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FRACTIONAL HARDY-TYPE AND TRACE THEOREMS FOR
NONLOCAL FUNCTION SPACES WITH HETEROGENEOUS
LOCALIZATION

QIANG DU, TADELE MENGESHA, AND XIAOCHUAN TIAN

ABSTRACT. This work aims to prove a Hardy-type inequality and a trace theorem for a
class of function spaces on smooth domains with a nonlocal character. Functions in these
spaces are allowed to be as rough as an LP-function inside the domain of definition but as
smooth as a W*P-function near the boundary. This feature is captured by a norm that
is characterized by a nonlocal interaction kernel defined heterogeneously with a special
localization feature on the boundary. Thus, the trace theorem we obtain here can be
viewed as an improvement and refinement of the classical trace theorem for fractional
Sobolev spaces W*P(Q). Similarly, the Hardy-type inequalities we establish for functions
that vanish on the boundary show that functions in this generalized space have the same
decay rate to the boundary as functions in the smaller space W*?(Q). The results we
prove extend existing results shown in the Hilbert space setting with p = 2. A Poincaré-
type inequality we establish for the function space under consideration together with the
new trace theorem allow formulating and proving well-posedness of a nonlinear nonlocal
variational problem with conventional local boundary condition.

1. INTRODUCTION AND MAIN RESULTS

In this paper, following [44], we prove a fractional Hardy-type and trace theorems for
functions in the space 20°P(Q) that we define as follows. Let d > 2, Q € R? be an open
set, bounded or unbounded, and 02 representing its boundary which is assumed to have
sufficient regularity. In the event 2 = R‘i, the half space, or Q2 = Rﬁl\ﬁ = R % (0, M],
then the boundary 9 is R4~! x {0}. Given s € (0,1], 1 < p < oo, and for any u € LP(f),
let us introduce the notation |ulgys»(q) defined as

ulfg.. / /B - (_;Tff‘” dydx

where . = d + ps and §(x) = dist(x, 09), and the notation B,(z) denotes a ball of radius
r and centered at z. It is clear that |uloysns(q) defines a seminorm. We take the function

space *P(Q) to be the completion of C!(Q) with respect to the norm

1/p
1 ooy = (I 1 + 1 Pagey) -

We also denote by the space 20°?(Q) as the completion of C%1(Q) with respect to the norm
| llags» () In the above, Q is the closure of Q and the function spaces C%1(Q) and C%1(Q)

are the set of C%1 (Lipschitz) functions with compact support in Q and €2 respectively. If
Q is bounded, then C%*(Q2) = C%'(Q). Given a set X, the notation C'(X) represents the
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set of continuous function defined over X. The function spaces 20°(Q) and 20°7(€2) are
Banach spaces with respect to the norm || - [jogs,r() as can be checked easily from their
definition.

The main goal of this paper is to prove that functions in 20%?(€Q2) behave exactly like
functions in the fractional Sobolev space W*P(Q2) near the boundary. We recall that
the space W*P(Q) consists of all LP(Q)-function u that has a finite Gagliardo seminorm

— P 1/p

[ulyysp0) = {/ Mdydx} [18]. To be precise, we show that functions in
o |y —x|¢trs

Q3°P(Q)), subject to condition on s and p, have a well defined trace on 92 and also support
a Hardy-type inequality that quantifies the decay rate of functions in 20°?(2) that vanish
on the boundary. What distinguishes functions in 20°?(Q) from functions in the Sobolev
spaces is that these functions do not necessarily have any smoothness inside {2 and can
be as rough as typical LP-functions. Rather, the defining property of functions in 20%P(2)
comes from their regular behavior near the boundary 92 and our main result of the paper
captures that regularity.

The motivation for this line of research comes from the prevalence of nonlocal modeling
which has become suitable to describe singular and discontinuous behavior in diffusion,
image processing, mechanics of materials and other application areas. Typically, nonlocal
models are based on integration as opposed to differentiation so as to demand less regularity
of their solutions [1, 10, 11, 12, 19, 22, 27, 30, 31, 32]. As a consequence, the associated
function spaces require less smoothness and exhibit a nonlocal character [2, 4, 36, 38]. In
some applications, one is interested in modeling singular behavior inside the domain subject
to some boundary conditions. This is the case for peridynamics [39], for example, where the
interest is in modeling crack formation and fracture in deforming materials subject to some
loading conditions on the lower dimensional boundary. We refer to [40] for a computational
peridynamics model that uses position-dependent interaction kernels. Similarly, coupling of
nonlocal models with local models through co-dimensional one interfaces through heteroge-
neous localization has also been proposed [42], These models naturally need to work with
function spaces whose elements have well defined traces on the boundary and/or interfaces
but also capable of capturing singularities inside the domain. Interest in this aspect of ap-
propriately defined function spaces has been increasing recently. For example, recent works
[44, 25, 14, 16, 17, 34] deal with defining a bounded trace operator for functions that may
not have classical differential regularity in the interior of the domain of definition. We note
that the study of function spaces with variable order of smoothness and growth is a popular
subject with a rich history and significant recent interest; see, for instance, [33, 7.

