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1. Introduction

Experiments with solar, atmospheric, reactor, and accelerator
neutrinos have established that neutrinos produced in a specific
flavor state oscillate among all three flavor states [1]. Neutrino os-
cillations studied by the above experiments depend on the vacuum
neutrino mixing properties and forward neutrino-electron scatter-
ing in the relevant matter. Because flavor evolution of individual
neutrinos can be treated separately in these cases, the theory is
well understood and calculations are straightforward. In astrophys-
ical environments such as supernovae and neutron star mergers,
however, neutrino emission is so intense that forward scattering
among neutrinos becomes important, which causes flavor evolu-
tion to be coupled for neutrinos emitted with different energies
and directions. Consequently, collective flavor oscillations (see e.g.,
[2] for a review of the early studies) may occur for the dense neu-
trino gas in these environments. The treatment and understanding
of such oscillations are still evolving and under intensive study (see
e.g., [3-8] for some recent developments).

Many insights can be obtained by studying oscillations of astro-
physical neutrinos in terms of mixing between v, and vy, which
represents an appropriate linear combination of v, and v;. In this
case, the flavor field can be conveniently described by the polar-
ization vector P(w, v) for a neutrino (antineutrino) emitted with
energy E and velocity v. Here @ = +8m?2/(2E) is the vacuum oscil-
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lation frequency, §m? > 0 is the mass-squared difference between
the two vacuum mass eigenstates, and w > 0 (w < 0) denotes neu-
trinos (antineutrinos). For clarity, the sans serif font and numeral
indices are used for quantities in the flavor space, while the bold
face and (x,y,z) indices are used for vectors in the Euclidean
space. The probability of being the electron flavor is (P3 + 1)/2,
where P3 =P .é3 and é3 is the unit vector in the third direc-
tion of the flavor space. For coherent flavor evolution (i.e., in the
absence of collisions) that starts with all neutrinos in pure flavor
states, the P(w, v) for the initial v, and vy (Ve and vy) will differ
only by an overall sign. Hereafter, P(w, v) specifically refers to the
polarization vector of the initial v, or ve.

The general equation governing the spatial and temporal evolu-
tion of P(w, V) is

0 +Vv-V)P(w,v) =H(w, V) x P(w, V), (1)

where H(w, V) = Hyac(®) + Hmat + Hyy (V) is the total Hamilto-
nian. The term Hy;c(w) = wB accounts for the vacuum mixing,
where B = (sin26y, 0, —cos26y) for the normal mass hierarchy
and B = (—sin20y, 0, cos20y) for the inverted mass hierarchy
with 6y being the vacuum mixing angle. The contribution Hpae =
Aés3 originates from forward neutrino-electron scattering, where
A =+/2Gpne, Gr is the Fermi coupling constant, and n. is the net
electron number density. The contribution H,,(v) from forward
scattering among neutrinos is our main concern and is discussed
below.

We write Hy, (V) = v (v)J,, where vP(v) = (1,v) is the four-
vector corresponding to v with p running over (t,x, y, z),
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+00
JP :u/.dv’ vP (W) / dw G(w,V)P(w,V) (2)

is the neutrino polarization current, w = +2Gpny,, n,, =
Jav [(°dwF,,(w,v) is the v, number density, F,(w,v) with
w >0 (w<0) is the ve (Ve) spectral and angular distribution
function, and G(w, v) = sgn(w)[F,, (w, V) — Fy, (w, v)]/ny,. The con-
traction v#(v)v, (V') gives the factor (1 —v- V') that is explicitly
included in the usual expression of H,,(v). Here we emphasize
the physical importance of J° and will discuss neutrino flavor evo-
lution using its 12 components.

