 2—Wasserstein
distance between two probability measures u, v as the follow-

ing
1/2
/’ z —ylPdy(z,y) | . (D)
vyel (p,v) R4 x R4

Wa(p,v) = min

The set C([0, 7], P2(R%)) will refer to the set of continuous
curves t +— p; in Po(RY) with respect to the topology
induced by the 2—Wasserstein distance. We will say that a
sequence {¢V} ez, in C([0,T]; P2(R?)) converges to u €
C([0,T); Po(RY)) if limy oo suprepo ) Wolil¥ ) = 0.
Given a vector-field V : [0,7] x R — R%, we will consider
solutions p of the continuity equation,

@+v«%mm:& (8)

ot
1(0) = po.

Naturally, we say that u € C([0,7],P2(R%)) is a weak
solution, or a solution in the sense of distributions [2, Section
8.1] of the continuity equation (8) if

/OT /Rd (a(bgt’ 2 + Vot x) - Vt(@) dp(x)dt

==/, (0, z)dpo(x), )

for all compactly supported real-valued functions ¢ &
C>=([0,T) x R?). We make the following assumption.

Assumption IIL1. The vector field V : [0,T] x R? — R? is
such that t — V() is measurable for every x € R? and it is
uniformly Lipschitz in x. That is, there exists K > 0 such that

Vi(z) = Vily)| < Kz -y,

rom |IEEE Xplore. Restrictions apply.
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for all z,y € R and all t € [0, T).

In addition to this, we will need some mild assumptions on
the activation function ¢ : R — R. For this purpose, let us
define the set of functions

F=J D cicw/z+6)| a; € R,w; € R 6; € R}

meZy 1=1

Note that the set F is the set of arbitrarily wide single-hidden
layer neural networks.

Assumption II1.2. We make the following assumptions:

1) (Regularity) The activation function o is globally Lips-
chitz, that is, there exists K > 0 such that

lo(x) —o(y)| < K|z —yl, (10

forall z,y € R.

2) (Density of superpositions) The set of functions F is
dense in C(R%; R) in the uniform norm topology on com-
pact sets. Particularly, given a function f € C(R%R),
for each compact set 2 C R and 6 > 0, there exists a
function g € F such that

sup | f(z) — g(z)] < 6.
e

It is well-known that the Logistic function (1) and the ReLU
function (2) satisfy the density property, see [7], [17]. Given
Assumption III.2, it is easy to see that the subset of vector-
valued functions F, defined by

Fa= U {ZA’LE(WZ(E “!‘92) ‘ AZ,WZ S RdXd,ei c ]Rd},

meZy i=1

is dense in C(R? R?) in the uniform norm topology on
compact sets.

IV. ANALYSIS

In this section, we perform our controllability analysis. We
show that given a solution of the continuity equation (8), we
can approximate the solution arbitrarily well using solutions
of the equation (4).

Theorem IV.1. (Main Result) Suppose that Assumptions I11.2
and I11.1 hold and py € Po(R?) has compact support. Let . be
the weak solution of the continuity equation (8) corresponding
to the vector field V. Additionally, suppose that V is uniformly
bounded in space and time. Then for every € > 0, there exist
piecewise constant control inputs A¢(-), W€(-) and 0¢(-), such
that the corresponding weak solutions ¢ of (4) satisfy

sup Wa(pug, pe) < e (an

t€[0,T
As a consequence, we obtain the following result which was
established as [20, Theorem 5].

Corollary IV.2. (Approximate Controllability) Suppose that
Assumption 112 holds and g, i/ € Po(R?) have compact
supports, and are absolutely continuous with respect to the
Lebesgue measure. Then for every € > 0, there exist piecewise
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constant control inputs A¢(-), W¢(-) and 6¢(-), such that the
corresponding weak solutions 1 of the equation (4), satisfy

Wa(us, n!) <e. (12)

In order to prove the main result and its corollary, we will
need some preliminary results. The idea behind the proof is
that due to Assumption II1.2, the convex closure of the set of
admissible vector fields includes V. This is a well-known idea
in theory of differential inclusions and relaxed controls [10].
These existing results are not directly applicable to (4). That
being said, we adapt the arguments to prove the above results.

We first observe some regularity properties of the solution
of the continuity equation (8), with respect to the time variable,
which will be used later to invoke compactness of certain
approximating sequences.