The results shown in this paper are extensions of the study initiated in [44] and are in
parallel to the well known trace theorems for classical function spaces, see [6, 24] for a
reference on the latter. In particular, for Q ¢ R? with sufficiently smooth boundary 952,
the trace operator T' on 0f)

Tu = u|pn vu € CO1(Q),

can be uniquely extended continuously as a map from W*P(Q), the fractional Sobolev

space of order s € (0,1] and 1 < p < oo to the fractional Sobolev space Ws_%’p(ﬁﬁ) on the
boundary of Q, provided that ps > 1. In addition, the trace of a function in W*P(Q) is well
defined over any smooth hypersurface contained in the domain 2. Functions in W*P(Q)
are mildly regular and for that matter, in the event ps > d, they are Holder continuous
([35]), which makes them less useful in the modeling of singular behavior inside the domain
Q. Similar to the spaces first proposed in [44] (for the case of p = 2), the function space
23°P(Q)), defined above, combines the best of W*?(£2) on the boundary 092 and LP(£2) inside
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Q). The main result of this paper is to show that when (Q is a domain with sufficiently smooth

1
boundary, the trace map exists and is continuous from 20°7(Q2) to W* »*(9Q) provided
sp > 1, while the functions in 20%P(Q2) remain as singular as typical LP-functions in the
interior of €.

Theorem 1.1 (General trace theorem). Let 1 < p < oo, s € (0,1] and ps > 1. Assume
that Q is a bounded Lipschitz domain in Rd(d > 2). Then the linear operator

Tu = ulpg, uecC(Q)
has a unique extension to a bounded linear operator
T 0P (Q) — W5 P(9Q),

and there exists a constant C depending only on s,p,d and the boundary character of
such that

(1) 1Tl ,, < Cllullagsr(e),  Vu € WP(Q).

S*%”’(aﬂ)

The proof of Theorem 1.1 follows the same general procedures adopted in [44], which
are standard for the proof of trace theorems for Sobolev spaces, [9]. We first establish the
validity of the statement over the half-space R? = R9~! x (0, 00), which is the main step that
involves significantly different analysis from the traditional case. We then use the partition
of unity to extend the result for bounded domains with Lipschitz boundary. The proof of
the trace theorem for the half space, similar to the case of [44], relies on a one-dimensional
nonlocal fractional Hardy-type inequality, which is a special case of the general Hardy-type
inequality stated below.

Theorem 1.2 (Hardy-type inequality). Let 1 < p < oo, s € (0,1] and ps > 1. Assume
that Q is a bounded Lipschitz domain in R? (d > 2). Then there exists a constant C' > 0
such that for any u € QWP*(Q)

ju(a) " ,
(2) /S‘) (dlSt(a:, aQ))ps dw — C’u‘ms,p(ﬂ)

Theorem 1.2 quantifies the rate of decay to zero for functions with vanishing trace which
is more heavily determined by their smoothness near 0f2 as they can be rough away from the
boundary. Inequalities similar to (2) have been shown in [13, Theorem 4] where a general
framework of fractional Hardy-type inequalities is provided. Our proof of the inequality (2)
involves first establishing it for the half-space Ri, which is discussed in details in Section
3, and then extending it to general bounded Lipschitz domains by the partition of unity
technique.

To demonstrate potential applications of the function space in allowing singularity as
part of the solution, we study the problem of minimizing the energy

= Ax,y) u(y) — u(x))dx
Q B = [ [ e Fuly) - ubxaxay

y
x)H
over an appropriate subsets of 20°7(€2) where A(x,y) serves as a coefficient and is symmet-
ric, and elliptic in the sense that 0 < a1 < A(x,y) < ag < oo for all x,y € Q. The function
F:R — R is a convex function such that for some positive constants c1,co and cg

(4) altfP < F(t) < colt|P and |F'(t)| < cs|t|P~" for almost every t € R.

Notice that convex functions are differentiable almost everywhere (see e.g. [37, Theorem
25.5]). To define the subset over which we minimize the energy, for 1 < p < oo and
s € (0,1) such that ps > 1, We consider some prescribed data given by ¢ € W*P(Q) and
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0 < heLP(2)\ W*P(Q2). For a fixed open subset 2y € © (compactly contained), consider
the set of functions

Ky(p,h) ={ueWP(Q):u>h,in Qpand u— ¢ € W°P()}.

The set Ky(p, h) collects all functions in 20%P(§2) that are above the nonnegative function
h(x) for x € g and have the same trace on the boundary 92 as ¢. Notice that the function
h = h(x) is assumed to be a generic LP-function, thus allowing representations of more rough
obstacles. While behaving like W*P(§2)-functions at the boundary, functions in Ky(p, h) are
allowed to essentially retain the potential singularity of an LP-function inside €. The set
Kg(p, h) is nonempty as the function x — ