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Abstract

Casting nonlocal problems in variational form and discretizing them with the finite element (FE) method facilitates the
se of nonlocal vector calculus to prove well-posedness, convergence, and stability of such schemes. Employing an FE
ethod also facilitates meshing of complicated domain geometries and coupling with FE methods for local problems. However,

onlocal weak problems involve the computation of a double-integral, which is computationally expensive and presents several
hallenges. In particular, the inner integral of the variational form associated with the stiffness matrix is defined over the
ntersections of FE mesh elements with a ball of radius δ, where δ is the range of nonlocal interaction. Identifying and
arameterizing these intersections is a nontrivial computational geometry problem. In this work, we propose a quadrature
echnique where the inner integration is performed using quadrature points distributed over the full ball, without regard for
ow it intersects elements, and weights are computed based on the generalized moving least squares method. Thus, as opposed
o all previously employed methods, our technique does not require element-by-element integration and fully circumvents the
omputation of element–ball intersections. This paper considers one- and two-dimensional implementations of piecewise linear
ontinuous FE approximations, focusing on the case where the element size h and the nonlocal radius δ are proportional, as is
ypical of practical computations. When boundary conditions are treated carefully and the outer integral of the variational form is
omputed accurately, the proposed method is asymptotically compatible in the limit of h ∼ δ → 0, featuring at least first-order
onvergence in L2 for all dimensions, using both uniform and nonuniform grids. Moreover, in the case of uniform grids, the
roposed method passes a patch test and, according to numerical evidence, exhibits an optimal, second-order convergence rate.
ur numerical tests also indicate that, even for nonuniform grids, second-order convergence can be observed over a substantial
re-asymptotic regime.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlocal models have become viable alternatives to partial differential equations (PDEs) for applications where
mall-scale effects affect the global behavior of a system or when discontinuities in the quantity of interest make
t impractical to use differential operators. In fact, nonlocal operators embed length scales in their definitions
nd allow for irregular functions. For these reasons, nonlocal models are currently employed in several scientific
nd engineering applications including surface or subsurface transport [1–6], fracture mechanics [7–9], turbulence
10–12], image processing [13–15] and stochastic processes [16–20].

Nonlocal operators are integral operators that embed length scales in the domain of integration; as such, they
llow one to model long-range forces within the length scale and to reduce the regularity requirements on the
olutions. The most general form of nonlocal Laplace operator is given by [21]

Lδu(x) = 2
∫
Rn

(u(y) − u(x))γ (x, y) dy,

here u : Rn
→ R is a scalar function and γ is a symmetric kernel function whose support is H (x, δ), the ball

centered at x of radius δ, the so-called horizon or interaction radius. In most cases, the ball is understood in the
Euclidean sense (to maintain rotational invariance), but recent works also employ more general balls, including
ℓ∞ balls, see, e.g. [22–24]. The function γ determines the function space that the nonlocal solution belongs to.
Its choice is nontrivial and non-intuitive; in fact, the selection of the optimal kernel is a widely studied research
question [12,25–34].

Because of the integral nature of nonlocal operators, the discretization and numerical solution of nonlocal
equations raises several unresolved challenges. These include the design of accurate and efficient discretization
schemes and the development of efficient numerical solvers [35–42]. With the ultimate goal of easily handling
nontrivial domains and possibly using mesh adaptivity, this work focuses on variational discretizations and,
specifically, the finite element method. However, we point out that the nonlocal literature offers a broad class of
meshfree techniques, widely used at the engineering level. We refer the interested reader to, e.g., [40,41,43–46]. One
advantage of the FE method is that the nonlocal vector calculus facilitates its numerical analysis. This theoretical
framework, first introduced in [47], further developed in [48], and generalized in [21], allows us to cast nonlocal
equations in a variational setting and analyze them in the same way as PDEs. Using this framework, one can
prove well-posedness, convergence, and stability of nonlocal FE schemes. Nonetheless, variational discretizations
introduce further computational challenges due to the presence of an additional integration over the domain of the
problem. In fact, the nonlocal weak problem associated with the operator Lδ involves the computation of a double
integral. Specifically, the core computation required by standard codes to assemble the FE stiffness matrix is given
by an integral of the form∫

Ωh
i

∫
Ωh

j ∩H (x,δ)
[ψk(y) − ψk(x)]γ (x, y)[ψl(y) − ψl(x)] dy dx, (1)

here Ω h
i is the i th element of the partition and ψk is the kth FE basis function. (See Section 4 for a complete

ormulation.) In the formula above, we have purposely written the inner domain of integration explicitly, to highlight
he fact that, prior to numerically evaluating the integral, we must identify the region of the j th element that
verlaps with the support of the kernel function, since a naı̈ve, global integration over the whole element would
ot guarantee numerical convergence of the overall scheme. Identifying this region is a nontrivial, time-consuming
ask. Furthermore, the presence of a double integral inevitably adds computational cost and it is often the case that
he integrand function is singular, requiring the use of sophisticated, possibly adaptive quadrature rules.

A thorough description of the computational challenges that arise in the computation of the double integral (1) can
e found in [38]. For the case of finite horizon, the authors of [38] propose efficient ways to circumvent the problem
f finding intersections between FEs and nonlocal neighborhoods by introducing the concept of “approximate balls”
iven by FE patches that roughly approximate H (x, δ); their results indicate that in the case of piecewise linear
E spaces, optimal numerical convergence can be preserved. Alternatively, in [49], the authors propose a technique

hat allows one to compute the inner integral over the whole element Ω h
j by introducing a smoothing of the kernel

unction. The smoothed kernel is still compactly supported, but it continuously decays to zero, allowing for simple

aussian quadrature rules over each FE.
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In this work, under the assumption that the discretization parameter h (the size of the FE) and the nonlocal radius
δ are proportional, we propose a change of perspective and introduce a technique where the inner integration is
performed over the ball H (x, δ) rather than on a single element, i.e., the core computation in the stiffness matrix
assembly now becomes∫

Ωh
i

∫
H (x,δ)

[ψk(y) − ψk(x)]γ (x, y)[ψl(y) − ψl(x)] dy dx, (2)

where we utilize special quadrature rules for the numerical computation of the inner integral. Specifically, we
consider quadrature rules based on the generalized moving least squares (GMLS) method, successfully used for
strong-form meshfree discretizations of nonlocal problems in [46,50,51]. The main idea behind this approach is to
determine the quadrature weights associated with quadrature points (the meshfree discretization nodes in a meshfree
setting) by solving an equality constrained optimization problem (see Section 3 for a thorough discussion). The
introduction of a technique that fully circumvents the computation of element–ball intersections and that allows
for the use of global quadrature rules over the support of the kernel function is the major contribution of this
work. Additionally, the technique we propose requires minimal implementation effort, as the GMLS subroutine
can be embedded into an existing FE code. As such, we envision this technique as a key component of agile
FE engineering codes. In this work, we consider one- and two-dimensional implementations of piecewise linear
continuous FE approximations. When boundary conditions are carefully treated and when the outer integral in (2)
is accurately computed, this method is asymptotically compatible in the limit of h and δ vanishing and features
first-order convergence in the L2 norm for all dimensions and for both uniform and nonuniform grids. Furthermore,
in the case of uniform grids, the proposed method is patch-test consistent (i.e., it is machine-precision accurate
for linear solutions) and, according to numerical evidence, features an optimal, second-order convergence rate.
Our numerical tests also indicate that, even for nonuniform grids, second-order convergence may be observed in
the pre-asymptotic regime. Another contribution of the current work is a preliminary theoretical study, where, in
a simplified, uniformly-discretized, one-dimensional setting, we show that the proposed method features optimal
first-order numerical convergence in the H 1 norm. These results set the groundwork for more rigorous studies that
we will pursue in future works.

Paper outline. Section 2 introduces the nonlocal Laplace operator and the corresponding volume-constrained
nonlocal problem in its strong and weak form. Section 3 introduces the GMLS technique for the numerical evaluation
of general integrals. In Section 4, we formulate the discrete variational problem for a FE discretization and we
provide a detailed description of the quadrature rules and the resulting, fully-discrete problem. We also introduce
a technique for the treatment of nonlocal boundary conditions that guarantees an improved convergence behavior.
In Section 5, we introduce the concept of asymptotic compatibility and prove that, under certain assumptions, the
proposed method features linear numerical convergence in the H 1 norm with respect to the mesh size (and, as
a consequence, with respect to the interaction radius). Section 6 illustrates the accuracy of the proposed method
with several one- and two-dimensional numerical tests on uniform and non-uniform grids using piecewise linear
continuous FE discretizations. We first show the improved convergence behavior induced by the special treatment
of the nonlocal boundary condition and then show that, in the L2 norm, our scheme is second-order accurate for
uniform discretizations and at least first-order accurate for non-uniform ones, with respect to h and δ and is,
hence, asymptotically compatible. Moreover, we also show that convergence in the H 1 norm is consistent with
the theoretical predictions discussed in Section 5. Lastly, we make some concluding remarks in Section 7.

2. Nonlocal Laplace operator and model problem

In this section we set the notation that will be used throughout the paper and introduce relevant definitions and
results. In particular, we formulate the strong and weak forms of the nonlocal Poisson problem used to describe the
technique proposed in this work.

Let γ (x, y) : Rd
×Rd

→ R+

0 be a symmetric, i.e., γ (x, y) = γ (y, x), non-negative kernel1 with bounded support
n the norm-induced ball of radius δ, i.e.,

H (x, δ) := supp(γ (x, ·)) =
{
y ∈ Rd

: |y − x|ℓ p̃ ≤ δ
}
, (3)

1 Examples and analysis of nonsymmetric and sign-changing kernels can be found in [52,53] and [54], respectively.
3
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Fig. 1. A square domain Ω (in white) with its corresponding interaction domain of thickness δ (in light-blue). In yellow, two balls of radius
δ, centered at two points in Ω ∪BΩ , depicted by black dots, one of which is in Ω , while the other is located on the boundary ∂Ω between
Ω and BΩ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where δ > 0 is referred to as the horizon and p̃ ∈ [1,∞]. In this work, without loss of generality, we consider
Euclidean balls, i.e., we take p̃ = 2. Furthermore, we restrict ourselves to kernels of the form

γ (x, y) =

⎧⎨⎩
ζc

δd+2 for |y − x|ℓ p̃ ≤ δ,

0 for |y − x|ℓ p̃ > δ,

(4)

and

γ (x, y) =

⎧⎨⎩
ζr

δd+1|y − x|ℓ p̃
for |y − x|ℓ p̃ ≤ δ,

0 for |y − x|ℓ p̃ > δ,

(5)

with ζc, ζr ∈ R+.
Let Ω ⊂ Rd be a bounded open domain. Its associated interaction domain is defined as the set of points outside

of Ω that interact with points inside of it (see Fig. 1), i.e.,

BΩ :=
{
y ∈ Rd

\ Ω : ∃x ∈ Ω such that |y − x|ℓ p̃ ≤ δ
}
. (6)

Note that BΩ ∩ ∂Ω = ∂Ω , where ∂Ω is the boundary of Ω [38].
We introduce the strong form of a nonlocal volume-constrained Poisson problem [37,50,55,56]: given b : Ω → R

nd g : BΩ → R, find u : Ω ∪ BΩ → R, such that{
−Lδu(x) = b(x), x ∈ Ω ,

u(x) = g(x), x ∈ BΩ ,
(7)

here Lδu(x) is the nonlocal Laplacian

Lδu(x) = 2
∫
Ω∪BΩ

γ (x, y)(u(y) − u(x))dy, (8)

nd where the second equation is a Dirichlet volume constraint. In this work, we only consider Dirichlet constraints2.

