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Abstract

In this paper we present an asymptotically compatible meshfree method for solvinggag ations with

@

random coefficients, describing diffusion in heterogeneous media. In particularg t b diffusivity coef-

ficient is described by a finite-dimensional random variable or a truncated c inat"®of random variables
with the Karhunen-Loéeve decomposition, then a probabilistic collocati o(PCM) with sparse grids
is employed to sample the stochastic process. On each sample, the dete ¢ nonlocal diffusion problem
is discretized with an optimization-based meshfree quadratur W teriMYof analysis, we first show the
analytic regularity of solutions with respect to parametersai difusion coefficients and then present the

rigorous convergence analysis for the proposed nigg aN@ehemeL.e., the scheme is asymptotic compatible

?

the number of collocation points grows. These ults are further confirmed by a number of benchmark

spatially and achieves an algebraic or sub-exp onveRence rate in the random coefficients space as

problems. Finally, to validate the applicalD®gLy of thisapproach we consider a randomly heterogeneous non-

local problem with a given spatial cog i ucture, demonstrating that the proposed PCM approach
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Summary and Discussion

1. Introduction

Since the last decade, there has been a great i us onlocal integro-differential equations to

o

ribe physical phenomena at small scales and

their reduced regularity requirements which leaOQf0 greater flexibility [1-23]. These nonlocal models are

defined in terms of a lengthscale §, referrc®go as a hoM¥%on, which denotes the extent of nonlocal interaction.
The nonlocal viewpoint allows a natu scrbion of processes requiring reduced regularity in the relevant
solution, such as the peridynamics r acture mechanics [2, 24, 25]. An important feature of such
models is that they revert backffo c nding classical partial differential equation (PDE) models as the
horizon § — 0. When re gt patial discretization characterized by grid size h such that h — 0, dis-
cretization methods whi

[26], and there has

ve correct local limits are termed asymptotically compatible (AC) schemes

T
si cant work in recent years toward establishing such discretizations, see, e.g.,

[26-36]. Broa glies either involve adopting traditional weak form via finite element shape functions

and carefu ng geometric calculations to integrate over relevant horizon/element subdomains, or
adopting a str@e form meshfree discretization where particles are associated with abstract measure [37].
The former 15 more amenable to mathematical analysis due to a better variational setting, while the latter
is simple to implement and generally with smaller computational cost [38, 39]. In this work we pursue the
asymptotically compatible meshfree approach.

One of the limitations of the current state-of-the-art works is that most of them consider a homogenized
nonlocal model, which may not work well when the material is heterogeneous and its microsctructure plays

a critical role. In a recent study [40], Zhao et al. found that a fully homogenized peridynamic model fails



to capture certain correct fracture modes/patterns in reinforced concrete. Therefore, they have proposed a
stochastic bond-based peridynamic model where the material property is described as random fields. The
type of each bond connecting material points  and y was modeled by a random variable, and the discrete
probability distribution of this random variable depends on the volume fraction of aggregate and cement
on  and y. With this model, fracture patterns and the order in which various cracks develop match
experimental observations. Their findings indicate the importance of considering the spatial variability of
material properties in nonlocal models, especially when the physical parameters describing spatially varying
properties of heterogeneous materials cannot be accurately characterized in all details.

In the present paper, we consider a stochastic nonlocal diffusion equation, where thi terogeneous

material property is modeled by a random field. The solution of this stochastic eq s ibes the

@

rate hinders the application of MC method on Ygifively large scale problems, since one has to solve the
differential equation for every sample. over, conparing with local (classical) PDE models, numerically
solving nonlocal equations is often mozgmexp¥sive due to its relative lack of sparsity. Therefore, the need
for efficient and accurate stochastic ethods is even more pressing in the nonlocal setting.

To achieve a faster convergeffCe ke ¥eral stochastic numerical methods were developed for stochastic
local (classical) PDE model4fin®gding probabilistic Galerkin methods (PGMs) [47-53], probablistic colloca-

tion methods (PCMs) | educed basis methods [59-64], etc. Among these methods, the probabilistic

e grids inherits the ease of implementation in the MC methods since only
are needed. At the same time, it also reduces the required number of sample
En numerical accuracy, especially on problems with small random dimensions and suf-
ficient solutio oothness in the parameter space. Therefore, in this work we will employ the probabilistic
collocation ods with sparse grids. Comparing with the attentions received by stochastic PDE problems,
numerical studies of nonlocal problems in the uncertainty quantification setting remain limited. In [64],
reduced-basis methods are developed for constructing surrogates of the solution of a parameterized nonlocal
diffusion problem with random input data in a finite element method framework. However, to the authors’

best knowledge, there exists no work on studying the solution smoothness and the theoretical limiting be-

havior of stochastic nonlocal problems when § — 0, while these studies are crucial to the design of accurate



and asymptotically compatible stochastic numerical schemes. Moreover, the application and rigorous error
estimates of meshfree discretization method also remain limited for stochastic nonlocal problems.

The major contribution of the present work is to propose a complete workflow of asymptotically compat-
ible stochastic numerical methods and rigorous mathematical analysis for randomly heterogeneous nonlocal
diffusion problems. In particular, we propose to employ a meshfree method with optimization-based quadra-
ture rule [33, 37] for the discretization in the physical space, and a PCM with sparse grids for the discretization
in the parameter space. By proving that the solution of the nonlocal equation with diffusivity coefficient
described as a finite-dimensional random field is analytic in the input random variables, wg show that the
sparse grid PCM achieves at least algebraic convergence with the increase of sample po®. Moreover,
entially.

e first time

spatially and consider a fixed §, the
nonlocal numerical solution converges to the analytical lo gtion with an O(h) convergence rate as
the grid size h — 0. Lastly, we develop a comy @ kflOQyto solve for randomly heterogeneous nonlocal
problems, by representing the heterogeneous maWgl coefficient as a random field with given spatial corre-
lation structure and approximating the c cient b, runcated combination of random variables using the

Karhunen-Loeve expansion. This work s a road map to add uncertainty quantification functional-

ity onto pre-existing asymptotically & p code for deterministic nonlocal problems in a non-intrusive

manner, which achieves algebr ¥ ponential convergence in the solution mean and variance while
sustaining the spatial asy otM@gompatibility to the correct local limit. Furthermore, we notice that the

regularity requirements onlocal and local solutions in our error estimates are not guaranteed in some

real-world applicati fore, we also investigate the numerical convergence when these requirements
are not satisfig

We re k

e empirical convergence rates.

e paper is organized to establish the rigorous mathematical underpinnings of the
approach in t/Mfirst half, while the second half focuses on a numerical verification and more engineering-
oriented exX/®®ation of its application, especially on the cases that are not covered by the theoretical error
estimates. The paper is organized as follows, with all major notations listed in Table 1. We recall first the
relevant results in nonlocal calculus and provide mathematical analysis for the deterministic and stochastic
nonlocal diffusion problems in Section 2. After establishing the continuous limits of the stochastic nonlocal
problem, we next pursue a consistent discretization. In Section 3, we propose our numerical approach

for stochastic nonlocal problems by employing the sparse grid PCM and an optimization-based meshfree



quadrature rule in the physical space and establish rigorous error estimates. In particular, we show that the
proposed approach achieves algebraic or sub-exponential convergence in the parametric space, and address
the convergence rates to the nonlocal and local limits respectively. The theoretical error estimates are
verified on a number of one-dimensional and two-dimensional problems with analytic solutions for the local
and nonlocal limits in Section 4. In Section 5, we further extend the proposed formulation to handle a more
engineering-oriented problem, where the random diffusivity coefficient is modeled by a random field with a

given spatial correlation structure. Section 6 summarizes our findings and discusses future research.

2. The Deterministic and Parametric Nonlocal Diffusion Problem

In this section we introduce the major notations and definitions will be used thy

analysis for the stochastic nonlocal diffusion problem, namely, its compatibili

and analytic regularity.

2.1. Nonlocal Calculus and Deterministic Nonlocal Diffusion P ble’

In this section, we review the the governing equationsgo rfinistic nonlocal diffusion models which

provide the foundation for the stochastic nonlocg bINs O erest. Given that 2 C R? d € Z1, is a

bounded Lipschitz domain, we consider the no giptic Quation in 2. To do so, we first introduce the

relevant nonlocal calculus. Let a(z, y) : R? x RO YQQR?

v(z,y) : R? x R — RY, we define the not¥cal divergence D[v] : R — R:

be an antisymmetric function, for a vector function

Dlv|(z) = ) +o(y,@)) oz, y)dy, xR
and for a scalar function : — ¥ we define the nonlocal gradient G[u] : R x R? — R<:

z,y) = (u(y) — u(@) a(z,y), =yeR?

As show @adpm‘u operator of D with respect to the L? inner product is D* = —G. We then
consider a n iffusion problem where every point x € {2 is interacting with a neighborhood of points,
and their i tion is described by a symmetric kernel function y(x, y) := a(x,y) - a(z,y) and a two-point
scalar function A(x,y) representing the nonlocal diffusion strength. Without loss of generality, we assume in

this paper that A is symmetric in its two arguments, i.e., A(x,y) = A(y,x). A nonlocal diffusion operator

on a scalar function u : R¢ — R is then given by

L[u](z) := D[A(z, y)G[ul)(x) = 2/ Az, y)y(z, y)(u(y) — u(z))dy, =eR"

Rd



Symbol

Description

02
b
Bs(x) ={y: |y —z| <}
25
(Qp’fvp)

QUERE=ZaN

£6
£O
L
V(i)
M)
uD : 05 — R
Yz y) =75(ly — )
s
A:(RQUs) x (RUNs)xT =R
a:2xI' =R
rand R
55(9) and Tg
p: I = RT
xn ={x;} and h
Vh,mi
wjﬂi

On = {&}

Hk

Physical domain.
Horizon size.
The physical interaction region surrounding .

Nonlocal boundary which is a collar of thickness surggunding 2.
Probability space.
Space of random variables.

Dimension of the physical space f2.

Dimension of the random space, i.e., the numbe
Total number of grid points for spatial discygs
Total number of collocation points (samplf
Nonlocal divergence operator.
Nonlocal gradient operator.
Nonlocal diffusion operator.
Local (classical) diffusion oper
Discretized nonlocal diffusion ope
The i-th component of vector
The i-th row j-th col

bm variables.

ent of matrix M.

