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Abstract

In this paper we present an asymptotically compatible meshfree method for solving nonlocal equations with

random coefficients, describing diffusion in heterogeneous media. In particular, the random diffusivity coef-

ficient is described by a finite-dimensional random variable or a truncated combination of random variables

with the Karhunen-Loève decomposition, then a probabilistic collocation method (PCM) with sparse grids

is employed to sample the stochastic process. On each sample, the deterministic nonlocal diffusion problem

is discretized with an optimization-based meshfree quadrature rule. In terms of analysis, we first show the

analytic regularity of solutions with respect to parameters in the diffusion coefficients and then present the

rigorous convergence analysis for the proposed numerical scheme, i.e., the scheme is asymptotic compatible

spatially and achieves an algebraic or sub-exponential convergence rate in the random coefficients space as

the number of collocation points grows. These results are further confirmed by a number of benchmark

problems. Finally, to validate the applicability of this approach we consider a randomly heterogeneous non-

local problem with a given spatial correlation structure, demonstrating that the proposed PCM approach

achieves substantial speed-up compared to conventional Monte Carlo simulations.
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1. Introduction

Since the last decade, there has been a great interest in using nonlocal integro-differential equations to

describe physical systems, due to their natural ability to describe physical phenomena at small scales and

their reduced regularity requirements which lead to greater flexibility [1–23]. These nonlocal models are

defined in terms of a lengthscale δ, referred to as a horizon, which denotes the extent of nonlocal interaction.

The nonlocal viewpoint allows a natural description of processes requiring reduced regularity in the relevant

solution, such as the peridynamics model for fracture mechanics [2, 24, 25]. An important feature of such

models is that they revert back to corresponding classical partial differential equation (PDE) models as the

horizon δ → 0. When refining the spatial discretization characterized by grid size h such that h → 0, dis-

cretization methods which preserve correct local limits are termed asymptotically compatible (AC) schemes

[26], and there has been significant work in recent years toward establishing such discretizations, see, e.g.,

[26–36]. Broadly, strategies either involve adopting traditional weak form via finite element shape functions

and carefully performing geometric calculations to integrate over relevant horizon/element subdomains, or

adopting a strong form meshfree discretization where particles are associated with abstract measure [37].

The former is more amenable to mathematical analysis due to a better variational setting, while the latter

is simple to implement and generally with smaller computational cost [38, 39]. In this work we pursue the

asymptotically compatible meshfree approach.

One of the limitations of the current state-of-the-art works is that most of them consider a homogenized

nonlocal model, which may not work well when the material is heterogeneous and its microsctructure plays

a critical role. In a recent study [40], Zhao et al. found that a fully homogenized peridynamic model fails
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to capture certain correct fracture modes/patterns in reinforced concrete. Therefore, they have proposed a

stochastic bond-based peridynamic model where the material property is described as random fields. The

type of each bond connecting material points x and y was modeled by a random variable, and the discrete

probability distribution of this random variable depends on the volume fraction of aggregate and cement

on x and y. With this model, fracture patterns and the order in which various cracks develop match

experimental observations. Their findings indicate the importance of considering the spatial variability of

material properties in nonlocal models, especially when the physical parameters describing spatially varying

properties of heterogeneous materials cannot be accurately characterized in all details.

In the present paper, we consider a stochastic nonlocal diffusion equation, where the heterogeneous

material property is modeled by a random field. The solution of this stochastic equation describes the

probability density function (PDF) of the state variable, e.g., the concentration. Differing from [40] which

studied the solution pattern on each individual realization rather than the solution statistics, we focus on the

numerical estimates of the first two statistical moments, i.e., the mean and (co)variance. The mean provides

an unbiased estimate of the variables and the variance quantifies the uncertainty associated with this estimate.

The Monte Carlo (MC) method and its variations [41–45] are usually used to solve stochastic moment

equations and often considered a reliable numerical tool [46]. In the MC method, a large number (denoted

by K) of random realizations (samples) are generated for the prescribed random inputs and repetitive

deterministic solvers are employed for each sample. The results are then statistically analyzed based on all

K samples to calculate leading moments of variables of interest. However, its slow O(K−1/2) convergence

rate hinders the application of MC method on relatively large scale problems, since one has to solve the

differential equation for every sample. Moreover, comparing with local (classical) PDE models, numerically

solving nonlocal equations is often more expensive due to its relative lack of sparsity. Therefore, the need

for efficient and accurate stochastic numerical methods is even more pressing in the nonlocal setting.

To achieve a faster convergence rate, several stochastic numerical methods were developed for stochastic

local (classical) PDE models, including probabilistic Galerkin methods (PGMs) [47–53], probablistic colloca-

tion methods (PCMs) [54–58], reduced basis methods [59–64], etc. Among these methods, the probabilistic

collocation method with sparse grids inherits the ease of implementation in the MC methods since only

solutions at sample points are needed. At the same time, it also reduces the required number of sample

points to achieve a given numerical accuracy, especially on problems with small random dimensions and suf-

ficient solution smoothness in the parameter space. Therefore, in this work we will employ the probabilistic

collocation methods with sparse grids. Comparing with the attentions received by stochastic PDE problems,

numerical studies of nonlocal problems in the uncertainty quantification setting remain limited. In [64],

reduced-basis methods are developed for constructing surrogates of the solution of a parameterized nonlocal

diffusion problem with random input data in a finite element method framework. However, to the authors’

best knowledge, there exists no work on studying the solution smoothness and the theoretical limiting be-

havior of stochastic nonlocal problems when δ → 0, while these studies are crucial to the design of accurate
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and asymptotically compatible stochastic numerical schemes. Moreover, the application and rigorous error

estimates of meshfree discretization method also remain limited for stochastic nonlocal problems.

The major contribution of the present work is to propose a complete workflow of asymptotically compat-

ible stochastic numerical methods and rigorous mathematical analysis for randomly heterogeneous nonlocal

diffusion problems. In particular, we propose to employ a meshfree method with optimization-based quadra-

ture rule [33, 37] for the discretization in the physical space, and a PCM with sparse grids for the discretization

in the parameter space. By proving that the solution of the nonlocal equation with diffusivity coefficient

described as a finite-dimensional random field is analytic in the input random variables, we show that the

sparse grid PCM achieves at least algebraic convergence with the increase of sample points. Moreover,

given sufficiently large level of sparse grid formulation, the sparse grid PCM converges sub-exponentially.

To characterize the convergence in physical space and the asymptotic compatibility, we for the first time

provide analysis for the stochastic nonlocal diffusion problem with random coefficients, showing that its

solution converges to the local solution when δ → 0. Based on these mathematical analysis, we provide

error estimates for the optimization-based quadrature rule with both fixed horizon δ and also δ going to an

asymptotic limit. In particular, we show that as far as the corresponding local solution has C4 regularity

spatially, the nonlocal numerical solution converges to the analytical local solution with an O(δ2) conver-

gence rate as δ → 0. When the nonlocal solution has C1 regularity spatially and consider a fixed δ, the

nonlocal numerical solution converges to the analytical nonlocal solution with an O(h) convergence rate as

the grid size h → 0. Lastly, we develop a complete workflow to solve for randomly heterogeneous nonlocal

problems, by representing the heterogeneous material coefficient as a random field with given spatial corre-

lation structure and approximating the coefficient by a truncated combination of random variables using the

Karhunen-Loève expansion. This work provides a road map to add uncertainty quantification functional-

ity onto pre-existing asymptotically compatible code for deterministic nonlocal problems in a non-intrusive

manner, which achieves algebraic or sub-exponential convergence in the solution mean and variance while

sustaining the spatial asymptotic compatibility to the correct local limit. Furthermore, we notice that the

regularity requirements for the nonlocal and local solutions in our error estimates are not guaranteed in some

real-world applications. Therefore, we also investigate the numerical convergence when these requirements

are not satisfied and provide empirical convergence rates.

We remark that the paper is organized to establish the rigorous mathematical underpinnings of the

approach in the first half, while the second half focuses on a numerical verification and more engineering-

oriented exploration of its application, especially on the cases that are not covered by the theoretical error

estimates. The paper is organized as follows, with all major notations listed in Table 1. We recall first the

relevant results in nonlocal calculus and provide mathematical analysis for the deterministic and stochastic

nonlocal diffusion problems in Section 2. After establishing the continuous limits of the stochastic nonlocal

problem, we next pursue a consistent discretization. In Section 3, we propose our numerical approach

for stochastic nonlocal problems by employing the sparse grid PCM and an optimization-based meshfree
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quadrature rule in the physical space and establish rigorous error estimates. In particular, we show that the

proposed approach achieves algebraic or sub-exponential convergence in the parametric space, and address

the convergence rates to the nonlocal and local limits respectively. The theoretical error estimates are

verified on a number of one-dimensional and two-dimensional problems with analytic solutions for the local

and nonlocal limits in Section 4. In Section 5, we further extend the proposed formulation to handle a more

engineering-oriented problem, where the random diffusivity coefficient is modeled by a random field with a

given spatial correlation structure. Section 6 summarizes our findings and discusses future research.

2. The Deterministic and Parametric Nonlocal Diffusion Problem

In this section we introduce the major notations and definitions will be used throughout this paper.

We begin with Table 1 and in Section 2.1 we introduce the deterministic nonlocal diffusion problem while

Section 2.2 is dedicated to the stochastic nonlocal diffusion problem. Moreover, we provide novel theoretical

analysis for the stochastic nonlocal diffusion problem, namely, its compatibility with the classical companion

and analytic regularity.

2.1. Nonlocal Calculus and Deterministic Nonlocal Diffusion Problem

In this section, we review the the governing equations of deterministic nonlocal diffusion models which

provide the foundation for the stochastic nonlocal problems of interest. Given that Ω ⊂ Rd, d ∈ Z+, is a

bounded Lipschitz domain, we consider the nonlocal elliptic equation in Ω. To do so, we first introduce the

relevant nonlocal calculus. Let α(x,y) : Rd × Rd → Rd be an antisymmetric function, for a vector function

v(x,y) : Rd × Rd → Rd, we define the nonlocal divergence D[v] : Rd → R:

D[v](x) :=

ˆ
Rd

(v(x,y) + v(y,x)) ·α(x,y)dy, x ∈ Rd,

and for a scalar function u(x) : Rd → R we define the nonlocal gradient G[u] : Rd × Rd → Rd:

G[u](x,y) := (u(y)− u(x))α(x,y), x,y ∈ Rd.

As shown in [24], the adjoint operator of D with respect to the L2 inner product is D∗ = −G. We then

consider a nonlocal diffusion problem where every point x ∈ Ω is interacting with a neighborhood of points,

and their interaction is described by a symmetric kernel function γ(x,y) := α(x,y) ·α(x,y) and a two-point

scalar function A(x,y) representing the nonlocal diffusion strength. Without loss of generality, we assume in

this paper that A is symmetric in its two arguments, i.e., A(x,y) = A(y,x). A nonlocal diffusion operator

on a scalar function u : Rd → R is then given by

L[u](x) := D[A(x,y)G[u]](x) = 2

ˆ
Rd
A(x,y)γ(x,y)(u(y)− u(x))dy, x ∈ Rd.
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Symbol Description
Ω Physical domain.
δ Horizon size.

Bδ(x) = {y : |y − x| ≤ δ} The physical interaction region surrounding x.
Ωδ Nonlocal boundary which is a collar of thickness surrounding Ω.

(Ωp,F ,P) Probability space.
Γ Space of random variables.
d Dimension of the physical space Ω.
N Dimension of the random space, i.e., the number of random variables.
M Total number of grid points for spatial discretization.
K Total number of collocation points (samples) in PCM.
D Nonlocal divergence operator.
G Nonlocal gradient operator.
Lδ Nonlocal diffusion operator.
L0 Local (classical) diffusion operator.
Lδh Discretized nonlocal diffusion operator.
v(i) The i-th component of vector v.
M(i,j) The i-th row j-th column element of matrix M .

uD : Ωδ → R Dirichlet type boundary condition.
γ(x,y) = γδ(|y − x|) Symmetric kernel function.

s Order of singularity in kernel γ.
A : (Ω ∪Ωδ)× (Ω ∪Ωδ)× Γ → R Nonlocal random diffusion strength function.

a : Ω × Γ → R Local random diffusion strength function.
r and R Lower and upper bounds of A and a.

Sδ(Ω) and Tδ Nonlocal energy space and the corresponding bilinear form.
ρ : Γ → R+ Probability density of the random variable.

χh = {xi} and h (Quasi-uniform) grid set and the grid size for spatial discretization.
Vh,xi Space of functions to be integrated exactly in the spatial discretization.
ωj,i Quadrature weight for xj to generate integral in Bδ(xi).

ΘN = {ξk} Prescribed nodes for the Lagrange interpolation in the random space Γ .
µk Corresponding quadrature weight for ξk in the random space.
ζ Sparseness parameter for the Smolyak sparse grid formulation.