Lemma IV.3. Suppose that o € Po(R?) has compact support
and 'V is a Borel measurable vector field for which n €
C([0,T); P2(R?)) is a solution of the continuity equation.
Suppose there exists C > 0 such that |Vi(x)| < C for p
almost every x € R?, for (Lebesgue) almost every t € (0,T).
Then the curve p is Lipschitz:

WQ(HJ%HS) SK|t_S|7 (13)

for all 0 <t < s < T, where K is a positive constant that
depends only on C.

Proof. From [2, Theorem 8.3.1], we know the curve p is
absolutely continuous in the sense of [2, Definition 1.1.1],
since [pq [|Vi(2)||*dpe(x) is essentially bounded over (0, 7).
Moreover, from [2, Theorem 8.3.1], the metric derivative of
w defined by

W2 (/fft7 /st)

"#)] =1
(0] =ty =k

)
s—t

is essentially bounded by ( [p. ||V}H2d,ut(x))1/2 . Since,
|V;| < C for yu; almost every RY, for (Lebesgue) almost
every t € (0,7), from [2, Theorems 1.1.2 and 8.3.1], we
have that W (u(t), u(s)) < [ |w/(r)|dr < K|t — s| for all
0 <t < s < T. This concludes the result. ]

Next, we observe some classical properties on the relation
between solutions of the continuity equation (8) and an asso-
ciated ODE. This result enables some control on the growth
of the support of the solution of the continuity equation, due
to the Caratheodory existence theorem for solutions of ODEs.
This, again, will be used later to establish the compactness of
certain sequence of curves on P2(R%). In what follows, we
denote by B.(0) := {z € R% x| < ¢} the closed ball of
radius ¢ > 0 centered at the origin.

Proposition IV.4. Suppose that Assumption IIl.1 holds and
po € P2(R%) has a compact support. If r, R,C > 0 are such
that supp po C B-(0), |Vi(z)| < C for all (t,x) € [0,T] x
Bryr(0) and T < Rgr. Then there exists a unique solution
1 to the continuity equation (8). Additionally, the solution
is given by p, = (Xi)gpo for all t € [0,T), where X :
[0,T] x RY — R is such that
dXt (.’17)

U V(X))

Xo(z) = z.

rom |IEEE Xplore. Restrictions apply.
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Moreover, supp iy C Br.(0) for all t € [0,T].

Proof. Due to Assumption IIL.1, for each z € B,(0), there
exists a unique local solution y(t), of the differential equation

dy(t

WY _ viwo):
From the assumption that there exist r, R,C' > 0 such that
x € By(0), |[Vi(x)| < C for all (¢t,x) € [0,T] x Br+,(0)
and T' < Rg T, and Caratheodory’s existence theorem on the
existence of solutions to ODEs [11, Chapter 1, Theorem 1], we
can conclude that the solution y of the above ODE is defined
over the interval [0, 7] and y(t) € Bry.(0) for all ¢ € [0,T].
Hence, for g every z € R, the solution of this ODE is well
defined over the interval [0, T'] and the result then follows from
[2, Lemma 8.1.6]. O

y(0) = x.

In the next proposition we prove the straightforward idea
that given a vector-field we can approximate the solution of (8)
using piecewise constant in time vector fields.

Proposition IV.5. Suppose that V satisfies Assumption IlI.1,
is uniformly bounded in space and time and iy € P2(R?) has
a compact support. Then there exists a sequence {V"} nez N
of piecewise constant in time vector fields V™ : [0, T] x R4 —
R such that, the sequence of weak solutions {§™}nez,,
corresponding to these vector-fields, converges to the weak
solution p corresponding to the vector field V.

Proof. Define VY by

f(n l)T 7-

(z)dr;t € [T, oLy
forn=1,..,N —1,
¥ [ Vi(wydrst e [S52E 7],

V¥ (2) =

for all z € R%. By Lemma A.1 ¢ — V() weakly converges
to t + Vi(z) in L1(0,1;RY) for every € RY. Moreover, it
is easy to verify that the vector-fields V' satisfy Assumption
IM.1 Let XV be the flow corresponding to the vector fields
VN, for each N € Z,. It follows [19, Lemma 2.8] that
ul = (XP)gpo are converging to py = (X¢)gpo in the
weak topology of measures, for each ¢t € [0,T], as N tends
to co. Invoking Proposition IV.4, that there exists a compact
set Q such that the supports of ;2 are contained in
for all ¢ € [0,7] and for all N € Z.. Therefore, since
convergence in the weak topology is equivalent to the conver-
gence in the 2-Wasserstein distance for probability measures
with compact support [24, Theorem 6.9], this implies that
{ud}Nez, converges to p; in Po(R?), for each t € [0,T].
Moreover, due to the uniform bound |V, (z)| < C, Lemma
IV.3 implies that {u"}nez, are uniformly Lipschitz in the
time variable and hence, invoking the Arzela-Ascoli theorem,
there exists a subsequence of {u™¥}nez . that is converging
to fi in C([0,T],P2(R?)). But we know that {4} }nez,
converges to ju; in Po(R?), for each t € [0,T]. Therefore,
it must be that & = p. This concludes the proof. [

Proposition IV.6. Suppose that iy € Po(R?) has a compact
support, and that V : [0, T] x R? — R is uniformly bounded
in space and time and satisfies Assumption III.1. Additionally,
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assume that the vector field is piecewise constant in time.
Given Assumption II1.2, for N € Z.., there exist vector fields
QN that are piecewise constant and such that QY € Fy4 for
all t € [0,T), and the sequence of weak solutions {y™ } nez,,
corresponding to the vector-fields {QN} yez ., converges to
the weak solution p corresponding to the vector field V.

Proof. Suppose that the support of p lies in B,.(0) for some
r > 0. Since the vector-field V' is uniformly Lipschitz and
bounded, the support of y; lies in Br+,-(0) for all sufficiently
large R > 0. Choose R such that T < gJ”“ for some 6 >
0 and the support of u; lies in Bgry,.(0) for all ¢ € [0,T].
Define 2 := Br,(0). By Assumption III.2, we can construct
approximating vector-fields Q™ such that QY are piecewise
constant in time, for N € Z,, QN € F, for all t € [0,7],
and {Q™}nez, strongly converges to V' uniformly in time
and space on compact sets:

r (@)l = 0.

lim

sup Vi(x) —
Jm s @)

€[0,T]xQ

and |QN (¢t,z)| < C+4 forall (t,z) € [0,T] xQ and all N €
Z. We can conclude pl¥ is contained in € for all ¢ € [0, T
and all N € Z, , due to Proposition IV.4. Due to the uniform
bound on the velocity fields on €2, Lemma IV.3 implies that
{ uN } Nez, are uniformly Lipschitz in time. Therefore, there
exists a subsequence of {u™V} nez . that converges to a limit /i
in C([0,T]; P2(R%)). Next, we will verify that fi is the weak
solution of the continuity equation (8) corresponding to the
curve V. Let ¢ € C*(]0,T) x R?) be a compactly supported
function. Since the supports of 1V and /i are contained in the
compact set €2,

/ (25 <x>)dut (x)dt
/ Adcwtx Y V(L)

b Yo
/ /Q (&;s (t,z) )
_/o /sz (W +Vo(t,x) - Vt(x)) diie(z)dt.  (14)

Since {Q™ } nez, is uniformly converging to V on [0, 7] x

9
f—l—Vqﬁ-QN) are

+Vo(t,z) Q

dji(

+ Vot z) - dpd (z

), we can conclude that the terms

uniformly converging to %‘f +Vé-V ) on[0,T]xQ, as N

tends to co. Moreover, the sequence {/" } yez, is converging
to i in C([0, T); P2(R%)). By an application of the Dominated
Convergence Theorem, (14) converges to 0 as IV tends to co.
This implies that i is the weak solution of the continuity
equation (8) corresponding to the velocity field V' since we
conclude that

//R (8¢tx +v¢(t7x).vt(x))dﬂt(x)dt

=— (0, x)dpo(x),

R4

rom |IEEE Xplore. Restrictions apply.
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for all compactly supported functions ¢ € C>°([0,7) x R%).
The solution p to the continuity equation (8) is unique.
Therefore, i1 = p. O

Next, we show that given a vector field that is a superposi-
tion of functions of the form X (W - +6), we can construct an
oscillating sequence of admissible vector fields that converge
to the superposition weakly in time.

Lemma IV.7. Let A;,W; € R4 0, ¢ R? be weight
parameters for i = 1,...,m. For each N € Z. Let Q" be a
%—periodic vector field defined by

T i+ 1)T
mN’ mN
foralln € {0,...,N —1}, i€ {0,1,...m — 1} and z € R%
Then, for each x € RY, t — QN (z) weakly converges to

AWz + 6;) in L0, T;RY) for all x € RY, as N
tends to oo.

Proof. We note that % [T QN(x) = S0, Ajo(Wiz + 6;)
for all z € R? and all N € Z,. The weak convergence of
t = QN(z) to Y, AWz + 6;) in LY(0,T;RY), for
each = € R? as N tends to oo, follows from [6, Theorem
8.2]. Note that the latter result is stated of functions that are
p-integrable for p > 1. However, since Y .- A;X(W;z + 6;)
is essentially bounded, the result applies. O

Proposition IV.8. Let iy € P2(R?) have a compact support.
Suppose Assumption II1.2 holds. Let Q : [0, T] x R? — R? be
a piecewise constant in time vector field such that Q; € Fy
for all t € [0,T). Then there exist vector fields Q™ : [0,T] x
R? — R? that are of the form of the right hand side of (3)
for piecewise constant controls AN (-), W (-), 0N (-) such that
the sequence of solutions {u™} Nez, + of (4) for these choices
of weights, converges to the solution p, corresponding to the

vector field Q, in C([0,T]; Po(R?)).

Proof. From Lemma IV.7 it follows that, for () given, there
exist weakly approximating admissible vector-fields Q*, of
the form in the right hand side of (3), by repeating the con-
struction in (15) over the time intervals on which @ is constant
and concatenating the approximating vector fields. Moreover,
from the construction in Lemma IV.7, the map t — QN (z)
weakly converges to t — Q;(x), for each =, in L'(0,T;R?),
as N tends to co. From [19, Lemma 2.8], it follows that
{u] Y nez, converges to p; in P2(R?), for each [0, 7). From
the construction of the weakly converging vector fields Q@
in Lemma IV.3, the vector fields Q" are uniform bounded
on compact sets and therefore, it follows that the curves pu'V
are uniformly Lipschitz in time. As a result, there exists a
subsequence of {u™N}nez, converging in C([0,T]; Po(R?)).
But we have already established that {4} } yez, converges to
e in Po(RY), for each [0, T). Therefore, the convergence of
{1} Nez, to p, must be uniform in the time variable, and
hence {1} yez, converges to pin C([0,T]; P2(RY)). O

Now, we are ready to prove our main result on approximate
controllability of (4) about trajectories of (8).
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Proof of Theorem IV.1. The result follows by applying Propo-
sition (IV.5) to approximate V' using a vector fields that are
piecewise constant in time and, then using Proposition IV.8
to approximate the piecewise constant approximations using
vector fields of the form in the right-hand side of (3). O

Finally, owing to an existing result on the approximate
controllability of the continuity equation (8) proved in [8],
we can establish approximate controllability of (4).

Proof of Corollary 1V.2. According to [8, Proposition 3.1], it
is known that, for every € > 0, there exists a uniformly
bounded vector field V' satisfying Assumption III.1 such that
the solution 4 of (8) satisfies Wa(ur,pny) < €/2. Then,
due to Theorem IV.1, there exist piecewise constant control
inputs A¢(-),W¢(-) and 6¢(-), such that the corresponding
weak solutions p¢ of the equation (4), satisfies

W2(/’[’§"a /J/T) < 6/2

Using the triangle inequality property of the Ws-distance, we
can conclude that Wo(us., u/) < e. This concludes the proof.
O

(16)

V. CONCLUSION

We demonstrated how neural ODEs can be used to approx-
imate solutions of the continuity equation with a uniformly
Lipschitz bounded vector field. Interesting future directions
include extending the result to vector fields that are not
Lipschitz, such as those arising from solution of the Benamou-
Brenier formulation of optimal transport. Lastly, one could
also consider similar approximation results for stochastic and
higher order dynamical variants of neural ODEs.
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APPENDIX

Lemma A.l. Let f € L'(0,T;R"). Suppose that there exists
a constant C > 0 such that |f(t)] < C for almost every
t € (0,T). For each N € Z, consider fN € L'(0,T;R9)
defined by

N (73\)7T

= [ s e (@2

for n = 1,..,N. Then the sequence {fN}N€Z+ weakly
converges to f in L'(0,T;R?) as N — oc.

Proof. By the Lebesgue differentiation theorem [14, Theorem
2341, {fN(t)}nez, converges to f(t) for almost every ¢t €
(0, 7). Since |f(t)| and | fN(¢)| are bounded by C' for almost
every t € (0,7), it follows from the dominated convergence
theorem that

T

lim 1f(t) — fN(t)]dt = 0.
N—oo J

Therefore, {fV}yez . converges to f in the strong topology
in L1(0,T;R%) and hence, also in the weak topology. O

rom IEEE Xplore. Restrictions apply.
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