We focus on the so-called fast flavor oscillations [9,10]. When
the angular distribution ff:oo dw G(w,v) of the electron lepton
number (VELN) carried by a dense neutrino gas has a zero-
crossing, i.e., switches from being positive to negative, an instabil-
ity may be triggered, which could result in fast flavor conversion
on length scales as short as ~ O(1 m) for conditions in neutron
star mergers [11,12] and supernovae [13-15]. Whereas the above
flavor instability can be identified by a linear stability analysis
[5,6,16], the eventual outcome of fast oscillations is much harder
to ascertain for realistic astrophysical environments. Apart from
the uncertainties in modeling the neutrino emission in supernovae
and neutron star mergers, numerical treatment of neutrino flavor
evolution is further hampered by the complicated geometry and
intrinsically dynamic nature of such environments. Consequently,
studies of fast oscillations beyond the linear regime have been re-
stricted to greatly simplified models so far. Specifically, Eq. (1) was
solved for artificial vELN angular distributions by keeping the spa-
tial derivative only in one [17-19] or two directions [20]. Other
studies dropped either the time [21] or spatial derivative [22-24].

In this letter, we assume a homogeneous neutrino gas for which
the spatial derivative can be ignored. We find the stationary solu-
tions and compare them to the results from evolution calculations.
We also discuss improvement of these solutions and their use as
estimates of the effects of fast oscillations in astrophysical environ-
ments.

2. Stationary solutions

Under our assumption of homogeneity, Eq. (1) becomes

0tP(w, V) =H(w, V) x P(w, V). (3)

The evolution of P(w, v) for the initial v, (w > 0) differs from that
for the initial Ve (w < 0) only through the vacuum term Hy,c(w) in
H(w, v). For the dense astrophysical environments of interest to us,
Hyac (@) can be ignored because the magnitude of w is far less than
that of A or w associated with Hp,e or Hyy,(v), respectively. The
effect of Hyac(w) is to initiate neutrino flavor mixing, which can be
approximated by allowing P(w, v) to have small initial deviations
from the pure flavor states. With this prescription, the evolution
of P(w, v) no longer depends on w. We write P(w,Vv) = P(v) and
solve the evolution equation

P (V) =H(V) x P(v), (4)

where H(V) = A&3 + vP(V)Jp, JP = p [dV g(v)vP (V)P(V), and
gv) = /f:coda)c(w,v) is the angular VELN distribution. From
Eq. (4), we obtain 3;J' = Aé3 x J'. For the small initial deviations
of P(v) from the pure flavor states, J* is essentially parallel to &3
initially (at t = to). Therefore, 3;J' ~ 0 and J' & Jj| ~ [Lefré3, where
Heff = i [ dv g(v) is specified by the VELN.

Based on the above discussion, we take

HV) = (A + ef)83 — (VXX + vV Y + v2J9). (5)

Physics Letters B 820 (2021) 136550

The components of the polarization current J*, J¥, and J* are vec-
tors in the flavor space. At any specific time, the range of H(v)
is determined by these vectors and the constraint (v¥)% + (v¥)2 +
(v¥)%2 =1, and each P(v) precesses with the corresponding angular
velocity H(v). We seek stationary solutions for which all polariza-
tion vectors collectively precess with the same angular velocity Q
on average. In the frame that co-rotates with these vectors, the
evolution equation becomes

HP(WV) = [H(V) — Q] x P(Vv) = H' (V) x P(v). (6)

We assume adiabatic evolution, for which the angle between P(v)
and H'(v) = H(v) — Q stays fixed (see similar approach in [25,26]).
Because of the constraint J' ~ pefé3, Q is approximately parallel
to &3 for the stationary solutions. For the small initial deviations
of P(v) from the pure flavor states, J*, J¥, and J* are also approxi-
mately parallel to é3 at time tg. So P(v) is parallel to H'(v) initially,
and the adiabatic condition can be written as

P(V) = eWH'(v), (7)

where H'(v) is the unit vector in the direction of H'(v), and

€(v) =sgn {&3 - [He, (v) — Q]} =sgn[Hj , (V)] (8)

The angular velocity Q and the polarization current components
J¥, JY, and J* for the stationary solutions can be solved iteratively
by using Egs. (7) and (8) in the definition of J? and applying the
constraint J* & egé3. Clearly, it is most convenient to carry out
the above procedure in the co-rotating frame.