η = ζ −N Level of the Smolyak sparse grid formulation.
φε Mollification function.

uδ : (Ω ∪Ωδ)× Γ → R Nonlocal solution of (2.12).
u0 : Ω × Γ → R Local solution of (2.15).

uδh Numerical solution for the deterministic nonlocal diffusion problem.
uδh,K Numerical solution with spatial grid set χh and sparse grid level η in PCM.

Ξ(x,y) Covariance kernel for the variances between material points x and y.

Table 1: Table of Notations.
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In this paper we further assume that the interacting kernel function γ is radial and compactly supported on

a Euclidean ball surrounding x, i.e., Bδ(x) := {y ∈ Rd : |y − x| < δ}:


γ(x,y) = γδ(|x− y|) = 1

δd+2 γ1

(
|x−y|
δ

)
= D0

δd+2−s|x−y|s

where γ1 is a nonnegative and nonincreasing function with s-th order singularity, satisfying

supp(γ1) ⊂ B1(0) and
´
B1(0)

γ1(|z|)|z|2dz = d.

(2.1)

Here, we also require that the kernel γ is integrable, i.e. s ∈ [0, d). As will be seen in the mathematical

analysis of Section 2 and Section 3, this requirement makes the proposed meshfree method well-defined

and converging. The above kernel assumptions also have implications on the boundary conditions that are

prescribed on a collar of thickness δ outside the domain Ω, that we denote as

Ωδ :=
{
x ∈ Rd\Ω : dist(x, ∂Ω) < δ

}
and refer to as nonlocal boundary.

Therefore, the static nonlocal diffusion problem in a deterministic parameters setting is given as: −Lδ[u](x) = −D[A(x,y)G[u]](x) = f(x), for x ∈ Ω

u(x) = uD(x), for x ∈ Ωδ,
(2.2)

where uD is the given Dirichlet-type boundary datum in the nonlocal trace space [65]. Without loss of

generality, for the analysis, we consider homogeneous Dirichlet boundary conditions uD(x) = 0, and the

proposed method is applied to inhomogeneous Dirichlet-type problems in numerical tests of Section 4. Note

that although the proposed model can be applied to other boundary conditions, e.g., the Neumann-type

boundary conditions in [34, 35], here we focus on the Dirichlet-type nonlocal constraint problem for simplicity.

To make the nonlocal diffusion problem (2.2) uniformly elliptic, we make the uniform boundedness

assumption on the diffusion coefficient A(x,y):

A ∈ L∞((Ω ∪Ωδ)2), and 0 < r ≤ A(x,y) ≤ R <∞, for x,y ∈ Ω ∪Ωδ, (2.3)

where r and R are two positive constants. (2.2) is then associated with the nonlocal energy semi-norm

|u|2Sδ(Ω) =

ˆ
Ω∪Ωδ

ˆ
Ω∪Ωδ

γδ(|y − x|)(u(y)− u(x))2dydx

where the nonlocal energy space is defined as

Sδ(Ω) =

{
u ∈ L2(Ω ∪Ωδ) :

ˆ
Ω∪Ωδ

ˆ
Ω∪Ωδ

γδ(|y − x|)(u(y)− u(x))2dydx <∞, u|Ωδ = 0

}
.
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Moreover, we define the bilinear form Tδ : Sδ × Sδ → R as

Tδ[v, w] =

ˆ
Ω∪Ωδ

ˆ
Ω∪Ωδ

A(x,y)γδ(|x− y|)(v(y)− v(x))(w(y)− w(x))dydx.

With the boundedness assumption proposed in (2.3) we have 0 < r|v|2Sδ(Ω) ≤ Tδ[v, v] ≤ R|v|2Sδ(Ω). Notice

that to solve for the weak solution of (2.2), we find u(x) ∈ Sδ(Ω) such that

Tδ[u, v] = (f, v)L2(Ω), ∀v ∈ Sδ(Ω). (2.4)

As proved in [66], the bilinear form Tδ holds uniform ellipticity as well as the nonlocal Poincaré inequality,

and therefore the weak formulation for the deterministic nonlocal equation (2.4) is well-posed. Here we

summarize the relevant results in the following lemma:

Lemma 2.1. [66, Proposition 5.3] Assume that γ(x,y) satisfies the conditions in (2.1), then there exist

generic constants C and δ0 > 0 such that for all 0 < δ < δ0, the nonlocal energy semi-norm | · |Sδ(Ω) satisfies

the nonlocal Poincaré inequality

||v||2L2(Ω) ≤ C|v|
2
Sδ(Ω), ∀v ∈ Sδ(Ω). (2.5)

As a result of the Poincaré inequality, the semi-norm | · |Sδ(Ω) defined is also a norm on Sδ(Ω). For the

rest of the paper, we will use ‖ · ‖Sδ(Ω) := | · |Sδ(Ω) to denote the norm on Sδ(Ω). Combining Lemma 2.1

with the properties of A in (2.3), we can see that the bilinear form Tδ is bounded and coercive:

Tδ[v, w] ≤ C||v||Sδ(Ω)||w||Sδ(Ω), ∀v, w ∈ Sδ(Ω), (2.6)

Tδ[v, v] ≥ C||v||2Sδ(Ω), ∀v ∈ Sδ(Ω). (2.7)

Therefore, by the Lax-Milgram theorem, there exists a unique solution uδ ∈ Sδ(Ω) for the deterministic

nonlocal diffusion problem (2.2) for each f ∈ (Sδ(Ω))∗, where (Sδ(Ω))∗ is the dual space of Sδ(Ω) equipped

with the induced norm ‖f‖(Sδ(Ω))∗ := sup
v∈Sδ(Ω),v 6=0

〈f,v〉
‖v‖Sδ(Ω)

. 〈·, ·〉 denotes the duality pairing between (Sδ(Ω))∗

and Sδ(Ω), and 〈f, v〉 = (f, v)L2(Ω) when f ∈ L2(Ω) ⊂ (Sδ(Ω))∗.

Next, we consider the compatibility of the nonlocal diffusion and the classical companion. To properly

define the local limit of (2.2) as δ → 0, we need to make the following continuity assumption on the diffusion

coefficient A(x,y):

A(x,y) ∈ C((Ω ∪Ωδ)2) and a(x) := A(x,x). (2.8)

Therefore, the nonlocal diffusion operator Lδ[u] has a companion of the classical diffusion operator −∇ ·

(a(x)∇(u(x))), and (2.2) can be seen as a nonlocal analogue to the local diffusion equation with Dirichlet-
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type boundary condition: L0[u](x) := −∇ · (a(x)∇(u(x))) = f(x), for x ∈ Ω

u(x) = uD(x), for x ∈ ∂Ω,
(2.9)

From (2.3), we have 0 < r ≤ a(x) ≤ R for any x ∈ Ω, so (2.9) has a unique and bounded solution in

H1(Ω) := {u ∈ L2(Ω)
∣∣ ´
Ω
|∇u(x)|2dx < ∞} with corresponding boundary condition u|∂Ω(x) = uD(x).

When we consider uD = 0, the solution space is denoted by H1
0 (Ω) := {u ∈ H1(Ω), u|∂Ω = 0}.

Denoting the solution of local problem (2.9) as u0(x) and the solution of the nonlocal one (2.2) with a

given horizon size δ as uδ(x), we now show the convergence theorem.

Theorem 2.2. Assume that γ(x,y) satisfies the conditions in (2.1), and A(x,y) satisfies the conditions in

(2.3). Let f ∈ (Sδ(Ω))∗, the dual space of Sδ(Ω), then we have

‖uδ‖Sδ(Ω) ≤
‖f‖(Sδ(Ω))∗

r
. (2.10)

In addition, if ‖f‖(Sδ(Ω))∗ is uniformly bounded for all δ ∈ (0, δ0) and A(x,y) satisfies (2.8), then the

nonlocal and local diffusion problems are compatitble as δ → 0:

lim
δ→0

∣∣∣∣uδ − u0∣∣∣∣
L2(Ω)

= 0.

Proof. We first show the proof of (2.10). Since uδ is a solution to the nonlocal problem, we have

Tδ[u
δ, v] = 〈f, v〉 ≤ ‖f‖(Sδ(Ω))∗‖v‖Sδ(Ω)

for any test function v ∈ Sδ(Ω). Now let v = uδ, we get r‖uδ‖2Sδ(Ω) ≤ Tδ[u
δ, uδ] ≤ ‖f‖(Sδ(Ω))∗‖uδ‖Sδ(Ω).

Therefore, we have (2.10).

The proof of the second part involves two steps. In the first step, we assume thatA(x,y) ∈ C∞((Ω∪Ωδ)2).

Then it is easy to see by Taylor expansion that for any v ∈ C∞0 (Ω) (with zero extended values on Ωδ), we

have the pointwise convergence of D[A(x,y)G[u]](x) to ∇ · (a∇v(x)) as δ → 0. Indeed, by doing Taylor

expansion of A and v around x, we find that

D[AG[v]](x) = 2

ˆ
A(x,y)γδ(|y − x|)(v(y)− v(x))dy

=2

ˆ (
a(x) + (y − x) · ∇a(x)

2

)
γδ(|y − x|)

(
(y − x)T∇v(x) +

1

2
(y − x)TD2v(x)(y − x)

)
dy +O(δ2)

=∇a(x) · ∇v(x) + a(x)∆v(x) +O(δ2) .

Note that the above equalities are obtained since
´
Bδ(x)

γδ(|x − y|) Π
i1+···+id=3

(y − x)ik(k)dy = 0 thanks to

the symmetry of the kernel γδ, where (y − x)(k) denotes the k-th component of (y − x) and ik ≥ 0 is
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the power on that component. Then we argue that the convergence is also in L2(Ω) since |D(AGv)(x)| is

uniformly bounded for v ∈ C∞0 (Ω) and δ ∈ (0, δ0). Notice that from the assumption on ‖f‖(Sδ(Ω))∗ , we have

‖uδ‖Sδ(Ω) being uniformly bounded for all δ ∈ (0, δ0). Then using similar arguments in [26], we can show

‖uδ − u0‖L2(Ω) → 0 as δ → 0.

For the general case that A ∈ C((Ω ∪Ωδ)2), we will use the mollification technique. Take standard

mollifiers φε ∈ C∞(R2d), we define Aε = φε ∗ A. We denote the solution to (2.2) associated with coefficient

Aε to be uδ,ε. Then we can use the first step to conclude that ‖uδ,ε − u0,ε‖L2(Ω)
δ→0−−−→ 0, where u0,ε is the

solution to (2.9) associated with coefficient aε(x) := Aε(x,x). Now in order to show ‖uδ − u0‖L2(Ω) → 0,

we notice that

lim
δ→0
‖uδ − u0‖L2(Ω) ≤ sup

δ∈(0,δ0)
‖uδ,ε − uδ‖L2(Ω) + lim

δ→0
‖uδ,ε − u0,ε‖L2(Ω) + ‖u0,ε − u0‖L2(Ω),

for any ε > 0. Therefore, we only need to show
lim
ε→0

sup
δ∈(0,δ0)

‖uδ,ε − uδ‖L2(Ω) = 0, and

lim
ε→0
‖u0,ε − u0‖L2(Ω) = 0.

(2.11)

For the first equation in (2.11), we first notice that ‖Aε − A‖C((Ω∪Ωδ)2) → 0 as ε → 0 since A(x,y) is

uniformly continuous on (Ω ∪Ωδ)2. Now since uδ,ε and uδ are solutions to (2.2) with different coefficients

and the same right-hand side, we have

(AεG[uδ,ε − uδ],G[v])L2((Ω∪Ωδ)2) = ((A−Aε)G[uδ],G[v])L2((Ω∪Ωδ)2) =: 〈gδ,ε, v〉,

for any v ∈ Sδ(Ω). We can show 〈gδ,ε, v〉 → 0 as ε→ 0 uniformly independent of δ since

〈gδ,ε, v〉 ≤ ‖A−Aε‖C((Ω∪Ωδ)2)‖u
δ‖Sδ(Ω)‖v‖Sδ(Ω) ≤ C‖A−Aε‖C((Ω∪Ωδ)2)‖v‖Sδ(Ω),

where we have used ‖uδ‖Sδ(Ω) ≤ C from (2.10). Therefore, we have

sup
δ∈(0,δ0)

‖uδ,ε − uδ‖Sδ(Ω) ≤ C sup
δ∈(0,δ0)

‖gδ,ε‖(Sδ(Ω))∗ ≤ C‖A−Aε‖C((Ω∪Ωδ)2) → 0

as ε→ 0 and the convergence in L2 is then implied from the Poincaré inequality. The proof for the second

equation in (2.11) is similar by noticing that ‖aε − a‖C(Ω) → 0 as ε→ 0.