2 Examples of the numerical treatment of Neumann constraints can be found in, e.g., [57,58]
4
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2.1. Weak formulation

To derive the weak formulation associated with the problem in Eq. (7), we multiply the first equation in (7) by
test function v(x) : Ω ∪ BΩ → R and then integrate over Ω , i.e.,

0 =

∫
Ω

v(x) [−Lδu(x) − b(x)] dx

= −2
∫
Ω

v(x)
∫
Ω∪BΩ

γ (x, y)(u(y) − u(x))dydx −

∫
Ω

v(x)b(x)dx.
(9)

ow we recast −2
∫
Ω v(x)

∫
Ω∪BΩ γ (x, y)(u(y) − u(x))dydx as

− 2
∫
Ω

v(x)
∫
Ω∪BΩ

γ (x, y)(u(y) − u(x))dydx

= − 2
∫
Ω

v(x)
∫
Ω∪BΩ

1
2

[γ (x, y)(u(y) − u(x)) − γ (x, y)(u(x) − u(y))] dydx

= −

∫
Ω

v(x)
∫
Ω∪BΩ

[γ (x, y)(u(y) − u(x)) − γ (y, x)(u(x) − u(y))] dydx,

(10)

here we employed the symmetry of γ . As is standard in the presence of Dirichlet conditions, we require v(x) to
e zero on BΩ . We then apply Green’s first identity of nonlocal vector calculus [56] to the term in Eq. (10), which
ives us, with v(x) = 0 for x ∈ BΩ ,

−

∫
Ω

v(x)
∫
Ω∪BΩ

[γ (x, y)(u(y) − u(x)) − γ (y, x)(u(x) − u(y))] dydx

=

∫
Ω∪BΩ

∫
Ω∪BΩ

[v(y) − v(x)] γ (x, y) [u(y) − u(x)] dydx.
(11)

herefore, by combining Eqs. (10) and (11) we get

− 2
∫
Ω

v(x)
∫
Ω∪BΩ

γ (x, y)(u(y) − u(x))dydx

=

∫
Ω∪BΩ

∫
Ω∪BΩ

[v(y) − v(x)] γ (x, y) [u(y) − u(x)] dydx.
(12)

y substituting the latter in Eq. (9), we obtain∫
Ω∪BΩ

∫
Ω∪BΩ

[v(y) − v(x)] γ (x, y) [u(y) − u(x)] dydx =

∫
Ω

v(x)b(x)dx. (13)

y defining the bilinear form D(·, ·) and the linear functional G(·) as

D(u, v) :=

∫
Ω∪BΩ

∫
Ω∪BΩ

[v(y) − v(x)] γ (x, y) [u(y) − u(x)] dydx, (14)

nd

G(v) :=

∫
Ω

v(x)b(x)dx, (15)

e can rewrite Eq. (13) as

D(u, v) = G(v). (16)

In double integral operators of the form
∫ (∫

(...) dy
)

dx, we refer to
∫
(...) dy as the inner integral, and to

(...) dx as the outer integral.
We define the following function spaces for functions w(x) defined for x ∈ Ω ∪ BΩ :

V(Ω ∪ BΩ ) :=
{
w ∈ L2(Ω ∪ BΩ ) : |||w||| < ∞

}
, (17)

where we define the norm

|||w|||
2

=

∫
Ω∪BΩ

∫
Ω∪BΩ

|w(y) − w(x)|2γ (x, y)dydx + ∥w∥
2
L2(Ω∪BΩ)

= D(w,w) + ∥w∥
2 .

(18)
L2(Ω∪BΩ)

5
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We also introduce the constrained energy space

V0(Ω ∪ BΩ ) := {w ∈ V(Ω ∪ BΩ ) : w|BΩ = 0} , (19)

or which

|||w|||
2
0 = D(w,w), (20)

efines a norm. Finally, we define the nonlocal trace space as Vt (Ω ∪ BΩ ) = {w|BΩ : w ∈ V(Ω ∪ BΩ )}. Let
V ′

: V0 → R denote the dual space of bounded linear functionals on V0 via L2 duality pairing, i.e., the space of
functionals ϕ : V0 × W → R of the type

ϕ(·, ·) =

∫
Ω

(·)(·)dx, (21)

where W : Ω → R. Thus, ∀w ∈ W(Ω ), we can write ϕ(·, w) : V0 → R ∈ V ′ as

ϕ(·, w) =

∫
Ω

(·)w(x)dx. (22)

By comparing Eqs. (15) and (22) we see that G(·) = ϕ(·, w), ∀w ∈ W(Ω ). Then, the weak form of (7) is defined
as follows: given g(x) ∈ Vt (Ω ∪ BΩ ), and b(x) ∈ W(Ω ), find u(x) ∈ V(Ω ∪ BΩ ) such that ∀v(x) ∈ V0(Ω ∪ BΩ )

D(u, v) = G(v), (23)

ubject to u(x) = g(x) for x ∈ BΩ . Discussions on the well-posedness of (23) can be found in [37,55].

. Quadrature weights using generalized moving least squares

In this section we review the quadrature approach based on the generalized moving least squares (GMLS) [59–
1] method, proposed in [46]. For given positions of quadrature points, this method determines their associated
uadrature weights by solving an equality constrained optimization problem. In [46], the GMLS-based quadrature
as employed within the framework of collocation-based meshfree discretizations of strong-form nonlocal problems.
Consider a collection of points Xp = {x j } j=1,...,Np ⊂ H (x, δ), with Np ∈ N, and a quadrature rule for functions

f (x, y) ∈ V, given by∫
H (x,δ)

f (x, y)dy ≈

Np∑
j=1

j :x j ̸=x

f jω j , (24)

here V denotes a Banach space, f j = f (x, x j ), and {ω j } j=1,...,Np ∈ RNp is a collection of quadrature weights to
e determined. Notice that in Eq. (24) we are excluding x j = x to account for the possibility of f (x, y) having a
ingularity when x = x j = y. If the function does not exhibit such singularity, then x j = x could also be included
n the summation. In order to find the quadrature weights we define the following equality constrained optimization
roblem: find

argmin
{ω j }∈RN p

Np∑
j=1

j :x j ̸=x

ω2
j (25)

subject to
Np∑
j=1

j :x j ̸=x

f jω j =

∫
H (x,δ)

f (x, y)dy ∀ f ∈ Vh ⊂ V,

here Vh is a finite dimensional subspace of V, consisting of functions to be integrated exactly. The problem in
25) leads to the following saddle-point problem:[

I BT

B 0
] [

ω
λ

]
=

[
0
g
]
, (26)

here I ∈ RNp×Np is the identity matrix; ω = {ω j } j=1,...,Np ∈ RNp is the vector containing the set of quadrature
dim(Vh ) Np×dim(Vh )
eights; and λ ∈ R is the vector of Lagrange multipliers enforcing the constraint. B ∈ R is defined

6
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Fig. 2. Left: a square domain Ω (in white) with its corresponding interaction domain BΩ (in light-blue). Right: the same square domain
nd a polygonal approximate interaction domain, still referred to as BΩ . (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

y Baj = f α(x, x j ), ∀ f α ∈ Vh , where { f α}α=1,...,dim(Vh ) is a basis of Vh . The vector g ∈ Rdim(Vh ) contains the exact
ntegrals of each function in { f α}α=1,...,dim(Vh ), i.e., gα =

∫
H (x,δ) f α(x, y)dy. Based on Eq. (26), the quadrature

eights can be obtained as

ω = BTS+g, (27)

here S = BBT and S+ is the Moore–Penrose inverse of S. It has to be noted that the set of integration weights for
given constraint might not be unique [39,50] and that redundant (linearly dependent) conditions might be present

n the constraints. This results in the singularity of the matrix S. In this work, as in [46], a pseudoinverse, such as
+, is used to compute S−1, whenever S is singular. It should also be noted that, as discussed in [39,50], this set of

ntegration weights can be constructed equivalently by using the reproducing kernel particle method (RKPM) [62],
ue to the equivalence of RKPM and GMLS.

. Discrete variational form

In this section we introduce the discrete form of the variational problem in Eq. (23); specifically, for piecewise
inear, finite element discretizations, we describe the computational domain, the discrete representation of the
nknown field u(x) and the trial function v(x), and the quadrature rules utilized for the numerical evaluation of
he integrals.

.1. Finite element discretization of the weak formulation

Let Mh
Ω := {Ω h

e }e=1,...,nel,Ω , nel,Ω ∈ N, be a collection of non-overlapping elements, which are open, simply
onnected subsets of Rd , and let ∂Ω h

e be their corresponding boundary. Therefore, Ω h
i ∩Ω h

j = ∅ and Ω h
i ∩Ω h

j =

∂Ω h
i ∩∂Ω h

j with i ̸= j , i, j = 1, . . . , nel , where the bar denotes the closure of the set. We assume that the domain Ω ,
ntroduced in Section 2, is a polyhedral so that it can be exactly covered by the mesh Mh

Ω , i.e., Ω = ∪
nel,Ω
e=1 Ω h

e . Note
hat when Ω is not polyhedral, one can introduce a polyhedral approximation Ω h

≈ Ω for which a covering exists.
hen the nonlocal interaction region is a Euclidean ball, the interaction domain BΩ is generally not a polyhedral

omain since vertices of Ω create rounded corners in BΩ (see, for example, Fig. 1). Therefore, following [38],
e approximate BΩ by a polyhedral domain by replacing rounded corners by vertices (see Fig. 2 for illustration).
rom now on, we will refer to this approximate polyhedral domain also as BΩ . Note that there is no need to extend

he boundary data g(x) to added regions between the original curved corners and the new corners of the polyhedral
pproximation since these portions of the domain are never accessed during the numerical solution process.

Since we consider a polyhedral BΩ , we can construct another exact mesh Mh
BΩ := {Ω h

e }e=nel,Ω+1,...,nel

ontaining nel − nel,Ω elements, i.e., BΩ h := ∪
nel−nel,Ω
e=nel,Ω+1Ω

h
e = BΩ , with nel ∈ N. Meshing Ω and BΩ

eparately guarantees that elements do not straddle the shared boundary between Ω and BΩ , i.e., ∂Ω = Ω ∩ BΩ .
7
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Moreover, we require that the vertices of the elements of Mh
BΩ and Mh

Ω coincide along the boundary ∂Ω , so that
h

= Mh
Ω ∪ Mh

BΩ = {Ω h
e }

nel
e=1 is a regular mesh for Ω ∪ BΩ .

We consider continuous finite element spaces with Lagrange-type compactly supported linear polynomial bases
efined with respect to the nodes of Mh . With J ∈ N and JΩ ∈ N, let {x̃ j }

J
j=1 be the set of all the nodes in Mh ,

ith {x̃ j }
JΩ
j=1 and {x̃ j }

J
j=JΩ+1 being the subset of nodes located in the open domain Ω and in the closed domain

BΩ , respectively. Notice that in this way, the nodes located on ∂Ω = Ω ∩ BΩ are assigned to BΩ . Then, for
j = 1, . . . , J , let ψ j (x) denote a piecewise linear polynomial function such that ψ j (x̃k) = δ jk for k = 1, . . . , J ,
where δ jk is the Kronecker delta function. Then, we define the finite element spaces as

Vh
= span{ψ j }

J
j=1 ⊂ V(Ω ∪ BΩ ), (28)

and

Vh
0 = span{ψ j }

JΩ
j=1 ⊂ V0(Ω ∪ BΩ ), (29)

of dimensions J and JΩ , respectively. Note that all functions belonging to Vh and Vh
0 are continuous by construction.

The finite element approximation uh(x) ∈ Vh of the solution u(x) of the nonlocal problem is defined as

uh(x) =

J∑
j=1

ψ j (x)u j =

JΩ∑
j=1

ψ j (x)u j +

J∑
j=JΩ+1

ψ j (x)g(x̃ j ) = wh
+ gh, (30)

for a set of coefficients {u j }
J
j=1. Here, the volume constraint in (7) has been applied to a subset associated with the

nodes in BΩ

u j = g(x̃ j ) for j = JΩ + 1, . . . , J, (31)

o that

wh
:=

JΩ∑
j=1

ψ j (x)u j and gh
:=

J∑
j=JΩ+1

ψ j (x)g(x̃ j ). (32)

he finite element approximation uh associated with the nonlocal problem in (23) is then found by solving the
ollowing discrete weak formulation: given g(x) ∈ Vt (Ω ∪ BΩ ), and b(x) ∈ W(Ω ) (see Section 2.1), find uh

∈ Vh

uch that ∀vh
∈ Vh

0

D(uh, vh) = G(vh). (33)

y substituting Eq. (30) in Eq. (33) and by choosing vh(x) from the set of basis functions {ψi }
JΩ
i=1 we get

D(wh, vh) = G(vh) − D(gh, vh), (34)

which results in the linear system

JΩ∑
j=1

D(ψ j , ψi )u j = G(ψi ) − D(gh, ψi ), (35)

for i = 1, . . . , JΩ . Eq. (35) can be expressed in matrix form as

Au = f, (36)

where A is a JΩ × JΩ matrix with components

Ai j = D(ψ j , ψi )

=

∫ ∫
[ψi (y) − ψi (x)] γ (x, y)

[
ψ j (y) − ψ j (x)

]
dydx,

(37)
Ω∪BΩ Ω∪BΩ

8
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f is a JΩ × 1 vector with components

fi = G(ψi ) − D(gh, ψi ) =

∫
Ω

ψi (x)b(x)dx

−

∫
Ω∪BΩ

∫
Ω∪BΩ

[ψi (y) − ψi (x)] γ (x, y)
[
gh(y) − gh(x)

]
dydx,

(38)

nd u is a vector of size JΩ × 1 containing the set of unknown coefficients {u j }
JΩ
j=1 to be determined.

.2. Discrete quadrature

We introduce the numerical quadrature used to solve Eq. (34). As described in Section 4.1 we discretize Ω∪BΩ

sing the mesh Mh , and Ω with Mh
Ω ⊂ Mh . Therefore, we can express the left-hand side (LHS) and the right-hand

ide (RHS) of Eq. (34) as

D(wh, vh)

=

∫
Ω∪BΩ

∫
Ω∪BΩ

[
vh(y) − vh(x)

]
γ (x, y)

[
wh(y) − wh(x)

]
dydx

=

∑
Ωh

e ∈Mh

∫
Ωh

e

∫
Ω∪BΩ

[
vh(y) − vh(x)

]
γ (x, y)

[
wh(y) − wh(x)

]
dydx

=

∑
Ωh

e ∈Mh

∫
Ωh

e

∫
(Ω∪BΩ)∩H (x,δ)

[
vh(y) − vh(x)

]
γ (x, y)

[
wh(y) − wh(x)

]
dydx,

(39)

nd

G(vh) − D(gh, vh)

=

∫
Ω

vh(x)b(x)dx

−

∫
Ω∪BΩ

∫
Ω∪BΩ

[
vh(y) − vh(x)

]
γ (x, y)

[
gh(y) − gh(x)

]
dydx

=

∑
Ωh

e ∈Mh
Ω

∫
Ωh

e

vh(x)b(x)dx

−

∑
Ωh

e ∈Mh

∫
Ωh

e

∫
(Ω∪BΩ)∩H (x,δ)

[
vh(y) − vh(x)

]
γ (x, y)

[
gh(y) − gh(x)

]
dydx,

(40)

here we have restricted the inner integral to (Ω ∪ BΩ) ∩ H (x, δ) (see Eq. (3)).
We now describe how to discretize the integrals over the mesh elements Ω h

e and over (Ω ∪ BΩ)∩H (x, δ). For
he outer integral (over the elements) we consider a high-order Gauss quadrature; for further discussion on outer
uadrature schemes we refer the reader to [38]. For Nq ∈ N, we denote the set of element Gauss quadrature points
nd weights to be used for the element integrals present in D(wh, vh) as {xe

q}
Nq
q=1 ∈ Ω h

e and {ωe
q}

Nq
q=1, respectively. We

lso define, for Nb ∈ N, the set of element Gauss quadrature points and weights to be employed for the integration
ver the elements in G(vh) as {xe

b}
Nb
b=1 ∈ Ω h

e and {ωe
b}

Nb
b=1, respectively. Therefore, from Eqs. (39) and (40), we get

D(wh, vh)

=

∑
Ωh

e ∈Mh

∫
Ωh

e

∫
(Ω∪BΩ)∩H (x,δ)

[
vh(y) − vh(x)

]
γ (x, y)

[
wh(y) − wh(x)

]
dydx

≈

∑
h

Nq∑∫
(Ω∪BΩ)∩H (xe

q ,δ)

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
wh(y) − wh(xe

q )
]

dyωe
q ,

(41)
Ωe ∈Mh q=1

9
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Fig. 3. One-dimensional Euclidean ball quadrature points. The filled red dot represents xe
q while the blue crosses are the associated quadrature

points xe
qp .

and

G(vh) − D(gh, vh)

=

∑
Ωh

e ∈Mh
Ω

∫
Ωh

e

vh(x)b(x)dx −

∑
Ωh

e ∈Mh

∫
Ωh

e

∫
(Ω∪BΩ)∩H (x,δ)

[
vh(y) − vh(x)

]
γ (x, y)

[
gh(y) − gh(x)

]
dydx

≈

∑
Ωh

e ∈Mh
Ω

Nb∑
b=1

vh(xe
b)b(xe

b)ωe
b −

∑
Ωh

e ∈Mh

Nq∑
q=1

∫
(Ω∪BΩ)∩H (xe

q ,δ)

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
gh(y) − gh(xe

q )
]

dyωe
q .

(42)

To discretize the remaining inner integrals over (Ω ∪ BΩ)∩ H (xe
q , δ) in Eqs. (41) and (42) we use the GMLS

uadrature introduced in Section 3. We start with the case in which (Ω ∪ BΩ) ∩ H (xe
q , δ) = H (xe

q , δ), i.e., the
ntegration domain is the full ball of radius δ around xe

q . Note that this is the case for all xe
q ∈ (Ω ∪ ∂Ω). We then

onsider the following set of points placed in a regular uniform grid, symmetric around xe
q :{

xe
qp

}Nqp

p=1
:=

{
xe

qp ∈ Rd
; k1, k2, . . . , kd ∈ Z \ {0} : xe

qp =
(
xe

qp1, xe
qp2, . . . , xe

qpd

)
=

(
xe

q1 + (2k1 − sgn(k1))
h
2
, xe

q2 + (2k2 − sgn(k2))
h
2
, . . . , xe

qd + (2kd − sgn(kd ))
h
2

)
,

− N qp,δ ≤ k1, k2, . . . , kd ≤ N qp,δ

}
,

(43)

where N qp,δ ∈ N,

h =
δ

N qp,δ
(44)

s the spacing between grid points, and

N qp =
(
2N qp,δ

)d
, (45)

s the overall number of points. In this work, we take N qp,δ to be a constant independent of q , i.e., N qi p,δ = N q j p,δ

∀qi , q j such that xe
qi
, xe

q j
∈ Ω ∪ BΩ . The subset of Nqp points of

{
xe

qp

}Nqp

p=1
contained in H (xe

q , δ) ∩ (Ω ∪ BΩ) is
iven by{

xe
qp

}Nqp

p=1
:=
{
xe

qp

}Nqp

p=1
∩ H (xe

q , δ) ∩ (Ω ∪ BΩ)

=

{
xe

qp ∈
{
xe

qp

}Nqp

p=1
∩ (Ω ∪ BΩ) : |xe

qp − xe
q |ℓ p̃ ≤ δ

}
.

(46)

his is the set of quadrature points used to discretize the integrals over (Ω ∪ BΩ) ∩ H (xe
q , δ) in Eqs. (41) and

42). When (Ω ∪ BΩ) ∩ H (xe
q , δ) = H (xe

q , δ), this set reduces to{
xe

qp

}Nqp

p=1
=

{
xe

qp ∈
{
xe

qp

}Nqp

p=1
: |xe

qp − xe
q |ℓ p̃ ≤ δ

}
. (47)

igs. 3 and 4 show the distribution of quadrature points for one-dimensional and two-dimensional Euclidean balls.
To determine the set of quadrature weights

{
ωe

qp

}Nqp

p=1
associated with

{
xe

qp

}Nqp

p=1
, we employ the approach

resented in Section 3, with x = xe . As our finite dimensional space V , i.e., as the space of functions for which
q h

10
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Fig. 4. Two-dimensional Euclidean ball quadrature points. The filled red dot represents xe
q while the blue crosses are the associated quadrature

points xe
qp .

we impose exactness of integration, we select

Vh = { f (x, y) : Ω ∪ BΩ × Ω ∪ BΩ → R,
f (x, y) = γ (x, y) (y − x)β with |β| = 2},

(48)

where we are using multi-index notation. Here, β is a collection of d non-negative integers, β = (β1, . . . , βd )
with length |β| =

∑d
i=1 βi . For a given β, (y − x)β = (y1 − x1)β1 . . . (yd − xd )βd . Eq. (48) can be related to

ssuming the trial and test functions v(x) and u(x) to be linear functions in Eqs. (41) and (42), consistently with
ur choice to approximate them with linear finite element approximations (see Section 4.1). In fact, in a one-
imensional case, Eq. (48) corresponds to imposing exact integration of

∫
(Ω∪BΩ)∩H (x,δ)(y − x)γ (x, y)(y − x)dy,

hile in a two-dimensional case, to imposing exact integration of
∫
(Ω∪BΩ)∩H (x,δ)(y1 − x1)γ (x, y)(y1 − x1)dy,

(Ω∪BΩ)∩H (x,δ)(y2 −x2)γ (x, y)(y2 −x2)dy, and
∫
(Ω∪BΩ)∩H (x,δ)(y1 −x1)γ (x, y)(y2 −x2)dy. Furthermore, for kernels

(x, y) of the types expressed in Eqs. (4) and (5), the functions in Vh only depend on y − x, meaning that the
uadrature weights depend only on the relative position between the quadrature points in

{
xe

qp

}Nqp

p=1
and the center

f the ball xe
q , i.e., xe

qp − xe
q , for arbitrary p, q . Since the positions of the points xe

qp are defined relative to xe
q

see Eq. (43)), their relative positions with respect to the centers of the balls are always the same for all full balls.
herefore, the quadrature weights can be evaluated once for a representative full ball and used for all full balls

(xe
q , δ), ∀xe

q ∈ Ω ∪ ∂Ω .
Note that in [50] a similar placement of quadrature points within the full ball H (xe

q , δ), i.e., quadrature points in
regular uniform grid, symmetrically distributed around xe

q , was employed for the numerical quadrature of strong-
orm nonlocal diffusion. Furthermore, conditions for obtaining positive quadrature weights, as well as expressions
or them, are also provided in [50]. While in this work we do not explicitly impose any restriction on the positivity
f the weights, in all our tests the quadrature weights

{
ωe

qp

}Nqp

p=1
are verified to be positive.

Next, we consider the case in which xe
q ∈ BΩ \ ∂Ω . In this case, (Ω ∪ BΩ) ∩ H (xe

q , δ) ⊂ H (xe
q , δ), i.e., the

ntegration over (Ω ∪ BΩ) ∩ H (xe
q , δ) is over a partial or truncated ball (see Fig. 7 for an example of a two-

imensional partial Euclidean ball). Therefore, the set of points defined by Eq. (46) will not be symmetrical with
espect to its associated xe

q . Moreover, its dimension Nqp will also be different depending on the position of xe
q .

or this reason, a different set of weights
{
ωe

qp

}Nqp

p=1
needs to be computed ∀q such that xe

q ∈ (BΩ \ ∂Ω). Recall
hat the expressions in Section 3 were presented for integrals over full balls. For partial balls, the constraints in the
ptimization problem in Eq. (25) can be stated as

Nqp∑
p=1
e e

f jω j =

∫
H (xe

q ,δ)∩(Ω∪BΩ)

f (xe
q , y)dy ∀ f ∈ Vh . (49)
p:xqp ̸=xq

11
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Fig. 5. Left: a square domain Ω (in white) with its corresponding interaction domain BΩ (in light-blue) and its interaction domain extension
Ω te (in yellow). Right: the same square domain and polygonal approximate interaction domain and interaction domain extension, still

eferred to as BΩ and BΩ te , respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)

ue to the complex geometry of H (xe
q , δ) ∩ (Ω ∪ BΩ), the analytical integral on the right-hand side of Eq. (49)

s particularly cumbersome. Therefore, in this work, we follow [32,46,50,51] and approximate the right-hand side
f Eq. (49) with the integral over the full ball, as in Eq. (25).

.2.1. Special treatment of the nonlocal boundary
Let us now consider q1 ∈ e1, and q2 ∈ e2 such that xe1

q1 ∈ Ω ∪ ∂Ω , and xe2
q2 ∈ BΩ \ ∂Ω , and two points

xe1
q1 pi ∈

{
xe1

q1 p
}Nq1 p

p=1 , and xe2
q2 p j ∈

{
xe2

q2 p
}Nq2 p

p=1 , such that

xe1
q1 pi

− xe1
q1

= xe2
q2 p j

− xe2
q2
. (50)

By employing the optimization-based procedure described in Section 3 with the finite-dimensional space in (48),
we can determine the sets of weights {ω

e1
q1 p}

Nq1 p
p=1 and {ω

e2
q2 p}

Nq2 p
p=1 associated with

{
xe1

q1 p
}Nq1 p

p=1 and xe2
q2 p j ∈

{
xe2

q2 p
}Nq2 p

p=1 ,
respectively. In general, ωe1

q1 pi ̸= ω
e2
q2 p j , meaning that two quadrature points with the same relative position

with respect to the center xe
q of the corresponding ball will have different weights. As illustrated numerically in

Section 6.1.1, this fact may cause the discretization error to increase near the boundary BΩ . To circumvent this
issue, we consider an extension of the interaction domain of size te, with 0 ≤ te ≤ δ, for the computation of the
inner quadrature weights. To this end, we define

BΩ te :=
{
y ∈ Rd

\ Ω : ∃x ∈ Ω such that |y − x|ℓ p̃ ≤ (δ + te)
}

\ BΩ . (51)

As discussed above, for the interaction domain BΩ , in the case of Euclidean balls, i.e., p̃ = 2, BΩ te will have
rounded corners, which we replace with vertices to make BΩ te a polyhedral domain that can be easily meshed (see
Fig. 5 for a two-dimensional illustration).

Now, ∀xe
q ∈ (Ω ∪ BΩ), we define the following set of points{

xe
qp

}Ñqp

p=1
:=
{
xe

qp

}Nqp

p=1
∩ H (xe

q , δ) ∩
(
Ω ∪ BΩ ∪ BΩ te

)
=

{
xe

qp ∈
{
xe

qp

}Nqp

p=1
∩
(
Ω ∪ BΩ ∪ BΩ te

)
: |xe

qp − xe
q |ℓ p̃ ≤ δ

}
,

(52)
12
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Fig. 6. One-dimensional partial integration ball for the filled red point and mesh extension of size te . The shown region is the left region
of a domain BΩ ∪ Ω = [−δ, 1 + δ], with Ω = (0, 1).

Fig. 7. Two-dimensional partial integration Euclidean ball for the filled red point (shaded area) and mesh extension of size te . The shown
egion is the top-left region of a domain BΩ ∪ Ω = [−δ, 1 + δ] × [−δ, 1 + δ], with Ω = (0, 1)× (0, 1).

hich coincides to the one defined in (46) for te = 0 and, regardless of te, ∀xe
q ∈ (Ω ∪ ∂Ω ). For te = δ, we have

Ω ∪ BΩ ∪ BΩ te
)

∩ H (xe
q , δ) = H (xe

q , δ), meaning that for every xe
q ∈ (Ω ∪ BΩ) the set of points defined

n (52) is distributed across each full ball H (xe
q , δ), as illustrated in Figs. 6 and 7 for a one-dimensional and a

wo-dimensional case, respectively.

We can now employ the optimization procedure from Section 3, for the finite dimensional space defined in (48),
o determine the set of weights {ωe

qp}
Ñqp
p=1. We can then select

{
xe

qp

}Nqp

p=1
⊆
{
xe

qp

}Ñqp

p=1
as

{
xe

qp

}Nqp

p=1
:=

{
xe

qp ∈
{
xe

qp

}Ñqp

p=1
∩ (Ω ∪ BΩ)

}
, (53)

nd their associated weights
{
ωe

qp

}Nqp

p=1
⊆
{
ωe

qp

}Ñqp

p=1
. Therefore, from Eqs. (41) and (42), we can obtain

D(wh, vh) ≈

∑
Ωh

e ∈Mh

Nq∑
q=1

∫
(Ω∪BΩ)∩H (xe

q ,δ)

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
wh(y) − wh(xe

q )
]

dyωe
q

≈

∑
Ωh

e ∈Mh

Nq∑
q=1

Nqp∑
p=1

[
vh(xe

qp) − vh(xe
q )
]
γ (xe

q , xe
qp)
[
wh(xe

qp) − wh(xe
q )
]
ωe

qpω
e
q

h h h

(54)
= D (w , v ),
13
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and

G(vh) − D(gh, vh) ≈

∑
Ωh

e ∈Mh
Ω

Nb∑
b=1

vh(xe
b)b(xe

b)ωe
b

−

∑
Ωh

e ∈Mh

Nq∑
q=1

∫
(Ω∪BΩ)∩H (xe

q ,δ)

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
gh(y) − gh(xe

q )
]

dyωe
q

≈

∑
Ωh

e ∈Mh
Ω

Nb∑
b=1

vh(xe
b)b(xe

b)ωe
b

−

∑
Ωh

e ∈Mh

Nq∑
q=1

Nqp∑
p=1

[
vh(xe

qp) − vh(xe
q )
]
γ (xe

q , xe
qp)
[
gh(xe

qp) − gh(xe
q )
]
ωe

qpω
e
q

= Gh(vh) − Dh(gh, vh),

(55)

here we defined

Dh(·, vh) :=

∑
Ωh

e ∈Mh

Nq∑
q=1

Nqp∑
p=1

[
vh(xe

qp) − vh(xe
q )
]
γ (xe

q , xe
qp)
[
(·)(xe

qp) − (·)(xe
q )
]
ωe

qpω
e
q , (56)

nd

Gh(vh) :=

∑
Ωh

e ∈Mh
Ω

Nb∑
b=1

vh(xe
b)b(xe

b)ωe
b. (57)

.3. Fully discrete variational form for nonlocal diffusion

We combine the finite element discretization from Section 4.1 with the discrete quadrature approach discussed
n Section 4.2. By substituting the continuous operators in (34) with the discrete ones defined in Eqs. (56) and (57),
e get

Dh(wh, vh) = Gh(vh) − Dh(gh, vh), (58)

hich, by employing Eqs. (30) and (32), results in the following linear system

JΩ∑
j=1

Dh(ψ j , ψi )u j = Gh(ψi ) − Dh(gh, ψi ), (59)

or i = 1, . . . , JΩ . Eq. (59) can be expressed in matrix form as

Ahu = fh, (60)

here Ah is a JΩ × JΩ matrix with components

Ah
i j = Dh(ψ j , ψi )

=

∑
h

Nq∑ Nqp∑[
ψi (xe

qp) − ψi (xe
q )
]
γ (xe

q , xe
qp)
[
ψ j (xe

qp) − ψ j (xe
q )
]
ωe

qpω
e
q ,

(61)
Ωe ∈Mh q=1 p=1

14
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Fig. 8. Different convergence paths in finite-length nonlocal model. u and u0 represent the continuum nonlocal and local solutions,
respectively, while uh and uh

0 are their discrete counterparts.

fh is a JΩ × 1 vector with components

f h
i = Gh(ψi ) − Dh(gh, ψi ) =

∑
Ωh

e ∈Mh
Ω

Nb∑
b=1

ψi (xe
b)b(xe

b)ωe
b

−

∑
Ωh

e ∈Mh

Nq∑
q=1

Nqp∑
p=1

[
ψi (xe

qp) − ψi (xe
q )
]
γ (xe

q , xe
qp)
[
gh(xe

qp) − gh(xe
q )
]
ωe

qpω
e
q ,

(62)

nd u is a vector of size JΩ × 1 containing the set of unknown coefficients {u j }
JΩ
j=1 to be determined.

. Properties of the numerical scheme

In this section, we investigate the numerical properties of the proposed scheme. We first describe different types
f convergence in the context of nonlocal models (see Fig. 8) and then provide a convergence analysis in the H 1

orm in a simplified, one-dimensional setting.

.1. Brief review of asymptotically compatible schemes

As described in Section 2, continuum nonlocal models are characterized by the length scale δ. Under proper
egularity assumptions, as δ → 0, nonlocal solutions converge to their local, PDE counterparts [63]; we refer to
his type of convergence as δ-convergence. When a discretization scheme is employed, its size h introduces a second
ength scale. For a fixed horizon δ, a discretization scheme is h-convergent if the nonlocal discrete solution converges
o the continuum nonlocal solution as h → 0. Lastly, a discretization scheme is called asymptotically compatible if,
n addition to the δ- and h-convergence above, the discrete solution to the nonlocal problem also converges to the
nalytical solution of its local PDE counterpart as δ → 0 and h → 0 [64,65]. For numerical schemes where h and
are tied together by the relationship m = δ/h, the term asymptotic compatibility refers only to the last type of

onvergence described above, i.e., meaning that as δ → 0 and h → 0, the discrete solution to the nonlocal problem
onverges to the analytical solution of the associated local problem [46,50]. As the proposed scheme is such that
= δ/h ∈ N, we will only focus on the latter type of convergence (i.e., δ → 0 and h → 0 simultaneously).

.2. Convergence analysis

In this section we derive a preliminary estimate for the convergence of discrete solutions obtained via inexact

uadrature of the inner integral. We assume that the outer quadrature is performed with a high-accuracy scheme
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whose contribution to the overall error can be considered negligible. In the following analysis we hence assume the
outer integration to be exact. Therefore,

Dh(uh, uh) =

∫
Ω∪BΩ

N j∑
j=1

γ (x, x j )
[
uh(x j ) − uh(x)

]2
ω j dx

=

∑
Ωh

e ∈Mh

∫
Ωh

e

N j∑
j=1

γ (x, x j )
[
uh(x j ) − uh(x)

]2
ω j dx,

(63)

here x j and ω j are the j th inner quadrature point and associated weight in the ball H (x, δ), respectively, and N j
s the total number of inner quadrature points. Furthermore, we also restrict ourselves to kernels of the form (4).

.2.1. Uniform Vh-coercivity
We show, under certain conditions, that the approximate bilinear form Dh(·, ·) : Vh

× Vh
→ R is uniformly

h-coercive. Recall that we are considering a C0 linear FE approximation. Therefore, ∀x

uh(x j ) − uh(x) =

{
∇uh(x)

⏐⏐
e · (x j − x), for x j , x in element e,

uh(x j ) − uh(x), otherwise.
(64)

We assume that we have a subset of the quadrature points {x j } that are in the same element as x, {x jin}, and
nother subset of the quadrature points that are not, {x jout}. Membership of points in these subsets is linked to the
hosen spacing for the quadrature points; we assume that this spacing is small enough relative to the element size
o that {x jin} is nonempty. We also assume that the inner quadrature weights {ω j } are positive. Then, Eq. (63) can
e recast as

Dh(uh, uh) =

∑
Ωh

e ∈Mh

∫
Ωh

e

⎡⎣ N jin∑
jin=1

γ (x, x jin )
[
uh(x jin ) − uh(x)

]2
ω jin

+

N jout∑
jout=1

γ (x, x jout )
[
uh(x jout ) − uh(x)

]2
ω jout

⎤⎦ dx

≥

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

γ (x, x jin )
[
uh(x jin ) − uh(x)

]2
ω jin dx.

(65)

e first consider the constant kernel in Eq. (4). Eq. (65) then becomes

Dh(uh, uh) ≥

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

γ (x, x jin )
[
uh(x jin ) − uh(x)

]2
ω jin dx

=
ζc

δd+2

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

[
uh(x jin ) − uh(x)

]2
ω jin dx.

(66)

f, instead, the kernel is of the type from Eq. (5) with p̃ = 2, Eq. (65) becomes

Dh(uh, uh) ≥

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

γ (x, x jin )
[
uh(x jin ) − uh(x)

]2
ω jin dx

=
ζr

δd+1

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

1
|x jin − x|ℓ2

[
uh(x jin ) − uh(x)

]2
ω jin dx

≥
ζr

δd+2

∑
h

∫
Ωh

e

N jin∑ [
uh(x jin ) − uh(x)

]2
ω jin dx.

