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Abstract. Stochastic gradient descent (SGD) algorithms, with constant momentum and its variants such as
Adam, are the optimization methods of choice for training deep neural networks (DNNs). There
is great interest in speeding up the convergence of these methods due to their high computational
expense. Nesterov accelerated gradient with a time-varying momentum (NAG) improves the con-
vergence rate of gradient descent for convex optimization using a specially designed momentum;
however, it accumulates error when the stochastic gradient is used, slowing convergence at best and
diverging at worst. In this paper, we propose scheduled restart SGD (SRSGD), a new NAG-style
scheme for training DNNs. SRSGD replaces the constant momentum in SGD by the increasing
momentum in NAG but stabilizes the iterations by resetting the momentum to zero according to a
schedule. Using a variety of models and benchmarks for image classification, we demonstrate that,
in training DNNs, SRSGD significantly improves convergence and generalization; for instance, in
training ResNet-200 for ImageNet classification, SRSGD achieves an error rate of 20.93% versus the
benchmark of 22.13%. These improvements become more significant as the network grows deeper.
Furthermore, on both CIFAR and ImageNet, SRSGD reaches similar or even better error rates with
significantly fewer training epochs compared to the SGD baseline. Our implementation of SRSGD
is available at https://github.com/minhtannguyen/SRSGD.
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1. Introduction. Training many machine learning models reduces to solving the finite-
sum optimization problem

N
(1.1) wmgiﬂl{ld f(w) = ur}léiﬂléld % ;fz(w) = L(g(xi,w),yi),
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where {x;, yz}fil are the training samples and L is the loss function, e.g., cross-entropy loss
for a classification task, that measure the discrepancy between the ground-truth label y; and
the prediction by the model g(-,w), parametrized by w. The problem (1.1) is known as
empirical risk minimization (ERM). In many applications, f(w) is nonconvex, and g(-, w)
is chosen among deep neural networks (DNNs) due to their preeminent performance across
various tasks. These deep models are heavily overparametrized and require large amounts of
training data. Thus, both N and the dimension of w can scale up to millions or even billions.
These complications pose serious computational challenges.

One of the simplest algorithms to solve (1.1) is gradient descent (GD), which updates w
according to

N
(1.2) wh = wh — s E Vi (w"),

where s3, > 0 is the step size at the kth iteration. Computing V f(w*) on the entire training set
is memory intensive and often prohibitive for devices with limited random access memory such
as GPUs used for deep learning (DL). In practice, we sample a subset of the training set, of size
m with m < N, to approximate V f(w*) by the minibatch gradient 1/m Z;nzl Vfi (w"), re-
sulting in the (minibatch)-stochastic gradient descent (SGD). SGD and its accelerated variants
are among the most used optimization algorithms in machine learning. These gradient-based
algorithms have low computational complexity, and they are easy to parallelize, making them
suitable for large-scale and high dimensional problems [53, 52].

Nevertheless, GD and SGD have issues with slow convergence, especially when the problem
is ill-conditioned. There are two common techniques to accelerate GD and SGD: adaptive step
size [14, 23, 51] and momentum [41]. GD with constant momentum leverages the previous
step information to accelerate GD according to

(1.3) Rl — k5 V] (wk) Lt = bt (,UkJrl _ ,Uk) 7

where > 0 is a constant. A similar acceleration can be achieved by the heavy-ball (HB)
method [41]. HB have the same convergence rate of O(1/k) as that of GD for convex smooth
optimization. A breakthrough due to [38] replaces u with (k —1)/(k + 2), which is known as
the Nesterov accelerated gradient (NAG) with time-varying momentum. NAG accelerates the
convergence rate to O(1/k?), which is optimal for convex and smooth loss functions [38]. In
practice, NAG momentum can accelerate GD for nonconvex optimization, especially when the
underlying problem is poorly conditioned [18]. However, NAG accumulates error and causes
instability when the gradient is inexact [13, 2]. In many DL applications, constant momentum
achieves state-of-the-art results, for instance, in training DNNs for image classification. Since
NAG momentum achieves a much better convergence rate than constant momentum with
exact gradient for general convex optimization, we consider the following question:

Can we leverage NAG with a time-varying momentum parameter to accelerate SGD in
training DNNs and improve the test accuracy of the trained models?

Contributions. We answer the above question by proposing the first algorithm that
integrates scheduled restart NAG momentum with plain SGD. Here, we restart the momen-
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tum, which is orthogonal to the learning rate restart [33]. We name the resulting algorithm

scheduled restart SGD (SRSGD). The major practical benefits of SRSGD are fourfold:

e SRSGD remarkably speeds up DNN training. For image classification, SRSGD significantly
reduces the number of training epochs while preserving or even improving the deep network’s
accuracy. In particular, on CIFAR10/100, the number of training epochs is reduced by half
with SRSGD, while on ImageNet the reduction in training epochs is also remarkable.

e DNNGs trained by SRSGD generalize significantly better than the benchmark optimizers. The
improvement becomes more significant as the network grows deeper as shown in Figure 1.

o SRSGD reduces overfitting in training very deep networks such as ResNet-200 for ImageNet
classification, enabling the accuracy to keep increasing with depth.

e SRSGD is straightforward to implement and only requires changing in a few lines of the
SGD code. There is also no additional computational or memory overhead.
We focus on image classification with DNNs, in which SGD with momentum is the choice.
Related work. Momentum has long been used to accelerate SGD. SGD with momentum
and a good initialization can handle the curvature issues in training DNNs and enable the
trained models to generalize well [49]. In [27], the authors integrate momentum with adaptive
step size to accelerate SGD. In this work, we study the time-varying momentum version of
NAG with restart for stochastic optimization. Adaptive and scheduled restart have been used
to accelerate NAG with the exact gradient [35, 37, 25, 31, 43, 39, 17, 48]; these studies of restart
NAG momentum are for convex optimization with the exact gradient. In [15, 16], the authors
provide analysis for the general stochastic gradient—-based optimization algorithms. Restart
techniques have also been used for stochastic optimization [28]. In particular, the authors of
[4] have developed a multistage variant of NAG with momentum restart between stages. Our
work focuses on developing NAG-based optimization for training DNNs. Efforts have also
been devoted to studying the nonacceleration issues of SGD with HB and NAG momentum
[26, 32], as well as accelerating first-order algorithms with noise-corrupted gradients [12, 3, 29].
Organization. In section 2, we review and discuss momentum for accelerating GD for
convex smooth optimization. In section 3, we present the SRSGD algorithm and its theoretical
guarantees. In section 4, we verify the efficacy of the proposed SRSGD in training DNNs for
image classification on CIFAR and ImageNet. In section 4.3, we perform empirical analysis of
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Figure 1. Error rate versus depth of ResNet models trained with SRSGD and the baseline SGD with
constant momemtum. Advantage of SRSGD continues to grow with depth.
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SRSGD. This paper ends with some concluding remarks. Technical proofs are provided in the
appendix. Some experimental details and more results in training long short-term memories
(LSTMs) [24] and wasserstein generative adversarial networks (WGANS) [1, 19] are provided
in the supplementary materials.

Notation. We denote scalars/vectors by lowercase/lowercase boldface letters and ma-
trices by uppercase boldface letters. For a vector @ = (z1,...,24) € R?, we denote its 4y
norm by ||z||, = (Z?Zl |2;|P)}/P. For a matrix A, we use ||A|, to denote its induced norm
by the vector ¢, norm. We denote the interval a to b (included) as (a,b]. For a function
f(w) : R* — R, we denote its gradient and Hessian as V f(w) and V2 f(w), respectively.

2. Review: Momentum in gradient descent. GD (1.2) is a popular approach to solve
(1.1), which dates back to [9]. If f(w) is convex and gradient L-Lipschitz, then GD converges
with rate O(1/k) by letting sy = 1/L (we use this s; in all the discussion below), which is
independent of the dimension of w.

HB [41] accelerates GD by using the history, which iterates as follows:

(2.1) whtl = wh — 5, Vf (wk> + (fwk - wk_1> , > 0.

We can also accelerate GD by using the momentum scheme in (1.3). HB has a convergence
rate of O(1/k) for convex smooth optimization. Recently, several variants of (1.3) have been
proposed for DL, e.g., [49] and [6].

NAG [38, 5] iterates as

tr—1
(2.2) o — wh — 5 V] (,wk) S S S B (,Uk+1 _ ,vk) ’

where tj41 = (14 /14 4t2)/2 with ¢ty = 1. NAG achieves a convergence rate O(1/k?) with

the step size s = 1/L, which is the optimal rate for convex smooth optimization.

Remark 1. In [48], the authors show that (k —1)/(k + 2) is the asymptotic limit of (¢ —
1)/tk+1. In the following presentation of NAG with restart, for the ease of notation, we will
replace the momentum coefficient (¢t — 1)/tgs1 with (k —1)/(k + 2).

2.1. Adaptive Restart NAG. The sequences, {f(w*) — f(w*)} where w* is the minimum
of f(w), generated by GD and GD with an appropriate constant momentum (GD + Momen-
tum, which follows (1.3)) converge monotonically to zero. However, that sequence generated
by NAG oscillates, as illustrated in Figure 2(a) when f(w) is a quadratic function. The au-
thors of [39] propose adaptive restart NAG (ARNAG) (2.3), which restarts the time-varying
momentum of NAG according to the change of function values, to alleviate this oscillatory
phenomenon. ARNAG iterates as follows:

k1l _ ok Nk e, mE) =1 g
(2.3) v =w ska<w), w' = +m(k)+2(v v),

where m(1) = 1; m(k + 1) = m(k) + 1 if f(w**1) < f(w*), and m(k + 1) = 1 otherwise.
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2.2. Scheduled Restart NAG. Scheduled restart (SR) is another strategy to restart the
time-varying momentum of NAG. We first divide the total iterations (0,7 (integers only)
into a few intervals {I;}, = (T;—1,T;] such that (0,7] = |J;~, I;. In each I; we restart the
momentum after every F; iterations. The update rule is then given by

k+1 _ .k kY . k+1 _ , k+1 (k mod F;) k+1 _ k
(2.4) v =w ska<w>, w' = +—(kmodFi)+3<U ’U).
ARNAG/SRNAG converges linearly for convex optimization problems when the Polyak—
Lojasiewicz (PL) condition holds [46].

2.3. Case study—Quadratic function. Consider the following quadratic optimization
problem [20]:

1
(2.5) min f(x) = §:cTLa: —z7b,
T

where L € R%*? is the Laplacian of a cycle graph, and b is a d-dimensional vector whose first
entry is 1 and all the other entries are 0. Note that f(x) is convex with Lipschitz constant 4.
In particular, we set d = 1K (1K := 10%). We run 7' = 50K iterations with step size 1/4. In
SRNAG, we restart, i.e., we set the momentum to 0, after every 1K iterations. Figure 2(a)
shows that GD + Momentum as in (1.3) converges faster than GD, while NAG speeds up GD
+ Momentum dramatically and converges to the minimum in an oscillatory fashion. Both AR
and SR further accelerate NAG significantly.

3. Algorithm proposed: Scheduled restart SGD. Computing the gradient for (1.1) can
be computationally costly and memory intensive, especially when the training set is large. In
many applications, such as training DNNs, SGD is used. In this section, we first prove the
error accumulation of SGD with NAG momentum. The proof informs us to restart the NAG
momentum for a convergence guarantee, resulting in the proposed SRSGD scheme.

3.1. Uncontrolled bound of Nesterov accelerated SGD. Replacing V f(w*) := 1/N Zf\;
Vfi(w*) in (2.2) with the minibatch gradient 1/m 77", V fi (w")(m < N) will lead to uncon-
trolled error; Theorem 3.1 formulates this point for Nesterov accelerated SGD (NASGD).

GD GD + Momentum NAG ARNAG SRNAG
10° 10° 10!
— (a) (b) (c)
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T 10 1072
= = 10-3
x
=
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0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
Iteration

Figure 2. Comparison between different schemes in optimizing the quadratic function in (2.5) with (a)
exact gradient, (b) gradient with constant variance Gaussian noise, and (c) gradient with decaying variance
Gaussian noise. NAG, ARNAG, and SRNAG can speed up convergence remarkably when an exact gradient is
used. Also, SRNAG is more robust to a noisy gradient than NAG and ARNAG.
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Theorem 3.1 (uncontrolled bound of NASGD). Let f(w) be a convex and L-smooth function
with |Vf(w)|| < R. The sequence {w*};>q generated by (2.2), with stochastic gradient of
bounded variance [8, 7| and using any constant step size s, = s < 1/L, satisfies

(3.1) E(f (w*) - flw")) = o),

where w* is the minimum of f, and the expectation is taken over the stochastic gradient.

The bound in Theorem 3.1 matches the bound given by [13] for a d-inexact gradient. We
will provide a proof of Theorem 3.1 in Appendix A. The proof shows that the uncontrolled
error bound is because the time-varying momentum gets closer and closer to 1 as iteration
increases. To remedy this problem, we can restart the momentum in order to guarantee that
the time-varying momentum with restart is upper bounded by a number that is strictly less
than 1.

We consider three different noisy gradients: Gaussian noise with constant and decaying
variance corrupted gradients for the quadratic optimization (2.5), and a training logistic re-
gression model for MNIST [30] classification. The detailed settings and discussion are provided
in Appendix SM1 (in the supplementary material). We denote SGD with NAG momentum
as NASGD and NASGD with AR and SR as ARSGD and SRSGD, respectively. The results
shown in Figures 2(b) and (c) (iteration versus optimal gap for quadratic optimization (2.5))
and Figure 3(a) (iteration versus loss for training logistic regression) confirm Theorem 3.1. For
these cases, SR improves the performance of NAG with inexact gradients. Moreover, when an
inexact gradient is used, ARNAG/ARSGD performs almost the same as GD/SGD asymptot-
ically because ARNAG/ARSGD restarts too often and almost degenerates to GD/SGD. The
faster convergence of using SR in noisy gradient scenarios than the other algorithms motivates
us to study the effectiveness of SRSGD in training deep networks.

——— SGD —— SGD + Momentum
NASGD —— ARSGD =—— SRSGD —— SGD + Momentum —— SRSGD
MNIST CIFAR10 ImageNet
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Figure 3. (a) Training loss comparison between different schemes in training logistic regression for MNIST
classification. Here, SGD is the plain SGD without momentum, and SGD + Momentum that follows (1.3)
and replaces gradient with the minibatch stochastic gradient. NASGD is not robust to noisy gradient, ARSGD
almost degenerates to SGD, and SRSGD performs the best in this case. (b), (¢) Training loss versus training
epoch of ResNet models trained with SRSGD (blue) and the SGD baseline with constant momentum as in
PyTorch implementation, which is denoted by SGD in section 4 (red).
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3.2. SRSGD and its convergence. For ERM (1.1), SRSGD replaces V f(w) in (2.4) with
stochastic gradient using batch size m, resulting in

1 & (k mod F;)
E+1 _ .k A kY. o k41 _ o k+l1 i k+1 ok
(3.2) v =w skjEZI Vfi (w ), w v +—(k od F)) + 3 ('v v )7

where F; is the restart frequency used in the interval I;. We implemented SRSGD, in both
PyTorch [40] and Keras [11], by changing just a few lines of code on top of the existing
implementation of the SGD optimizer. We formulate the convergence of SRSGD for general
convex and nonconvex problems in Theorem 3.2 and provide its proof in Appendix B.

Theorem 3.2 (convergence of SRSGD). Suppose f(w) is L-smooth. Consider the sequence
{w"} >0 generated by (3.2) with stochastic gradient that is bounded and has bounded variance,
and consider using any restart frequency F and using any constant step size sy :== s < 1/L.
Assume that 3 4 (Ef(wFt!) —Ef(w”)) = R < +o0o with R being a constant and the set
A= {k € ZY|Ef(w" ') > Ef(w")}; then we have

s i (el ()} =0 o+ k)

If f(w) is further convex and > cg(Ef(wFt) —Ef(w")) = R < 400 with R being a constant
and the set B := {k € ZT|E|lw"! — w*||? > E||w* — w*||?}, then

1
(3.4) 1£?K{E(f<w ) f(w ))} O<S+3F’>’
where w* is the minimum of f. To obtain any given € error, we set s = O(e) and K = O(1/€?).

Theorem 3.2 relies on the assumption that >, 4 or g (Ef(w**1) — Ef(w")) is bounded,
and we provide empirical verification of this assumption on training DNNs for MNIST and
CIFARI10 classification in Appendix B.1. We provide the detailed bounds of (3.3) and (3.4)
in Theorem B.2 in Appendix B.

Theorem 3.2 shows that SRSGD converges as long as the momentum coefficient does not
get infinitely close to 1. However, the convergence rate in Theorem 3.2 is independent of
the restart frequency, which in theory is suboptimal. Establishing acceleration results with
optimal restart under certain extra assumptions is an interesting problem. As far as we
are aware, in the exact gradient scenario, NAG with appropriate restart can achieve linear
convergence for convex optimization with the PL condition [46].

4. Experimental results. We evaluate SRSGD on a variety of benchmarks for image
classification, including CIFAR10, CIFAR100, and ImageNet. In all experiments, we show the
advantage of SRSGD over the widely used and well-calibrated SGD baselines with a constant
momentum of 0.9' and decreasing learning rate at certain epochs, which we denote as SGD.
We also compare SRSGD with the well-calibrated SGD in which we switch momentum to the
Nesterov momentum of 0.9, and we denote this optimizer as SGD + NM. We fine tune the

!For SGD, we have tested momentum from 0 to 1.0 with an interval of 0.5 and confirmed 0.9 is optimal.
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SGD and SGD + NM baselines to obtain the best validation performance, and we then adopt
the same set of parameters for training with SRSGD. In the SRSGD experiments, we tune
the restart frequencies on small DNNs for each task based on the validation performance and
apply the calibrated restart frequencies to large DNNs for the same task. Note that ARSGD
is impractical for training on large-scale datasets since it requires computing the loss over the
whole training set at each iteration, which is very computationally inefficient. Alternatively,
ARSGD can estimate loss and restart using minibatches, but then ARSGD restarts too often
and degenerates to SGD without momentum as we mentioned in section 3. Thus, we do not
compare with ARSGD in our CIFAR and ImageNet experiments. The details about hyper-
parameters calibration can be found in Appendix SM2.4 (in the supplementary material).
We provide a detailed description of datasets and experimental settings in Appendix SM2
(in the supplementary material). Additional experimental results in training LSTMs [24] and
WGANS [1, 19] with SRSGD, as well as a comparison between SRSGD and SGD + NM on
ImageNet classification task, are provided in Appendix SM3 (in the supplementary material).
We also note that in all the following experiments, the training loss will blow up if we apply
NASGD without restart. These further confirm the stabilizing effect of scheduled restart in
training DNN.

4.1. CIFAR10 and CIFAR100. We summarize our results for CIFAR in Tables 1 and 2.
We also explore two different restarting frequency schedules for SRSGD: linear and exponential
schedules. These schedules are governed by two parameters: the initial restarting frequency
Fy and the growth rate r. In both scheduling schemes, the restarting frequency at the first
learning rate stage is set to F} during training. Then the restarting frequency at the (k+1)th
learning rate stage is determined by

Fy xrk exponential schedule,
Fiy1 = _
Fy x (14 (r—1) x k) linear schedule.

We search F; and r using the method outlined in Appendix SM2.4 (in the supplementary
material) for both schedules on the smallest DNN used for each task. For CIFAR10, (F} =
40,7 = 1.25) and (Fy = 30,r = 2) are good initial restarting frequencies and growth rates
for the exponential and linear schedules, respectively. For CIFAR100, those values are (F; =
45,17 = 1.5) for the exponential schedule and (F; = 50,7 = 2) for the linear schedule.
Improvement in accuracy increases with depth. We observe that the linear schedule
of restarting frequency yields better test error on CIFAR than the exponential schedule for
most of the models except for Pre-ResNet-470 and Pre-ResNet-1001 on CIFAR100 (see Ta-
bles 1 and 2). SRSGD with either a linear or an exponential schedule for restarting frequency
outperforms SGD. Furthermore, the advantage of SRSGD over SGD is more significant for
deeper networks. This observation holds strictly when using the linear schedule (see Figure 1)
and is generally true when using the exponential schedule with only a few exceptions.
Faster convergence reduces the training time by half. SRSGD also converges faster
than SGD. This result is consistent with our MNIST case study in section 3 and indeed
expected since SRSGD can avoid the error accumulation when there is an inexact oracle.
For CIFAR, Figure 3(b) shows that SRSGD yields smaller training loss than SGD during
the training. Interestingly, SRSGD converges quickly to good loss values in the second and
third stages. This suggests that the model can be trained with SRSGD in many fewer epochs
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Table 1
Classification test error (%) on CIFAR10 using SGD, SGD + NM, and SRSGD. We report the results
of SRSGD with two restarting schedules: linear (lin) and exponential (exp). The numbers of iterations after
which we restart the momentum in the lin schedule are 30, 60, 90, 120 for the 1st, 2nd, 3rd, and 4th learning
rate stages. Those numbers for the exp schedule are 40, 50, 63, 78. We include the reported baseline results
from [22] (in parentheses) in addition to our reproduced results.

Network |#Params| SGD (baseline) |[SGD+NM| SRSGD | SRSGD | Improve over Improve over
(lin) (exp) [SGD (lin/exp)|SGD+NM (lin/exp)
Pre-Res-110| 1.1M |5.25+£0.14 (6.37)[5.24 £+ 0.16/4.93 + 0.13/5.00 4 0.47|  0.32/0.25 0.31/0.24
Pre-Res-290| 3.0M 5.05£0.23 5.04 +0.12/4.37 £ 0.154.50 £ 0.18| 0.68/0.55 0.67/0.54
Pre-Res-470| 4.9M 4.92 +0.10 4.97 +0.154.18 £ 0.094.49 + 0.19| 0.74/0.43 0.79/0.48
Pre-Res-650| 6.7TM 4.87+0.14 4.80 £+ 0.14/4.00 + 0.074.40 + 0.13| 0.87,/0.47 0.80/0.40
Pre-Res-1001| 10.3M [4.84 £+ 0.19 (4.92)|4.62 + 0.143.87 £ 0.07|4.13 £ 0.10| 0.97/0.71 0.75/0.49
Table 2

Classification test error (%) on CIFAR100 using SGD, SGD + NM, and SRSGD. We report the results of

SRSGD with two restarting schedules: linear (lin) and exponential (exp). The numbers of iterations after which
we restart the momentum in the lin schedule are 50, 100, 150, 200 for the 1st, 2nd, 3rd, and 4th stages. Those
numbers for the exp schedule are 45, 68, 101, 152. We include the reported results from [22] (in parentheses)

in addition to our reproduced results.

Network |#Params| SGD (baseline) | SGD+NM | SRSGD SRSGD | Improve over [Improve over
(lin) (exp) |SGD (lin/exp)| SGD+NM
(lin/exp)

Pre-Res-110| 1.2M 23.75+0.20 23.65 + 0.3623.49 £+ 0.23(23.50 4+ 0.39|  0.26/0.25 0.16/0.15
Pre-Res-290 | 3.0M 21.78 £ 0.21 21.68 +0.2121.49 £+ 0.27|21.58 + 0.20|  0.29/0.20 0.19/0.10
Pre-Res-470 | 4.9M 21.43 +0.30 21.21 +0.30[20.71 + 0.32/20.64 £ 0.18| 0.72/0.79 0.50/0.57
Pre-Res-650| 6.7TM 21.27+0.14 21.04 + 0.38/20.36 + 0.25(20.41 4+ 0.21| 0.91/0.86 0.68/0.63
Pre-Res-1001| 10.4M |20.87 4 0.20 (22.71)[20.13 £ 0.16/19.75 + 0.11(19.53 £ 0.19| 1.12/1.34 0.38/0.60

compared to SGD while achieving a similar error rate. Another interesting result demonstrated
in Figure 3(b) is that the training loss of SRSGD may increase in each training stage with a
given learning rate and an appropriate restart, which can escape some local minima that do
not generalize well. It is interesting to study this intuition for future work.

Results in Table 3 confirm the hypothesis above. We train Pre-ResNet models with SRSGD
in only 100 epochs, decreasing the learning rate by a factor of 10 at the 80th, 90th, and
95th epochs while using the same linear schedule for restarting frequency as before with
(F1 = 30,r = 2) for CIFARI10 and (F; = 50,7 = 2) for CIFAR100. We compare the test
error of the trained models with those trained by the SGD baseline in 200 epochs. We observe
that SRSGD training consistently yields lower test errors than SGD except for the case of
Pre-ResNet-110 even though the number of training epochs of our method is only half of the
number of training epochs required by SGD. For Pre-ResNet-110, SRSGD needs 110 epochs
with learning rate decreased at the 80th, 90th, and 100th epochs to achieve the same error
rate as the 200-epoch SGD training on CIFAR10. On CIFAR100, SRSGD training for Pre-
ResNet-110 needs 140 epochs with learning rate decreased at the 80th, 100th, and 120th
epochs to outperform the 200-epoch SGD. Comparison with SGD short training is provided
in Appendix SM4.2 (in the supplementary material).

4.2. ImageNet. Next, we discuss our experimental results on the 1000-way ImageNet
classification task [47]. We conduct our experiments on ResNet-50, 101, 152, and 200 with
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Table 3
On CIFAR10/100 (%), SRSGD training with only 100 epochs achieves classification errors (%) comparable
to the SGD baseline training with 200 epochs.

CIFAR10 CIFAR100
Network SRSGD Improvement SRSGD Improvement
Pre-Res-110 5.43 +0.18 —0.18 23.85 4+ 0.19 —0.10
Pre-Res-290 4.83+0.11 0.22 21.774+0.43 0.01
Pre-Res-470 4.64 +£0.17 0.28 21.424+0.19 0.01
Pre-Res-650 4.43+0.14 0.44 21.04 +0.20 0.23
Pre-Res-1001 4.174+0.20 0.67 20.27+0.11 0.60
Pre-Res-110 [5.25 £ 0.10 (110 epochs) 0.00 23.73 £ 0.23 (140 epochs) 0.02

Table 4
Single crop validation errors (%) on ImageNet of ResNets trained with SGD baseline and SRSGD. We
report the results of SRSGD with the increasing restarting frequency in the first two learning rates. In the
last learning rate, the restarting frequency is linearly decreased to 1. For baseline results, we also include the
reported single-crop validation errors [21] (in parentheses).

Network | # Params SGD SRSGD
top-1 top-5 top-1 top-5 top-1 | top-5
ResNet-50 25.56M | 24.11 £0.10 (24.70) | 7.22 +0.14 (7.80) | 23.85+0.09 | 7.10£0.09 | 0.26 | 0.12
ResNet-101 | 44.55M | 22.42 4+ 0.03 (23.60) | 6.22 +0.01 (7.10) | 22.06 £ 0.10 | 6.09 £ 0.07 | 0.36 | 0.13
ResNet-152 | 60.19M | 22.03 £ 0.12 (23.00) | 6.04 +0.07 (6.70) | 21.46 £ 0.07 | 5.69 +0.03 | 0.57 | 0.35
ResNet-200 | 64.67M 22.13+0.12 6.00 £ 0.07 20.93+0.13 | 5.57+0.05 | 1.20 | 0.43

Improvement

five different seeds. We use the official PyTorch implementation [42] for all of our ResNet
models [40]. Following common practice, we train each model for 90 epochs and decrease
the learning rate by a factor of 10 at the 30th and 60th epochs. We use an initial learning
rate of 0.1, a momentum scaled by 0.9, and a weight decay value of 0.0001. Additional
details and comparisons between SRSGD and SGD + NM are given in Appendix SM3 (in the
supplementary material).

We report single crop validation errors of ResNet models trained with SGD and SRSGD
on ImageNet in Table 4. In contrast to our CIFAR experiments, we observe that for ResNets
trained on ImageNet with SRSGD, linearly decreasing the restarting frequency to 1 at the last
learning rate stage (i.e., after the 60th epoch) helps improve the generalization of the models.
Thus, in our experiments, we use linear scheduling with (F; = 40,7 = 2). From epochs 60 to
90, the restarting frequency decays to 1 linearly.

Advantage of SRSGD continues to grow with depth. Similar to the CIFAR exper-
iments, we observe that SRSGD outperforms the SGD baseline for all ResNet models that we
study. As shown in Figure 1, the advantage of SRSGD over SGD grows with network depth,
just as in our CIFAR experiments with Pre-ResNet architectures.

Avoiding overfitting in ResNet-200. ResNet-200 is an interesting model that demon-
strates that SRSGD is better than the SGD baseline at avoiding overfitting.” The ResNet-200
trained with SGD has a top-1 error of 22.13%, higher than the ResNet-152 trained with SGD,
which achieves a top-1 error of 22.03% (see Table 4). [22] pointed out that ResNet-200 suffers

2By overfitting, we mean that the model achieves low training error but high test error.
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Table 5
Comparison of single crop validation errors on ImageNet (%) between SRSGD training with fewer epochs
and SGD training with full 90 epochs.

Network SRSGD Reduction | Improvement | Network SRSGD Reduction | Improvement
ResNet-50 |24.30 +0.21 10 —0.19 ResNet-152 | 21.79 + 0.07 15 0.24
ResNet-101 | 22.32 4+ 0.06 10 0.1 ResNet-200 | 21.92 £ 0.17 30 0.21

from overfitting. The ResNet-200 trained with our SRSGD has a top-1 error of 20.93%, which
is 1.2% lower than the ResNet-200 trained with the SGD and also lower than the ResNet-152
trained with both SRSGD and SGD, an improvement by 0.53% and 1.1%, respectively. We
hypothesize that SRSGD with appropriate restart frequency is locally not monotonic (see
Figures 3(b), (c)), and this property allows SRSGD to escape from bad minima in order to
reach a better one, which helps avoid overfitting in very deep networks. Theoretical analysis
of the observation that SRSGD is less overfitting in training DNNs is under investigation.
Training ImageNet in fewer epochs. As in the CIFAR experiments, we note that
when training on ImageNet, SRSGD converges faster than SGD at the first and last learning
rates while quickly reaching a good loss value at the second learning rate (see Figure 3(c)).
This observation suggests that ResNets can be trained with SRSGD in fewer epochs while
achieving error rates comparable to the same models trained by the SGD baseline using all
90 epochs. We summarize the results in Table 5. On ImageNet, we note that SRSGD helps
reduce the number of training epochs for very deep networks (ResNet-101, 152, 200). For
smaller networks like ResNet-50, training with fewer epochs slightly decreases the accuracy.

4.3. Empirical analysis. SRSGD helps reduce the training time. We find that
SRSGD training using fewer epochs yields error rates comparable to both the SGD baseline
and the SRSGD full training with 200 epochs on CIFAR. We conduct an ablation study to
understand the impact of reducing the number of epochs on the final error rate when training
with SRSGD on CIFAR10 and ImageNet. In the CIFAR10 experiments, we vary the number
of epoch reductions from 15 to 90, while in the ImageNet experiments, we vary the number of
epoch reductions from 10 to 30. We summarize our results in Figure 4 and provide detailed
results in Appendix SM4 (in the supplementary material). For CIFAR10, we can train with
30 fewer epochs while still maintaining an error rate comparable to the full SRSGD training,
and with a better error rate than the SGD baseline trained in full 200 epochs. For ImageNet,
SRSGD training with fewer epochs decreases the accuracy but still obtains results comparable
to the 90-epoch SGD baseline.

Impact of restarting frequency. We examine the impact of restarting frequency on
the network training. We choose a case study of training a Pre-ResNet-290 on CIFARI10
using SRSGD with a linear schedule scheme for the restarting frequency. We fix the growth
rate r = 2 and vary the initial restarting frequency F; from 1 to 80. As shown in Figure 5,
SRSGD with a large Fi, e.g., F; = 80, approximates NASGD (yellow). We also show the
training loss and test accuracy of NASGD in red. As discussed in section 3, it suffers from
error accumulation due to stochastic gradients and converges slowly or even diverges. SRSGD
with small Fy, e.g., F} = 1, approximates SGD without momentum (green). It converges
faster initially but reaches a worse local minimum (i.e., larger loss). Typical SRSGD (blue)
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== Pre-ResNet-290 == Pre-ResNet-470 == ResNet-152 =——ResNet-200
— == results for the corresponding baseline SGD trainings which
= == use 200 epochs for CIFAR10 and 90 epochs for ImageNet

CIFAR10 ImageNet
------------------------------- 22,5

5.0

4.8

4.5
4.2
200 185 170 155 140 125 110 90 80 75 70 65 60

Number of Training Epochs

Test Error
Single Crop
Validation Error

Figure 4. Test error versus number of training epochs. Dashed lines are test errors of SGD trained with 200
epochs for CIFAR10 (left) and 90 epochs for ImageNet (right). For CIFAR, SRSGD with fewer epochs achieves
results comparable to SRSGD with 200 epochs. For ImageNet, training with less epochs slightly decreases the
performance of SRSGD but still achieves results comparable to 200-epoch SGD.

—F=1 F1=10 =—F,=30 F1=50 F1=80 ===NASGD (F;=+e°)
100 K————\-__\_\A_L\IAS_G\D 6.5 Approximate T‘:“ Error
; SGD withaut of NASGD
P < =32.44+0.84
8 i o momentum
= 10 5 5.5
£ -
© . [ %2}
= 10-2 Approglmate R
SGD without
4.5
momentum
0 100 200 1 10 30 50 80
Epoch Initial Restarting Frequency (F;)

Figure 5. Training loss (left) and test error (right) of Pre-ResNet-290 trained on CIFAR10 with different
initial restarting frequencies Fy (linear schedule). SRSGD with small Fy approximates SGD without momentum,
while SRSGD with large Fy approzimates NASGD. The training loss and test accuracy of NASGD are shown
in red and confirm the result of Theorem 3.1 that NASGD accumulates error due to the stochastic gradients.

converges faster than NASGD and to a better local minimum than both NASGD and SGD
without momentum. It also achieves the best test error. We provide more empirical analysis
results in Appendix SM4, SM5, and SM6 (in the supplementary material). The impact of the
growth rate r is studied in Appendix SM5.2 (in the supplementary material).

5. Concluding remarks and adaptive step size algorithms.

5.1. Comparison with Adam and RMSProp. SRSGD outperforms not only SGD with
momentum but also other popular optimizers including Adam and RMSProp [50] for image
classification tasks. In fact, for image classification tasks, Adam and RMSProp yield worse
performance than the baseline SGD with momentum [10]. Table 6 compares SRSGD with
Adam and RMSprop on CIFARI10.
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Table 6
Test errors on CIFAR10 of (left) Pre-ResNet-110 and (right) Pre-ResNet-290 using different optimizers.

SRSGD Adam RMSProp SRSGD Adam RMSProp
4.93+0.13% 6.83 +0.10% 7.31 +0.31%|4.37 £ 0.15% 6.12 + 0.18% 7.18 + 0.05%

5.2. Conclusion and future work. We propose the scheduled restart stochastic gradient
descent (SRSGD), with two major changes from the widely used SGD with constant momen-
tum. First, we replace the momentum in SGD with the iteration-dependent momentum that
used in the Nesterov accelerated gradient (NAG). Second, we restart the NAG momentum
according to a schedule to prevent error accumulation when the stochastic gradient is used.
For image classification, SRSGD can significantly improve the accuracy of the trained DNNs.
Also, compared to the SGD baseline, SRSGD requires fewer training epochs to reach the same
trained model’s accuracy. There are numerous avenues for future work: (1) deriving the opti-
mal restart scheduling and the corresponding convergence rate of SRSGD and (2) integrating
the scheduled restart NAG momentum with adaptive learning rate algorithms, e.g., Adam
[27].

Appendix A. Uncontrolled bound of NASGD. Consider the optimization problem
(A1) min f(w),

where f(w) is L-smooth and convex.
Starting from w¥, GD with step size %
function

(A.2) Qr (v,wk> = <v—wk,Vf (wk>>+gHv—wkH%.

can be formulated as the minimization of the

With direct computation, we can get that

Q. (v, 0t — min@, (v, wt) = 18 Zf(wk)Hz’

where g := L >V fij('wk). We assume the variance is bounded, which gives that the
stochastic gradient rule, R, satisfies E[Q, (vFT!, w*) — min Q, (v, w")|x*] < §, with § being a
constant and x* being the sigma algebra generated by w', w?, ..., wF, i.e.,

NASGD can be reformulated as

tr — 1
(A.3) v ~ argmin Q, (’U,wk> with rule Ry; wht! = bt 4 2K~ ('karl — vk> ,
v

28]
where to =1 and tg41 = (1+ /1 +4t3)/2.
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A.1. Preliminaries. We first introduce several definitions and some useful properties in
variational and convex analysis. More detailed background can be found at [34, 36, 45, 44].
Letting f be convex, we say f is L-smooth (gradient Lipschitz) if f is differentiable and

IVf(v) = Vf(w)ll2 < Lijv — wlls,
and we say f is v-strongly convez if for any w,v € dom(f)
v
fw) 2 f(v) +{Vf(v),w—v) + g |w - v|3.

In the following, we list several basic but useful lemmas; the proof can be found in [36].

Lemma A.1. If f is v-strongly convez, then for any v € dom(f) we have
* v *
(A.4) f(0) = f(v") = Zllv = o713,

where v* is the minimizer of f.

Lemma A.2. If f is L-smooth, for any w,v € dom(f),

Flaw) < Fw) + (V1) w —v) + & | — [}

A.2. Uncontrolled bound of NASGD: Analysis. In this part, we denote

(A.5) = argmin Q, (U,'wk) .
Lemma A.3. If the constant r > 0, then
2 2
(A.6) E (H,vk-i-l B ﬁmHz w) < 75

Proof. Note that Q,(v,w") is strongly convex with constant r, and ©**! in (A.5) is the
minimizer of Q,(v,w"). With Lemma A.1 we have

(A7) 0, (,Uk—&-l’,wk) — 0, (6k+1’wk> > 2
Notice that
E [Qr (vkﬂ,wk) - Qr (f)kﬂ,wkﬂ =E [QT (vkﬂ,wk) — mgn Q- ('v,wk>] <.

The inequality (A.6) can be established by combining the above two inequalities. |

Hvk+1 _ ,ak-i-lH

r
2 2

Lemma A.4. If the constant satisfies v > L, then we have

an () o (e (o) < o)

_ 2
> 5 "Ly [Hwk—f;k“H ]
2 2

where T = r(rLi—QL)""l'
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Proof. The convexity of f gives us

(A.9) 0< <v f (vkﬂ) Lokt 6k+1> v f ( ’““) f ('vk“) .
From the definition of the stochastic gradient rule R, we have
(A.10) _5<E ( ( R, ) ( k+1,wk))
= (- wh vy (w)) 5 ] et -]
wn ey e

With (A.9) and (A.10), we have

(A12) —6< (f (ﬁ’”l) +5 || o - H > ( ( kﬂ) +g
E(Vf (! ) F (1) okt - bt

+LIBI3 with g = £, 0 = Vf(0hHL) -

With the Schwarz inequality (a,b) < lall
Vf(@F1) and b = w — o+,

(A.13) <Vf (,wk> —vy (f)k—l-l) L ,vk+1>
2
HVf( )= (), g o -

2 12 2
_ gkt E+1 _ k1l
H2+ 2(r — L) H” Y Hz

Combining (A.12) and (A.13), we have

ot ) e (1 (o) ]
L2

a7l L e EE 8
2(r— L 2

2

- 2L2 2

(Al4)  —0<E (f (5"41) + i’ (

2
Rt wkH )
2

By rearrangement of the above inequality (A.14) and using Lemma A.3, we obtain the
result. |

Lemma A.5. If the constants satisfy r > L, then we have the following bounds:

(A.15) E (f(’vk) —f (vk+1)) > gE H'wk — 'kaHz +rE <wk — o okt — 'wk> — 74,

(A.16) E (f('v*) —f ('uk“)) > gIE H'wk — kaHE +rE <'wk — ¥, oMt — wk> — 79,

2 . ..
where T := ﬁ + 1 and v* is the minimum.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/11/22 to 131.179.222.29 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

SCHEDULED RESTART MOMENTUM FOR ACCELERATED SGD 753

Proof. With Lemma A.2, we have

2

() () (et ) ]

Using the convexity of f, we have
- () > (o4 ().
ie.,
(A.18) f(vk) >f <wk) + <'vk — wk,Vf (wk>>
According to the definition of ©**1 in (A.2), i.e.,
Rl = argm&nQr('v,wk) = argn%)in <'v —wk Vf <'wk)> + g Hv — wkHz,
and the optimization condition gives
(A.19) o = wh — %Vf <wk) .
Substituting (A.19) into (A.18), we obtain
(A.20) f*) > f ('wk) + <'vk —w r <'wk - 'E)k+1)> .
Direct summation of (A.17) and (A.20) gives
(A.21) F(oF) = f (fak“) > <r - §> Hﬁ’”l - '“’kHz Y <'wk — ok g wk> .
Summing (A.21) and (A.8), we obtain the inequality (A.15)
(A.22) E {f(vk) —f (vkﬂ)] > %E H'wk — kaHz +7rE <'wlc — o ot — wk> — 70.
On the other hand, with the convexity of f, we have
(A.23) f*) = f <wk) > <v* —wk Vf <wk)> = <v* —wkr (wk - 6k+1)> )
The summation of (A.17) and (A.23) results in
(A.24) Flo*) — f (ﬁk+1> > <r - ’;) lwk — 552 + <'wk e A wk> .
Summing (A.24) and (A.8), we obtain
(A.25) E (f(v*) —f (Uk+1)) > gE Hwk - kaHz +rE <wk — ¥, o — wk> — 70,

which is the same as (A.16). [ ]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/11/22 to 131.179.222.29 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

754 WANG, NGUYEN, SUN, BERTOZZI, BARANIUK, AND OSHER

Theorem A.6 (uncontrolled bound of NASGD). (Theorem 1 with detailed bound) Let the
constant r satisfy r < L and the sequence {vk}kzo be generated by NASGD with stochastic
gradient that has bounded variance. By using any constant step size s = s < 1/L, we have

(A.26) E | f(of) - ngnf(v)} < (2;5 + R2> %

Proof. We denote
F* = E(f(v*) = f(v")).

By (A.15) x (tx — 1) 4+ (A.16), we have
2[(ty — 1)Fk — thk+1]

(A.27) - > ,E Hvk+1 - w’“”i
+2E <13k+1 — w” tw” — (tx — l)vlC — v*> — QT:ké.
With 7, =12 — ty, (A.27) x t), yields
(h2g) [t F ’“T— T EHtkka _tkwkHZ
+ 2t E <f)k+1 —wF tw” — (tx — 1)vk — v*> — 27:‘]%5

Substituting @ = tpv* ! — (tp — 1)v* — v* and b = tpw" — (tx — 1)v* — v* into identity
(A.29) la —b|j3 +2(a — b,b) = ||a]5 — [|b]|3,
it follows that

2
(A.30) E ‘tkvkﬂ — 1tkwkH2 + 2t E <f:k+1 —w” tw’ — (tr — l)vk — v*>
2
= E ‘tkvkﬂ — tk'wkH2 + 2t E <vk+1 —w” tw’ — (ty, — l)vk — v*>
2

+2¢,E <1§k+1 — o faw” — (tr — 1)vk — 'v*>
E

2
‘tkvkﬂ — (tx, — 1)Uk — v*H2 — Htkwk — (tr, — l)vl’C — v

2

+2t (@ — otk — (8, — 1)vF — v
2

I
&=

2
‘tkvkﬂ — (tx — l)vlC — " ) E Htk,lvk — (tg—1 — 1)11’“*1 —v*

2
+2t,E <1~)k+1 — R o — (tp—1 — l)vk_1 — 'v*> .

In the third identity, we used the fact tpw* = tpv* + (tp_1 — 1)(vF — v*~1). If we denote
uk = Eljt)_1v*F — (t_1 — 1)vF~! —v*||%, (A.28) can be rewritten as

2 k+1 2 k 2

A.31 2k
( ) u” + "

,
4 2t E <vk+1 — R o — (tp—1 — 1)1}’“_1 - 'v*>

262 %
<A

uk—i-

QTti(S 9
t2_ R?
r r + k—1 )
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where we used

2t E <vk+1 — R o — (tg—1 — 1)vk_1 — v*>

2 2
<HE Hkarl - ﬁkHHg +E ka—wk - (tk—l'vk — (tp—1 — D" = U*) H2 = 2038/ + t{_, R*.

Denoting
ot2 Fk
i kel Lk
T
then, we have
k

276 270 k3
A.32 < - 4+ R? t?=("—+R?)—.
(A.32) §k+1_§0+<T+ >i§11 (T+ 3

. Qti—le 2 1k

With the fact that &, > —*—— > k“F"/4, we then proved the result. [ ]

Appendix B. Convergence of SRSGD. We prove the convergence of NASGD with SR,

i.e., the convergence of SRSGD. We denote that 6% := % in the Nesterov iteration and 6%

is its use in SRSGD. For any restart frequency F' (positive integer), we have gk = gh—Lk/FIxF
In the restart version, we can see that

ék§0F2:§<1.

Lemma B.1. Let the constant satisfy r > L and the sequence {vk}kzo be generated by the
SRSGD with restart frequency F (any positive integer); we have

k 27. P2
. 112 r“kR
(B.1) ; [v" —v" 2 < AR
where 0 := 0F < 1 and R := sup, {||Vf(x)]|2}.
Proof. Tt holds that

(B.2) Hvk—l—l _ ,wkH _ ) S N wkH
2
o L A L S S e e R
- 2 2~ 2 2
Thus,
2 _ 2
) S (ke ] i
2 2 2

ol ] L N e R L

2 2 2 2

_ 2 _ 2

S
Summing (B.3) from k£ =1 to K, we get

K 2 XK 2
(B.4) (1—6)* Z H'vk - vkilHQ < Z Hka — wkH2 <r*KR% [ ]
k=1 k=1

In the following, we denote A := {k € Z¥|Ef(vF) > Ef(vF~1)}.
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Theorem B.2 (convergence of SRSGD). (Theorem 2 with detailed bound) Suppose f(w) is
L-smooth. Consider the sequence {w*}y>o generated by (3.2) with a stochastic gradient that

is bounded and has bound variance. Using any restart frequency F and any constant step size
sp=5<1/L, assume that ;4 (Ef(w**!) —Ef(w*)) = R < +o0; then we have

(B-5) 10 {E |71 (w‘“’)Hz} = (17?;)2 L(lz+ D 7ﬂL2R2 + 763?

If f(w) is further conver and the set B:={k € ZF|E|wk ! — w*||? > E||lw® — w*|?} obeys
>res (Ef(wH) —Ef(w*)) = R < +oo, then

(B.6) min {E (f (wk> _f(w*)>} < (7R ;;||2+R N w;zg’

where w* is the minimum of f. To obtain e error, we set s = O(¢) and K = O(1/€?).

Proof. First, we show the convergence of SRSGD for nonconvex optimization.

L-smoothness of f, i.e., Lipschitz gradient continuity, gives us
L 2
B 1) <0 ) ¢ (71 () o) Lo

2

Taking expectation, we get

(B.5) Bf (o) < Bf (wt) — B |vr (w) [+ L
On the other hand, we have

(B.9) f (wk) < f(oF) 4+ 6* <Vf(vk),vk - vk*1> + L(ik)Q Hvk - vk’luz.
Then, we have

(B.10) Ef (ka) < Ef(v*) 4+ 0°E <Vf(vk), vk — vk*1>

T R ACO TR =

We also have

(B.11) Gk (7 f(vF), vk — pkly < gk <f(vk) IGE: g Hvk - vk1Hz> .

We then get that

(B12)  Ef (o) <Ef@F) + 6 (Bf@F) ~Ef (v'1)) = 1E||V S (wk>HZ A

where - -
L 2 L(0 2 LR
Ay = E—Hvk—kalH +QEHvk—vk71H + ! .
2 2 2 2 2
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Summing the inequality gives us

(B.13)
Ef(0" ) <Ef (o) +0 Y (Ef(0") ~Ef (v"7)) =7 szE V7 (w) Hz + f) Ap.

keA k=1 k=1

It is easy to see that

éz (Ef('vk) —-Ef (vk_l)) =0R.
ke A
We get the result by using Lemma B.1
Second, we prove the convergence of SRSGD for convex optimization. Let w* be the
minimizer of f. We have

2 2

(B.14) E va ~w

=E||w" —yVf ('wk> —w*

2 2

k * 2
=E|w" —w

,~2E(1 () 0 - w) %8 |07 ()

z —29E <Vf (wk> ,wh — w*> + 2R

2

<E||wF - z*

We can also derive

E ||'w’C - 'w*H2 =F Hvk + ok (vk - vkil) — w”* ’

2

=E|v" — w* ; +20FE (vF — v" 1 vk — w*) + (0F)E ||[o" - Uk_lH;

s+ 0 (|Jo* — w| )

3) +200)%E [[oF — L3,

=Bt —w’ N

+ (0)E ||v* —o*
z +ékE (Hvk — 'w*| 2

:EHvk—w* 2

ot w

‘|
where we used the following identity:
1
(a=b)"(a—b)=lla-d|;-lla—ec|z+[b-c|s b d|]-

Then, we have

2

2 2 R
(B.15) IEH'U’“H —w* gEvak—w* —ZVE(Vf(wk),wk—w*)+2(9k)2EH'vk —vk_lH
2 2

)

2
—E Hvk+1 —w*
2

2
2
_ H,Uk—l —w*

+r2R?2 + OFE <Hvk — w* )

We then get that
(B.16) 2~vE <f ('wk> - f(w*)) <E Hvk —w”

+ 6" <IE Hvk —w*

2

2
2

—E vak_l —w*

2
> +r’R2.
2 2

Summing the inequality gives us the desired convergence result for convex optimization. M
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B.1. Numerical verification of the assumptions in Theorem 3.2. In this part, we nu-
merically verify the assumptions in Theorem 2. In particular, we apply SRSGD with learning
rate 0.1 to train LeNet® for MNIST classification. We conduct numerical verification as fol-
lows: starting from a given point w®, we randomly sample 469 minibatches (note in total
we have 469 batches in the training data) with batch size 128 and compute the stochastic
gradient using each minibatch. Next, we advance to the next step with each of these 469
stochastic gradients and get the approximated Ef(w'!). We randomly choose one of these
469 positions as the updated weights of our model. By iterating the above procedure, we can
get wl,w?,--- and Ef(w'), Ef(w?),--- and we use these values to verify our assumptions
in Theorem 2. We set restart frequencies to be 20, 40, and 80, respectively. Figure 6, top
panels, plots k versus the cardinality of the set A := {k € ZT|Ef(w**t!) > Ef(w")}, and
Figure 6, bottom panels, plots k versus » ;. 4 (]Ef(wk“) - Ef(wk)). Figure 6 shows that
> kea (Ef(whtl) —Ef(wk)) converges to a constant R < +oco. We also noticed that when
the training gets plateaued, E(f(w")) still oscillates, but the magnitude of the oscillation
diminishes as iterations goes, which is consistent with our plots that the cardinality of A
increases linearly, but R converges to a finite number. These numerical results show that our
assumption in Theorem 2 is reasonable.

We repeat a similar process as above and further verify the assumptions in Theorem 2
for Pre-ResNet-20 trained on CIFAR10.* Figure 7 confirms that the assumptions in Theo-
rem 2 still hold in this case of CIFAR10 training with a larger and more advanced network
architecture. This implies that our assumptions in Theorem 2 are reasonable across different
datasets, network architectures, and training procedures.

Cardinality of set A := {k € ZT|Ef(wFt1) > Ef(wh)}
R=3" (Ef(wM!) —Ef(wh)
ke A
Restart Frequency = 20 Restart Frequency = 40 Restart Frequency = 80

40000
40000 40000

30000 30000 30000
20000 20000 20000

10000 10000 10000

0 0 0
MNIST 0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000

35 3.0

30 25

25 20 20

20

0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000

Figure 6. Cardinality of the set A := {k € ZT|Ef(w" ™) > Ef(w*)} (top panels) and the value of
R =Y ca (Ef(w*™) —Ef(w")) (bottom panels) of LeNet trained on MNIST. We notice that when the
training gets plateaued, E(f(wk)) still oscillates, but the magnitude of the oscillation diminishes as iterations go,
which is consistent with our plots that the cardinality of A increases linearly, but R converges to a finite number
under different restart frequencies. These results confirm that our assumption in Theorem 2 is reasonable.

$We used the PyTorch implementation of LeNet at https://github.com/activatedgeek/LeNet-5.
“Implementation available at https://github.com/bearpaw /pytorch-classification.
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(1

= Cardinality of set A:= {k € ZT|Ef(wF"!) > Ef(wh)}
R=3 (Bf(w") —Ef(wh))

ke A
Restart Frequency = 20 Restart Frequency = 40 Restart Frequency = 80

30000 30000 30000
20000 20000 20000

10000 10000 10000

‘} 0 0 0
C I F R 1 O 10000 30000 50000 70000 10000 30000 50000 70000 10000 30000 50000 70000

10000 30000 50000 70000 10000 30000 50000 70000 10000 30000 50000 70000

Figure 7. Cardinality of the set A := {k € ZT|Ef(w" ™) > Ef(w*)} (top panels) and the value of
R =Y, o4 (Bf(w"™) —Ef(w")) (bottom panels) of Pre-ResNet-20 trained on CIFAR10. We notice that
when the training gets plateaued, E(f(w")) still oscillates, but the magnitude of the oscillation diminishes as
iterations go, which is consistent with our plots that the cardinality of A increases linearly, but R converges to
a finite number under different restart frequencies. These results confirm that our assumption in Theorem 2 is
reasonable.
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