Remark 2.3. Notice that here and for the rest of Section 2, we focus on the weak solutions of the nonlocal

and local problems, for which no extra regularity assumptions (in the physical space) are needed in terms of

well-posedness and convergence. In Section 3, we will discuss the convergence of a meshfree method for the

nonlocal problems, which requires stronger regularity assumptions.
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Remark 2.4. Although this paper mostly focuses on the “exterior boundary layer” setting because it is

more popular in literature [27, 67–72], in some occasions, such as in the local-to-nonlocal volume constraint

conversion problem [73, 74], one might find imposing boundary conditions on an interior boundary layer of

Ω:

Ω−δ := {x ∈ Ω : dist(x, ∂Ω) < δ}

more convenient. With this setting, we define nonlocal boundary conditions uD(x) := u0(x) on the inner

layer of Ω, where u0 is the local solution, and aim to solve for the solution u(x) with x ∈ Ω\Ω−δ. We

could also study the convergence of nonlocal solutions to the local limit u0(x) on the whole domain Ω. In

fact, in [66], it was shown that with this “interior boundary layer” setting, the nonlocal analytical solution

is guaranteed to converge to the local limit. To demonstrate the empirical performance of our proposed

approach on both settings, in our first four numerical examples the “exterior boundary layer” setting is

applied, while the “interior boundary layer” setting is considered in the last two examples.

2.2. Parametric Nonlocal Diffusion Problem

We now consider the case in which the coefficient A is provided by a random field A(x,y, ω), where ω ∈ Ωp
and Ωp is the sample space of a probability space (Ωp,F ,P). Here, F is the σ-algebra of subsets of Ωp and P

is the probability measure. In practice, this random field is usually represented in a “truncated” form using a

limited number of random variables (see an example in Section 5.1). Thus, it can be rewritten as A(x,y, ξ),

where ξ = (ξ(1), ξ(2), . . . , ξ(N)), N is a positive integer which denotes the dimension of the parametric space,

and ξ(i) are random variables. In practice, we often assume they are independent and identically distributed

(i.i.d.) random variables. Under this setting, we consider A(x,y, ξ) : (Ω∪Ωδ)× (Ω∪Ωδ)×Γ → R, where Γ

is the space of ξ and it is typically called random space or parametric space. Without loss of generality, here

we assume that Γ =
∏N
i=1 Γi ⊂ RN where Γi = [−1, 1], and the random variable ξ ∈ Γ has a probability

density ρ : Γ → R+. We are interested in solving the family of nonlocal elliptic equations given by −D[A(x,y, ξ)G[u]](x) = f(x), for x ∈ Ω

u(x) = uD(x), for x ∈ Ωδ.
(2.12)

For each ξ ∈ Γ , we assume that A(x,y, ξ) is symmetric in its first two variables and A(x,y, ξ) ∈ L∞((Ω ∪

Ωδ)
2). We also assume the uniform ellipticity of the nonlocal problems, i.e.,

0 < r ≤ A(x,y, ξ) ≤ R <∞, (2.13)

for x, y ∈ Ω ∪ Ωδ and ξ ∈ Γ . Therefore the Lax-Milgram theorem ensures the well-posedness of nonlocal

problem for each ξ ∈ Γ . In addition, in order to consider the limit δ → 0, we need to assume that for each

ξ ∈ Γ and x ∈ Ω ∪Ωδ,

A(·, ·, ξ) ∈ C((Ω ∪Ωδ)2) and a(x, ξ) := A(x,x, ξ). (2.14)
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Then we have the corresponding family of local elliptic equation for each ξ ∈ Γ : −∇ ·
(
a(x, ξ)∇(u(x))

)
= f(x), for x ∈ Ω

u(x) = uD(x), for x ∈ ∂Ω.
(2.15)

For each given parameter ξ ∈ Γ , we denote the solution to the nonlocal equation (2.12) by uδ(x, ξ)

and the solution to the corresponding local equation (2.15) by u0(x, ξ). A corollary of Theorem 2.2 is that

uδ(x, ξ) converges to u0(x, ξ) in the space L2(Ω)⊗ L2
ρ(Γ ) as δ → 0.

Corollary 2.5. Assume that A(x,y, ξ) satisfies (2.13) and (2.14), then we have

lim
δ→0
‖uδ − u0‖L2(Ω)⊗L2

ρ(Γ ) = 0 .

Proof. For any ξ ∈ Γ , and, we know from Theorem 2.2 that ‖uδ(·, ξ)‖Sδ(Ω) ≤ C for all δ ∈ (0, δ0) and

‖uδ(·, ξ)− u0(·, ξ)‖L2(Ω) → 0 as δ → 0. Therefore, it is easy to see that ‖uδ(·, ξ)− u0(·, ξ)‖L2(Ω) ≤ C for all

ξ ∈ Γ and δ ∈ (0, δ0). By invoking the dominated convergence theorem, we have

‖uδ − u0‖L2(Ω)⊗L2
ρ(Γ ) =

ˆ
Γ

‖uδ(·, ξ)− u0(·, ξ)‖2L2(Ω)ρ(ξ)dξ
δ→0−→ 0 .

To discuss the regularity of solutions with respect to the parameter space, we need to assume the existence

of a holomorphic extension of A(x,y, ξ).

Assumption 2.6 (Holomorphic parameter dependence). The complex continuation of A(x,y, ξ), repre-

sented as the map A : CN → L∞((Ω ∪Ωδ)2), is a L∞((Ω ∪Ωδ)2)-valued holomorphic function on CN .

This condition is easily fulfilled with A(x,y, ξ) consisting of polynomials, exponential, sine and cosine

functions of the variables ξ(1), ξ(2), · · · , ξ(N). For example, the holomorphic extension exists if A(x,y, ξ) =

Ā(x,y) +
∑N
i=1 fi(ξ(i))ψi(x,y), where Ā ∈ L∞((Ω ∪ Ωδ)2), ψi ∈ L∞((Ω ∪ Ωδ)2), and fi is a polynomial,

exponential, sine or cosine function (1 ≤ i ≤ N).

2.2.1. Analytic regularity

In order for the function uδ(x, ξ) to be uniformly recovered by polynomial expansions in the parameter

space, we will show the analyticity of the solution uδ with respect to the parameterization. By Assumption

2.6, we can extend the definition of A(x,y, ξ) to A(x,y, ξ̂) where ξ̂ belongs to the complex domain

Γ̂ := ⊗1≤i≤N{ξ̂(i) ∈ C : |ξ̂(i)| ≤ 1}.

12



Next, we need the complex uniform ellipticity assumption, namely there exists rc, Rc ∈ R such that

0 < rc ≤ Re(A(x,y, ξ̂)) ≤ |A(x,y, ξ̂)| ≤ Rc <∞. (2.16)

for x, y ∈ Ω ∪Ωδ and ξ̂ ∈ Γ̂ . Therefore the nonlocal problem with the complex coefficient A(x,y, ξ̂) is well-

posed and the corresponding solution is denoted by uδ(x, ξ̂). Here we also remark that for the analyticity

of solutions to hold, non-affine coefficients may also be used as long as ξ 7→ A(x,y, ξ) possesses an analytic

extension to the complex domains and the complex uniform ellipticity condition is satisfied, see related

discussion for the local elliptic equations in [75]. We also define the set

A := {ξ̂ ∈ CN :
rc
2
< Re(A(x,y, ξ̂)) ≤ |A(x,y, ξ̂)| < 2Rc}.

So it is clear that the set A contains Γ̂ .

For the discussions in this Section, we need the complex function spaces. We let Sδ(Ω,C) be the space

of complex valued functions with norm

‖u‖2Sδ(Ω,C) =

ˆ
Ω∪Ωδ

ˆ
Ω∪Ωδ

γδ(|y − x|)|u(y)− u(x)|2dydx,

where |u(y) − u(x)|2 is understood as (u(y)− u(x))(u(y) − u(x)) and γδ is still the real valued kernel

function. (Sδ(Ω,C))∗ is the dual space of Sδ(Ω,C) equipped with the induced norm. The main result of the

this Section is the following theorem on the analyticity of solutions.

Theorem 2.7. Assume that A(x,y, ξ̂) satisfies (2.16), then the function ξ̂ 7→ u(x, ξ̂) is holomorphic in an

open neighborhood of Γ̂ .

To prove the theorem, we first need a stability lemma.

Lemma 2.8. Suppose uδ and ũδ are two solutions of (2.2) with the same right-hand side f and different

coefficients A(x,y) and Ã(x,y) satisfying (2.3), then

‖uδ − ũδ‖Sδ(Ω) ≤ ‖A− Ã‖L∞((Ω∪Ωδ)2)
‖f‖(Sδ(Ω))∗

r2

Proof. Subtracting the variational formulations for uδ and ũδ, we find that

0 =

¨
(Ω∪Ωδ)2

(
AG[uδ](x,y)− ÃG[ũδ](x,y)

)
G[v](x,y)dydx

=

¨
(Ω∪Ωδ)2

A
(
G[uδ](x,y)− G[ũδ](x,y)

)
G[v](x,y)dydx+

¨
(Ω∪Ωδ)2

(A− Ã)G[ũδ](x,y)G[v](x,y)dydx .
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Therefore w = uδ − ũδ is a solution of

¨
(Ω∪Ωδ)2

A(x,y)G[w](x,y)G[v](x,y)dydx = 〈l, v〉

where 〈l, v〉 :=
˜

(Ã−A)G[ũδ]G[v]dydx. So from (2.10) we have

‖w‖Sδ(Ω) ≤
‖l‖(Sδ(Ω))∗

r
≤
‖A− Ã‖L∞((Ω∪Ωδ)2)‖ũδ‖Sδ(Ω)

r
≤ ‖A− Ã‖L∞((Ω∪Ωδ)2)

‖f‖(Sδ(Ω))∗

r2
.

From the proof of the stability lemma, it is easy to see that similar stability estimate holds when A and

Ã are dependent on the parameter ξ ∈ RN (or ξ̂ ∈ CN ) as long as A (or ReA) and Ã (or ReÃ) are bounded

below. Now Theorem 2.7 can be proved in a similar way as the its local counterpart in [76, Lemma 2.2].

Proof of Theorem 2.7. For simplicity of notations, sometimes we only write the explicit dependence of

functions on the parameter ξ̂ in the discussion, although they may also depend on the spatial variables.

First, it is easy to see that A is an open neighborhood of Γ̂ by the continuity of the maps ξ̂ 7→ ReA(ξ̂)

and ξ̂ 7→ |A(ξ̂)|. Now we will show that for all ξ̂ ∈ A, the function ξ̂ 7→ uδ(ξ̂) admits a complex derivative

∂ξ̂(i)u
δ(ξ̂) ∈ Sδ(Ω,C) for i ∈ {1, · · · , N}.

Let ei ∈ RN be the unit vector in the i-th dimension. For ĥ ∈ C\{0}, define the difference quotient

function

wδ
ĥ
(ξ̂) =

uδ(ξ̂ + ĥei)− uδ(ξ̂)

ĥ
∈ Sδ(Ω;C) .

Since the maps ξ̂ 7→ ReA(ξ̂) and ξ̂ 7→ |A(ξ̂)| are continuous, we have the boundedness of ReA(ξ̂ + ĥei)

and |A(ξ̂ + ĥei)| for sufficiently small ĥ. Therefore wδ
ĥ

is well-defined for sufficiently small ĥ. Then for all

v ∈ Sδ(Ω;C),

0 =

¨
(Ω∪Ωδ)2

A(x,y, ξ̂ + ĥej)G[uδ(ξ̂ + ĥej)](x,y)G[v](x,y)dydx

−
¨

(Ω∪Ωδ)2
A(x,y, ξ̂)G[uδ(ξ̂)](x,y)G[v](x,y)dydx

=ĥ

¨
(Ω∪Ωδ)2

A(x,y, ξ̂)G[wδ
ĥ
(ξ̂)](x,y)G[v](x,y)dydx

+ ĥ

¨
(Ω∪Ωδ)2

ψi(x,y)G[uδ(ξ̂ + ĥej)](x,y)G[v](x,y)dydx .

Therefore wδ
ĥ

is the unique solution to the variational problem

¨
(Ω∪Ωδ)2

A(x,y, ξ̂)G[wδ
ĥ
(ξ̂)](x,y)G[v](x,y)dydx = 〈lĥ, v〉,

where 〈lĥ, v〉 :=
˜

(Ω∪Ωδ)2 ψi(x,y)G[uδ(ξ̂ + ĥej)](x,y)G[v](x,y)dydx. One can show that lĥ converges to l0
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in (Sδ(Ω;C))∗. Indeed, for all v ∈ Sδ(Ω;C),

|〈lĥ − l0, v〉| =

∣∣∣∣∣
¨

(Ω∪Ωδ)2
ψi(x,y)G[uδ(ξ̂ + ĥei)− uδ(ξ̂)](x,y)G[v](x,y)dydx

∣∣∣∣∣
≤ ‖ψi‖L∞((Ω∪Ωδ)2)‖u

δ(ξ̂ + ĥei)− uδ(ξ̂)‖Sδ(Ω;C)‖v‖Sδ(Ω;C)

≤ ĥ‖ψi‖L∞((Ω∪Ωδ)2)
‖f‖(Sδ(Ω;C))∗

(rc/2)2
‖v‖Sδ(Ω;C),

in which the last inequality comes from the stability estimate. Therefore, wδ
ĥ

converges in Sδ(Ω;C) to wδ0,

which is the solution to

¨
(Ω∪Ωδ)2

A(x,y, ξ̂)G[wδ0(ξ̂)](x,y)G[v](x,y)dydx = 〈l0, v〉.

Hence ∂ξ̂(i)u
δ(ξ̂) = wδ0(ξ̂) ∈ Sδ(Ω;C).

3. Spatial and Stochastic Numerical Methods

Algorithm 1 Overall algorithm for the stochastic nonlocal diffusion problem (2.12)

1: Offline Stage:
1a) For spatial discretization, determine a meshfree grid set χh = {xi}Mi=1 ∈ Ω ∪ Ωδ and calculate

the optimization-based quadrature weights {ωj,i}j for each xi ∈ χh by solving (3.5).
1b) For probabilistic collocation method, determine the (sparse) collocation points set in the para-

metric space ΘN = {ξk}Kk=1 ∈ Γ and the corresponding quadrature weights µk following (3.19).
2: Online Stage: Solving for (2.12): For k = 1, · · · ,K, do

2a) Assemble the stiffness matrix Q = [Q(i,j)] such that

Qij =


2

∑
xl∈χh∩Bδ(xi)\{xi}

A(xi,xl, ξk)γδ(|xi − xl|)ωl,i, if i = j,

−2A(xi,xj , ξk)γδ(|xi − xj |)ωj,i, if i 6= j and xj ∈ Bδ(xi),
0, else ,

and the right-hand-side vector f = [f(xi)]
M
i=1.

2b) Compute the numerical solution u = [uδh(xi, ξk)]Mi=1 for the deterministic problem corresponding
to the k-th sample, by solving u = Q−1f .

3: Postprocessing Stage: Generate statistical moments of the random solution following (3.14)-(3.15).

3.1. Spatial: Optimization-Based Meshfree Quadrature Rules

In this section we introduce a strong form of particle discretizations of the deterministic nonlocal diffusion

problem introduced in Section 2.1. This approach is based upon the optimization-based quadrature rule

developed in [33, 37]. Denoting the numerical solution of (2.2) as uδh, two types of convergence are desired

in the developed numerical scheme:

lim
h→0

∣∣∣∣uδh − uδ∣∣∣∣L2(Ω)
= 0, and lim

h,δ→0

∣∣∣∣uδh − u0∣∣∣∣L2(Ω)
= 0. (3.1)
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The first type of convergence indicates that the numerical discretization method is consistent with the

nonlocal problem with a fixed δ and h → 0, while the second type shows that the nonlocal numerical

solution preserves the correct local limit when h, δ → 0 simultaneously, or equivalently, the numerical scheme

is asymptotically compatible. To maintain an easily scalable implementation, in asymptotic compatibility

studies we assume δ to be chosen such that the ratio δ
h is bound by a constant as δ → 0, restricting ourselves

to the “δ-convergence” scenario [77]12. In this setting, one obtains banded stiffness matrices allowing scalable

implementations. We will provide truncation error estimates for the quadrature error convergence rates to

the nonlocal analytical solution and the local limit, respectively. In this section, to prove the two types of

convergences we would need stronger regularity assumptions on the diffusion coefficient A(x,y) as follows:

A(x,y) ∈ C4((Ω ∪Ωδ)2), 0 < r ≤ A(x,y) ≤ R <∞, for x,y ∈ Ω ∪Ωδ, and a(x) := A(x,x). (3.2)

3.1.1. Mathematical Formulation and Implementation

Discretizing the whole interaction region Ω∪Ωδ by a collection of points χh = {xi}{i=1,2,··· ,M} ⊂ Ω∪Ωδ,

we aim to solve for the solution u(i) ≈ u(xi) on all xi ∈ χh. Although the method can be applied to more

general grids, for analysis we require χh to be a uniform Cartesian grid:

χh := {(k(1)h, · · · , k(d)h)|k = (k(i), · · · , k(d)) ∈ Zd} ∩ (Ω ∪Ωδ).

Here h is the spatial grid size. For the deterministic nonlocal diffusion model (2.2) we pursue a discretization

through the following one point quadrature rule at χh [78]:

− (Lδhu)(i) := −2
∑

xj∈χh∩Bδ(xi)\{xi}

A(xi,xj)γδ(|xi − xj |)(u(j) − u(i))ωj,i = f(xi), for xi ∈ χh ∩Ω,

u(i) = uD(xi), for xi ∈ χh ∩Ωδ,

(3.3)

where we specify {ωj,i} as a to-be-determined collection of quadrature weights admitting interpretation as a

measure associated with each collocation point xi. Note that although we only solve for u(i) on grid points

in χh, we will denote the numerical solution uδh of the above nonlocal problem as the piecewise constant

interpolation of u(i).

We use an optimization-based approach to define these weights extending previous work [33, 37], con-

structed to ensure consistency guarantees. Specifically, we seek quadrature weights for integrals supported

1In some literature it is also denoted as the “M-convergence”, see, e.g., [37].
2Typically in the literature a scheme is termed as asymptotically compatible (AC) if it recovers the classical solution for any

δ, h→ 0. Here we abuse the definition slightly and only require the δ-convergence.
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on balls of the form

I[q] :=

ˆ
Bδ(xi)

q(xi,y)dy ≈ Ih[q] :=
∑

xj∈χh∩Bδ(xi)\{xi}

q(xi,xj)ωj,i (3.4)

where we include the subscript i in {ωj,i} to denote that we seek a different family of quadrature weights

for different subdomains Bδ(xi). Denoting Pm(Rd) as the space of m-th order polynomials, we obtain these

weights from the following optimization problem

argmin
{ωj,i}

∑
xj∈χh∩Bδ(xi)\{xi}

ω2
j,iW (|xj − xi|)

2
such that, Ih[q] = I[q] ∀q ∈ Vh,xi , (3.5)

where Vh,xi = Sγδ,xi :=
{
q = p(y − xi)γδ(|xi − y|) | p ∈ P3(Rd)

}
denotes the space of functions which

should be integrated exactly. Note that when p(x) = const, we have q(x,y) = γδ(|x− y|). Therefore,

reproducing this function requires the kernel function γδ to be integrable, or equivalently, s < d. W (r) is a

radially symmetric positive weight function supported in Bδ(0). Following the discussions in [28], we take

W (r) = γδ(r). In [33], this particular choice of reproducing space provides the minimal reproducing set to

achieve the optimal O(δ2) asymptotic convergence rate in nonlocal problems with homogeneous diffusion

coefficient3. We note that provided the quadrature points are unisolvent over the desired reproducing space,

(3.5) may be proven to have a solution by interpreting it as a generalized moving least squares (GMLS)

problem [28]. For certain choices of Vh,xi , such as m-th order polynomials, unisolvency holds under the

following assumptions: the domain Ω satisfies a cone condition, the pointset χh ∩ Bδ(xi) is quasi-uniform,

and h/δ is sufficiently small (see, e.g., [79],[80, Chapter 4]).

For each xi ∈ χh ∩ Ω, we denote the set of its interacting neighbor points as {xj}j=1,··· ,Mi
= χh ∩

Bδ(xi)\{xi} and the corresponding quadrature weights in a size Mi vector, denoted as ω = [ω1,i, · · · , ωMi,i]
T .

With the Lagrange multiplier method, quadrature weights may be obtained from (3.5) by solving the saddle-

point problem for each xi W Hᵀ

H 0

ω
λ

 =

0

g

 , (3.6)

where W is an Mi ×Mi diagonal matrix with Wkk = γδ(|xk − xi|), λ ∈ Rdim(Vh,xi ) is a set of Lagrange

multipliers used to enforce reproducability, H = [H(α,j)] ∈ RMi×dim(Vh,xi ) consists of the reproducing set

evaluated at each quadrature point (i.e. H(α,j) = pα(xj), for all pα ∈ Vh,xi), and g = [g(α)] ∈ Rdim(Vh,xi )

consists of the integral of each function in the reproducing set over the ball such that g(α) = I[pα]. In

particular, when considering Vh,xi = Sγδ,xi , and denoting γδji := γδ(|xi − xj |), we then have g = [g(β)]
ᵀ,

3Notice that in [33], besides the weights ωj,i considered here, one also solves for an additional associated weight ωi,i. However,
since u(i) − u(i) = 0 in (3.3), in the current work we simplify the formulation and only solve for ωj,i with xj 6= xi. When
assigning ωi,i := Volume(Bδ(0)) −

∑
xj∈χh∩Bδ(xi)\{xi} ωj,i the quadrature rule with minimal reproducing function space

Vh,xi = P0(Rd) ∪ Sγδ,xi in [33] is in fact equivalent to the quadrature rule with reproducing function space Vh,xi = Sγδ,xi
considered here.
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H = [H(β,j)] for j = 1, · · · ,Mi and β = (β(1), · · · , β(d)) ∈ Nd, 0 ≤ |β|l1 ≤ 3, where

g(β) = g(β(1),··· ,β(d)) =

ˆ
Bδ(0)

γδ(|xi − y|)(y − xi)
β(1)

(1) · · · (y − xi)
β(d)

(d) dy for |β|l1 6= 0,

H(β,j) = γδji · (xj − xi)
β(1)

(1) · · · (xj − xi)
β(d)

(d) .

By eliminating the constraints, the quadrature weights may be obtained by solving

ω = W−1Hᵀ[HW−1Hᵀ]−1g, (3.7)

where HW−1Hᵀ = [m(β,θ)] for β = (β(1), · · · , β(d)), θ = (θ(1), · · · , θ(d)), and 0 ≤ |β|l1 ≤ 3, 0 ≤ |θ|l1 ≤ 3

satisfying

m(β,θ) = m(θ,β), m(β,θ) =

Mi∑
j=1

γδji(xj − xi)
β(1)+θ(1)
(1) · · · (xj − xi)

β(d)+θ(d)
(d) .

For problems where the reproducing constraints are redundant, [HW−1Hᵀ]−1 may be replaced by the

pseudo-inverse.

3.1.2. Stability and Convergence Analysis

To provide the stability proof of our method, we first show that the quadrature weights are all positive.

To guarantee the unisolvency of the optimization problem (3.5) (see, e.g., [80, Chapter 4]), in the following

we assume that h < Csolδ for a given constant Csol < 1 in all cases. Moreover, we also assume that δ is

bounded by a generic constant, i.e., δ ≤ C.

Lemma 3.1. Consider a kernel γδ defined in (2.1) with s < d. For a given xi and h < Csolδ, quadrature

weights obtained from (3.5) with the choice of Vh,xi = Sγδ,xi satisfy:

∣∣ωj,i − hd∣∣ ≤ Chd(h/δ)min(1,d−s), (3.8)

where C is a constant independent of h and δ.

Proof. With the symmetry property of γδ and the uniform Cartesian grid assumption, we note that g(β) = 0

if one of the components of β is an odd number, and m(β,θ) = 0 if one of the components of β+ θ is an odd

number. Moreover, g(β) = g(β̃) if β̃ is a reordering of β, and m(β,θ) = m(β̃,θ̃) if β̃+ θ̃ is a reordering of β+θ.

Denote b = [HW−1Hᵀ]−1g, we then have b(β) = 0 unless |β|l1 = 0 or |β|l1 = 2 with only one nonzero entry

βk = 2 for some k ∈ {1, · · · , d}. With the symmetry properties of g(β) and m(β,θ), we notice that b(β) = b(β̃) if

β̃ is a reordering of β. Therefore, we may denote b(0,··· ,0) := b0, b(2,0,··· ,0) = b(0,2,··· ,0) = · · · = b(0,··· ,0,2) := b2,
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and b0, b2 satisfy:

Mi∑
j=1

γδjib0 +

Mi∑
j=1

d∑
k=1

γδji(xj − xi)2(k)

 · b2 =

ˆ
Bδ(0)

γδ(|y|)dy,Mi∑
j=1

γδji(xj − xi)2(1)

 b0 +

Mi∑
j=1

γδji(xj − xi)2(1)
d∑
k=1

(xj − xi)2(k)

 · b2 =

ˆ
Bδ(0)

γδ(|y|)y2
(1)dy.

Notice that s < d and we now compare the quadrature rule with the Riemann sum estimates for integrals.

Denoting that ĥ := h/δ, x̂j := xj/δ, ŷ := y/δ and γ̂1ji := D0

|x̂j−x̂i|s , we obtain

∣∣∣∣∣∣
Mi∑
j=1

γδjih
d −
ˆ
Bδ(0)

γδ(|y|)dy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Mi∑
j=1

γ̂1jiĥ
dδ−2 −

ˆ
B1(0)

γ1(|ŷ|)δ−2dŷ

∣∣∣∣∣∣
≤ Cδ−2

ˆ
B√dĥ(0)

|ŷ|−sdŷ + Cδ−2ĥ

ˆ
B1(0)\Bĥ(0)

|ŷ|−s−1dŷ ≤ Cδ−2(ĥd−s + ĥ) ≤ Cδ−2((h/δ)
d−s

+ h/δ),∣∣∣∣∣∣hd
Mi∑
j=1

γδji(xj − xi)2(1) −
ˆ
Bδ(0)

γδ(|y|)y2
(1)dy

∣∣∣∣∣∣ =

∣∣∣∣∣∣ĥd
Mi∑
j=1

γ̂1ji(x̂j − x̂i)2(1) −
ˆ
B1(0)

γ1(|ŷ|)ŷ2
(1)dŷ

∣∣∣∣∣∣
≤ C

ˆ
B√dĥ(0)

|ŷ|2−sdŷ + Cĥ = C(ĥd+2−s + ĥ) ≤ Cδ−1h,∣∣∣∣∣∣hd
Mi∑
j=1

γδji(xj − xi)2(1)
d∑
k=1

(xj − xi)2(k) −
ˆ
Bδ(0)

γδ(|y|)|y|2y2
(1)dy

∣∣∣∣∣∣
= δ2

∣∣∣∣∣∣ĥd
Mi∑
j=1

γ̂1ji(x̂j − x̂i)2(1)
d∑
k=1

(x̂j − x̂i)2(k) −
ˆ
B1(0)

γ1(|ŷ|)|ŷ|2ŷ2
(1)dŷ

∣∣∣∣∣∣
≤ Cδ2

ˆ
B√dĥ(0)

|ŷ|4−sdŷ + Cδ2ĥ = Cδ2(ĥd+4−s + ĥ) ≤ Cδh,

where B√dĥ(0) is a sphere covering the origin point and the singularity on it. Note here we don’t have an

associated weight ωδi,i, and the errors of integrals in the (hyper)cube containing the origin point with size

hd were estimated separately. B√dĥ is then chosen as a sphere to contain this (hyper)cube. We obtain b0 =

hd + hdO((h/δ)min(1,d−s)), b2 = hdδ−2O((h/δ)min(1,d−s)), and ω = W−1Hᵀb = hd1 + O(hmin(d+1,2d−s))1,

where 1 is a size Mi vector with all elements equal 1.

From the above lemma and [80], we can see that there exists a constant C < 1 which is independent of

δ, such that for all h < Cδ unisolvency holds for the optimization problem (3.5) and we have ωj,i > 0. In

the following we will denote this constant as Cpos and generally require h < Cposδ. Note that the uniform

grid assumption and the symmetry property in Lemma 3.1 also yields ωj,i = ωi,j . Consider A satisfying the

conditions in (2.3) and (2.8) and γδ satisfying the conditions in Lemma 3.1, we obtain the discrete maximum

principle for Lδh and the well-poseness property of the discretized nonlocal diffusion problem (3.3):
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Lemma 3.2 (Discrete Maximum/Minimum Principle). For h ≤ Cposδ, let vh be a function on χh satisfying

Lδhvh ≥ 0 on χh ∩Ω, then max
χh∩Ω

vh ≤ max
χh∩Ωδ

vh.

Proof. Assume that max
χh∩Ω

vh ≥ max
χh∩Ωδ

vh and vh(xi) = max
χh∩Ω

vh, then

0 ≥− Lδhvh(xi) = −2
∑

xj∈χh∩Bδ(xi)\{xi}

A(xi,xj)γδ(|xi − xj |)ωj,i(vh(xj)− vh(xi)) ≥ 0.

Therefore, we have vh(xj) = vh(xi) = max
χh∩Ω

vh for all xj ∈ Bδ(xi). Applying the same argument to

xj ∈ Bδ(xi) in Ω and to their neighbors, one obtains that vh is a constant on χh and therefore max
χh∩Ω

vh =

max
χh∩Ωδ

vh.

With the discrete maximum principle, the discretized nonlocal diffusion problem (3.3) is therefore well-

posed, i.e., there exists a unique solution to the discretized nonlocal diffusion problem (3.3). We now consider

the accuracy of the quadrature rule. In the following, we first present the truncation error estimate of the

meshfree discretization for the nonlocal diffusion problem with fixed δ:

Lemma 3.3. Consider a kernel γδ satisfying the conditions in Lemma 3.1, a diffusion coefficient function

A satisfying the conditions in (3.2), u(x) ∈ C1(Ω ∪Ωδ), and a fixed δ. Then for h < Cposδ, quadrature

weights obtained from (3.5) with the choice of Vh,xi = Sγδ,xi satisfy the following pointwise error estimate,

with C(δ) > 0 being a constant independent of h but may depend on δ.

max
xi∈χh∩Ω

∣∣Lδ[u](xi)− Lδh[u](xi)
∣∣ ≤ C(δ)hmin(1,d−s). (3.9)

Proof. We note that

Mi∑
j=1

|A(xi,xj)γδ(|xi − xj |)(u(xj)− u(xi))|hmin(d+1,2d−s) ≤ C(δ)

Mi∑
j=1

|xi − xj |1−shmin(d+1,2d−s)

≤ C(δ)

ˆ
Bδ(0)

|y|1−sdy hmin(1,d−s) ≤ C(δ)hmin(1,d−s).

On the other hand, let G(xj) denote the (hyper)cubic of size hd centered at xj , we have the error estimate
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of the Riemann sum formulation as:∣∣∣∣∣∣
ˆ
Bδ(xi)

A(xi,y)γδ(|xi − y|)(u(y)− u(xi)) dy −
Mi∑
j=1

A(xi,xj)γδ(|xi − xj |)(u(xj)− u(xi))h
d

∣∣∣∣∣∣
≤ C(δ)h+ C(δ)

ˆ
B√dh(0)

|y|1−sdy

+

Mi∑
j=1

∣∣∣∣∣
ˆ
G(xj)

A(xi,y)γδ(|xi − y|)(u(y)− u(xi)) dy −A(xi,xj)γδ(|xi − xj |)(u(xj)− u(xi))h
d

∣∣∣∣∣
≤ C(δ)(h+ hd−s+1) + C(δ)

Mi∑
j=1

hd+1 max
z∈G(xj)

|∇y(A(xi, z)(u(z)− u(xi))γδ(|xi − z|))|

≤ C(δ)h+ C(δ)

Mi∑
j=1

hd+1

(
max

z∈G(xj)
|(u(z)− u(xi))∇yγδ(|xi − z|)|

+ max
z∈G(xj)

γδ(|xi − z|)|∇y(A(xi, z)(u(z)− u(xi))|
)

≤ C(δ)h+ C(δ)

Mi∑
j=1

hd+1

(
max

z∈G(xj)
|xi − z|−s

)
≤ C(δ)h+ C(δ)h

ˆ
Bδ(0)

|y|−sdy ≤ C(δ)h

where |∇ya(x,y)| denotes the maximum component of the first order partial derivatives with respect to y.

Therefore, substituting (3.8) into (3.3) yields

∣∣Lδ[u](xi)− Lδh[u](xi)
∣∣

=

∣∣∣∣∣∣
ˆ
Bδ(xi)

A(xi,y)γδ(|xi − y|)u(y) dy −
Mi∑
j=1

A(xi,xj)γδ(|xi − xj |)u(xj)h
d

∣∣∣∣∣∣+O(hmin(1,d−s))

≤C(δ)hmin(1,d−s).

Note here the constant C(δ) is independent of h but may depend on δ.

To prove the asymptotic compatibility, we need the truncation error estimate for convergence to the

local limit. In [33, Theorem 2.1], the authors have shown that for a sufficiently smooth u, the quadrature

weights obtained from (3.5) with the choice of Vh,xi = Sγδ,xi provides an O(δ2) pointwise error bound for

the integral approximation of 2
´
Bδ(xi)

γδ(|xi − y|)(u(y) − u(xi)) dy when the ratio h/δ is fixed. We can

easily extend this error estimate to a nonlocal diffusion operator with heterogeneous diffusion coefficient:

Lemma 3.4. Consider a kernel γδ satisfying the conditions in Lemma 3.1, a diffusion coefficient function

A satisfying the conditions in (3.2), u(x) ∈ C4(Ω ∪Ωδ), and fixed ratio h/δ < Cpos. Quadrature weights

obtained from (3.5) with the choice of Vh,xi = Sγδ,xi satisfy the following pointwise error estimate, with

C > 0 independent of δ and h:

max
xi∈Vh,xi

∣∣Lδ[u](xi)− Lδh[u](xi)
∣∣ ≤ C||u||C4(Ω∪Ωδ)δ

2,
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where ||u||Ck(Ω∪Ωδ) := max
x∈Ω∪Ωδ

max
|β|=4

∣∣Dβu(x)
∣∣.

Proof. Note that for a given x we consider the estimate of A(x,y)u(x) ∈ C4 and A(x,y)u(y) ∈ C4, the

following truncation estimate is obtained immediately from [33, Theorem 2.1]:

max
xi∈χh∩Ω

∣∣∣∣∣2
ˆ
Bδ(xi)

A(xi,y)D0

|xi − y|s
(u(y)− u(xi)) dy

−2
∑

xj∈χh∩Bδ(xi)\{xi}

ωj,i
A(xi,xj)D0

|xi − xj |s
(u(xj)− u(xi))

∣∣∣∣∣∣ ≤ C||u||C4(Ω∪Ωδ)δ
4−s+d.

And the proof is finished by taking γδ(|x− y|) = D0

δd+2−s|xi−y|s as stated in (2.1).

From the derivation of Theorem 2.2, one can see that
∣∣L0[u](xi)− Lδ[u](xi)

∣∣≤ C||u||C4(Ω∪Ωδ)δ
2. We

therefore obtain the following truncation error estimate to the local limit:

Corollary 3.5. Consider a kernel γδ satisfying the conditions in Lemma 3.1, a diffusion coefficient function

A(·, ·) satisfying the conditions in (3.2), u(x) ∈ C4(Ω ∪Ωδ), and fixed ratio h/δ < Cpos. Quadrature weights

obtained from (3.5) with the choice of Vh,xi = Sγδ,x satisfy the following pointwise error estimate, with

C > 0 independent of δ and h:

max
xi∈Vh,xi

∣∣L0[u](xi)− Lδh[u](xi)
∣∣ ≤ C||u||C4(Ω∪Ωδ)δ

2.

With the discrete maximum principle and the above truncation estimate results, we finally get the main

results on the stability in maximum norm:

Lemma 3.6 (Stability). Consider a bounded domain Ω and γδ satisfying the conditions in Lemma 3.1.

Assume that a(·) ∈ C∞(Ω), A(·, ·) satisfying the conditions in (3.2), and Ω ∪ Ωδ ∈ C1, then there exist

generic constants C and δ0 > 0 such that when δ < δ0 and h < Cposδ, solution to the discretized nonlocal

diffusion problem (3.3) satisfies:

max
xi∈χh

|uδh(xi)| ≤ max
Ωδ
|uD|+ C max

xi∈χh∩Ω
|f(xi)|.

Here C is independent of both h and δ.

Proof. We first construct a barrier function ψ(x). With the properties of a, there exists a C∞ solution ψ̂

for the following classical diffusion problem [81]:

L0ψ̂ = 2 on Ω ∪Ωδ,

ψ̂ = 0 on ∂(Ω ∪Ωδ),
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where ∂(Ω ∪ Ωδ) denotes the exterior boundary of Ω ∪ Ωδ. We then define ψ(x) := ψ̂(x) − min
z∈Ω∪Ωδ

ψ̂(z),

and notice that ψ satisfies: L0ψ = 2 > 0, 0 ≤ ψ ≤
(

max
z∈Ω∪Ωδ

ψ̂(z)− min
z∈Ω∪Ωδ

ψ̂(z)

)
:= Mψ. Set Mf :=

max
xi∈χh∩Ω

|f(xi)|. Since max
xi∈Vh,xi

∣∣L0[ψ](xi)− Lδh[ψ](xi)
∣∣ ≤ Cδ2 as shown in Corollary 3.5, there exists a con-

stant δ0 > 0 such that when δ < δ0 we have Lδhψ ≥ 1 > 0. Then Lδh(uδh + Mfψ)(xi) = −f(xi) + Mf ≥ 0,

and the discrete maximum principle yields

max
xi∈χh

uδh(xi) ≤ max
xi∈χh

(uδh +Mfψ)(xi) ≤ max
xi∈χh∩Ωδ

(uδh +Mfψ)(xi)

≤ max
Ωδ
|uD|+MfMψ = max

Ωδ
|uD|+Mψ max

xi∈χh∩Ω
|f(xi)|. (3.10)

Similarly we can show that Lδh(uδh −Mfψ)(xi) = −f(xi)−Mf ≤ 0 and

min
xi∈χh

uh(xi) ≥ −max
Ωδ
|uD| −Mψ max

xi∈χh∩Ω
|f(xi)|,

which together with (3.10) finishes the proof.

With the stability property of Lδh and the truncation estimates in Lemmas 3.3-3.5 we proceed to prove

the two types of convergence results in (3.1). We first consider the case with fixed δ and vanishing h. In

particular, we investigate the convergence of numerical solution to nonlocal solution by combining Lemma

3.3 with the stability property:

Theorem 3.7 (Convergence to Deterministic Nonlocal Solution). Assume that the conditions in Lemma

3.3 and Lemma 3.6 are satisfied and uδ ∈ C1(Ω ∪Ωδ), then there exists a δ0 > 0 such that for a fixed δ

satisfying 0 < δ < δ0 and h < Cposδ, the following convergence property holds for the numerical solution of

(3.3): ∣∣∣∣uδh − uδ∣∣∣∣L∞(χh)
≤ C(δ)hmin(1,d−s), (3.11)

where C(δ) is a generic constant independent of h but may depend on the (fixed) horizon size δ.

Proof. Apply the stability theorem to uδh − uδ, we immediately obtain

max
xi∈χh

|uδh(xi)− uδ(xi)| ≤ C max
xi∈χh∩Ω

|Lδhuδ(xi)− Lδuδ(xi)| ≤ C(δ)hmin(1,d−s).

Next, we show the AC property of the meshfree method, when both δ and h vanish with a fixed ratio

δ/h. In particular, we investigate the convergence rate of numerical solution to local limit by combining

Lemma 3.4 and Corollary 3.5 with the stability property of Lδh:

Theorem 3.8 (Asymptotic Compatibility in Deterministic Nonlocal Problems). Assume that the conditions

in Corollary 3.5 and Lemma 3.6 are satisfied, and u0 ∈ C4(Ω ∪Ωδ), when applying the boundary condition
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uD(xi) = u0(xi) for xi ∈ χh ∩ Ωδ then there exists a δ0 > 0 such that for any 0 < δ < δ0 and fixed ratio

h/δ < Cpos, the meshfree scheme (3.3) is asymptotically compatible, i.e.,

∣∣∣∣uδh − u0∣∣∣∣L∞(χh)
≤ C

∣∣∣∣u0∣∣∣∣
C4(Ω∪Ωδ)

δ2, (3.12)

where C is a generic constant independent of δ and h.

Proof. Applying the stability theorem to uδh − u0, we immediately obtain:

max
xi∈χh

|uδh(xi)− u0(xi)| ≤ C max
xi∈χh∩Ω

|Lδhu0(xi)− L0u0(xi)| ≤ C2

∣∣∣∣u0∣∣∣∣
C4(Ω∪Ωδ)

δ2.

Remark 3.9. In numerical tests of Sections 4-5, when verifying the AC convergence we generally set the

boundary condition uD = u0 in Ωδ. However, we note that it is generally not necessary to have u0 defined

in Ωδ. When Ω is a Lipschitz domain, the above bounds can also be obtained for the general u0 ∈ C4(Ω),

since one can extend u0 to a C4 function û0 in Rd (see, e.g., [82, Section 2.5]). Therefore, we can apply

the derivation of Theorem 3.8 on û0 and apply the (nonlocal) boundary condition as uD = û0. For further

discussions on applying Dirichlet-type boundary conditions as an extended local solution, we refer interested

readers to [72].

Remark 3.10. In numerical tests of Sections 4-5, we focus on the flat kernel with s = 0 for verification. In

this case, from Theorems 3.7 and 3.8, we note that the optimal convergence rate to the nonlocal solution is

O(h) when h→ 0, while the optimal convergence to the local limit is O(δ2) when h, δ → 0.

3.2. Stochastic: Probabilistic Collocation Method with Sparse Grids

To solve the stochastic problem introduced in Section 2.2, we employ the probabilistic collocation method

(PCM) in the parametric space for its high resolution and ease of implementation by sampling at discrete

points in random space [54, 83, 84]. Consider the stochastic equation (2.12), PCM can be seen as a Lagrange

interpolation in the random space. In particular, let ΘN = {ξk}Kk=1 ⊂ Γ be a set of prescribed nodes such

that the Lagrange interpolation in the random space Γ is poised in an interpolation space ΓI , where N is the

dimension of the parametric space. Then any function v : Γ → R can be approximated using the Lagrange

interpolation polynomial:

J [v](ξ) =
K∑
k=1

v(ξk)Jk(ξ),

where Jk(ξ) is the Lagrange polynomial satisfying Jk(ξ) ∈ ΓI and Jk(ξj) = δkj . Denoting û(x, ξ) :=∑K
k=1 u(x, ξk)Jk(ξ), the collocation procedure to solve the stochastic nonlocal equation is

R(û(x, ξ))|ξk = 0, ∀k = 1, · · · ,K,
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where R is the residual of (2.12). With the property of Lagrange interpolation, we obtain −Lδ[u](x, ξk) = −D[A(x,y, ξk)G[u(x, ξk)]] = f(x) for x ∈ Ω,

u(x, ξk) = uD(x), for x ∈ Ωδ,
(3.13)

for k = 1, · · · ,K. Note that (3.13) is equivalent to solving K deterministic nonlocal diffusion problems,

where the deterministic meshfree solver discussed in Section 3.1 can be readily applied. Therefore, the PCM

approach can be implemented in an embarrassingly parallel way and the total computational cost is the

product of the number of collocation points times the cost of the deterministic problem.

With the numerical solution of (3.13) on all collocation points ξi, the statistical moments of the random

solution can be evaluated:

E[u](x) ≈ E[û](x) =

ˆ
Γ

K∑
k=1

u(x, ξk)Jk(ξ)ρ(ξ)dξ,

σ[u](x) ≈ σ[û](x) =

√√√√ˆ
Γ

[
K∑
k=1

u(x, ξk)Jk(ξ)

]2
ρ(ξ)dξ − [E[û](x)]2,

and so on. Here ρ is the PDF of random variable ξ. To further approximate the integral for above polyno-

mials, we employ the quadrature rule approximation by choosing the set ΘN as quadrature point set:

E[u](x) ≈ E[û](x) ≈
K∑
k=1

u(x, ξk)µk, (3.14)

σ[u](x) ≈ σ[û](x) ≈

√√√√ K∑
k=1

u2(x, ξk)µk − [E(û)(x)]2, (3.15)

where {µk}Kk=1 is the set of corresponding quadrature weights.

There are mainly two different strategies for the selection of collocation point sets: the tensor products of

1D collocation point sets and a sparse grid strategy for high dimensionality. In the tensor product strategy,

one first construct a 1D interpolation for each dimension in the random space. For the i-th dimension, we

take $(i) numbers of nodal points Θ
$(i)

1 = {ξi1, · · · , ξi$(i)
} ⊂ [−1, 1], a 1D interpolation for a smooth function

v on the i-th dimension then writes:

U$(i) [v](ξ(i)) =

$(i)∑
k=1

v(ξik)J ik(ξ(i)) (3.16)

where J ik(ξ(i)) is the 1D Lagrange polynomial. Then for the multivariate case v : RN → R, the tensor
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product formula is:

J [v] = (U$(1) ⊗ · · · ⊗ U$(N)) [v] =

$(1)∑
k1=1

· · ·
$(N)∑
kN=1

v
(
ξ1k1 , · · · , ξ

N
kN

) (
J1
k1 ⊗ · · · ⊗ J

N
kN

)
. (3.17)

Notice here (3.17) requires K = ΠN
i=1$(i) numbers of collocation points in total, which grows quickly when

N gets large. Therefore, the tensor product strategy may be employed for problems with a small number

of random dimensions, but its required number of collocation points K generally grows exponentially as N

increases and makes the simulation non-feasible (see, e.g., [58]). Hence for problems with a relatively large

random dimension, we employ the sparse grid strategy. In particular, we employ the sparse grid constructed

by the Smolyak algorithm [85], which is a linear combination of tensor product formulas:

J [v] =
∑

ζ−N+1≤|$|l1≤ζ

(−1)ζ−|$|l1

(
N − 1

ζ − |$|l1

)
(U$(1) ⊗ · · · ⊗ U$(N)) . (3.18)

Here ζ is the sparseness parameter, $ = ($(1), · · · , $(N)) ∈ NN , |$|l1 =
∑N
i=1$(i), and $(i) represents

the number of collocation points in random dimension i. To compute (3.18), only evaluations on the sparse

grids are needed:

ΘN =
⋃

ζ−N+1≤|$|l1≤ζ

(
Θ
$(1)

1 × · · · ×Θ$(N)

1

)
. (3.19)

As shown in [86, 87], (3.18) is exact for p(ξ) ∈ Pζ−N (RN ) (all polynomials of degree less than ζ − N) and

the total number of nodes K ∼ 2Nζ−N

(ζ−N)! . Therefore, we may see that the sparse grid formulation typically

requires a much smaller number of collocation points K than the full tensor product set and we will refer

η = ζ −N as the “level” of the Smolyak formulation.

3.3. An Asymptotically Compatible Meshfree PCM

Let δ be the horizon size, h be the grid size in space, and K = K(η,N) be the total number of collocation

points we use in the parameter space. We then denote the numerical solution to (2.12) by uδh,K . As h→ 0 and

K →∞, we expect the numerical solution to converge to the exact solution uδ for (2.12) in L2(Ω)⊗L2
ρ(Γ ). In

addition, our numerical method is asymptotically compatible, i.e., uδh,K → u0 as h→ 0, K →∞, and δ → 0,

where u0 is the exact solution for (2.15). The error estimate can be facilitated by introducing intermediate

functions uδK and u0K , the semi-discrete solutions to (2.12) and (2.15) respectively. Then we split the errors

into u
δ − uδh,K = (uδ − uδK) + (uδK − uδh,K)

u0 − uδh,K = (u0 − u0K) + (u0K − uδh,K).

For each ξ ∈ Γ ,

uδK(ξ) =

K∑
k=1

uδ(ξk)Jk(ξ), and uδh,K(ξ) =

K∑
k=1

uδh(ξk)Jk(ξ).
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The estimates of ‖uδ(ξk)− uδh(ξk)‖L2(Ω) for each ξk are followed by the estimates in Section 3. So we have

‖uδK(ξ) − uδh,K(ξ)‖L2(Ω) → 0 for each ξ ∈ Γ and therefore ‖uδK − uδh,K‖L2(Ω)⊗L2
ρ(Γ ) → 0 as h → 0. The

rate at which ‖uδK − uδh,K‖L2(Ω)⊗L2
ρ(Γ ) converges to zero follows the estimates in Section 3. Moreover, we

have ‖u0(ξ)− uδ(ξ)‖L2(Ω) ≤ Cδ2 for any ξ as long as u0 ∈ C4(Ω ∪Ωδ). Therefore we only need to estimate

uδ − uδK .

From the analytic regularity, ξ 7→ uδ(ξ) is a Sδ(Ω)-valued map that admits an analytic extension to

an open neighborhood A ⊂ CN of Γ . Moreover, we know that max
ξ̂∈A
‖uδ(ξ̂)‖Sδ(Ω) is uniformly bounded and

independent of δ. Therefore, the estimate of uδ − uδK is followed exactly from [55]. Here we present the

following result, whose proof can be found in [55, Theorems 3.10-3.11]. From now on we use L∞ estimate in

the parametric space Γ , and the L2
ρ(Γ ) norm is bounded by the L∞(Γ ) norm.

Lemma 3.11. There exists C1 > 0 and β1 > 0 depending on N and the analytic region A such that

max
ξ∈Γ
‖uδ(ξ)− uδK(ξ)‖Sδ(Ω) ≤ C1K

−β1 . (3.20)

Moreover, when η > N
log(2) , there exists C2 > 0, C3 > 0 and β2 > 0 depending on N and the analytic region

A, and β3 > 0 depending only on N such that

max
ξ∈Γ
‖uδ(ξ)− uδK(ξ)‖Sδ(Ω) ≤ C2K

β2e−C3K
β3
. (3.21)

Equation (3.20) shows at least algebraic convergence with respect to the number of collocation points K,

while equation (3.21) shows the subexponential convergence when the level of Smolyak formulation η > N
log(2) .

In the numerical experiments below, we will choose large enough η so as to observe the subexponential

convergence. Based on Lemma 3.11 and the above discussions, we have the following convergence theorems.

Theorem 3.12. Assume that max
ξ∈Γ
‖uδ(ξ)‖C1(Ω∪Ωδ) < ∞, then there exists a δ0 > 0 such that for a fixed δ

satisfying 0 < δ < δ0 and any h < Cposδ, we have

‖uδ − uδh,K‖L2(Ω)⊗L∞(Γ ) ≤ C(δ)Λ(η,N)hmin(1,d−s) + C1K
−β1 .

Moreover, if η > N
log(2) , we have

‖uδ − uδh,K‖L2(Ω)⊗L∞(Γ ) ≤ C(δ)Λ(η,N)hmin(1,d−s) + C2K
β2e−C3K

β3
.

The constants C1, C2, C3, β1, β2, β3 are defined in Lemma 3.11, C(δ) is defined in Theorem 3.7, and

Λ(η,N) is the Lebesgue constant associated with the sparse grid interpolation, satisfying

Λ(η,N) ≤
∑

ζ−N+1≤|$|l1≤ζ

(
N − 1

ζ − |$|l1

) N∏
j=1

(
2

π
log($(j) + 1) + 1

)
. (3.22)
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Proof. Let uδ − uδh,K = (uδ − uδK) + (uδK − uδh,K). Notice that Λ(η,N) is the Lebesgue constant associated

with the sparse grid interpolation, i.e.,

Λ(η,N) := sup
v∈C(Γ )

‖J [v]‖L∞
‖v‖L∞

,

where J [v] is given by (3.18). Then by Theorem 3.7, we have

‖uδK − uδh,K‖L2(Ω)⊗L∞(Γ ) ≤ Λ(η,N)‖uδ − uδh‖L2(Ω)⊗L∞(Γ ) ≤ Λ(η,N)C(δ)hmin(1,d−s).

Now for each $ = ($(1), · · · , $(N)) ∈ NN , the Lebesgue constant of the interpolation operator U$(1) ⊗

· · · ⊗ U$(N) is given by
∏N
j=1 L($(j)), where L(m) is the classical Lebesgue constant for Clenshaw–Curtis

abscissas in 1D, which is estimated by (see, e.g., [88])

L(m) ≤ 2

π
log(m+ 1) + 1.

Therefore by the definition of J [v] in (3.18), we have the estimate of Λ(η,N) in (3.22). and The theorem is

then a combination of the above estimates and Lemma 3.11.

Theorem 3.13. Let δ0 be the constant defined in Lemma 3.6. Assume that max
ξ∈Γ
‖u0(ξ)‖C4(Ω∪Ωδ) < ∞.

Then for any δ with 0 < δ < δ0 and fixed ratio h/δ < Cpos, we have

‖u0 − uδh,K‖L2(Ω)⊗L∞(Γ ) ≤ CΛ(η,N)δ2 + C1K
−β1 .

Moreover, if η > N
log(2) , we have

‖u0 − uδh,K‖L2(Ω)⊗L∞(Γ ) ≤ CΛ(η,N)δ2 + C2K
β2e−C3K

β3
.

The constants C1, C2, C3, β1, β2, β3 are defined in Lemma 3.11, and Λ(η,N) is estimated by (3.22). The

constant C, which depends on max
ξ∈Γ
‖u0(ξ)‖C4(Ω∪Ωδ), is independent of the parameters δ, h, η and N .

Proof. Let u0 − uδh,K = (u0 − u0K) + (u0K − uδh,K). For each ξ ∈ Γ , we can apply Theorem 3.8 to get

‖u0(ξ)− uδh(ξ)‖L2(Ω) ≤ Cδ2, where C depends on ‖u0(ξ)‖C4(Ω∪Ωδ). Therefore, we have

‖u0K − uδh,K‖L2(Ω)⊗L∞(Γ ) ≤ Λ(η,N)‖u0 − uδh‖L2(Ω)⊗L∞(Γ ) ≤ CΛ(η,N)δ2.

Then the theorem is combination of above estimate and Lemma 3.11 when applied to δ = 0.

Remark 3.14. Notice that in the proof of numerical convergence for the meshfree method, we made rel-

atively strong regularity assumptions that the nonlocal solution uδ ∈ C1(Ω ∪Ωδ) and the local solution

u0 ∈ C4(Ω ∪Ωδ). However, in many real-world applications regarding both local and nonlocal cases, this
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could not be guaranteed. Therefore, in the numerical tests of Sections 4-5, besides testing the numerical con-

vergences for manufactured solutions satisfying uδ ∈ C1(Ω ∪Ωδ) in the first two tests and u0 ∈ C4(Ω ∪Ωδ)

in the third and fourth cases, we also investigate the convergence of numerical nonlocal solutions to its local

limit when u0 /∈ C4(Ω ∪Ωδ), in the last two numerical tests. We notice that the later is not covered by The-

orem 3.13 and therefore we have no theoretical guarantee on the numerical convergence. So these two tests

provides empirical studies on the applicability of our proposed algorithm when the regularity requirements

are not satisfied.

4. Numerical Verification of Convergences

In this section, we numerically verify the proposed approach by investigating the two types of conver-

gences: the consistency to nonlocal solutions and then the asymptotic compatibility to local companions4.

In particular, we study the L2 errors for the first two statistical moments, the mean and standard deviation

(std). Let uδh,K represent the numerical solution with spatial grid size h in meshfree methods and K samples

in sparse grid PCM, uδ represents the analytical nonlocal solution and u0 stands for the analytical local

limit, in Section 4.1 we investigate the convergence of numerical solutions to the nonlocal analytical solution

with vanishing h and increasing sample numbers K by calculating:

‖E(uδh,K)− E(uδ)‖L2(Ω), and ‖σ(uδh,K)− σ(uδ)‖L2(Ω), (4.1)

where the mean and standard deviation of uδh,K are numerically evaluated with the quadrature rule approx-

imation in (3.14)-(3.15). Similarly, in Section 4.2 we investigate the convergence of numerical solutions to

the local limit as K increases and δ, h goes to 0 simultaneously under the δ-convergence limit. In particular

we calculate:

‖E(uδh,K)− E(u0)‖L2(Ω), and ‖σ(uδh,K)− σ(u0)‖L2(Ω). (4.2)

In all numerical tests, we consider 1D and 2D nonlocal diffusion problems with flat kernels (s = 0). In

particular, for 1D problems we set γδ(|x− y|) := 3
2δ3 and for 2D problems γδ(|x− y|) := 4

πδ4 .

4.1. Consistency with the Stochastic Nonlocal Solution

In this section we study the consistency of the numerical solution to the nonlocal analytical solution, on

both 1D and 2D physical domains.
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(a) Convergence with refinement in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 1: Test 1: consistency study of the numerical solution to the nonlocal analytical solution on a problem with 1D physical
domain and 5D parametric space. Results in (a) are generated with 781 samples, which corresponds to Smolyak formulation
level 5. The data points in (b) and (c) correspond to Smolyak formulation levels η = 1, · · · , 5.

Test 1: consistency study on a problem with 1D physical domain and 5D parametric space

We consider a case with 1D physical domain Ω = [−1, 1] and 5D parametric space ξ = (ξ(1), · · · , ξ(5)),

where ξ(i) are i.i.d. random variables. We manufacture the nonlocal analytical solution

uδ(x, ξ) = cos(0.5x)/(5 + cos(ξ(1)) + sin(2ξ(2)) + cos(3ξ(3)) + sin(4ξ(4)) + cos(5ξ(5))),

with fixed δ = 0.38, nonlocal diffusion coefficient

A(x, y, ξ) = (2 + cos(0.5(x+ y)))(5 + cos(ξ(1)) + sin(2ξ(2)) + cos(3ξ(3)) + sin(4ξ(4)) + cos(5ξ(5))),

4Notice that although we assumed Γ =
∏N
i=1[−1, 1] ⊂ RN in Sections 2-3, in numerical tests we investigate and numerically

verify our analysis on more general cases.
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and loading

f(x) = − 3

δ3

(1

2

(
− 2 sin(0.5(3x+ δ)) + sin(0.5(3x+ 2δ))− 3δ cos(0.5x) + 6 sin(0.5(x+ δ))

)
−1

2

(
− 2 sin(0.5(3x− δ)) + sin(0.5(3x− 2δ)) + 3δ cos(0.5x) + 6 sin(0.5(x− δ))

))
.

In Ωδ := [−1− δ,−1) ∪ (1, 1 + δ], Dirichlet-type boundary conditions are applied:

uD(x, ξ) := cos(0.5x)/(5 + cos(ξ(1)) + sin(2ξ(2)) + cos(3ξ(3)) + sin(4ξ(4)) + cos(5ξ(5))).

Three types of distributions are considered for ξ(i), i = 1, · · · , 5: the uniform distribution ξ
(1)
(i) ∼ U [−0.1, 0.1],

the Gaussian distribution ξ
(2)
(i) ∼ N (0, 0.12) and the lognormal distribution ξ

(3)
(i) = exp(ξ

(2)
(i) ).

Numerical results are provided in Figure 1. With fixed Smolyak sparse grid level η = 5, we demonstrate

the spatial convergence of numerical solution for grid sizes h = {1/10, 1/20, 1/40, 1/80, 1/160, 1/320} in

Figure 1(a). First-order convergence O(h) is observed. In Figures 1(b) and 1(c), we employ a fixed grid size

h = 1/1280 and demonstrate the convergence of solution error with increasing sparse grid level η = 1, · · · , 5

in the parametric space. When η ≥ 3, the numerical error of mean for uniform distribution reaches a

convergence plateau because of the spatial discretization error. Noting that we have η < N/ log(2) ≈ 7.5

in this case, algebraic convergence of the sparse grid PCM is verified for all three types of distributions.

Therefore, the O(h) spatial convergence and the algebraic convergence of the sparse grid PCM together

verify the estimates in Theorem 3.12.

Test 2: consistency study on a problem with 2D physical domain and 1D parametric space

We now consider a case on a square physical domain Ω = [0, 1]× [0, 1] depending on a random variable ξ.

With fixed δ = 0.525 and nonlocal diffusion coefficient A(x,y, ξ) = (2+ξ)[2+cos(A(x(1)+y(1))) cos(B(x(2)+

y(2)))]/δ
4, we consider the manufactured nonlocal analytical solution

uδ(x, ξ) = u(x(1), x(2), ξ) = cos(Ax(1)) sin(Bx(2))/(2 + ξ).

Here we take A = B = 0.3 in this example. For x ∈ Ωδ, Dirichlet-type boundary conditions are applied

as: uD(x, ξ) := cos(Ax(1)) sin(Bx(2))/(2 + ξ). Four types of popular distributions are studied: the uniform

distribution ξ(1) ∼ U [−0.1, 0.1], the Gaussian distribution ξ(2) ∼ N (0, 0.12), the lognormal distribution

ξ(3) = exp(ξ(2)), and the rescaled Weibull distribution ξ(4) = 0.5ξ̂. Here ξ̂ is the Weibull random variable

with the shape parameter k = 5.0 and the scale parameter λ = 1.

Numerical convergence to the nonlocal analytical solution is demonstrated in Figure 2. With 5 col-

location points in PCM, we investigate the spatial convergence of numerical solution for grid sizes h =

{1/4, 1/8, 1/16, 1/32, 1/64} in Figure 2(a). An O(h) convergence rate is observed. In Figures 2(b) and 2(c)

we consider a fixed grid size 1/32 and study the convergence of solution error with increasing sample num-
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(a) Convergence with refinement in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 2: Test 2: consistency study of the numerical solution to the nonlocal analytical solution on a problem with 2D physical
domain and 1D parametric space. Results in (a) are generated with 5 samples, which corresponds to Smolyak formulation level
5. The data points in (b) and (c) correspond to Smolyak formulation levels η = 1, · · · , 5.

bers in PCM. In particular, we take sparse grid levels η ∈ {1, · · · , 5}. When η ≥ 4, the numerical errors of

mean for all distribution types reach a convergence plateau because of the spatial discretization error. When

η > N/ log(2) ≈ 1.5, sub-exponential convergence is observed for all four types of considered distributions

before reaching this plateau, which again verifies Theorem 3.12.

4.2. Asymptotic Compatibility (AC) to the Stochastic Local Limit

In this section we investigate the asymptotic compatibility (AC) of the proposed approach by studying the

convergence of its numerical solution to the corresponding local limit when δ, h→ 0. In particular, we focus

on the δ-convergence limit and fix the ratio between δ and h. Following the conventions in [37, 89, 90], in

all tests we consider the nonlocal diffusion coefficient as the harmonic mean of the local diffusion coefficient:

A(x,y, ξ) = 2/(a−1(x, ξ) + a−1(y, ξ)).
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(a) Convergence with δ, h→ 0 in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 3: Test 1: asymptotic compatibility study of the numerical solution to the analytical local limit on a problem with
1D physical domain and 5D parametric space. Results in (a) are generated with 781 samples, which corresponds to Smolyak
formulation level 5. The data points in (b) and (c) corresponds to Smolyak formulation levels η = 1, · · · , 5.

Test 1: AC study on a problem with 1D physical domain and 5D parametric space

We consider a case with 1D physical domain Ω = [−1, 1] and 5D parametric space ξ = (ξ(1), · · · , ξ(5)),

where ξ(i) are i.i.d. random variables. The analytical local solution is given by

u0(x, ξ) =
log(12 + (1 + exp(sin(ξ(1))) + cos(ξ(2)) + exp(sin(ξ(3))) + cos(ξ(4)) + exp(sin(2ξ(5)))) sin(x))

1 + exp(sin(ξ(1))) + cos(ξ(2)) + exp(sin(ξ(3))) + cos(ξ(4)) + exp(sin(2ξ(5))))
,

with fixed loading f(x) = sin(x) and local diffusion coefficient

a(x, ξ) = 12 + (1 + exp(sin(ξ(1))) + cos(ξ(2)) + exp(sin(ξ(3))) + cos(ξ(4)) + exp(sin(2ξ(5)))) sin(x).

For x ∈ Ωδ := [−1−δ,−1)∪(1, 1+δ], Dirichlet-type boundary conditions are applied as: uD(x, ξ) := u0(x, ξ).

Three types of distributions are considered for ξ(i), i = 1, · · · , 5: the uniform distribution ξ
(1)
(i) ∼ U [−0.1, 0.1],

the Gaussian distribution ξ
(2)
(i) ∼ N (0, 0.12) and the lognormal distribution ξ

(3)
(i) = exp(ξ

(2)
(i) ).
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Numerical results are provided in Figure 3. With fixed ratio δ/h = 3.8 and Smolyak sparse grid level

η = 5, in Figure 3(a) we show the error of numerical solution with respect to the analytical local limit

for grid sizes h = {1/10, 1/20, 1/40, 1/80, 1/160, 1/320}. Second-order convergence O(δ2) is observed. The

proposed approach is therefore AC and the observed convergence rate is consistent with our AC analysis

in Theorem 3.13. In Figures 3(b) and 3(c) we fix h = 1/5000 and δ = 3.8h, and show the convergence of

solution error with increasing sparse grid level η = 1, · · · , 5 in the parametric space. Noting that we have

η < N/ log(2) ≈ 7.5 in this case, algebraic convergence of the sparse grid PCM is verified for all types of

distributions, which is also consistent with the analysis in Theorem 3.13.

Test 2: AC study on a problem with 2D circular domain and 1D parametric space

(a) Convergence with δ, h→ 0 in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 4: Test 2: asymptotic compatibility study of the numerical solution to the analytical local limit on a problem with
2D circular domain and 1D parametric space. Results in (a) are generated with 7 samples, which corresponds to Smolyak
formulation level 5. The data points in (b) and (c) correspond to Smolyak formulation levels η = 1, · · · , 5.

We next consider a more general physical domain with a curvilinear boundary. In particular, we employ

a circular physical domain Ω = B1(0) and consider 1D parametric space. Under radical coordinate and with

local diffusion coefficient a(r, θ, ξ) = 1/(2+cos(ξ) sin(r2)), loading f(r, θ) = 1, the classical diffusion problem
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yields the analytical local solution

u0(r, θ, ξ) =
1

4
(2r2 − cos(ξ) cos(r2)).

In Ωδ, Dirichlet-type boundary conditions are applied as: uD(r, θ, ξ) := u0(r, θ, ξ). Four types of distributions

are considered in this case: the uniform distribution ξ(1) ∼ U [−0.1, 0.1], the Gaussian distribution ξ(2) ∼

N (0, 0.12), the lognormal distribution ξ(3) = exp(ξ(2)), and the Weibull distribution ξ(4) with the shape

parameter k = 5.0 and the scale parameter λ = 1.

Numerical results are shown in Figure 4. In Figure 4(a) we consider fixed δ/h = 3.8 and 7 samples

with sparse grid PCM, then study the convergence of numerical solution to the analytical local limit with

decreasing grid size from h = 1/4 to 1/64. An O(δ2) is obtained. In Figures 4(b) and 4(c) we employ a fixed

grid size h = 1/64 and δ = 3.8h, then demonstrate the convergence rate of PCM with increasing number of

samples corresponding to η = 1, · · · , 5. Before the numerical error reaches a convergence plateau due to the

spatial discretization error, an sub-exponential convergence is obtained with increasing sample numbers.

Test 3: AC study on a problem with 2D square domain and 2D parametric space

(a) Convergence with δ, h→ 0 in the physical space. (b) Convergence with increasing sample numbers.

Figure 5: Test 3: asymptotic compatibility study of the numerical solution to the analytical local limit on a problem with 2D
square domain and 2D parametric space. Results in (a) are generated with 100 samples. The data points in (b) correspond to
Smolyak formulation levels η = 1, · · · , 6.

We now consider a 2D square domain Ω = [−1, 1] × [−1, 1] and 2D parametric space ξ = (ξ(1), ξ(2)),

ξ(i) ∼ U [−0.1, 0.1], with loading f(x) = 1 and local diffusion coefficient

a(x, ξ) = 3 +
2∑
k=1

cos(30ξ(k))− 1

k2
cos(2kx(1)) sin(2kx(2)).

Since there is no analytical expression for the local limit, u0(x, ξ) is generated numerically based on a spectral

method solver on Ω. In this example, we adopt the “interior boundary layer” setting for its simplicity. To
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provide a nonlocal Dirichlet-type boundary condition, we set uD(x, ξ) := u0(x, ξ) and apply this boundary

condition on Ω−δ.

Numerical results are provided in Figure 5. With 100 collocation points in PCM and fixed δ/h = 2.8, we

investigate the spatial convergence of numerical solution with decreasing grid size from h = 1/4 to 1/32 in

Figure 5(a). Second order convergence is observed, which is consistent with our analysis. In Figure 5(b) we

employ fixed grid size h = 1/32, δ = 2.8h and show the convergence of numerical solutions obtained from

MC simulations and the PCM results with respect to the increase of sample points. Here the sparse grid

levels are taken as η = 1, · · · , 6. When η > N/ log(2) ≈ 3, sub-exponential convergence is observed for PCM,

and the results also indicate that PCM can achieve a similar accuracy with much smaller number of sample

points than MC. Although the regularity requirement of u0 in Theorem 3.13 is generally not guaranteed

in this test, an algebraic convergence to the local limit u0 is still observed empirically for the numerical

nonlocal solution.

Remark 4.1. By the classical elliptic regularity theory for convex polygonal domains, one can show that

u0(ξ) ∈ H2(Ω) for ξ ∈ Γ . Although Theorem 3.13 requires u0 to be in a stronger space C4(Ω ∪Ωδ), we do

observe second order convergence in δ with our numerical method. The C4 assumption agrees with classical

numerical analysis results for strong form discretization of elliptic problems. How to improve the regularity

assumption in Theorem 3.13 remains an open question.

5. Stochastic Nonlocal Diffusion Problem in Randomly Heterogeneous Domain

5.1. Stochastic Representation and Karhunen-Loève Expansion

We use the Karhunen-Loève (K-L) expansion to represent the random field a(x, ω). In general, consider

a square-integrable stochastic random field F (x, ω) defined on Ω ×Ωp, where Ω is a subset of Rd (d is the

dimension) and Ωp is the sample space of a probability space (Ωp,F ,P). If F (x, ω) has a constant mean

and a continuous covariance function (also called kernel function) Ξ(x,y), then F (x, ω) can be represented

by the following Karhunen-Loève (KL) expansion:

F (x, ω) = F0 +
∞∑
n=1

√
λiφi(x)ξ(i)(ω),

where F0 is the constant mean, (λi, φi) are eigenpairs (i.e., eigenvalue and corresponding eigenfunction) of

the kernel function Ξ, and ξ(i) are independent random variables with zero mean and unit variance. In

practice, the summation is truncated up to N terms for computational purpose, where N is taken such that

N∑
i=1

λi ≥ 0.9
∞∑
i=1

λi. (5.1)

Notice that instead of 0.9, other numbers like 0.85 and 0.95 are also widely used. The notation of F (x, ω) is

then replaced with F (x, ξ), where ξ = (ξ(1), ξ(2), . . . , ξ(N)). Here, we use the KL expansion to represent the

36



random field a(x, ξ), and we consider the nonlocal diffusion coefficient as the harmonic mean of the local

diffusion coefficient: A(x,y, ξ) = 2/(a−1(x, ξ) + a−1(y, ξ)) in our nonlocal model.

5.2. Numerical Simulations

(a) Convergence with δ, h→ 0 in the physical space. (b) Convergence with increasing sample numbers.

Figure 6: Asymptotic compatibility study of the numerical solution to the analytical local limit on randomly heterogeneous
nonlocal problem with a given spatial correlation structure. Results in (a) are generated with 441 samples, which corresponds
to Smolyak formulation level 5. The data points in (b) correspond to Smolyak formulation levels η = 1, · · · , 5.

In this section, we consider the proposed approach on a randomly heterogeneous nonlocal problem with a

given spatial correlation structure. We consider a 2D domain Ω = [−1, 1]× [−1, 1] with u0 = 0 on ∂Ω. The

local diffusivity coefficient a(x, ω) is modeled as a random field with constant mean a0 = 4 and a continuous

covariance function:

Ξ(x,y)(= Cov(a(x, ξ), a(y, ξ))) = σ2 exp

(
−
|x(1) − y(1)|2

η1
−
|x(2) − y(2)|2

η2

)
,

with σ = 1, η1 = η2 = 1. Of note, σ2 is the variance and ηi, i = 1, 2 are correlation lengths. We note that

the above covariance kernel is separable, and therefore the eigenvalues and corresponding eigenfunctions in

Ω can be derived by the multiplicaitons of the eigenvalues and eigenfunctions in the one-dimensional case.

In particular, we first consider the eigenvalues and corresponding eigenfunctions in K–L expansion for the

1D covariance function Ξ(k)(x, y) = σ exp
(
− |x−y|

2

ηk

)
, k = 1, 2 and obtain the 1D eigenpairs (λ

(k)
i , φ

(k)
i ). The

random local diffusivity coefficient is then expressed as the following expansion:

a(x, ξ) = 4 +
N(1)∑
i=1

N(2)∑
j=1

√
λ
(1)
i

√
λ
(2)
j φ

(1)
i (x(1))φ

(2)
j (x(2))ξ(i,j).

In this computational example, N (1) = N (2) = 2 is required to achieve the truncation error criteria (5.1). We

assume ξ(i,j), i, j = 1, 2, to be Gaussian random variables: ξ(i,j) ∼ N(0, 1), then investigate the convergence

of uδh,K to the local limit. Note that in this problem there exists no analytical expression for the local
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solution, we therefore generate u0(x, ξ) numerically based on a spectral method solver. Similar as in Test

3 of Section 4.2, to provide a nonlocal Dirichlet-type boundary condition, we set uD(x, ξ) := u0(x, ξ) and

apply this boundary condition on the interior boundary layer Ω−δ. Since the MC method suffers from a very

slow convergence and requires more than 107 samples to achieve a desired precision, the mean and standard

deviation of the local limit is calculated with the sparse grid PCM method with 2881 samples (sparse grid

level η = 10).

Numerical results are provided in Figure 6. In Figure 6(a) we demonstrate the convergence in the physical

space with uniform grids h ∈ {1/4, 1/8, 1/16, 1/32, 1/64} and fixed δ/h = 2.8, using 441 sample points (sparse

grid level η = 5). Second order convergence is observed, which verifies the analysis in Theorem 3.13. To

demonstrate the convergence in the parametric space with increasing sample numbers, in Figure 6(b) we

employ a fixed grid size h = 1/64, δ = 2.8h, and show the numerical error to the local limit with sparse

grid levels η = 1, · · · , 5 in PCM. The results again indicate that comparing with MC, the sparse grid PCM

achieves a better accuracy with far smaller number of samples. Although the regularity requirement of u0 in

Theorem 3.13 is again not guaranteed, an algebraic convergence is still observed empirically, demonstrating

the applicability of the proposed framework in engineering-oriented applications.

6. Summary and Discussion

Due to the limitation of computational resources and experimental resolutions, in many applications

the physical parameters describing continuous properties of heterogeneous materials cannot be accurately

characterized in all details. This problem becomes more acute in the nonlocal setting, due to its relatively

lack of sparsity and correspondingly larger computational cost.

In this work we aim to consider the spatial variability of material properties in nonlocal models by

solving randomly heterogeneous nonlocal diffusion problems. In particular, we have proposed an asymp-

totically compatible stochastic numerical method for randomly heterogeneous nonlocal diffusion problems,

and provided rigorous mathematical analysis and error estimates. For spatial discretization, a meshfree

discretization method with optimization-based quadrature rule is employed, which presents an up to O(h)

consistency error to the nonlocal solution and an O(δ2) convergence to the local limit. On the random

parametric space, a probabilistic collocation method (PCM) with sparse grids is employed to sample the

stochastic process. Since the fast convergence of the sparse grid PCM approach relies on smoothness of

the solution in the random parametric space, we have proved that the nonlocal solution is analytic in the

input random variable and therefore guarantees an at least algebraic convergence with increasing sample

numbers. This work has for the first time provided a rigorous and comprehensive mathematical framework

to add uncertainty quantification analysis onto pre-existing deterministic codes for nonlocal problems with

guaranteed convergence in both physical and parametric spaces.

Future directions of this research will include the development and analysis of a generalization of this

approach to the nonlocal mechanics problems, such as the peridynamics. While peridynamics has been

38



shown to be a useful model for phase transformations and fracture problems [91, 92], most of the current

work has been restricted to deterministic models. However, in these problems the material’s microstructure,

properties, interfacial conditions, and operating environments all cause variability in the material’s response;

hence it is often non-practical, if not impossible, to provide quantitative characterization for each material

sample. This fact calls for a stochastic peridynamics modeling of the variability and characterization of the

material responses through uncertainty quantification [40]. On the other hand, since phase transformations

and fracture are both nonlinear phenomena, a development of stochastic method for nonlocal and nonlinear

problems is also desired. Further studies on the meshfree methods for nonlocal models include convergence

analysis for solutions with lower regularity and higher order meshfree discretizations.
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