(67)
Ωe ∈Mh jin=1
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By comparing Eqs. (66) and (67), we see that for both kernel we have a similar expression for the lower bound,
which we can express by dropping the subscript in the ζ -terms as

Dh(uh, uh) ≥
ζ

δd+2

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

[
uh(x jin ) − uh(x)

]2
ω jin dx

=
ζ

δd+2

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

[
∇uh(x)

⏐⏐
e · (x jin − x)

]2
ω jin dx.

(68)

For simplicity, we now restrict our discussion to the one-dimensional case. In this setting, we assume that there
xists a constant C > 0 independent of h and δ, such that Cδ < ωmin < ω jin (which we verify by direct computation
n A). Under these assumptions, we have the following coercivity result for the discrete bilinear form.

emma 5.1. There exists a constant c > 0 independent of h and δ such that ∀uh
∈ Vh

0

Dh(uh, uh) ≥ c|uh
|
2
H1 . (69)

Proof. Restricting Eq. (68) to the one-dimensional setting, using our assumed lower bound on ω jin , abbreviating
restriction of uh to element e as uh

e , and allowing the symbol C to be a generic constant independent of h and δ
(possibly with different numerical values in different places), we get

Dh(uh, uh) ≥
ζ

δ3

∑
Ωh

e ∈Mh

∫
Ωh

e

N jin∑
jin=1

[
uh(x jin ) − uh(x)

]2
ω jin dx

=
ζ

δ3

∑
Ωh

e ∈Mh

∫
Ωh

e

⎡⎣ N jin∑
jin=1

{
duh

e

dx
· (x jin − x)

}2

ω jin

⎤⎦ dx

=
ζ

δ3

∑
Ωh

e ∈Mh

(
duh

e

dx

)2 ∫
Ωh

e

⎡⎣ N jin∑
jin=1

(x jin − x)2ω jin

⎤⎦ dx

=
ζ

δ3

∑
Ωh

e ∈Mh

(
duh

e

dx

)2 N jin∑
jin=1

⎧⎨⎩
∫
Ωh

e

N jin∑
jin=1

(x jin − x)2ω jin dx

⎫⎬⎭
≥
ζ

δ3

∑
Ωh

e ∈Mh

(
duh

e

dx

)2 N jin∑
jin=1

{∫
Ωh

e \(x jin −h/4,x jin +h/4)
(x jin − x)2ω jin dx

}

≥
ζ

δ3

∑
Ωh

e ∈Mh

(
duh

e

dx

)2 N jin∑
jin=1

{∫
Ωh

e \(x jin −h/4,x jin +h/4)

(
h
4

)2

ω jin dx

}

≥
ζ

δ3

∑
Ωh

e ∈Mh

(
duh

e

dx

)2 N jin∑
jin=1

{(
h
2

)(
h
4

)2

ω jin

}

≥
ζ

δ3

∑
Ωh

e ∈Mh

(
duh

e

dx

)2 {
Ch3ωmin

}

≥
ζ

δ3

∑
h

(
duh

e

dx

)2 {
Ch3δ

}

Ωe ∈Mh
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I
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w

≥
C
δ3

⎛⎝ ∑
Ωh

e ∈Mh

(
duh

e

dx

)2

h

⎞⎠ h2δ

≥
Ch2

δ2 |uh
|
2
H1 ,

(70)

which gives the desired result when h ∼ δ. □

5.2.2. Preliminary convergence estimate
We prove the convergence of numerical solutions for a simple one-dimensional case with a uniform grid and

δ = h. To do that, we first prove a lemma that holds in more general situations. We assume that for any vh
∈ Vh

0 ,∫
b(x)vh(x)dx is exactly integrated. By using the same arguments as in Strang’s first lemma, we have the following

result.

Lemma 5.2. There exists C > 0 independent of δ such that

∥u − uh
∥V ≤ C inf

vh∈Vh
0

⎛⎝∥u − vh
∥V + sup

wh∈Vh
0

|D(vh, wh) − Dh(vh, wh)|
∥wh∥V

⎞⎠ .
n addition, if u ∈ H 1, then

∥u − uh
∥H1 ≤ C inf

vh∈Vh
0

⎛⎝∥u − vh
∥H1 + sup

wh∈Vh
0

|D(vh, wh) − Dh(vh, wh)|
∥wh∥V

⎞⎠ .
Proof. By Lemma 5.1, for any vh

∈ Vh
0 , we have

c|uh
− vh

|
2
H1 ≤Dh(uh

− vh, uh
− vh)

=D(u − vh, uh
− vh) + (D(vh, uh

− vh) − Dh(vh, uh
− vh))

+ (Dh(uh, uh
− vh) − D(u, uh

− vh))

=D(u − vh, uh
− vh) + (D(vh, uh

− vh) − Dh(vh, uh
− vh)).

By the boundedness of the bilinear form, i.e., |D(u − vh, uh
− vh)| ≤ C∥u − vh

∥V∥uh
− vh

∥V , where we write
∥w∥V =

√
D(w,w) for w ∈ V , we have

c
|uh

− vh
|
2
H1

∥uh − vh∥V
≤ C∥u − vh

∥V +
|D(vh, uh

− vh) − Dh(vh, uh
− vh)|

∥uh − vh∥V

≤ C∥u − vh
∥V + sup

wh∈Vh
0

|D(vh, wh) − Dh(vh, wh)|
∥wh∥V

.

(71)

otice that H 1 is continuously embedded in V , i.e.,

∥v∥V ≤ C∥v∥H1 ∀v ∈ H 1,

here the constant C is independent of δ (see e.g., [66]). From (71), for any vh
∈ Vh

0

∥uh
− vh

∥V ≤ C

⎛⎝∥u − vh
∥V + sup

wh∈Vh
0

|D(vh, wh) − Dh(vh, wh)|
∥wh∥V

⎞⎠
and, if in addition u ∈ H 1,

∥uh
− vh

∥H1 ≤ C

⎛⎝∥u − vh
∥H1 + sup

h h

|D(vh, wh) − Dh(vh, wh)|
∥wh∥V

⎞⎠ .

w ∈V0
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P

Therefore from the triangle inequality

∥u − uh
∥ ≤ ∥u − vh

∥ + ∥uh
− vh

∥

ith either the V-norm or the H 1-norm, we can get the desired result. □

The following theorem provides a convergence result for the simple one-dimensional case with a uniform grid,
= h and a kernel function γ (x, y) =

1
δ3 1{|y−x |<δ}, where, for simplicity, we removed the constant ζ .

Theorem 5.3. Assume we have a uniform grid in one-dimension and δ = h. In addition, assume that u ∈ H 2.
hen,

∥u − uh
∥H1 ≤ Ch,

here C > 0 is a constant that depends on ∥u∥H2 , but is independent of h and δ.

roof. By Lemma 5.2 and u ∈ H 2, we have

∥u − uh
∥H1 ≤ C inf

vh∈Vh
0

⎛⎝∥u − vh
∥H1 + sup

wh∈Vh
0

|D(vh, wh) − Dh(vh, wh)|
∥wh∥V

⎞⎠
where, from Eq. (29), Vh

0 is the space of continuous piecewise linear functions that satisfy zero Dirichlet boundary
conditions. Taking vh

:= Ihu, the piecewise linear interpolation of u, then it is well-known in finite element analysis
that

∥u − Ihu∥H1 ≤ Ch∥u∥H2 .

Let Ω ∪ BΩ = ∪
N
i=1Ω

h
i and extend functions by zero outside Ω ∪ BΩ when necessary (e.g., on BΩ te ). Then,

by assuming δ = h, we have

D(vh, wh) =

N∑
i=1

∫
Ωh

i

∫
H (x,δ)

γ (x, y)(vh(y) − vh(x))(wh(y) − wh(x))dydx

=

N∑
i=1

∫
Ωh

i

∫
Ωh

i−1∪Ωh
i ∪Ωh

i+1

γ (x, y)(vh(y) − vh(x))(wh(y) − wh(x))dydx .

(72)

Notice that in the above equation, Ω h
0 and Ω h

N+1 are outside Ω ∪ BΩ . Since the functions are always zero on
Ω h

0 ,Ω
h
1 ,Ω

h
N ,Ω

h
N+1, we see that

∫
Ωh

1

∫
Ωh

0
· · · and

∫
Ωh

N

∫
Ωh

N+1
· · · are zero. Assume that on each Ω h

i , vh(x) is a linear
function of slope ai ∈ R, and wh(x) is a linear function of slope bi ∈ R, then we have∫

Ωh
i

∫
Ωh

i

γ (x, y)(vh(y) − vh(x))(wh(y) − wh(x))dydx =

∫
Ωh

i

∫
Ωh

i

γ (x, y)(y − x)2ai bi dydx . (73)

Now we calculate
∫
Ωh

i

∫
Ωh

i+1
· · · dydx . In this case, we have y ∈ Ω h

i+1 and x ∈ Ω h
i . Let si denote the point that

connects Ω h
i and Ω h

i+1, then we can write

vh(y) = vh(si ) + (y − si )ai+1, wh(y) = wh(si ) + (y − si )bi+1,

vh(x) = vh(si ) + (x − si )ai , wh(x) = wh(si ) + (x − si )bi ,
(74)

for all y ∈ Ω h
i+1 and x ∈ Ω h

i . Therefore,

vh(y) − vh(x) = (y − si )ai+1 + (si − x)ai = (y − si )(ai+1 − ai ) + (y − x)ai (75)

and similarly for wh(y) − wh(x). We then have
19
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w

∫
Ωh

i

∫
Ωh

i+1

γ (x, y)(vh(y) − vh(x))(wh(y) − wh(x))dydx

=

∫
Ωh

i

∫
Ωh

i+1

γ (x, y) [(y − si )(ai+1 − ai ) + (y − x)ai ] [(y − si )(bi+1 − bi ) + (y − x)bi ] dydx .
(76)

Notice that, in the above, there is a term
∫
Ωh

i

∫
Ωh

i+1
γ (x, y)(y − x)2ai bi dydx which can be combined with∫

Ωh
i

∫
Ωh

i
γ (x, y)(y − x)2ai bi dydx . The rest of the terms can be written as

∫
Ωh

i

∫
Ωh

i+1

γ (x, y)
(
(y − si )2(ai+1 − ai )(bi+1 − bi )

+(y − si )(y − x) [(ai+1 − ai )bi + (bi+1 − bi )ai ]) dydx

=

∫
Ωh

i

∫
Ωh

i+1

γ (x, y)
(
(y − si )2(ai+1bi+1 − ai bi )

+(y − si )(si − x) [(ai+1 − ai )bi + (bi+1 − bi )ai ]) dydx

=(ai+1bi+1 − ai bi )
∫
Ωh

i

∫ x+δ

si

(y − si )2

δ3 dydx

+ [(ai+1 − ai )bi + (bi+1 − bi )ai ]
∫
Ωh

i

∫ x+δ

si

(y − si )(si − x)
δ3 dydx .

(77)

We can similarly calculate
∫
Ωh

i

∫
Ωh

i−1
· · · dydx and get

∫
Ωh

i

∫
Ωh

i−1
γ (x, y)(y − x)2ai bi dydx (which is to be combined

ith
∫
Ωh

i

∫
Ωh

i
γ (x, y)(y − x)2ai bi dydx) and

(ai−1bi−1 − ai bi )
∫
Ωh

i

∫ si−1

x−δ

(y − si−1)2

δ3 dydx+

[(ai−1 − ai )bi + (bi−1 − bi )ai ]
∫
Ωh

i

∫ si−1

x−δ

(y − si−1)(si−1 − x)
δ3 dydx .

(78)

Replacing i − 1 with i in (78), we get the contribution from
∫
Ωh

i+1

∫
Ωh

i
· · · dydx :

(ai bi − ai+1bi+1)
∫
Ωh

i+1

∫ si

x−δ

(y − si )2

δ3 dydx

+ [(ai − ai+1)bi+1 + (bi − bi+1)ai+1]
∫
Ωh

i+1

∫ si

x−δ

(y − si )(si − x)
δ3 dydx

(79)

Now by adding (77) with (79) and noticing, from symmetry, that

∫
Ωh

i

∫ x+δ

si

(y − si )2

δ3 dydx =

∫
Ωh

i+1

∫ si

x−δ

(y − si )2

δ3 dydx∫
Ωh

i

∫ x+δ

si

(y − si )(si − x)
δ3 dydx =

∫
Ωh

i+1

∫ si

x−δ

(y − si )(si − x)
δ3 dydx,

(80)
20
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T

we get

|(77) + (79)| ≤ 2|ai+1 − ai ||bi+1 − bi |

∫
Ωh

i

∫ x+δ

si

|y − si ||si − x |

δ3 dydx

≤ Ch|ai+1 − ai ||bi+1 − bi |.

(81)

Combining the above results, we have

D(vh, wh) =

N∑
i=1

∫
Ωh

i

∫
H (x,δ)

γ (x, y)(y − x)2ai bi dydx +

N∑
i=0

|ai+1 − ai ||bi+1 − bi |O(h). (82)

Now to estimate Dh(vh, wh), we follow the exact procedure for D(vh, wh), but with the inner integral replaced

by GMLS quadrature. In particular, if we have symmetry of the quadrature points, then

∫
Ωh

i

∑
si<y j<x+δ

(y j − si )2

δ3 ω j dx =

∫
Ωh

i+1

∑
x−δ<y j<si

(y j − si )2

δ3 ω j dx

∫
Ωh

i

∑
si<y j<x+δ

(y j − si )(si − x)
δ3 ω j dx =

∫
Ωh

i+1

∑
x−δ<y j<si

(y j − si )(si − x)
δ3 ω j dx .

(83)

hen we can show that

Dh(vh, wh) =

N∑
i=1

∫
Ωh

i

N P∑
j=1

γ (x, y j )(y j − x)2ai biω j dx +

N∑
i=0

|ai+1 − ai ||bi+1 − bi |O(h). (84)

Comparing (82) with (84), we notice that
∫
Ωh

i

∫
H (x,δ) γ (x, y)(y − x)2dydx =

∫
Ωh

i

∑N P
j=1 γ (x, y j )(y j − x)2ω j dx . We

therefore only need an estimate of

sup
wh∈Vh

0

∑N
i=0 |ai+1 − ai ||bi+1 − bi |O(h)

∥wh∥V
(85)

with vh
= Ihu. Notice that ∥wh

∥V =
√

D(wh, wh), so we can write it out by the same procedure above and get

∥wh
∥

2
V =

N∑
i=1

∫
Ωh

i

∫
H (x,δ)

γ (x, y)(y − x)2b2
i dydx

− 2
N∑

i=0

(bi+1 − bi )2
∫
Ωh

i

∫ x+δ

si

(y − si )(si − x)
δ3 dydx .

(86)

By letting γ (x, y) =
1
δ3 1{|y−x |<δ} and a direct calculation of the above integrals, we get

∥wh
∥

2
V =

2h
3

N∑
b2

i −
h
12

N∑
(bi+1 − bi )2

= h

(
2
3

N∑
b2

i −
1
12

N−1∑
(bi+1 − bi )2

)
, (87)
i=1 i=0 i=1 i=1
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where the last equality is a result of b0 = b1 = bN = bN+1 = 0. Therefore,∑N
i=0 |ai+1 − ai ||bi+1 − bi |O(h)

∥wh∥Vh
0

=

∑N−1
i=1 |ai+1 − ai ||bi+1 − bi |O(h)√

h
(

2
3

∑N
i=1 b2

i −
1
12

∑N−1
i=1 (bi+1 − bi )2

)
≤ O(h)

√∑N−1
i=1 |ai+1 − ai |

2
√∑N−1

i=1 |bi+1 − bi |
2√

h
(

2
3

∑N
i=1 b2

i −
1

12

∑N−1
i=1 (bi+1 − bi )2

)
= O(h)

√∑N−1
i=1 |ai+1 − ai |

2√
h
(

2
3 (
∑N

i=1 b2
i )/(

∑N−1
i=1 (bi+1 − bi )2) −

1
12

) .

(88)

otice that
∑N−1

i=1 (bi+1 − bi )2
= 2

∑N
i=1 b2

i − 2
∑N−1

i=1 bi+1bi ≤ 4
∑N

i=1 b2
i , therefore,∑N

i=0 |ai+1 − ai ||bi+1 − bi |O(h)
∥wh∥V

≤ O(h)

√∑N−1
i=1 |ai+1 − ai |

2√
h
( 8

3 −
1

12

)
= O(h)

√∑N−1
i=1 |ai+1 − ai |

2

h
.

(89)

ince vh is the piecewise linear interpolation of u, then ai = u′(xi ) for some xi ∈ Ω h
i , so

|ai+1 − ai | = |u′(xi+1) − u′(xi )| =

⏐⏐⏐⏐∫ xi+1

xi

u′′(s)ds
⏐⏐⏐⏐ ≤ h

∫ xi+1

xi

|u′′(s)|ds, (90)

here the last inequality comes from Cauchy–Schwartz inequality. Therefore we have
√∑N−1

i=1 |ai+1−ai |
2

h ≤ ∥u∥H2 .
All together, we have shown

sup
wh∈Vh

0

|D(vh, wh) − Dh(vh, wh)|
∥wh∥V

≤ Ch∥u∥H2 (91)

for vh
= Ihu, and therefore the desired result. □

emark 5.4. The proof of Theorem 5.3 utilizes the structure of the uniform grid. In particular, (80) and (83) hold
nly if we have a uniform grid. For quasi-uniform grids, i.e., non-uniform grids with bounded ratio between the
aximum mesh size hmax and the minimum mesh size hmin, we can follow the similar arguments so that (85) is

hen replaced with

sup
wh∈Vh

0

(√∑N
i=0 |ai |

2
√∑N

i=0 |bi |
2
)

O(hmax)

∥wh∥V

from where one can proceed to show an O(1) estimate of ∥u − uh
∥H1 . This estimate will also be numerically

verified later.

6. Numerical examples

In this section, we present numerical convergence results obtained by employing the proposed quadrature scheme.
We consider one-dimensional and two-dimensional problems discretized on uniform and non-uniform grids.
22
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Fig. 9. One-dimensional domain Ω , with associated boundary layer BΩ . The boundary extension BΩ te employed in the construction of
the inner quadrature points is also represented.

To evaluate the accuracy of the numerical solutions and test the convergence properties of the proposed method,
we employ the L2 and H 1 norms of the difference between the nonlocal numerical solution, uh , and the analytical
solution, u0, to a local Poisson problem, i.e.,

∥uh(x) − u0(x)∥L2 =

[∫
Ω

(
uh(x) − u0(x)

)2
dx
] 1

2
, (92)

nd

∥uh(x) − u0(x)∥H1 =

[∫
Ω

(
uh(x) − u0(x)

)2
+
(
∇uh(x) − ∇u0(x)

)2
dx
] 1

2
. (93)

hese norms are computed numerically with Gauss quadrature over the mesh elements, i.e.,

∥uh(x) − u0(x)∥L2 ≈

⎡⎢⎣ ∑
Ωh

e ∈Mh
Ω

∑
xe

gs∈Ω
h
e

(
uh(xgs) − u0(xgs)

)2
ωgs

⎤⎥⎦
1
2

, (94)

nd

∥uh(x) − u0(x)∥H1 ≈

{ ∑
Ωh

e ∈Mh
Ω

∑
xe

gs∈Ω
h
e

[(
uh(xgs) − u0(xgs)

)2
+
(
∇uh(xgs) − ∇u0(xgs)

)2
]
ωgs

} 1
2

, (95)

here
{
xgs
}Ngs

gs=1 and
{
ωgs

}Ngs
gs=1, Ngs ∈ N, are the element Gauss quadrature points and weights, respectively. In

his work, we take Ngs = 8d , where d is the dimension of the problem. Also, in all our numerical examples, we
mploy fixed ratios m = δ/h ∈ N.

.1. One-dimensional test cases

We consider a one-dimensional domain Ω = (0, 1). For a given horizon δ, its associated interaction domain is
BΩ = [−δ, 0] ∪ [1, δ] (see Fig. 9). Note that the inner domain, where the function u is unknown (see Eq. (7)),
is considered constant in size, while the boundary layer varies with the value of δ. Thus, during our convergence
studies, the inner solution domain Ω remains consistent during the refinement (δ → 0) so that the L2 error norms
associated with each considered value of δ are comparable. We consider the following kernel functions: the constant
kernel

γ1,c(x, y) =

⎧⎨⎩
3

2δ3 for |y − x | ≤ δ,

0 for |y − x | > δ,

(96)

nd the rational kernel

γ1,r (x, y) =

⎧⎨⎩
1

δ2|y − x |
for |y − x | ≤ δ,

(97)

0 for |y − x | > δ,
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Fig. 10. Numerical solution and associated absolute error for the one-dimensional problem with sinusoidal solution for γ1,r , m = 2, Nq = 40,
and N qp = 10. A uniform element size h = 0.01, corresponding to 100 elements for the discretization of Ω is employed.

hich correspond to the expressions in Eqs. (4) and (5) for ζc = 3/2 and ζr = 1, respectively. These values of ζc

nd ζr are such that

lim
δ→0

Lδu(x) = ∆u(x), (98)

here ∆ is the local Laplace operator. To illustrate the numerical convergence of the proposed method, we consider
anufactured solutions, i.e., we choose analytical solutions, u0(x), to the local Poisson equation and compute the

orresponding forcing term b(x) and Dirichlet volume constraint g(x). These are then used for the nonlocal Poisson
roblem (7). Specifically, we consider two cases: a sinusoidal and a linear solution (with the purpose of performing
he so-called patch test). Therefore, for the first case we set u0(x) = sin(2πx), for which g(x) = sin(2πx) and

b(x) = −∆u0(x) = −∆ sin (2πx) = 4π2 sin (2πx). (99)

or the second case, instead, we have u0(x) = x , g(x) = x and

b(x) = 0. (100)

.1.1. Uniform discretizations
We investigate the convergence behavior for uniform discretizations. The finite element mesh has a uniform

iscretization size, h, over [−δ, 1 + δ] = ([−δ, 0] ∪ [1, δ]) ∪ (0, 1). Recall that we consider cases for which
= δ/h ∈ N, meaning that elements of size h subdivide (0, 1) and [−δ, 1+ δ] exactly. The same applies when the

omain extension [−δ − te, 1 + δ + te], with te = δ, is employed. For the outer quadrature, we consider Nq = 40
auss points, while for inner quadrature we use N qp = 10.
For the sinusoidal solution we use γ1,r , h = 0.01, and m = 2, meaning that Ω is discretized using 100 elements

and δ = 0.02. For the construction of the inner quadrature weights, we consider two cases: one without domain
extension, i.e., te = 0, and one with domain extension te = δ. The obtained numerical solutions are reported in

ig. 10(a), while Fig. 10(b) shows the absolute error obtained for the two considered cases. We observe that, when
e = 0, the error concentrates near the boundary of the domain, whereas this does not occur for te = δ. Next, we
erform an L2 norm convergence study by varying h and δ, with fixed ratio m = 2. As shown in Fig. 11, for te = 0,
e observe a linear convergence, whereas, for te = δ, the rate is quadratic. This suggests that the concentration of

rror near the boundary observed for te = 0 reduces the overall convergence rate. Therefore, from now on, we only
mploy t = δ in the construction of the inner quadrature weights.
e
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Fig. 11. L2 norm convergence behaviors of the one-dimensional numerical solutions for the case with sinusoidal solution. m = 2, uniform
discretization, and te = 0 and te = δ. Nq = 40 and N qp = 10 are employed. γ1,c and γ1,r are both considered.

Fig. 12. L2 norm convergence behaviors of the one-dimensional numerical solutions for the case with sinusoidal solution. m = 1, 2, 3,
uniform discretization, and te = δ. Nq = 40 and N qp = 10 are employed. γ1,c and γ1,r are both considered.

Figs. 12(a) and 12(b) show the L2 norm convergence behavior for γ1,c and γ1,r , respectively. For both cases, we
employ te = δ. Nq = 40, and N qp = 10. For all considered values of m (i.e., m = 1, 2, 3), we observe a second-
order convergence rate in the L2 norm. The convergence behavior in the H 1 norm is presented in Fig. 13. For all of
the considered cases, a first-order convergence is obtained, which is consistent with the theoretical prediction from
Section 5. It can also be noted that convergence in the H 1 norm is one rate lower than in L2.

To further investigate the performance of the optimization-based approach, in B, we compare its results for
this problem with those obtained by employing Gauss quadrature over the element–ball intersections for the inner
integral operator.

Next, we consider the case with a linear solution. For the reasons illustrated above, we consider te = δ; we set
h = 0.01 and m = 2, meaning that Ω is discretized using 100 elements and δ = 0.02. The L2 norms of the error for
25
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Fig. 13. H1 norm convergence behaviors of the one-dimensional numerical solutions for the case with sinusoidal solution. m = 1, 2, 3,
uniform discretization, and te = δ. Nq = 40 and N qp = 10 are employed. γ1,c and γ1,r are both considered.

the cases with γ1,r and γ1,c are 1.59E−13 and 6.96E−14, respectively. This fact implies that the proposed approach
passes the patch test for uniform discretizations, i.e., the numerical solution is accurate up to machine precision for
linear solutions. This is expected since the exact, local solution belongs to the discretization space Vh .

6.1.2. Nonuniform discretizations
Next, we investigate the performance of the proposed method for non-uniform discretizations. The non-uniform

discretizations are constructed by perturbing uniform discretizations of size h. This is achieved by moving each
finite element node in (0, 1) and (−δ, 0) ∪ (1, 1 + δ) from their original position xu to a new randomly selected
position xnu

= xu
+ ϵh Ra , where ϵ is a chosen perturbation factor and Ra is a random number in [−1, 1].

As for uniform discretizations, we first consider the sinusoidal solution. We select te = δ, Nq = 40, and
N qp = 10. Figs. 14 and 15 show the convergence behavior for m = 2, 3 for both γ1,c and γ1,r , in the L2 and
H 1 norms, respectively. We observe an apparent second-order convergence rate in the L2, and first-order for the
H 1 norm, i.e., one rate lower. However, it should be noted that Fig. 15 shows a reduction in the H 1 convergence
rate for the finer cases, suggesting that, asymptotically, the convergence rate may reach a zeroth-order convergence,
as discussed in Remark 5.4.

We then consider the linear solution. As before, we take te = δ, Nq = 40, and N qp = 10. In contrast to
he uniform case, for non-uniform discretizations, the proposed method does not pass the patch test. As shown
n Figs. 16 and 17, which report convergence behavior in the L2 and H 1 norms, respectively, for m = 2, 3 for
γ1,c and γ1,r , the method shows a first-order L2 norm convergence and a zeroth-order H 1 norm convergence (see
Remark 5.4). By comparing Figs. 14 and 16, it can be noted that the magnitude of the L2 norm errors obtained
or the case with a linear solution is much smaller compared with the magnitude obtained for the problem with a
inusoidal solution. This confirms our conjecture that the method has a first-order asymptotic convergence in the

L2 norm, and that second-order convergence is observed in the pre-asymptotic regime.
A natural question is whether further refinement of the sinusoidal case would show a reduction in convergence

ate in the L2 norm; we note that attempting to refine the sinusoidal case further, the error becomes dominated by
oating point arithmetic. Nonetheless, since, as shown in Fig. 15, the convergence rate in the H 1 norm starts to
educe for the finer refinements, and we have observed one-order lower convergence in the L2 norm, it is reasonable

2
o expect that the convergence rate in the L norm would reduce with further refinement.
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d

Fig. 14. L2 convergence behaviors of the one-dimensional numerical solutions for the case with sinusoidal solution. m = 2, 3, non-uniform
iscretization with ϵ = 0.1, and te = δ. Nq = 40 and N qp = 10 are employed. γ1,c and γ1,r are both considered.

Fig. 15. H1 norm convergence behaviors of the one-dimensional numerical solutions for the case with sinusoidal solution. m = 2, 3,
non-uniform discretization with ϵ = 0.1, and te = δ. Nq = 40 and N qp = 10 are employed. γ1,c and γ1,r are both considered.

6.2. Two-dimensional test cases

We consider the two-dimensional domain Ω = (0, 1) × (0, 1) with associated interaction domain BΩ =

([−δ, 1 + δ] × [−δ, 1 + δ]) \ Ω (see Fig. 18). As in the previous section, this guarantees that in the convergence
studies the inner solution domain Ω remains consistent during the refinement (δ → 0), so that the L2 error norms
are comparable for all δ. We consider two kernel functions: a constant influence function

γ2,c(x, y) =

⎧⎨⎩
4
πδ4 for |y − x|ℓ2 ≤ δ,

(101)

0 for |y − x|ℓ2 > δ,
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d

a

Fig. 16. L2 norm convergence behaviors of the one-dimensional numerical solutions for the case with linear solution. m = 2, 3, non-uniform
discretization with ϵ = 0.1, and te = δ. Nq = 40 and N qp = 10 are employed. γ1,c and γ1,r are both considered.

Fig. 17. H1 norm convergence behaviors of the one-dimensional numerical solutions for the case with linear solution. m = 2, 3, non-uniform
iscretization with ϵ = 0.1, and te = δ. Nq = 40 and N qp = 10 are employed. γ1,c and γ1,r are both considered.

nd a rational one

γ2,r (x, y) =

⎧⎨⎩
3

πδ3|y − x|ℓ2
for |y − x|ℓ2 ≤ δ,

0 for |y − x|ℓ2 > δ,

(102)

which correspond to the expressions in Eqs. (4) and (5) for ζc = 4/π and ζr = 3/π , respectively. As for the
one-dimensional case, these values of ζc and ζr are such that

lim Lδu(x) = ∆u(x). (103)

δ→0

28



M. Pasetto, Z. Shen, M. D’Elia et al. Computer Methods in Applied Mechanics and Engineering 396 (2022) 115104

6

t

6

u
n

r
c
r

7

fi

Fig. 18. Two-dimensional domain Ω , with associated boundary layer BΩ . The boundary extension BΩ te employed in the construction of
the inner quadrature points is also represented.

As discussed in Section 2, the supports of the kernels presented in (101) and (102) correspond to circular
Euclidean ℓ2 balls. However, kernels associated with ℓ∞ balls (i.e., square supports) were also investigated and
similar results as the ones presented in this section for Euclidean balls were obtained. As before, we employ the
method of manufactured solutions. We select u0(x) = sin(2πx1) sin(2πx2), where x = (x1, x2), which corresponds
to g(x) = sin(2πx1) sin(2πx2) and to the following source term:

b(x) = −∆u0(x) = −∆ (sin(2πx1) sin(2πx2)) = 8π2 sin(2πx1) sin(2πx2). (104)

.2.1. Uniform discretizations
As for the one-dimensional case, we first investigate the convergence behavior for uniform discretizations. The

wo-dimensional uniform mesh is constructed as a tensor product Mh,u
2 = Mh,u

x2
× Mh,u

x1
, where Mh,u

x1
and Mh,u

x2
are one-dimensional uniform meshes of size h over [−δ, 0] ∪ (0, 1)∪ [1, 1 + δ]. For the convergence study, we set
te = δ, N qp = 64, and use a four by four Gauss quadrature rule for the outer integral (Nq = 16). Figs. 19(a) and
19(b) show the obtained results for γ2,c and γ2,r , respectively. Up to the considered level of refinement, we observe
a second-order convergence rate in the L2 norm for both kernels.

.2.2. Nonuniform discretizations
In this section, we investigate the performance of the proposed quadrature approach for two-dimensional non-

niform discretizations. We construct the two-dimensional non-uniform mesh as a tensor product of one-dimensional
on-uniform discretization, i.e., Mh,nu

2 = Mh,nu
x1

× Mh,nu
x2

, where Mh,nu
x1

and Mh,nu
x2

are obtained by perturbing
Mh,u

x1
and Mh,u

x2
, which are uniform meshes with spacing h over [−δ, 0] ∪ (0, 1) ∪ [1, 1 + δ]. Similarly to the

one-dimensional non-uniform case, the perturbation is achieved by moving the finite element nodes in (0, 1) and
(−δ, 0) ∪ (1, 1 + δ) from their original positions xu

1 and xu
2 to new randomly selected positions xnu

1 = xu
1 + ϵh Ra

and xnu
2 = xu

2 + ϵh Ra , where ϵ is a chosen perturbation factor and Ra is a random number in [−1, 1]. For a visual
example of Mh,nu

2 , see Fig. 20.
For the convergence studies we use te = δ, N qp = 64, and Nq = 16 (four by four Gauss quadrature), with

ϵ = 0.1. Figs. 21(a) and 21(b) show the results for γ2,c and γ2,r , respectively. Up to the considered level of
efinement, we observe a second-order convergence rate in the L2 norm for both kernels also for the non-uniform
ase. As discussed in more detail for the one-dimensional nonuniform case in Section 6.1.2, we conjecture that this
ate is pre-asymptotic, and that the first-order asymptotic regime is difficult to observe in practice.

. Conclusions

We proposed a novel quadrature rule for the computation of integrals that arise in the matrix assembly of

nite-element discretizations of nonlocal problems. In contrast to all previously employed methods, our technique
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4

Fig. 19. L2 convergence behaviors of the two-dimensional numerical solutions for m = 2, uniform discretization, and te = δ. Nq = 16 (as

× 4) and N qp = 64. γ2,c and γ2,r are both considered.

Fig. 20. Example of two-dimensional non-uniform mesh obtained as a tensor product of perturbed one-dimensional meshes.

Fig. 21. L2 convergence behaviors of the two-dimensional numerical solutions for m = 2, non-uniform discretization with ϵ = 0.1, and
te = δ. Nq = 16 (as 4 × 4) and N qp = 64. γ2,c and γ2,r are both considered.
30
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does not require element-by-element integration, but relies on global integration over the nonlocal neighborhood.
Specifically, we consider quadrature rules based on the generalized moving least squares method where the (global)
quadrature weights are obtained by solving an equality-constrained optimization problem. The major advantage of
this technique is the fact that the computation of element–ball intersections, a nontrivial and time consuming task,
is avoided. Additionally, this technique requires minimal implementation effort, as it can be implemented in an
existing finite element code. For this reason, we expect the proposed approach to become a building block of agile
engineering codes. Our numerical experiments show that, when boundary conditions are treated carefully and the
outer integral is computed accurately, our method is asymptotically compatible in the limit of h ∼ δ → 0, featuring
at least first-order convergence in L2 for all dimensions and for both uniform and nonuniform grids. For piecewise
linear finite-element implementations, in the case of uniform grids, our method features an optimal, second-order
convergence rate in L2 and passes the patch test. For nonuniform grids, we see effective second-order convergence
over a long pre-asymptotic regime, whereas the asymptotic first-order convergence is only evident in deviations
from the patch test, which are very small relative to errors in more complicated solutions. Convergence rates in H 1

are consistently one order lower than the L2 rates.
We also carry out a preliminary numerical analysis of the method, but using the H 1 norm and restricted to the

ase of h = δ in one spatial dimension. This analysis is consistent with the convergence rates observed in numerical
xperiments, but it does not account for the increase in convergence rate when measuring the L2 norm instead of

H 1. As such, we believe that an interesting future direction for numerical analysis of this quadrature scheme would
e to obtain sharp L2 error estimates.
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Appendix A. One-dimensional inner quadrature weights

In this appendix, in order to verify the assumptions on the optimization-based quadrature weights employed
in Section 5.2.1, we derive explicit expressions for the optimization-based inner quadrature weights in a one-
dimensional setting and for the constant kernel function γ (x, y) =

ζ

δ3 defined in (4). Recall from Section 4.2
that the inner quadrature points are positioned in H (x, δ) according to

xqp = xq + (2k − sgn(k))
h
2
, −N qp,δ ≤ k ≤ N qp,δ (A.1)

with k ∈ Z \ {0} and

h =
δ

=
m

h = υh, (A.2)

N qp,δ N qp,δ

31



M. Pasetto, Z. Shen, M. D’Elia et al. Computer Methods in Applied Mechanics and Engineering 396 (2022) 115104

o

a

w

where we defined υ = m/N qp,δ . We then start by considering the constant kernel in Eq. (4). Following the procedure
utlined in Section 3, we have

B =
ζc

δ3

[(
xq − x

−Nqp,δ

)2
. . .

(
xq − xi

)2
. . .

(
xq − xNqp,δ

)2
]

=
ζch

2

4δ3

[(
−2Nqp,δ − sgn(−Nqp,δ)

)2
. . . (2i − sgn(i))2 . . .

(
2Nqp,δ − sgn(Nqp,δ)

)2
] (A.3)

nd

S = BBT
=
ζ 2

c h
4

16δ6

Nqp,δ∑
k=−Nqp,δ

k ̸=0

[
2(k) − sgn(k)

]4
=
ζ 2

c h
4

16δ6

[
2

15

(
7N qp,δ − 40N

3
qp,δ + 48N

5
qp,δ

)]
, (A.4)

hich leads to

S−1
=

16δ6

ζ 2
c h

4

1[
2
15

(
7N qp,δ − 40N

3
qp,δ + 48N

5
qp,δ

)] . (A.5)

For the choice of Vh defined in (48),

g =
2
3
ζc. (A.6)

Therefore, from Eqs. (27), (A.1), (A.3), (A.5), and (A.6)

ω = BTS−1g

=
ζch

2

4δ3

⎡⎢⎢⎢⎢⎢⎣
(
−2N qp,δ − sgn(−N qp,δ)

)2

. . .

(2i − sgn(i))2

. . .(
2N qp,δ − sgn(N qp,δ)

)2

⎤⎥⎥⎥⎥⎥⎦
16δ6

ζ 2
c h

4

1[
2

15

(
7N qp,δ − 40N

3
qp,δ + 48N

5
qp,δ

)] 2
3
ζc

=
8δ3

3h
2

1[
2
15

(
7N qp,δ − 40N

3
qp,δ + 48N

5
qp,δ

)]
⎡⎢⎢⎢⎢⎢⎣
(
−2N qp,δ − sgn(−N qp,δ)

)2

. . .

(2i − sgn(i))2

. . .(
2N qp,δ − sgn(N qp,δ)

)2

⎤⎥⎥⎥⎥⎥⎦

=
8δ
(
N qp,δ

)2

3
[

2
15

(
7N qp,δ − 40N

3
qp,δ + 48N

5
qp,δ

)]
⎡⎢⎢⎢⎢⎢⎣
(
−2N qp,δ − sgn(−N qp,δ)

)2

. . .

(2i − sgn(i))2

. . .(
2N qp,δ − sgn(N qp,δ)

)2

⎤⎥⎥⎥⎥⎥⎦

=
8δN qp,δ

3
[

2
15

(
7 − 40N

2
qp,δ + 48N

4
qp,δ

)]
⎡⎢⎢⎢⎢⎢⎣
(
−2N qp,δ − sgn(−N qp,δ)

)2

. . .

(2i − sgn(i))2

. . .(
2N qp,δ − sgn(N qp,δ)

)2

⎤⎥⎥⎥⎥⎥⎦ .

(A.7)

It has to be noted that, for N qp,δ ∈ N, ωk > 0, ∀k. Therefore, in this case, all the quadrature weights are positive
and there exists a generic constant C > 0 independent of h and δ, such that Cδ < ω , with ω = min {ω }.
min min k k
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Similarly, for kernels of the type in Eq. (5), we get

B =
ζr

δ2

⎡⎣(
xq−x

−Nqp,δ

)2

⏐⏐⏐⏐xq−x
−Nqp,δ

⏐⏐⏐⏐ . . .
(xq−xi)

2

|xq−xi |
. . .

(
xq−xNqp,δ

)2

⏐⏐⏐⏐xq−xNqp,δ

⏐⏐⏐⏐
⎤⎦

=
ζr h
2δ2

[⏐⏐−2Nqp,δ − sgn(−Nqp,δ)
⏐⏐ . . . |2i − sgn(i)| . . .

⏐⏐2Nqp,δ − sgn(Nqp,δ)
⏐⏐]

(A.8)

nd

S = BBT
=
ζ 2

r h
2

4δ4

Nqp,δ∑
k=−Nqp,δ

k ̸=0

[
2(k) − sgn(k)

]2
=
ζ 2

r h
2

4δ4

[
2
3

(
−N qp,δ + 4N

3
qp,δ

)]
, (A.9)

hich leads to

S−1
=

4δ4

ζ 2
r h

2

1[
2
3

(
−N qp,δ + 4N

3
qp,δ

)] . (A.10)

For the choice of Vh defined in (48),

g = ζr . (A.11)

Therefore, from Eqs. (27), (A.1), (A.8), (A.10), and (A.11)

ω = BTS−1g

=
ζr h
2δ2

⎡⎢⎢⎢⎢⎣
⏐⏐−2N qp,δ − sgn(−N qp,δ)

⏐⏐
. . .

|2i − sgn(i)|
. . .⏐⏐2N qp,δ − sgn(N qp,δ)

⏐⏐

⎤⎥⎥⎥⎥⎦ 4δ4

ζ 2
r h

2

1[
2
3

(
−N qp,δ + 4N

3
qp,δ

)]ζr

=
2δ2

h

1[
2
3

(
−N qp,δ + 4N

3
qp,δ

)]
⎡⎢⎢⎢⎢⎣
⏐⏐−2N qp,δ − sgn(−N qp,δ)

⏐⏐
. . .

|2i − sgn(i)|
. . .⏐⏐2N qp,δ − sgn(N qp,δ)

⏐⏐

⎤⎥⎥⎥⎥⎦

=
2δN qp,δ[

2
3

(
−N qp,δ + 4N

3
qp,δ

)]
⎡⎢⎢⎢⎢⎣
⏐⏐−2N qp,δ − sgn(−N qp,δ)

⏐⏐
. . .

|2i − sgn(i)|
. . .⏐⏐2N qp,δ − sgn(N qp,δ)

⏐⏐

⎤⎥⎥⎥⎥⎦

=
2δ[

2
3

(
−1 + 4N

2
qp,δ

)]
⎡⎢⎢⎢⎢⎣
⏐⏐−2N qp,δ − sgn(−N qp,δ)

⏐⏐
. . .

|2i − sgn(i)|
. . .⏐⏐2N qp,δ − sgn(N qp,δ)

⏐⏐

⎤⎥⎥⎥⎥⎦ .

(A.12)

As before, for N qp,δ ∈ N, ωk > 0, ∀k. Therefore, in this case, all the quadrature weights are positive and there
exists a generic constant C > 0 independent of h and δ, such that Cδ < ωmin, with ωmin = mink{ωk}.

Appendix B. One-dimensional comparison with Gauss quadrature over element–ball intersections

In this appendix, we consider the one-dimensional problem with exact local sinusoidal solution and uniform
discretization introduced in Section 6.1.1 and compare the solutions obtained by using, for the inner integral
operator, the optimization-based quadrature approach (see Sections 3 and 4) with the solutions obtained by using

Gauss quadrature over the element–ball intersections. For the outer integral, Gauss quadrature is employed in both
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Fig. B.22. One-dimensional Gauss quadrature approach for both outer and inner integrals. The filled red dot represents xe
q while the blue

rosses are the associated Gauss quadrature points x∩
g over each Ω∩

i .

pproaches. Therefore, as in Section 4.2, we start by numerically integrating the outer integral over the finite element
esh Mh in D(uh, vh) by using Nq ∈ N Gauss points

{
xe

q

}Nq

q=1
(with associated weights

{
ωe

q

}Nq

q=1
) over each element

h
e :

D(uh, vh) ≈

∑
Ωh

e ∈Mh

Nq∑
q=1

∫
(Ω∪BΩ)∩H (xe

q ,δ)

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
uh(y) − uh(xe

q )
]

dyωe
q , (B.1)

Let us now describe the approach employed for approximating remaining integral in Eq. (B.1) by numerically

ntegrating over the element–ball intersections. Recalling that {x̃ j }
J
j=1, with J ∈ N, is the set of all the nodes in

h , we define a set

{
xe

qk

}NK
k=1

:=
(
{x̃ j }

J
j=1 ∪

{
xe

q − δ, xe
q , xe

q + δ
})

∩ H (xe
q , δ) ∩ (Ω ∪ BΩ) , (B.2)

ith NK ∈ N. The set
{

xe
qk

}NK

k=1
is ordered, i.e., xe

q1 < xe
q2 < · · · < xe

q NK
. We now define a set of segments

M∩
:= {Ω∩

i }i=1,...,NK −1 (B.3)

here

Ω∩

i =
(
xe

qi , xe
q(i+1)

)
(B.4)

nd ∪
NK −1
i=1 Ω∩

i =

(
Ω ∪ BΩ

)
∩ H (xe

q , δ). Eq. (B.1) then becomes

D(uh, vh) ≈

∑
Ωh

e ∈Mh

Nq∑
q=1

∫
(Ω∪BΩ)∩H (xe

q ,δ)

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
uh(y) − uh(xe

q )
]

dyωe
q

≈

∑
Ωh

e ∈Mh

Nq∑
q=1

∑
Ω∩

i ∈M∩

∫
Ω∩

i

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
uh(y) − uh(xe

q )
]

dyωe
q

(B.5)

We now define, for N∩
qg ∈ N, a set of Gauss quadrature points and weights to be employed for the integration

over Ω∩

i as {x∩
g }

N∩
qg

g=1 ∈ Ω∩

i and {ω∩
g }

N∩
qg

g=1, respectively. Fig. B.22 shows a visual representation of the outer and inner
uadrature points employed in this approach.
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Fig. B.23. L2 norm convergence behaviors of the difference between the one-dimensional numerical solution obtained with the optimization-
based approach and the solution obtained with inner Gauss quadrature over elements–ball intersections, for the case with exact local sinusoidal
solution. m = 1, 2, 3, uniform discretization, and te = δ. Nq = 40, N qp = 10, and N∩

qg = 10 are employed. γ1,c and γ1,r are both considered.

Now, Eq. (B.5) becomes

D(uh, vh) ≈

∑
Ωh

e ∈Mh

Nq∑
q=1

∫
(Ω∪BΩ)∩H (xe

q ,δ)

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
uh(y) − uh(xe

q )
]

dyωe
q

≈

∑
Ωh

e ∈Mh

Nq∑
q=1

∑
Ω∩

i ∈M∩

∫
Ω∩

i

[
vh(y) − vh(xe

q )
]
γ (xe

q , y)
[
uh(y) − uh(xe

q )
]

dyωe
q

≈

∑
Ωh

e ∈Mh

Nq∑
q=1

∑
Ω∩

i ∈M∩

N∩
qg∑

g=1

[
vh(x∩

g ) − vh(xe
q )
]
γ (xe

q , x∩

g )
[
uh(x∩

g ) − uh(xe
q )
]
ω∩

qgω
e
q .

(B.6)

We then solve the one-dimensional problem with exact local sinusoidal solution and uniform discretization (see
ection 6.1.1) and compare in Fig. B.23 the results uh

Gauss(x) obtained with this approach (e.g., by using Eq. (B.6))
ith the results obtained with the optimization-based quadrature approach presented in Sections 3 and 4, uh(x).
ig. B.23 shows the L2 norm convergence behavior of the difference between the two solutions as h is refined,
omputed by replacing u0 with uh

Gauss in Eq. (92) for Ngs = 8. We note that attempting to refine the sinusoidal case
urther, the error becomes dominated by floating point arithmetic. However, we observe that the difference between
he two considered schemes decreases with a second-order rate as h is refined. Since we showed in Section 6.1 that
he optimization-based quadrature approach shows second-order convergence to the exact local solution, and linear
EM is a second-order method, the difference between the two approaches here compared is expected to be at least
econd-order convergent via triangle inequality. The obtained results are consistent with this and suggest that the
econd-order bound is strict.
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