3. Example solutions

We now illustrate the stationary solutions with specific exam-
ples. Because the angular velocity Q is approximately parallel to
the matter term Aés3 in H, A effectively shifts the magnitude of Q.
We take A =0 and p =10%/(4w) km~!. Motivated by the condi-
tions in supernovae [27], we assume azimuthally symmetric VELN
distributions g(v) = g(v#), where

1.25—0.25y — (0.5 + 0.5p)e~[1-v)/07],
1<y=<2,
(v = | 1:25 025y — 1.5e~[1-v)/©@3+02p)] ©
2<y <3,
205y — (3—0.5p)e [1-v/030)]
3<y <4

The range of y = 1-4 allows the above g(v*) to have any zero-
crossing between v# =1 and —1 (see Fig. 1). We focus on the cases
of ¥ =2 and 3 with a crossing at v* ~ 0.38 and 0.07, respectively.

We first solve Eq. (4) numerically using 600 bins for v# and
320 bins for the azimuthal angle of v. We have checked that con-
vergence is achieved for this angular resolution. All polarization
vectors P(v) are assigned random deviations between —10~3 and
103 from P3(v) =1 at t = tg. Their evolution is followed up to
t — to =2 km, when an approximately stationary state has been
reached (see Appendix A). The results on the survival probability
(P3 +1)/2 for y =2 and 3 are shown in Figs. 2(b) and 3(b), re-
spectively. Because the azimuthal symmetry is broken by the initial
conditions adopted to approximate the effects of the vacuum term
in H(w, v), these results depend on the azimuthal angle of v for
each bin of vZ. The corresponding values of 2, J*, J¥, and J* are
given in Table 1.

We next calculate the stationary solutions as presented in Sec-
tion 2. For all practical purposes, we can assume pure flavor
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Fig. 1. The assumed vELN distributions g(v?). The range of y = 1-4 allows any
zero-crossing between v =1 and —1.

Table 1

Characteristics of stationary solutions.
y results Q it I JA 53 3
2 numerical 3750 800 1200 1600 0 —2000
2 Illa 4089 1392 1392 0 0 —2446
2 IVa 3705 462 154 2082 190 —1762
3 numerical —870 650 650 0 0 —3200
3 Illa —900 799 799 0 0 —3108
3 1a’ —867 622 622 0 0 —3161

states to obtain J' = pef€3, S =JY =0, and J? || &3 at t = tp,
which gives H, (V) || 3. Specifically, the initial conditions are ]g =
2812 km~!, J2=-3030 km~! for y =2 and J{ = —1028 km~!,
J5=-3286 km~! for y = 3. Conservation of J! requires Q = Qés.
Due to the azimuthal symmetry of g(v#) around the z axis in the
Euclidean space, we can specify the x and y axes by setting ]%' =0
for the stationary solutions. In addition, the rotational symmetry
around &3 in the flavor space allows us to specify the directions é;
and & of the corotating frame by setting J§ = 0. The remaining
components of the neutrino polarization current Jf, ]{' R ]%’ ,
J5. J3, and J3 for the stationary solutions can be solved from the
iterative procedure in Section 2.

We find that the stationary solutions can be classified into the
following types, with the subscript L denoting either &; or é;:
(1) J¥** ~ 0, which represents the initial configuration, and there-
fore, is trivial, (I) J7¥ ~0 and J% ~ O(w), (1) J7¥ ~ O(w) and
J2 ~0, and (IV) J7Y ~O(u) and J% ~ O(p). Type Il is fur-
ther divided into two subtypes: (Illa) JX LJ} (J¥#0, J{ =0,
J3 #0), and (Ib) JX || J% (J¥#0, J{ #0, J3 = 0). Similarly,
type IV is further divided into three subtypes: (IVa) J§ L Jﬂ’_ and
FNE (JF#0, J{ =0, J{#0, J3#0, J5=0), (IVb) &} || J]
and B LJ (J5#0, JT#0, J:=]) =0, J5+#0) and (IVc)
XY 2 (JE£0, JY#£0, JE#£0, J¥ = J2=0). While the
above classification reflects specific relations among the neutrino
polarization current components, such relations are not used to
find the stationary solutions but are observed after the solutions
are obtained. Note that large magnitudes of J77** correspond to
substantial overall flavor transformation with large magnitudes of
P, for wide ranges of v.

Because the procedure outlined in Section 2 involves solving in-
tegral equations, the results are not unique in general and are only
candidate stationary solutions. We perturb the polarization vectors
P(v) of a candidate solution with random deviations of magnitude
up to 1073 and evolve them with Eq. (4) until the stability of the
solution can be established or otherwise. The stable ones are se-
lected as true stationary solutions. Note that the results may not
be unique even after the above stability test.
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Fig. 2. Comparison of the survival probabilities from the stationary solutions with
the numerical results for y = 2. Symbols at the same v are for different azimuthal
angles. In panel (a), the symbols are the averages of the results for the stationary so-
lutions [shown in panels (c) and (e)] and the orange curve is obtained by averaging
these symbols over the azimuthal angle. In panel (b), the symbols are the numeri-
cal results and the magenta curve is obtained by averaging these symbols over the
azimuthal angle. The same magenta curve is also shown in panels (a), (c), and (e)
for comparison. In panel (c), the symbols show the stationary solution of type Illa.
In panel (e), the symbols show the stationary solution of type IVa and the orange
curve is obtained by averaging these symbols over the azimuthal angle. In panels
(d) and (f), the symbols show the survival probabilities (red: mean, blue and green:
limits) including the approximate effect of nonadiabatic evolution for the stationary
solutions of types Illa and IVa, respectively.

For y =2, we find seven candidate stationary solutions, two of
which are stable (types Illa and IVa). In contrast, only one of the
five candidate solutions are stable (type Illa) for y =3 (see Ap-
pendix A). The survival probabilities (P3 + 1)/2 corresponding to
the true stationary solutions are shown in Figs. 2 and 3 for com-
parison with the numerical results. The corresponding values of €,
J¥, J¥, and J* are given in Table 1. For both y =2 and 3, the sta-
tionary solution of type Illa has J5=J3 = J5 =0 and JX L J)
with J¥ = ]i. Consequently, 131’3 and hence P3 are independent of
the azimuthal angle [see Eqs. (5) and (7)] with the corresponding
survival probabilities exhibiting azimuthal symmetry. In contrast,
for y =2, the stationary solution of type IVa has J§ # 0 and
JV'* # 0. Therefore, the corresponding survival probabilities de-
pend on the azimuthal angle.

The vELN distribution g(v#) crosses zero at v ~ 0.38 and 0.07
for y =2 and 3, respectively. It can be seen from Figs. 2 and 3
that except for vZ near the zero-crossings, the survival probabil-
ities given by the stationary solutions show the same trends as
the numerical results. For more detailed comparisons, we calculate
the average survival probability for each bin of v? by averaging
the numerical results over the azimuthal angle. Fig. 3(a) shows
that the stationary solution for y =3 describes the average sur-
vival probabilities very well away from the zero-crossing. Because
there are two types of stationary solutions for y =2, we calcu-
late the corresponding average survival probability for each bin of
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Fig. 3. Similar to Fig. 2, but for y = 3. In panel (a), the symbols show the stationary
solution of type Illa and the magenta curve shows the survival probabilities aver-
aged over the azimuthal angle for the numerical results in panel (b). In panel (c),
the symbols show the survival probabilities (red: mean, blue and green: limits) in-
cluding the approximate effect of nonadiabatic evolution based on the stationary
solution in panel (a). Panel (d) is the same as panel (c), but for a new stationary
solution of type Illa’ characterized by a new ansatz for the neutrino polarization
vectors.

v? by weighing each type of solution equally and then averaging
the results over the azimuthal angle. Fig. 2(a) shows that these av-
erage survival probabilities are also in good agreement with the
numerical results away from the zero-crossing.

The large deviations of the survival probabilities for the sta-
tionary solutions from the numerical results for v? near the zero-
crossings are caused by the breakdown of adiabatic evolution as-
sumed in deriving these solutions. The corresponding neutrinos
have small values of [H; (v)| = |H/3.tU (V)] < that result in nona-
diabatic flavor evolution. The effect of this nonadiabaticity can be
approximated by including a component of P(v) that is perpen-
dicular to and rapidly rotating around H'(v) in addition to the
component aligned with the latter and given by

Palign(V) & €efr (VA (V). (10)

In the above equation, H'(v) is taken from the stationary solution
and €q¢(v) is taken as the error function

€er(v) = erf[H3 , (v)/], (11)

which approaches € (v) = £1 in Eq. (8) for adiabatic evolution with
|H/3,t0/M| > 1. Because the magnitude of P(v) is conserved during
the evolution, its component perpendicular to H (v) should have
a magnitude of /1 — [€f(V)]2. Due to the rapid rotation of this
component around H'(v), the effective P3 oscillates between the
limits

P31im(V) = P3(v) £ /1 — [€er(W) 12/ 1 — [H; (W) 12, (12)
where
P3(V) = P3_align(V) ~ €cfr(V) H5 (V) (13)

is the mean value due to the component aligned with H'(v). The
corresponding survival probabilities are shown as the blue, green
(limits), and red (mean) symbols in Figs. 2(d), 2(f) for y =2 and in
Fig. 3(c) for ¥ = 3. It can be seen that these results describe both
the trends and the range of the numerical results rather well.
Because the rapidly rotating component of P(v) perpendicular
to H'(v) is essentially averaged out, only P,jg,(V) is effectively
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used to find the stationary solutions. We can choose €es(V) and
use Eq. (10) to replace Eq. (8) in the procedure to find these solu-
tions. As an example, we choose

€ur(V) =erf[1.5H; , (V) /1] (14)

for y =3 and obtain a new stationary solution, which is also of
type Illa (denoted as IlIa"). The corresponding survival probabilities
(mean and limits) are calculated in the same way as for Fig. 3(c)
and shown in Fig. 3(d). The corresponding values of €, J*, J¥, and
J# are given in Table 1. It can be seen that the new stationary so-
lution is much closer to the numerical results. While the effect of
nonadiabatic evolution can be well approximated by choosing an
appropriate €_(v) as in the above example, we note, however, that
our original procedure to find the stationary solutions assuming
adiabatic evolution is more straightforward and can already pro-
duce average survival probabilities to good approximation.

As discussed above, nonadiabatic evolution appears to be as-
sociated with the zero-crossing of the vELN distribution g(v#). On
the other hand, if g(v?) has no zero-crossing as for y =1 or 4 (see
Fig. 1), the initial values of P3(v) =1 make jg reach the most pos-
itive or negative value for y =1 or 4, respectively. Conservation of
jg then ensures P3(v) =1 subsequently, and therefore, there is no
flavor evolution at all [5].

4. Discussion and conclusions

We have presented a method to find the stationary solutions for
fast flavor oscillations of a homogeneous dense neutrino gas whose
angular vELN distribution has a zero-crossing. These solutions cor-
respond to collective precession of all neutrino polarization vectors
around a fixed axis in the flavor space on average, and are conve-
niently studied in the co-rotating frame. We have shown that these
solutions can account for the numerical results of explicit evolution
calculations, and that even with the simplest assumption of adia-
batic evolution, they can provide the average survival probabilities
to good approximation. These solutions can be further improved
by including the effect of nonadiabatic evolution, which in turn,
can be approximated by choosing an appropriate ansatz for the
alignment of the polarization vectors with the effective Hamilto-
nian in the co-rotating frame. While we have focused on specific
VELN distributions for our examples, we show in Appendix B that
our method applies to other VELN distributions as well.

Besides shedding light on the nonlinear regime of fast oscil-
lations, the stationary solutions discussed here provide physically
motivated estimates of the average survival probabilities beyond
the simple limit of complete flavor equilibration. Because these so-
lutions can be efficiently calculated, they may be incorporated in
simulations of dynamical astrophysical environments such as su-
pernovae and neutron star mergers, for which the computational
resources must be almost exclusively devoted to hydrodynamics
and regular neutrino transport by necessity. We note that our
method assumes a homogeneous neutrino gas but the environ-
ments where fast oscillations may occur are most likely inhomoge-
neous. Consequently, the stationary solutions discussed here may
only provide a crude yet efficient way to explore the effects of fast
oscillations on neutrino-related processes in supernovae and neu-
tron star mergers. The general problem of flavor evolution of an
inhomogeneous dense neutrino gas is beyond our scope here and
requires further dedicated studies.
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Appendix A. Numerical tests

Fig. A.4 shows the snapshots of our explicit evolution calcula-
tions at t = 1.6, 1.8, and 2 km for the assumed VELN distributions
with y =2 and 3. It can be seen that an approximately stationary
state has been reached by t =2 km in both cases.

Fig. A.5 shows the evolution of ]} for some candidate stationary
solutions after they are perturbed. Note that the results for type I
are calculated from the initial configurations and become approx-
imately constant at late times as expected of the approximately
stationary states shown in Fig. A.4. For y = 2, only types Illa and
IVa are the true stationary solutions. Type IVb is quasi-stable for
t < 0.3 km but deviates from the initial state subsequently. There-
fore, it is not a true stationary solution. Note that the average value
of J for types Illa and IVa is close to the late-time value of 3 for
type L. For y =3, only type Illa is the true stationary solution.

Appendix B. Other vELN distributions

We have repeated the calculations for two more vELN distribu-
tions taken from [24] (case A) and [6] (case B):

(cos~1v%)2

5 } +0.5, (B.1)

ga(v?) = —exp [—
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Fig. A.5. Evolution of J§ for some candidate stationary solutions after they are per-
turbed. For the VELN distribution with y = 2, the difference between types IVa and
IVb is highlighted in the top panel.

(1-v??

(1—v?)?
0.72 } :

) —10exp | —
85 (V") exp[ 0.562

] — 10.66 exp [—
(B.2)

The zero-crossing occurs at v? ~ 0.38 and 0.6 for gs(v®) and
gg(v?), respectively.

Fig. B.6 shows that an approximately stationary state has been
reached by t =2 km for the explicit evolution calculations for both
cases A and B, and compares the survival probabilities from the
stationary solutions with the numerical results. For case A, we find
three nontrivial candidate stationary solutions of types II, IlIb, and
IVb. Only type IVb is stable (see Fig. B.7), and the correspond-
ing average survival probabilities match the numerical results very
well away from the zero-crossing at vZ ~ 0.38 [see Fig. B.6(d)]. The
trend and range of the numerical results can also be explained by
including the approximate effect of nonadiabatic evolution based
on this solution with

efr(V) = erf[2H  (v)/u1] (B3)

replacing Eq. (11) [see Fig. B.6(e)]. For case B, we find two non-
trivial candidate stationary solutions of types Illa and Illb. Only
type Illa is stable (see Fig. B.7). The corresponding average survival
probabilities qualitatively follow the numerical results away from
the zero-crossing at v# ~ 0.6 [see Fig. B.6(i)]. The trend and range
of the numerical results for v > 0.5 can also be explained by in-
cluding the approximate effect of nonadiabatic evolution based on
this solution with

€err(V) = erf[3H3 , (v)/u]

replacing Eq. (11) [see Fig. B.6(j)].

The flavor evolution for the vELN distribution of case B differs
from all the other cases considered in that it is associated with a
sign flip of J5. As J% changes from the initial value of —803 km™!
to ~450km™" for the approximately stationary state (see Fig. B.7),
neutrinos with a wide range of v# undergo nonadiabatic evolu-
tion. This effect cannot be captured by our approximate treatment
of nonadiabatic evolution, which is appropriate only for a limited

(B4)
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Fig. B.6. Comparison of the survival probabilities from the stationary solutions with
the numerical results for the vELN distributions of cases A and B. Symbols at the
same vZ are for different azimuthal angles. In panels (a), (b), and (c), snapshots of
the numerical results are shown for t = 1.6, 1.8, and 2 km, respectively, for case
A. The magenta curves are the survival probabilities averaged over the azimuthal
angle. In panel (d), the symbols show the stationary solution for case A, the orange
curve is obtained by averaging these symbols over the azimuthal angle, and the
magenta curve is the same as that in panel (c). In panel (e), the symbols show the
survival probabilities (red: mean, blue and green: limits) including the approximate
effect of nonadiabatic evolution for the stationary solution for case A. Panels (f)-(j)
are similar to panels (a)-(e), but for case B.

range of v# around the zero-crossing. We note, however, that for
the likely inhomogeneous astrophysical environments, the domi-
nant instability associated with the vELN distribution of case B
grows differently on different spatial scales [6,17]. Therefore, a re-
alistic treatment of this case must address both the temporal and
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Fig. B.7. Evolution of ]§ for the candidate stationary solutions for the VELN distribu-
tions of cases A and B after they are perturbed. For case B, the difference between
types Illa and IIIb is highlighted in the middle panel.

spatial flavor evolution of neutrinos, which is beyond our scope
here.
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