Dirichlet type bou ion.
Symmetric kagpel ctl

Order of 4 Wity Wakernel 7.

Nonlocd! diffuSion strength function.
Local rand diffusion strength function.

L&yer and up

| energy space and the corresponding bilinear form.
density of the random variable.

iform) grid set and the grid size for spatial discretization.

¥ rature weight for «; to generate integral in Bs(x;).

Prescribed nodes for the Lagrange interpolation in the random space I
Corresponding quadrature weight for & in the random space.
Sparseness parameter for the Smolyak sparse grid formulation.

Level of the Smolyak sparse grid formulation.

Mollification function.

Nonlocal solution of (2.12).

Local solution of (2.15).

Numerical solution for the deterministic nonlocal diffusion problem.
Numerical solution with spatial grid set x; and sparse grid level 5 in PCM.
Covariance kernel for the variances between material points  and y.

Table 1: Table of Notations.




In this paper we further assume that the interacting kernel function =y is radial and compactly supported on

a Euclidean ball surrounding x, i.e., Bs(z) := {y € R? : |y — x| < §}:

(@, y) = (e —yl) = 5d+271 (lmgyl) = 5d+2—?\0m_y\s
where 7; is a nonnegative and nonincreasing function with s-th order singularity, satisfying (2.1)

supp(y1) C B1(0) and [ ) 11 (|2|)|z]2dz = d.

Here, we also require that the kernel v is integrable, i.e. s € [0,d). As will be seen in the mathematical
analysis of Section 2 and Section 3, this requirement makes the proposed meshfree meti#d well-defined
and converging. The above kernel assumptions also have implications on the boundary co bons that are

prescribed on a collar of thickness § outside the domain {2, that we denote as
Qs = {z € RN\Q : dist(z,02) < 6}

and refer to as nonlocal boundary.

—L[u)(z) = —D[A(, y)G[u]] :
u(z) = uP(z), \ for ¢ € (25,

generality, for the analysis, we consider homogenW@us Dirichlet boundary conditions u”(x) = 0, and the

where u” is the given Dirichlet-type bounda nonlocal trace space [65]. Without loss of

proposed method is applied to inhomogen Dirichlét-type problems in numerical tests of Section 4. Note

that although the proposed model c )d to other boundary conditions, e.g., the Neumann-type
boundary conditions in [34, 35] on the Dirichlet-type nonlocal constraint problem for simplicity.

To make the nonlocal dj blem ) uniformly elliptic, we make the uniform boundedness
assumption on the diffusid

%), and 0 < 7 < A(z,y) < R < oo, for @,y € 2U s, (2.3)

where r %Q positive constants. (2.2) is then associated with the nonlocal energy semi-norm

ul2, ) = /Q . /Q | olly = ) (uty) — u(a) *dyda

where the nonlocal energy space is defined as

S5(2) = {uemﬂufm : /Q » /Q il — al)u(y) — u(@)*dyda < o0, ulg, =o}.



Moreover, we define the bilinear form Ty : S5 x Ss — R as
Tl = [ [ Ayl - y)(el) - ve) ) - v@)dyde.
NUNs J RUNs

With the boundedness assumption proposed in (2.3) we have 0 < r\v\QSJ(Q) < Ts[v,v] < R|v|§5(m. Notice
that to solve for the weak solution of (2.2), we find u(x) € Ss(§2) such that

Tslu,v] = (f,v)r2(2), Vv € S5(£2). (2.4)

As proved in [66], the bilinear form Ts holds uniform ellipticity as well as the nonlocal Poi $ inequality,
and therefore the weak formulation for the deterministic nonlocal equation (2.4) is

summarize the relevant results in the following lemma:

Lemma 2.1. [66, Proposition 5.3] Assume that v(x,y) satisfies the condigns ), then there exist
generic constants C and 5y > 0 such that for all 0 < 6 < &g, the nonloca mi-norm |- |g; (o) satisfies

the nonlocal Poincaré inequality

: 4

0ll7200) < ClolEs(a)s 12). (2.5)
As a result of the Poincaré inequality, the s 5(©2) defined is also a norm on S5(£2). For the
rest of the paper, we will use || - [[s;(0) = denot€ the norm on Ss(f2). Combining Lemma 2.1

with the properties of A in (2.3), we canggee that bilinear form Ty is bounded and coercive:
| 53 )||w||55(9), Vo, w € S5(£2), (2.6)
) >C’||v||5 (2 Vv € Ss5(£2). (2.7)
Therefore, by the Lax-Jdil th®rem, there exists a unique solution u® € Ss(£2) for the deterministic

nonlocal diffusion pagblemNR2 " for each f € (S5(£2))*, where (S5(£2))* is the dual space of Ss5(£2) equipped

with the induc sup (fro) (-, ) denotes the duality pairing between (Ss(£2))*

HU”ss(n)

UGS( 2),v
and Ss( (f,v)r2(0) when f € LQ( ) C (S5(£2))*.
Next, we sider the compatibility of the nonlocal diffusion and the classical companion. To properly

define the imit of (2.2) as § — 0, we need to make the following continuity assumption on the diffusion
coefficient A(x,y):
A(z,y) € C((2U 2s)?) and a(x) := Az, x). (2.8)

Therefore, the nonlocal diffusion operator £°[u] has a companion of the classical diffusion operator —V -

(a(x)V(u(x))), and (2.2) can be seen as a nonlocal analogue to the local diffusion equation with Dirichlet-



type boundary condition:

LO%)(z) == -V - (a(x)V(u(z))) = f(x), forxe 2

(2.9)
P(z), for & € 012,

From (2.3), we have 0 < r < a(x) < R for any € 2, so (2.9) has a unique and bounded solution in
HY(2) := {u € L*()| [, |Vu(x)|*dz < oo} with corresponding boundary condition u[sq(z) = u”(z).
When we consider u” = 0, the solution space is denoted by HE(§2) := {u € H'(£2),ulsn = 0}.

Denoting the solution of local problem (2.9) as u°(x) and the solution of the nonlocal gne (2.2) with a

given horizon size & as u’(x), we now show the convergence theorem.

Theorem 2.2. Assume that y(x,y) satisfies the conditions in (2.1), and A(x,y) satis onditions in
(2.3). Let f € (S5(£2))*, the dual space of S5(£2), then we have
< Mllesscan-

6l (2) < =" (2.10)

In addition, if ||fl|(s;(2))+ is uniformly bounded for all 6 € (0,00) g ,Y) satisfies (2.8), then the
nonlocal and local diffusion problems are compatitble as 6 —

lim ’ ’u5

0
6—0 ‘L o

Proof. We first show the proof of (2.10). Since a solution to the nonlocal problem, we have

Ts[ul v) < | flliss-lIvllss )

for any test function v € Ss(£2
Therefore, we have (2.10).

= u’, we get r[[w’l|3 o) < Tslu®,u’] < [|fllessco- 4 llss o)

The proof of the sec inv@®ves two steps. In the first step, we assume that A(x, y) € C™((2U£25)?).
Then it is easy to sq.by ol expansion that for any v € C§°(£2) (with zero extended values on (25), we
nce of D[A(x,y)G[u]](x) to V - (aVu(x)) as 6 — 0. Indeed, by doing Taylor

hround x, we find that

=2 [ (ate) + = 2)- T4 )na(ly — al) (v — )7 Vota) + 5 — ) Dola)y — o))y + O(F)

=Va(zx) - Vu(z) + a(z) Av(z) + O(6?).

Note that the above equalities are obtained since fB‘(m) vs(lxz — y)) N ]JYr 3(y — :c)z’];)dy = 0 thanks to
5 P14 tig=

the symmetry of the kernel 75, where (y — @)(;) denotes the k-th component of (y — x) and i > 0 is



the power on that component. Then we argue that the convergence is also in L?(£2) since |D(AGv)(z)| is
uniformly bounded for v € C§°(£2) and 0 € (0,dp). Notice that from the assumption on || f||(s;(x))+, we have
1] s;(s2) being uniformly bounded for all § € (0,8y). Then using similar arguments in [26], we can show
[u® — u®|r2(0) — 0 as § — 0.

For the general case that A € C((2U §25)2), we will use the mollification technique. Take standard
mollifiers ¢¢ € C>°(R??), we define A° = ¢ x A. We denote the solution to (2.2) associated with coefficient

A€ to be u®¢. Then we can use the first step to conclude that ||u®¢ — u0c L2(Q) 220, 0, where u%< is the

solution to (2.9) associated with coefficient a*(x) := A°(z,x). Now in order to show [[u® 2 u°||;2(0) — 0,

we notice that

li 6 _ .0 < e _ 0 li b, _ .0, 0,e
lim fJu® — w720 < s lu™* = |2 () + lim [[u —u™ L2 + [Ju )

for any € > 0. Therefore, we only need to show

lim sup ||u§’E — u‘SHLg(m =0,
€0 5¢(0,60)

(2.11)
: O,e _ .0 _
lim [ = u°)] 2 = 0. P 4
For the first equation in (2.11), we first notice that ||AfP- 05)2) — 0 as e — 0 since A(zx,y) is
uniformly continuous on ({2 U §25)2. Now since re solutions to (2.2) with different coefficients
and the same right-hand side, we have
(AGu = u’],G[]) r2(auna= (A = A)G[u’], Gv]) r2((uas)2) = (97, v),
for any v € S5(£2). We can show Zg% as € — 0 uniformly independent of § since
d,€ € 0 €
(97 v) < | AQQA“ T8 gguen 14 55 1vlls52) < CIIA = Alleauas [0l ss @)
where we have used Q|| s, JW < C from (2.10). Therefore, we have
9 u? —u’||sy2) SO sup |lg" (s < CllA = Alc(ouasy — 0
S . 6€(0,00)
ase—0 e convergence in L? is then implied from the Poincaré inequality. The proof for the second
equation in (2.11) is similar by noticing that ||a® — a| (o) — 0 as € — 0. O

Remark 2.3. Notice that here and for the rest of Section 2, we focus on the weak solutions of the nonlocal
and local problems, for which no extra regularity assumptions (in the physical space) are needed in terms of
well-posedness and convergence. In Section 3, we will discuss the convergence of a meshfree method for the

nonlocal problems, which requires stronger regularity assumptions.

10



Remark 2.4. Although this paper mostly focuses on the “exterior boundary layer” setting because it is
more popular in literature [27, 67-72], in some occasions, such as in the local-to-nonlocal volume constraint
conversion problem [73, 74], one might find imposing boundary conditions on an interior boundary layer of
0:

N_5:={x e N:dist(x,00) < 6}

more convenient. With this setting, we define nonlocal boundary conditions u”(x) := u°(x) on the inner
layer of 2, where u° is the local solution, and aim to solve for the solution u(x) with = € 2\2_s5. We
could also study the convergence of nonlocal solutions to the local limit u°(z) on the whof@ domain (2. In

fact, in [66], it was shown that with this “interior boundary layer” setting, the nonlocal an®#¥gcal solution

is guaranteed to converge to the local limit. To demonstrate the empirical performa ureproposed

approach on both settings, in our first four numerical examples the “exterior hgsmgg

~

eld A(x,y,w), wherew € 12,

r” setting is

applied, while the “interior boundary layer” setting is considered in the last t

2.2. Parametric Nonlocal Diffusion Problem

We now consider the case in which the coefficient A is provided by a

and 2, is the sample space of a probability space (£2,, F, P). is the o®lgebra of subsets of {2, and P

is the probability measure. In practice, this random field i resented in a “truncated” form using a
limited number of random variables (see an exa ). Thus, it can be rewritten as A(x,y, £),
where § = (§1),&2),- -+, &), IV is a positive hich denotes the dimension of the parametric space,

and ;) are random variables. In practicg we often

(i.i.d.) random variables. Under this settin®Qgve consider A(x,y, &) : (2U25) x (QU2s) x I’ = R, where I

is the space of £ and it is typically caj§fd space or parametric space. Without loss of generality, here
we assume that I' = Hf\il I; ; = [—1,1], and the random variable £ € I" has a probability
density p: I' — RT. We arcg solving the family of nonlocal elliptic equations given by

= f(x), forxe R

(2.12)
for x € (2.
For each : Fume that A(x,y, £) is symmetric in its first two variables and A(x,y,€) € L>°((2 U
25)%). We alsqssume the uniform ellipticity of the nonlocal problems, i.e.,
0<r<A(xz,y,€) <R < o0, (2.13)

for &, y € 22U s and £ € I'. Therefore the Lax-Milgram theorem ensures the well-posedness of nonlocal
problem for each & € I'. In addition, in order to consider the limit § — 0, we need to assume that for each
el and x € U 2,

A(-,-,€) € C((RU N5)?) and a(x, &) := Az, x, ). (2.14)

11



Then we have the corresponding family of local elliptic equation for each € € I:

~V - (a(x,&)V(u(x))) = f(x), forxe 2

(2.15)
P(x), for x € 012.

u(x) =u

For each given parameter & € I', we denote the solution to the nonlocal equation (2.12) by u’(z,&)
and the solution to the corresponding local equation (2.15) by u®(x,&). A corollary of Theorem 2.2 is that
u’ (z,€) converges to u®(x, £) in the space L?(2) ® L2(I") as § — 0.

Corollary 2.5. Assume that A(zx,y, &) satisfies (2.13) and (2.14), then we have

. 5,0 =
%13% lu® —u ||L2((2)®L?,(F) =0.

Proof. For any & € I', and, we know from Theorem 2.2 that [[u®(-,€)l|s, (o pll 0 € (0,dp) and

[u®(-,€) —u’(-, €)|l2(0) — 0 as § — 0. Therefore, it is easy to see that [|u’(* 5E)|L2(2) < C for all

eI and g € (0,d). By invoking the dominated convergence theoreg

. 50
lu® — U0||L2(Q)®Lg(r) = /F u®(-, &) — u® \%)P N 0
O
To discuss the regularity of solutions with ré the palameter space, we need to assume the existence
of a holomorphic extension of A(x,y, &)
Assumption 2.6 (Holomorphic par er endence). The complex continuation of A(x,y, &), repre-
sented as the map A : CNV — L>°(( s a L>°((£2 U 25)?)-valued holomorphic function on C¥.

This condition is easily A(z,y, &) consisting of polynomials, exponential, sine and cosine
functions of the variables 2N - &) For example, the holomorphic extension exists if A(x,y,&) =
Alz,y) + Zi\; [i(€5) Ry Wwhere A € L>((2 U 025)%), 1; € L=®((2U 25)%), and f; is a polynomial,

exponential, sin nction (1 < < N).

2.2.1. AndWgic ity
In order forf§he function u’(x, &) to be uniformly recovered by polynomial expansions in the parameter
space, we will show the analyticity of the solution u® with respect to the parameterization. By Assumption

2.6, we can extend the definition of A(x,y, &) to A(x,y, é) where € belongs to the complex domain

Ii=®@1<icn{€e € C: 1§l < 1}

12



Next, we need the complex uniform ellipticity assumption, namely there exists r., R. € R such that
0 < r. <Re(A(x,y,€)) < |A(x,y,€)| < R, < . (2.16)

for x, y € 22U s and é € I". Therefore the nonlocal problem with the complex coefficient A(x, y, é ) is well-
posed and the corresponding solution is denoted by u’(zx, é) Here we also remark that for the analyticity
of solutions to hold, non-affine coefficients may also be used as long as & — A(x,y, &) possesses an analytic
extension to the complex domains and the complex uniform ellipticity condition is satisfied, see related

discussion for the local elliptic equations in [75]. We also define the set

A::{EECN:%<Re(A(:c,y,é))§\ (z,y,€)| < 2R.}.

So it is clear that the set A contains I

For the discussions in this Section, we need the complex function spaces@() C) be the space

of complex valued functions with norm

lul, ) = / / "s(ly — |
NUNs .QUQg

and s is still the real valued kernel
ith the induced norm. The main result of the

this Section is the following theorem on the anal Y@ty of solutions.

2

where |u(y) — u(x)|? is understood as (u(y) — u

function. (S5(£2,C))* is the dual space of Ss(

Theorem 2.7. Assume that A(z,y,€) sages (2.16), then the function & — u(x, €) is holomorphic in an

open neighborhood of I.
To prove the theorem, we ability lemma.

Lemma 2.8. Suppose u° WQd @ e two solutions of (2.2) with the same right-hand side f and different
coefficients A(zx,y) gnd satisfying (2.3), then

/1] Se()°
O lu® = @ [ls5(2) < 14 = All L~ ((2u25)%) ( +(2)
Su g the variational formulations for u’ and @°, we find that

-

Proof.
0

tra
/ (A1), y) — AG[#)(x. ) ) Glo] (. y) dyda

.QUQ(;)Q

[ Ay - 6w )Gl ydyde+ [ (4= DG )@ p)G 0] . )dydz.
(2U9025)? (2U05)?

13



Therefore w = u? — @° is a solution of

//_QU_Q.)Q A(iL‘, y)g[w](l’,y)g[v](m7y)dydw = <l, U>

where (I,v) := [[(A — A)G[a@’]G[v]dydz. So from (2.10) we have

H ” So(Q))*

10l (55 (2))+ ||A Al oo ((uan ) 18 |5 2)
T T

[wllss2) < <A = Al e auay?)

and € — |A(€)|. Now we will show that for all € € A, the function’)

55*( ) (5) € S5(£2,C) for i € {1, -

Let e; € RY be the unit vector in the i-th diggens C\{0}, define the difference quotient

admits a complex derivative

function

_u(€ — () € 85(12;C).

Since the maps € — ReA(€) and € — \e continuous, we have the boundedness of ReA(€ + he;)
and |A(€ + he;)| for sufficiently smajffh re w is well-defined for sufficiently small A. Then for all

v € S5(12;C),
Qy £+ he;)Glu’ (€ + he;))(x, y)G ] (z, y)dyda

A(ﬂ% )G’ (§)](z, y)G ] (. y)dyda

O—h // s v, 6)G[w! (€)](2, y)G[0](z, y)dyda
> i <+ he;)](a, y)G[v] (@, )
(

Therefore wh is the unique solution to the variational problem

//QU_Q-)2 A(w’ y7é)g[w2(£)](a;, y)md’ydw = <Z;I,U>,

where ( ff QU252 Vi(x, y)Glu® (€ + Bej)](m, y)G[v](x, y)dydz. One can show that I; converges to Iy

14



in (S5(£2;C))*. Indeed, for all v € S5(£2;C),

(I, = lo, )| = |//QUQ ; i@, y)G[u’ (€ + he;) — v’ (€)) (. y)G[v](z, y)dyda

< [Will L= (2uap) 14’ (€ + hei) =’ (€)lls; 20) 0] 55 2:0)
2 1 £1l (55 (2:0))*
< h”WHLw((nuﬂa)?)W||v\|ss(rz;<c>,

0

in which the last inequality comes from the stability estimate. Therefore, w} converges in S5(£2;C) to wy,

which is the solution to

[7‘ A,y £)G[ud (€)@, y)CTo](@, y)dydz = (lo, v).
NUNs)?

) = w(€) € S5(£2;C). 0

s

-
Hence 8£(i)u (

3. Spatial and Stochastic Numerical Methods

Algorithm 1 Overall algorithm for the stochastic nonlocal proble (2.12)
1: Offline Stage:

la) For spatial discretization, determine a mes xn = {z;}M, € QU 25 and calculate
the optimization-based quadrature weights or ch :l:Z € xp by solving (3.5).
1b) For probabilistic collocation methd@ ne (sparse) collocation points set in the para-
metric space Oy = {£,} | € I' and the co onding quadrature weights py following (3.19).
2: Online Stage: Solving for (2.12): k=1, QK do
2a) Assemble the stiffness matrix Q= [Q(; ;)] such that

.

2
x€EXnNBs(x4)\

Qij =\ —24(x;,

2 &) s (|2 — x| )wre,  if i =7,

— £Ej|)wj'7i, lfil #] and Ty S Bg(ﬂ)i),
else ,

and the right-hand-gidcQgctor @ = [f(z;)]X;.
2b) Compute th joal solution u = [uf (x;, £x)]M, for the deterministic problem corresponding

ingu=Q 'f.

. Generate statistical moments of the random solution following (3.14)-(3.15).

3: Postproc

3.1. Spatial: imization-Based Meshfree Quadrature Rules

In this section we introduce a strong form of particle discretizations of the deterministic nonlocal diffusion
problem introduced in Section 2.1. This approach is based upon the optimization-based quadrature rule
developed in [33, 37]. Denoting the numerical solution of (2.2) as u{, two types of convergence are desired
in the developed numerical scheme:

. § _ . s
ilzli%Huh - =0, and h}<1$130| |uh —u

u6||L2(Q) 0||L2(9) -
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The first type of convergence indicates that the numerical discretization method is consistent with the
nonlocal problem with a fixed 6 and h — 0, while the second type shows that the nonlocal numerical
solution preserves the correct local limit when h,§ — 0 simultaneously, or equivalently, the numerical scheme
is asymptotically compatible. To maintain an easily scalable implementation, in asymptotic compatibility
studies we assume § to be chosen such that the ratio % is bound by a constant as § — 0, restricting ourselves
to the “§-convergence” scenario [77]!2. In this setting, one obtains banded stiffness matrices allowing scalable
implementations. We will provide truncation error estimates for the quadrature error convergence rates to
the nonlocal analytical solution and the local limit, respectively. In this section, to prove the two types of

convergences we would need stronger regularity assumptions on the diffusion coefficient A( as follows:

Az,y) € 04((9 U25)?), 0 <r < A(xz,y) < R < oo, for &,y € 2U 25, and a(x) % ). (3.2)

3.1.1. Mathematical Formulation and Implementation
Discretizing the whole interaction region £2U {25 by a collection of poi (@} riz1,2,... .y C 20482,

hod can be applied to more

we aim to solve for the solution wu;y =~ u(x;) on all &; € x. Althoug

general grids, for analysis we require yj to be a uniform Cartesian gy

Xu = {(kyh,  k@h) |k = (ko) @ ) §Z°F N (2U 2).
Here h is the spatial grid size. For the determi ocal @ffusion model (2.2) we pursue a discretization
through the following one point quadratyre rule & [78]:
— (L)) == —2 > z g ([ — 5]) (ugy —ue)wii = f(xi),  for @ € xp, N2,

x;ExnNBs (i) \{z:

U@y = uP (x;) for x; € xp, N s,
x (3.3)
where we specify {wg;} a -determined collection of quadrature weights admitting interpretation as a
measure assom collocation point ;. Note that although we only solve for u ;) on grid points

in Xhs

he numerical solution uh of the above nonlocal problem as the piecewise constant
interpolation
We us timization-based approach to define these weights extending previous work [33, 37|, con-

structed to ensure consistency guarantees. Specifically, we seek quadrature weights for integrals supported

n some literature it is also denoted as the “M-convergence”, see, e.g., [37].
2Typically in the literature a scheme is termed as asymptotically compatible (AC) if it recovers the classical solution for any
6,h — 0. Here we abuse the definition slightly and only require the d-convergence.
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on balls of the form

= [ d@ydyhldi= Y ez (3.4)
Baw:) x5 ExnNBs @)\ {2:}
where we include the subscript ¢ in {w;;} to denote that we seek a different family of quadrature weights
for different subdomains Bs(x;). Denoting P,,(R?) as the space of m-th order polynomials, we obtain these
weights from the following optimization problem

wi W |z, — i)
2

argmin
{wj,i} x; ExrNBs(x:)\{x:}

such that, Ip[g] =I[q] Vg€ V¥ (3.5)

where Vi, o, = Sy50 = {qa=p@y —z)vs(|z; — y|)|p € Ps(R?)} denotes the spac tions which

should be integrated exactly. Note that when p(x) = const, we have gq(x,y)

).
,s<d. W(r)isa

Therefore,

reproducing this function requires the kernel function s to be integrable, ogliqui¥

radially symmetric positive weight function supported in Bs(0). Follo iscussions in [28], we take

W (r) = vs(r). In [33], this particular choice of reproducing space pro minimal reproducing set to

achieve the optimal O(62) asymptotic convergence rate in nonlocawob Qs with homogeneous diffusion
coefficient®. We note that provided the quadrature points ar nt over the desired reproducing space,

(3.5) may be proven to have a solution by interpretin as eralized moving least squares (GMLS)

problem [28]. For certain choices of V}, z,, sug th er polynomials, unisolvency holds under the

following assumptions: the domain {2 satisfies a E condition, the pointset x5, N Bs(x;) is quasi-uniform,

and h/0 is sufficiently small (see, e.g., | 0, Chap®p 4]).

For each x; € xp N §2, we denote S f its interacting neighbor points as {®;}j=1.....m, = Xn N
Bs(x;)\{z;} and the corresponding q eights in a size M; vector, denoted as w = [wy 4, ,wa, 4|7
With the Lagrange multiplier @ ature weights may be obtained from (3.5) by solving the saddle-
point problem for each x; &

W HT| |w 0
= , (3.6)
H 0 A
where Wais a ; diagonal matrix with Wy, = vs(|zp — @4]), A € R#“™(Vi=;) ig a set of Lagrange

multipliers orce reproducability, H = [H, ;)] € RMixdim(Via;) consists of the reproducing set

evaluated at eJih quadrature point (i.e. H(q j) = pa(x;), for all p, € Vi g,), and g = [g()] € R4 m(Vh,a;)
consists of the integral of each function in the reproducing set over the ball such that g, = I[ps]. In

particular, when considering Vi, », = Sy «,, and denoting 79; := vs(|¢; — x;|), we then have g = [g(g)]",

3Notice that in [33], besides the weights wj,; considered here, one also solves for an additional associated weight w; ;. However,
since u(;) — u) = 0 in (3.3), in the current work we simplify the formulation and only solve for w;; with x; # a;. When
assigning w; ; := Volume(B;(0)) — ijexhﬂBg(a:i)\{mi} wj,; the quadrature rule with minimal reproducing function space
Vie, = Po(R%) U S.s,x; in [33] is in fact equivalent to the quadrature rule with reproducing function space Vj, z, = Sq;,a;
considered here.
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H = [H(,ﬂyj)] for Jj=1,--+,M; and ﬂ = (B(l)a o aﬁ(d)) € Nd7 0< |/8|ll < 3, where

B B
9B) = 9By, Bwy) = /B ©) '76(|mi - yl)(y - wi)(f;) T (y - ml)(éj)dy for |/6|l1 #0,
s

B

B
Hp,j) = V?i (- ﬂci)u) (@ = ®) )

(d) -

By eliminating the constraints, the quadrature weights may be obtained by solving

w= W HTHW T HT) g, 61)
where HW " 1HT = [m(ﬁ,e)] for B = (5(1),-.. ,/B(d))a 0= (9(1)’... 7(9(00), and 0 < |8, 0 6, <3
satisfying

B +6
m(g,e) = M(6,8): "YB,6) = Zvﬂ - <)1> CON
For problems where the reproducing constraints are redundant, [H T may be replaced by the

pseudo-inverse.

3.1.2. Stability and Convergence Analysis
To provide the stability proof of our method, we ﬁrsﬂ he quadrature weights are all positive.

To guarantee the unisolvency of the optimizatig em (see, e.g., [80, Chapter 4]), in the following

we assume that h < Cyd for a given constan 1 in all cases. Moreover, we also assume that ¢ is

bounded by a generic constant, i.e., § <

Lemma 3.1. Consider a kernel vs dg 1) with s < d. For a given x; and h < Cy0, quadrature

weights obtained from (3.5) with the , = Sys.x. satisfy:

|wji — hY| < ChA(R/8)mintd=e), (3.8)

where C' is a constdQindeMgdent of h and §.

Proof.
if one of th

Ath t etry property of 45 and the uniform Cartesian grid assumption, we note that ggy = 0

ts of B is an odd number, and mg gy = 0 if one of the components of 3 + 6 is an odd
number. redifer, g(3) = 93 if,@ is a reordering of 3, and mg,e) = ™5 6) if,@Jré is a reordering of 3+ 6.
Denote b= [HW ' HT|"'g, we then have b(gy = 0 unless |3];, = 0 or |3|;, = 2 with only one nonzero entry
Br =2forsomek € {1,---,d}. With the symmetry properties of 9(p) and m g g), we notice that b gy = b(é) if

,@ is a reordering of 3. Therefore, we may denote b(q,... o) := bo, b(2,0,--.,0) = b(0,2,---,00 = ==+ = b(o,... 0,2) = b2,
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and bg, by satisfy:

M; M;
> Adibo + > (@i —ai)fy | ba = / v5(lyl)dy,
j=1 j=1k=1 B;(0)
Mi Mi
27}2(%‘ - xi)?n bo + ZV}Z( (1) Z (k) “by = / ’76(|y|)y(21)dy

Notice that s < d and we now compare the quadrature rule with the Riemann sum estimates for integrals.

Denoting that h := h/§, z;=x;/,y:=1y/6 and ’y]lvi = ‘i,?%_ls, we obtain
M; O

St = [ syl Zvﬂhda- [ llghe g
= B1(0)

Bé(o)

oot [ gtgeonth [ g s ot & (h/8)"~* + 1/3).
B\/E;LO B;(0 B’"1

M;
Wy (s — i)y — /B_(O) v (|yl)yydy| = hdZvﬂ — (191) 95,
j=1 5
< c/ |9|>"*dg + Ch = C(h™2>* + h) < C6~'h, ,
B 7 (0)
M; d
WY (@ — i)ty Y (5 — )Gy — / Y)Y
j=1 k=1 Bs(
=P AL (@5 — &) > (& — Q) — n([9D191* 9 dg
j=1 k=1 Bi(
< 052/ 19" *dg + C6%h (T 4 h) < COh,
B31,(0)
where B, /5; (0) is a sphere ing origin point and the singularity on it. Note here we don’t have an

associated weight wf) i e erMes of integrals in the (hyper)cube containing the origin point with size

h? were estimated s
ht + th((h/5 Y

where 1 sil ctor with all elements equal 1.

/i, is then chosen as a sphere to contain this (hyper)cube. We obtain by =

, = hd(5—2O((h/(s)min(l,d—s))7 and w = W-L1HTb = b1 + O(hmin(d+1,2d—s))17

O

From t ove lemma and [80], we can see that there exists a constant C' < 1 which is independent of
d, such that for all h < C'¢ unisolvency holds for the optimization problem (3.5) and we have w;; > 0. In
the following we will denote this constant as Cp,s and generally require h < Cpos0. Note that the uniform
grid assumption and the symmetry property in Lemma 3.1 also yields w;; = w; j. Consider A satisfying the
conditions in (2.3) and (2.8) and s satisfying the conditions in Lemma 3.1, we obtain the discrete maximum

principle for /J;SL and the well-poseness property of the discretized nonlocal diffusion problem (3.3):
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Lemma 3.2 (Discrete Maximum/Minimum Principle). For h < Cps6, let vy, be a function on xp, satisfying

E?Lvh >0 on xp N2, then maxv, < max vy.
XrN{2 XnNE25

Proof. Assume that max vy, > max vy and vy (x;) = max vy, then
xXrnN2 XrN2s xXnN2

0> — Lovp(xi) = =2 > Axi, xj)ys (@i — xj|)wj,i(vn(x;) — vi(®i)) = 0.
xjExnNBs(x:)\{z:}
Therefore, we have vp(x;) = vp(x;) = maxuy, for all ; € Bs(x;). Applying the same argument to
XrN
x; € Bs(x;) in £2 and to their neighbors, one obtains that vy, is a constant on x; and th e maévh =
XhN
max vp. O]

XrnN$2s

With the discrete maximum principle, the discretized nonlocal diffusion problem ( erefore well-

posed, i.e., there exists a unique solution to the discretized nonlocal diffusion prob . We now consider
the accuracy of the quadrature rule. In the following, we first present the ca ror estimate of the

meshfree discretization for the nonlocal diffusion problem with fixed d:

Lemma 3.3. Consider a kernel s satisfying the conditions in Lem
A satisfying the conditions in (3.2), u(xz) € CH(2U2s), a ed 9.
weights obtained from (3.5) with the choice of Vi o, = S

diffusion coefficient function
n for h < Cposd, quadrature

15/l@the following pointwise error estimate,

with C(8) > 0 being a constant independent of h end on §.

max [£0[y](x;) — Mk (z;)| < C(§)R™nEA4), (3.9)

z, €EXnN2

Proof. We note that

M;
- u(xi))‘hmin(d+l,2d—s) < C((S) Z |33z . wj|1—shmin(d+1,2d—s)

B

|A(@i, ;)75 (|zi —

J Jj=1

IN

,d—s) < C(é)hmin(l,d—s) )

1
o) [ IuNING”
B5(0
On the other ") denote the (hyper)cubic of size h¥ centered at x; , we have the error estimate
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of the Riemann sum formulation as:

M;
/B( _)A(wi,y)%(\wi—yl)(U( y) —u(xi)) dy — ZA @i, ;)75 (|lws — @) (ula;) — u(z:))h?

< C(@E)h +C) / ' dy
B\/Eh,(o)
M;
£y /G A~ ) ) — () dy — A )0~ )
M;
< CE)h+hH) 5+ O 3R max [V (Al 2)(u(2) — ula:))s(la: — =)
M; "
< COh+CE) Y w ( max (u(z) = u(@) V5o — 21)

+ ax sl — 2))[Vy (Al@i, 2)(u(z) - U(wi))l) @

S)h+C (5 Zhd“( max |wi—z|_s) < C(6)h + C(5)

dy < C(6
zeG(xzy) 4

where |Vya(x,y)| denotes the maximum component of the sr partia@derivatives with respect to y.

Therefore, substituting (3.8) into (3.3) yields

| L0Mul(:) — L4 [u)(:)]

—

B /B ( )A(‘”iay)%ﬂwi —y|)u i )75 (| — ;| u(;)h?| + O (4=
s T4

SC(é)hmin(l’d_s) )

Note here the constant C(6)gqgdepeMtent of & but may depend on 4. O

To prove the asym ic patibility, we need the truncation error estimate for convergence to the
local limit. In [33, oretf@.1], the authors have shown that for a sufficiently smooth u, the quadrature
weights obtai ) with the choice of V}, 5, = S, «, provides an O(§?) pointwise error bound for
the integr tion of 2fB§(wi) Ys(|z; — y|)(u(y) — u(x;)) dy when the ratio h/¢ is fixed. We can

easily extend error estimate to a nonlocal diffusion operator with heterogeneous diffusion coefficient:

Lemma 3.4. Consider a kernel 5 satisfying the conditions in Lemma 3.1, a diffusion coefficient function
A satisfying the conditions in (3.2), u(x) € CH2U Qs), and fired ratio h/§ < Cpos. Quadrature weights
obtained from (3.5) with the choice of Vi, o, = Sy, 2, satisfy the following pointwise error estimate, with

C > 0 independent of § and h:

max [ L2[u](x:) — L3 [u)(@:)] < Ollullosgoa;)0°

€ €EVh o,
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where ||ull o o) = nax l%lla}ﬂDﬁu (z)|.
5

Proof. Note that for a given & we consider the estimate of A(zx,y)u(x) € C* and A(x,y)u(y) € C*, the

following truncation estimate is obtained immediately from [33, Theorem 2.1]:

A(z;,y)Do
2 _— _ )
Lg%i)ég ~/B(5(m1) |:1;2 _ y|s (U,(y) u(wl)) dy
A(z;, x;)D, .
-2 Wi ( i) \O(U(mj) —u(x;))| < C|‘“||c4(m)54 +d_

z;ExnNBs(xi)\{z:}

And the proof is finished by taking v5(|x — y|) = Mﬁ as stated in (2.1). O

From the derivation of Theorem 2.2, one can see that |£%u](x;) — £°[u](x;) Ugé)ég. We

therefore obtain the following truncation error estimate to the local limit:

Corollary 3.5. Consider a kernel vs satisfying the conditions in Lemma
A(-,-) satisfying the conditions in (3.2), u(z) € C*(2 U 2s), and fizedqy @
obtained from (3.5) with the choice of Vi oz, = Sys. satisfy the fyw pointwise error estimate, with
C > 0 independent of § and h:

iffusion coefficient function

<Chpos- Quadrature weights

0 2
s |£0u () I, 1Ml s 0

With the discrete maximum principle and the ve truncation estimate results, we finally get the main

results on the stability in maximum norm?

Lemma 3.6 (Stablhty Consider omain {2 and 75 satisfying the conditions in Lemma 3.1.
Assume that a(-) € C*(02 g the conditions in (3.2), and 2 U 25 € C*, then there exist
generic constants C' and 6 uch Mat when § < 6y and h < Chos6, solution to the discretized nonlocal
diffusion problem ( 0
< D A
Q mmggluh )| < max [u”| +C gi%nlf(mz)\
Here C' zsﬁ t of both h and 6.

Proof. We construct a barrier function 1 (x). With the properties of a, there exists a C*° solution 7,/;

for the following classical diffusion problem [81]:

£% =2 on 2U s,
Y =0 ond(RU ),
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where 9(£2 U £2s) denotes the exterior boundary of 2 U £25. We then define ¢ (x) := ¢(x) — ergglg U(2),
= 5

i satisfies: L0 = < < — = . =
and notice that 1 satisfies: £°¢% =2 > 0, 0 < ¢ < (zErnQ%J).(Q ¢( ) Ze%glﬂgw( )) My,. Set My

max |f(x;)|. Since max | L0 (;) — L3 [])(;)| < C6? as shown in Corollary 3.5, there exists a con-
x;EXnN i h,@;
stant 6y > 0 such that when § < &y we have £9¢ > 1 > 0. Then £ (ud + M)(z;) = —f(z;) + My > 0,

and the discrete maximum principle yields

max ul (x;) < max (u) + M) (z;) <  max  (ud + Mpo)(x;)

T, EXh T, EXh T, €EXHNI2s
< max [u”| + My M, = max [u”| + M, max |f(z;)|. (3.10)
s s x; ExnNN2

Similarly we can show that £3(u} — Myip)(z;) = —f(z;) — My < 0 and

> - M ;
in w (@) > —max fu”| - My max |f(@),
which together with (3.10) finishes the proof. O
With the stability property of £ and the truncation estimates i s 3.3-3.5 we proceed to prove
the two types of convergence results in (3.1). We first consj case wit® fixed ¢ and vanishing h. In
particular, we investigate the convergence of numerical g togonlocal solution by combining Lemma

3.3 with the stability property:

Theorem 3.7 (Convergence to Deterministic ocal Solution). Assume that the conditions in Lemma
3.8 and Lemma 3.6 are satisfied and u CL(QUN), then there exists a 5o > 0 such that for a fived &
satisfying 0 < 6 < dg and h < Cposd, [Ny convergence property holds for the numerical solution of
(3.3):

0

HLOO(X ) < C( )hmln (1,d— s) (311)

where C(0) is a generic coMant Mependent of h but may depend on the (fized) horizon size .

Proof. Apply the stqility rem to uz —u?, we immediately obtain

6(331) —u (-’131)| < (C max ‘Ehu (:BZ) L‘s 5(-'131)| < C( )hmm (1,d— s)

x; ExpNS2

O

Next, we show the AC property of the meshfree method, when both § and h vanish with a fixed ratio
d/h. In particular, we investigate the convergence rate of numerical solution to local limit by combining

Lemma 3.4 and Corollary 3.5 with the stability property of /32:

Theorem 3.8 (Asymptotic Compatibility in Deterministic Nonlocal Problems). Assume that the conditions
in Corollary 3.5 and Lemma 3.6 are satisfied, and u® € C*(2U £25), when applying the boundary condition
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uP(x;) = u®(x;) for x; € xn N Qs then there exists a 5o > 0 such that for any 0 < § < & and fized ratio

h/§ < Cpos, the meshfree scheme (3.3) is asymptotically compatible, i.e.,

H“z - “OHLw(Xh) = C’]uO]]C4(m)62, (3.12)

where C' is a generic constant independent of 6 and h.

0

Proof. Applying the stability theorem to ui — u”, we immediately obtain:

max |uh(:cl) —u’(x;)] < C max |£h O(x;) — L% (x;)] < CQHUOHC4

T EXN z;EXRN (QUQ&)

O

Remark 3.9. In numerical tests of Sections 4-5, when verifying the AC convey generally set the

boundary condition u” = u® in 25. However, we note that it is generally n ¥ to have u° defined
in £25. When {2 is a Lipschitz domain, the above bounds can also be the general u® € C*(92),
since one can extend u’ to a C* function 4° in R? (see, e.g., [82, Se ). Therefore, we can apply

ry cOM@ition as uP = 4°. For further

discussions on applying Dirichlet-type boundary conditiong a Ex@nded local solution, we refer interested

readers to [72].

Remark 3.10. In numerical tests of Sections ocus on the flat kernel with s = 0 for verification. In
this case, from Theorems 3.7 and 3.8, wegpote that optimal convergence rate to the nonlocal solution is

O(h) when h — 0, while the optimal convence to the local limit is O(62) when h,d — 0.

3.2. Stochastic: Probabilistic Col od with Sparse Grids

To solve the stochastic py uced in Section 2.2, we employ the probabilistic collocation method

(PCM) in the parametric ce its high resolution and ease of implementation by sampling at discrete
points in random spgce [ 3 @]. Consider the stochastic equation (2.12), PCM can be seen as a Lagrange

interpolation in ondlspace. In particular, let Oy = {Ek}le C I' be a set of prescribed nodes such

polation in the random space I” is poised in an interpolation space I'7, where IV is the

K
ZU &) Jr(€

k=1
where Ji (&) is the Lagrange polynomial satisfying Ji(§) € It and Jix(§;) = dx;. Denoting a(x,§) =

Zle u(x, &) Jx(€), the collocation procedure to solve the stochastic nonlocal equation is

R(a($7£))|$k =0, Vk

1, K

)
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where R is the residual of (2.12). With the property of Lagrange interpolation, we obtain

—LOu)(x, &) = —D[A(z, y, )G u(z, &)]] = f(x) for x € 02,
D

(3.13)
u(x, &) = u” (x), for x € 25,

for k = 1,---, K. Note that (3.13) is equivalent to solving K deterministic nonlocal diffusion problems,
where the deterministic meshfree solver discussed in Section 3.1 can be readily applied. Therefore, the PCM
approach can be implemented in an embarrassingly parallel way and the total computational cost is the
product of the number of collocation points times the cost of the deterministic problem.

With the numerical solution of (3.13) on all collocation points &;, the statistical moment the random

solution can be evaluated:

K

Blul(e) ~ Elil(z) = | 3 u(.6)5(On()de.
k=1
K 2
olul(z) ~ oli)(x) = /F [Z U(m,ék)Jk(E)] p
k=1
and so on. Here p is the PDF of random variable £&. To furt oximate the integral for above polyno-
mials, we employ the quadrature rule approximation by £foo! set Oy as quadrature point set:
Elu](z) ~ Eli](x) B @, &) ik, (3.14)
kN
K
olul(z) ~ > uP (@, &) — [E(d) (@), (3.15)
k=1

where {px < | is the set of cogffsp uadrature weights.
There are mainly two dg¥reiutrategies for the selection of collocation point sets: the tensor products of

1D collocation point set

parse grid strategy for high dimensionality. In the tensor product strategy,

olation for each dimension in the random space. For the i-th dimension, we

points O = {&i,- - ,5;(1,)} C [-1,1], a 1D interpolation for a smooth function
then writes:
O
U= ol(§w) = 3 v(&) i) (3.16)
k=1

where J,i(f(i)) is the 1D Lagrange polynomial. Then for the multivariate case v : RY — R, the tensor
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product formula is:

@) @(N)
T = U0 @ U™ ] = Y Y v (g, G (@@ ). (3.17)

k=1  kn=1
Notice here (3.17) requires K = Hijilw(i) numbers of collocation points in total, which grows quickly when
N gets large. Therefore, the tensor product strategy may be employed for problems with a small number
of random dimensions, but its required number of collocation points K generally grows exponentially as N
increases and makes the simulation non-feasible (see, e.g., [58]). Hence for problems with gerelatively large
random dimension, we employ the sparse grid strategy. In particular, we employ the sparse constructed

by the Smolyak algorithm [85], which is a linear combination of tensor product formul

Jel= Y ()Tl (CN_l >(uw<1>®~~ (3.18)

(—N+1<|w]i; <¢

Here ( is the sparseness parameter, oo = (w(l), e ,w(N)) € NV, |z (i), and ;) represents

the number of collocation points in random dimension i. To compute ly evaluations on the sparse

grids are needed:

On = U (672 Y. (3.19)

¢(—N+1< ||, <

As shown in [86, 87], (3.18) is exact for p(&)
the total number of nodes K ~ % Theref
requires a much smaller number of colloC®gon point

N polynomials of degree less than { — N) and
we may see that the sparse grid formulation typically
than the full tensor product set and we will refer

1 =(— N as the “level” of the Smoly, mWggtion.

3.8. An Asymptotically Compa 2 PCM

Let § be the horizon si D®ghe grid size in space, and K = K(n, N) be the total number of collocation

points we use in the par ace. We then denote the numerical solution to (2.12) by ui,K. As h — 0 and

K — oo, we expect jcal solution to converge to the exact solution u’ for (2.12) in L2(2) ®@L2(I"). In

5

addition, our hod is asymptotically compatible, i.e., uj - — uash —0, K — oo,and § — 0,

where u° 1 Bolution for (2.15). The error estimate can be facilitated by introducing intermediate
functions ug u%, the semi-discrete solutions to (2.12) and (2.15) respectively. Then we split the errors
into

s .5 5 5
u® —up = (U —ug) + (U —up )

W = e = (0 = ) + (e — . c)-

Foreach £ € I',
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The estimates of |[u® (&) — ud (&) 12(n2) for each & are followed by the estimates in Section 3. So we have
[|lude (&) — U?L’K(S)”[ﬂ(ﬂ) — 0 for each & € I" and therefore |Juj — Ug,K||L2(Q)®L§([’) — 0as h — 0. The
rate at which ||uf, — U;SL}K”LQ(Q)@L;Z)([’) converges to zero follows the estimates in Section 3. Moreover, we
have [[u®(€) —u’ (€)|12(0) < C§? for any & as long as u® € C*(£2U 25). Therefore we only need to estimate
u® — ud.

From the analytic regularity, & — u%(€) is a S5(£2)-valued map that admits an analytic extension to
an open neighborhood A € CN of I". Moreover, we know that max]|u®(£)]| s(s2) is uniformly bounded and
independent of 6. Therefore, the estimate of u — u‘;( is followifiAexactly from [55]. Heregwe present the

following result, whose proof can be found in [55, Theorems 3.10-3.11]. From now on we use estimate in

the parametric space I', and the L2(I") norm is bounded by the L>°(I") norm.

Lemma 3.11. There exists C; > 0 and 51 > 0 depending on N and the analytic that

max u® (&) = ufe (&) llss () < CLE 1. (3.20)
Moreover, when n > %, there exists Cy > 0, C3 > 0 and B3 > 0 dep n N and the analytic region
A, and B3 > 0 depending only on N such that ,

max [|u® (&) — ul (€ Cak?e (3.21)

ger

Equation (3.20) shows at least algebraic con ce with respect to the number of collocation points K,

nce when the level of Smolyak formulation 7 > ﬁ.

In the numerical experiments below, wiNchoose large enough 7 so as to observe the subexponential
convergence. Based on Lemma 3.11 %ve discussions, we have the following convergence theorems.

Theorem 3.12. Assume tha alz(| c1(@0a;) < 90 then there exists a §g > 0 such that for a fized §
satisfying 0 < § < &y and Q 0s0, we have

;SL,KHLZ(Q)(@LO"(F) < C(6)A(n, N)pminthd=s) 4 ¢y =P,

U’
Moreover, @, we have

min —s - 8
[u® =), | L@ nee () < C(6)A(n, NYR™™H4=9) 4 Oy P2e= R,

while equation (3.21) shows the subexporfgtial conv

The constants C1, Co, Cs, B1, B2, Ps are defined in Lemma 3.11, C(9) is defined in Theorem 3.7, and

A(n, N) is the Lebesque constant associated with the sparse grid interpolation, satisfying

A(n,N) < > ( Nl > 1 (ilog(wmﬂ)ﬂ). (3.22)

C—N+1<]w |y, <¢ ¢=l=l, j=1
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Proof. Let u® — u‘fb,K = (u® —uf) + (uf — “2,1{)‘ Notice that A(n, N) is the Lebesgue constant associated

with the sparse grid interpolation, i.e.,

AN o sup 1T
veC(I) o]l Lo

where J[v] is given by (3.18). Then by Theorem 3.7, we have
uge — ), kllz2 (@@ (ry < A, N)|[u® = vl 2@y < A(n, N)C(8)hmm14=s),

Now for each @ = (w(1), -+, @) € N¥, the Lebesgue constant of the interpolation o or UFM ®
-+ @UTW) is given by vazl L(wj), where L(m) is the classical Lebesgue constant sh®v—Curtis
abscissas in 1D, which is estimated by (see, e.g., [88])

2
L(m) < —log(m+1)+1
7r

Therefore by the definition of J[v] in (3.18), we have the estimate of (3.22). and The theorem is

then a combination of the above estimates and Lemma 3.11. , 0

Theorem 3.13. Let §y be the constant defined in Lem 4 sume that rﬁnalgc\|u0(£)|\c4(m) < o0.
€ [

Then for any § with 0 < § < &g and fixed ratio h, pode have

[0 = u) kllz2()or~Mas CA(M, N)§? + CL K.

Moreover, if n > log(2 we have

lu® — W ) < CA(n, N)§2 + Oy KP2eCol™
The constants Cq, Cs, & 3 are defined in Lemma 8.11, and A(n, N) is estimated by (3.22). The
constant C, which dgends max||u Mo+ @oms) @ independent of the parameters 6, h, 1 and N.
Proof. Legt u° =’ —u) + (v — u‘f%K). For each € € I', we can apply Theorem 3.8 to get
[ud (&) — uN K C§?, where C' depends on ||u0(£)||c4(m). Therefore, we have

[ufe — Ui,KHL?(Q)@Lw(r) < A, N)|u® = uj |22 (@)@ r=(r) < CA(n, N)&>.
Then the theorem is combination of above estimate and Lemma 3.11 when applied to § = 0. O

Remark 3.14. Notice that in the proof of numerical convergence for the meshfree method, we made rel-
atively strong regularity assumptions that the nonlocal solution u® € C'(£2U §25) and the local solution

u’ € C*(£2U §25). However, in many real-world applications regarding both local and nonlocal cases, this
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could not be guaranteed. Therefore, in the numerical tests of Sections 4-5, besides testing the numerical con-
vergences for manufactured solutions satisfying u® € C1(£2U §2;) in the first two tests and u® € C*(£2 U 25)
in the third and fourth cases, we also investigate the convergence of numerical nonlocal solutions to its local
limit when u® ¢ C*(2 U (5), in the last two numerical tests. We notice that the later is not covered by The-
orem 3.13 and therefore we have no theoretical guarantee on the numerical convergence. So these two tests
provides empirical studies on the applicability of our proposed algorithm when the regularity requirements

are not satisfied.

4. Numerical Verification of Convergences

In this section, we numerically verify the proposed approach by investigating the @g s of conver-
gences: the consistency to nonlocal solutions and then the asymptotic compati ool companions?.
In particular, we study the L? errors for the first two statistical moments, t e tandard deviation

(std). Let ui. x represent the numerical solution with spatial grid size h j e methods and K samples

in sparse grid PCM, u® represents the analytical nonlocal solution &% hnds for the analytical local

limit, in Section 4.1 we investigate the convergence of numerical solu’)s A he nonlocal analytical solution

with vanishing h and increasing sample numbers K by calc

IE (1) — E(u®) (e (uh, ) = o ()| (), (4.1)

where the mean and standard deviation

imation in (3.14)-(3.15). Similarly, in SectMg 4.2 we investigate the convergence of numerical solutions to

the local limit as K increases and ¢, /ffeo
we calculate: Q

oy, and  lo(up ) = o(u)Lu)- (4.2)

In all numerical tests, :&161‘ 1D and 2D nonlocal diffusion problems with flat kernels (s = 0). In

particular, for 1D p set 5(|T — y|) := 55 and for 2D problems vs(|z — y|) := —5=.

4.1. ConNQte w he Stochastic Nonlocal Solution

In this sec we study the consistency of the numerical solution to the nonlocal analytical solution, on

both 1D a physical domains.
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Figure 1: Test 1: consistency study of the numeri
domain and 5D parametric space. Results in

level 5. The data points in (b) and (c) corr

Test 1: consistency study on @Erob

We consider a case wi D

where £(;) are i.i.d. ran v
u® Q oS(0.5z)/

with fixed § =

Az, y,€) = (24 cos(0.5(x +9)))(5 + cos(§1)) + sin(28(2)) + cos(3(3)) + sin(4E(4)) + cos(5¢(5))),

ar
O

o
625
og s :

olution to the nonlocal analytical solution on a problem with 1D physical
nerated with 781 samples, which corresponds to Smolyak formulation
lyak formulation levels n =1,---,5.

400 600 800

200
Number of samples

(c) Convergence with sample numbers in the linear scale.

1D physical domain and 5D parametric space

38, nonlocal diffusion coefficient

4Notice that although we assumed I" = Hiil [~1,1] € RY in Sections 2-3, in numerical tests we investigate and numerically

verify our analysis on more general cases.
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sical domain 2 = [~1,1] and 5D parametric space § = (§1), - ,&(5)),

bles. We manufacture the nonlocal analytical solution

5+ cos(f(l)) + Sin(2§(2)) + COS(3§(3)) + Sin(4£(4)) + COS(5E(5))),




and loading

(%( — 25in(0.5(3z + 0)) + sin(0.5(3z + 26)) — 35 cos(0.5z) + 6sin(0.5(z + 0)))

1
—5( —28in(0.5(3z — §)) + sin(0.5(3z — 25)) + 36 cos(0.5x) + 6 sin(0.5(x — 5))))
In 25 :=[-1-9,—1)U (1,1 + ¢], Dirichlet-type boundary conditions are applied:
uP(z,€) = cos(0.52) /(5 + cos(&(1)) + sin(2€(9)) + cos(3(3)) + sin(4€(4)) + cos(5¢(5)))-
Three types of distributions are considered for {;), ¢ = 1,--- ,5: the uniform distribution § (Z —0.1,0.1],
the Gaussian distribution f((?)) ~ N(0,0.12) and the lognormal distribution § = exp(
‘demonstrate

Numerical results are provided in Figure 1. With fixed Smolyak sparse grld leyaimi

the spatial convergence of numerical solution for grid sizes h = {1/10,1/2 1 (| W, 1/160,1/320} in
Figure 1(a). First-order convergence O(h) is observed. In Figures 1(b) and loy a fixed grid size

b, sp se grid level n =1,---,5

in the parametric space. When 1 > 3, the numerical error of mean iform distribution reaches a

convergence plateau because of the spatial discretization err o¥ng thaQyve have n < N/log(2) ~ 7.5
in this case, algebraic convergence of the sparse grid P rifled for all three types of distributions.
Therefore, the O(h) spatial convergence and th b convergence of the sparse grid PCM together

verify the estimates in Theorem 3.12.

Test 2: consistency study on a problem 2D phys®al domain and 1D parametric space

We now consider a case on a squar si omain {2 = [0,1] x [0, 1] depending on a random variable &.
With fixed § = 0.525 and nonlocal dif€isg cient A(x,y,&) = (24&)[24cos(A(w1) +y))) cos(B(x2) +
Y(2)))]/0*, we consider the magfffac nlocal analytical solution

0 ) =u(x(1), 2(2),&) = cos(Ax () sin(Bx(g))/(2 + &).

Here we take 4 R in this example. For x € (25, Dirichlet-type boundary conditions are applied
Q‘ (1)) sin(Bx(2))/(2 + &). Four types of popular distributions are studied: the uniform

distribution ~ U[-0.1,0.1], the Gaussian distribution £¢? ~ N(0,0.12), the lognormal distribution
and the rescaled Weibull distribution ¢ = 0.55 . Here é is the Weibull random variable
with the shape parameter k = 5.0 and the scale parameter A\ = 1.

Numerical convergence to the nonlocal analytical solution is demonstrated in Figure 2. With 5 col-
location points in PCM, we investigate the spatial convergence of numerical solution for grid sizes h =
{1/4,1/8,1/16,1/32,1/64} in Figure 2(a). An O(h) convergence rate is observed. In Figures 2(b) and 2(c)

we consider a fixed grid size 1/32 and study the convergence of solution error with increasing sample num-
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Figure 2: Test 2: consistency study of the numeri olution to the nonlocal analytical solution on a problem with 2D physical
domain and 1D parametric space. Results in re crated with 5 samples, which corresponds to Smolyak formulation level
5. The data points in (b) and (c) correspo o formulation levels n =1,--- 5.

bers in PCM. In particular, ake tse grid levels n € {1,---,5}. When n > 4, the numerical errors of
mean for all distribution ty@gs re a convergence plateau because of the spatial discretization error. When
n > N/log(2) =~ 1.5, su p&gntial convergence is observed for all four types of considered distributions

before reaching this ea hich again verifies Theorem 3.12.

atibility (AC) to the Stochastic Local Limit

In this sectih we investigate the asymptotic compatibility (AC) of the proposed approach by studying the

convergenc its numerical solution to the corresponding local limit when 6,2~ — 0. In particular, we focus
on the §-convergence limit and fix the ratio between ¢ and h. Following the conventions in [37, 89, 90], in

all tests we consider the nonlocal diffusion coefficient as the harmonic mean of the local diffusion coefficient:

Az, y.§) =2/(a(z,8) +a(y,§)).
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Figure 3: Test 1: asymptotic compatibility stud the numerical solution to the analytical local limit on a problem with
1D physical domain and 5D parametric spac es in (a) are generated with 781 samples, which corresponds to Smolyak
formulation level 5. The data points in (b) #d or onds to Smolyak formulation levels n =1,--- /5.

Test 1: AC study on a proble ysical domain and 5D parametric space

We consider a case witQllD sical domain 2 = [~1,1] and 5D parametric space § = (§1), - ,&(5)),

where £(;) are i.i.d. ran voq@gbles. The analytical local solution is given by
0 1 xp(sin(§(1))) + cos(§(2)) + exp(sin({(z))) + cos(§(4)) + exp(sin(2{(5)))) sin())
u’ (v, = . . . ;
+exp(sin(&(1y)) + cos(§(2)) + exp(sin(&(3))) + cos(&(ay) + exp(sin(2(5))))

with fixed loadMheg f(z) = sin(z) and local diffusion coefficient

a(x,§) =12+ (1 + exp(sin(§(1))) + cos(§(2)) + exp(sin(§(3))) + cos(§(4)) + exp(sin(24(s)))) sin(z).

For z € §25 := [-1—§,—1)U(1, 1+6], Dirichlet-type boundary conditions are applied as: u? (x, &) := u®(z, £).
Three types of distributions are considered for §(;y, ¢ = 1,--- ,5: the uniform distribution 5((1.1)) ~ U[-0.1,0.1],

the Gaussian distribution f((?)) ~ N(0,0.1?) and the lognormal distribution 5((?)) = exp(g((?))).
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Numerical results are provided in Figure 3. With fixed ratio §/h = 3.8 and Smolyak sparse grid level
n = 5, in Figure 3(a) we show the error of numerical solution with respect to the analytical local limit
for grid sizes h = {1/10,1/20,1/40,1/80,1/160,1/320}. Second-order convergence O(§?) is observed. The
proposed approach is therefore AC and the observed convergence rate is consistent with our AC analysis
in Theorem 3.13. In Figures 3(b) and 3(c) we fix h = 1/5000 and ¢ = 3.8h, and show the convergence of
solution error with increasing sparse grid level n = 1,--- |5 in the parametric space. Noting that we have
n < N/log(2) ~ 7.5 in this case, algebraic convergence of the sparse grid PCM is verified for all types of

distributions, which is also consistent with the analysis in Theorem 3.13.

Test 2: AC study on a problem with 2D circular domain and 1D parametric space
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(b) Converljence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 4: Test 2: asymptotic compatibility study of the numerical solution to the analytical local limit on a problem with
2D circular domain and 1D parametric space. Results in (a) are generated with 7 samples, which corresponds to Smolyak
formulation level 5. The data points in (b) and (c¢) correspond to Smolyak formulation levels n =1,--- 5.

We next consider a more general physical domain with a curvilinear boundary. In particular, we employ
a circular physical domain 2 = B;(0) and consider 1D parametric space. Under radical coordinate and with

local diffusion coefficient a(r, 6, &) = 1/(2+cos(€) sin(r?)), loading f(r,6) = 1, the classical diffusion problem
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yields the analytical local solution
0 Lo 2
u’(r,0,8) = 1(27" — cos(§) cos(r?)).

In 25, Dirichlet-type boundary conditions are applied as: u”(r, 8, &) := u°(r, 0, £). Four types of distributions
are considered in this case: the uniform distribution ¢ ~ U[-0.1,0.1], the Gaussian distribution €@ ~
N(0,0.1%), the lognormal distribution £3) = exp(¢(?)), and the Weibull distribution £¢® with the shape
parameter k = 5.0 and the scale parameter A = 1.

Numerical results are shown in Figure 4. In Figure 4(a) we consider fixed §/h = 3. d 7 samples
with sparse grid PCM, then study the convergence of numerical solution to the analytical o8 limit with
decreasing grid size from h = 1/4 to 1/64. An O(6?) is obtained. In Figures 4(b) and 4 We WplOy a fixed
grid size h = 1/64 and § = 3.8h, then demonstrate the convergence rate of PCM ) g number of

samples corresponding to n = 1,--- 5. Before the numerical error reaches a c d¥plateau due to the

spatial discretization error, an sub-exponential convergence is obtained with 1Mareasing sample numbers.

Test 3: AC study on a problem with 2D square domain and 2D parame ce
1073 ‘ ) ‘
—O—mean 3 —&—mean PCM |
- ©- st - ©- -std PCM
—%—mean MC
- 7= 'std MC
: o) 73
B o+ 5
@ 5
=1 v
9 (o]
3 210
D @
10°®
10°°

1 10 100 1000 10000
Number of samples

the physical space. (b) Convergence with increasing sample numbers.

= [-1,1] x [~1,1] and 2D parametric space § = (£{1),&(2)),

(30
(z,8) =3+ ZCOS g(k) cos(2kw(1))sin(2kx(2)).

Since there is no analytical expression for the local limit, u°(x, £) is generated numerically based on a spectral

method solver on §2. In this example, we adopt the “interior boundary layer” setting for its simplicity. To
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provide a nonlocal Dirichlet-type boundary condition, we set u”(zx, &) := u°(z, &) and apply this boundary
condition on {2_s.

Numerical results are provided in Figure 5. With 100 collocation points in PCM and fixed §/h = 2.8, we
investigate the spatial convergence of numerical solution with decreasing grid size from h = 1/4 to 1/32 in
Figure 5(a). Second order convergence is observed, which is consistent with our analysis. In Figure 5(b) we
employ fixed grid size h = 1/32, § = 2.8h and show the convergence of numerical solutions obtained from
MC simulations and the PCM results with respect to the increase of sample points. Here the sparse grid
levels are taken as = 1,--- ,6. When n > N/log(2) = 3, sub-exponential convergence is obgerved for PCM,
and the results also indicate that PCM can achieve a similar accuracy with much smaller n er of sample

points than MC. Although the regularity requirement of u” in Theorem 3.13 is generg p ot Quaranteed

@i e numerical

Remark 4.1. By the classical elliptic regularity theory for convex polygor@do > one can show that

space C4(2U £25), we do

in this test, an algebraic convergence to the local limit u® is still observed empirical

nonlocal solution.

numerical analysis results for strong form discretization of elligis xlem Qhlow to improve the regularity

assumption in Theorem 3.13 remains an open question.

5. Stochastic Nonlocal Diffusion Proble do Heterogeneous Domain

5.1. Stochastic Representation and Karhgnen-Loe Tpansion

We use the Karhunen-Loéve (K-L) expa®gjon to represent the random field a(x,w). In general, consider

a square-integrable stochastic rando € ) defined on {2 x (2, where 2 is a subset of R? (d is the

dimension) and {2, is the samp probability space (£2,, F,P). If F(x,w) has a constant mean

and a continuous covariance, so called kernel function) =(x,y), then F'(x,w) can be represented

by the following Karhunen?

oo
Q F(z,w) = Fy + Z VAidi(x)E) (w),
n=1
where F%c ant mean, (\;, ¢;) are eigenpairs (i.e., eigenvalue and corresponding eigenfunction) of

the kernel on =, and {(;) are independent random variables with zero mean and unit variance. In

practice, the summation is truncated up to N terms for computational purpose, where N is taken such that

N 00
D X=09> N (5.1)
i=1 i=1

Notice that instead of 0.9, other numbers like 0.85 and 0.95 are also widely used. The notation of F(x,w) is

then replaced with F'(z,§), where & = (§(1),&(2),---,&)). Here, we use the KL expansion to represent the
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random field a(zx, &), and we consider the nonlocal diffusion coefficient as the harmonic mean of the local

diffusion coefficient: A(z,y,€) =2/(a (=, &) + a~(y,£)) in our nonlocal model.

5.2. Numerical Simulations

104 - ‘ ‘ - ‘
—&—mean 102 —©—mean PCM |
- ©- std Q - ©- 'std PCM
slope 2 \\\ —&—mean MC
105 1073 s - A= std MC
6. s
S ! S
5] @
| =] =4
o o
= 10°® 5
[=] [}
w w
7 ~
10 )
1/4 1/8 1/16 1/32 1/64 1000 10000
Mesh size
(a) Convergence with d,h — 0 in the physical space. b, sing sample numbers.

limit on randomly heterogeneous
A h 441 samples, which corresponds
Tormulation levels n = 1,--- 5.

nonlocal problem with a given spatial correlation structure. Results in
to Smolyak formulation level 5. The data points in (b) correspond to S

In this section, we consider the proposed app ndomly heterogeneous nonlocal problem with a
given spatial correlation structure. We conside omain 2 = [—1, 1] x [~1, 1] with u® = 0 on 942. The
local diffusivity coefficient a(x,w) is modgled as a r&gdom field with constant mean ag = 4 and a continuous

covariance function:

2 2
Ty — T(9) —
(@, y)(= Cov(a — % oxp <_| o —ywl® T —ye)l ) 7
m 2
with o = 1,m =12 = 1. 2 is the variance and 7;,7 = 1,2 are correlation lengths. We note that
the above covariance ke i arable, and therefore the eigenvalues and corresponding eigenfunctions in
{2 can be derived b m@®iplicaitons of the eigenvalues and eigenfunctions in the one-dimensional case.

In particglar, @ onsider the eigenvalues and corresponding eigenfunctions in K-L expansion for the
1D covariarN@af E®)(z,y) = oexp (_p:;iky\"‘)’ k = 1,2 and obtain the 1D eigenpairs (/\gk)7 ¢£k)) The

random local difusivity coefficient is then expressed as the following expansion:

N N(2)
az,€) =4+ > 3 VAV AP 6 (210 (2(2)) 1.5 -
i=1 j=1

In this computational example, N(V) = N(2) = 2 is required to achieve the truncation error criteria (5.1). We
assume &(; j), 4,7 = 1,2, to be Gaussian random variables: &(; ;) ~ N(0, 1), then investigate the convergence

of “2, x to the local limit. Note that in this problem there exists no analytical expression for the local
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solution, we therefore generate u°(x, ¢) numerically based on a spectral method solver. Similar as in Test
3 of Section 4.2, to provide a nonlocal Dirichlet-type boundary condition, we set u”(x, &) := u’(x, £) and
apply this boundary condition on the interior boundary layer 2_s. Since the MC method suffers from a very
slow convergence and requires more than 107 samples to achieve a desired precision, the mean and standard
deviation of the local limit is calculated with the sparse grid PCM method with 2881 samples (sparse grid
level n = 10).

Numerical results are provided in Figure 6. In Figure 6(a) we demonstrate the convergence in the physical
space with uniform grids h € {1/4,1/8,1/16,1/32,1/64} and fixed /h = 2.8, using 441 sample points (sparse
grid level n = 5). Second order convergence is observed, which verifies the analysis in T em 3.13. To

6(b) we

demonstrate the convergence in the parametric space with increasing sample numbers,

employ a fixed grid size h = 1/64, 6 = 2.8h, and show the numerical error to the lod with sparse
grid levels n = 1,--- ;5 in PCM. The results again indicate that comparing with e sparse grid PCM

achieves a better accuracy with far smaller number of samples. Although theg¥ou quirement of u in

r

Theorem 3.13 is again not guaranteed, an algebraic convergence is still pirically, demonstrating

the applicability of the proposed framework in engineering-oriented ap

6. Summary and Discussion

Due to the limitation of computational res

the physical parameters describing continuou
characterized in all details. This problerpg becomeSQgore acute in the nonlocal setting, due to its relatively
lack of sparsity and correspondingly larger putational cost.

In this work we aim to considergfhcyRat™ variability of material properties in nonlocal models by

solving randomly heterogeneous lo usion problems. In particular, we have proposed an asymp-

totically compatible stochasgi I method for randomly heterogeneous nonlocal diffusion problems,

and provided rigorous maNgemat®l analysis and error estimates. For spatial discretization, a meshfree
discretization method wi pW®nization-based quadrature rule is employed, which presents an up to O(h)

consistency errg ocal solution and an O(§2) convergence to the local limit. On the random

obabilistic collocation method (PCM) with sparse grids is employed to sample the
stochastic p WSince the fast convergence of the sparse grid PCM approach relies on smoothness of
the solutiq, e random parametric space, we have proved that the nonlocal solution is analytic in the
input random variable and therefore guarantees an at least algebraic convergence with increasing sample
numbers. This work has for the first time provided a rigorous and comprehensive mathematical framework
to add uncertainty quantification analysis onto pre-existing deterministic codes for nonlocal problems with
guaranteed convergence in both physical and parametric spaces.

Future directions of this research will include the development and analysis of a generalization of this

approach to the nonlocal mechanics problems, such as the peridynamics. While peridynamics has been
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shown to be a useful model for phase transformations and fracture problems [91, 92], most of the current
work has been restricted to deterministic models. However, in these problems the material’s microstructure,
properties, interfacial conditions, and operating environments all cause variability in the material’s response;
hence it is often non-practical, if not impossible, to provide quantitative characterization for each material
sample. This fact calls for a stochastic peridynamics modeling of the variability and characterization of the
material responses through uncertainty quantification [40]. On the other hand, since phase transformations
and fracture are both nonlinear phenomena, a development of stochastic method for nonlocal and nonlinear
problems is also desired. Further studies on the meshfree methods for nonlocal models inclyde convergence

analysis for solutions with lower regularity and higher order meshfree discretizations.
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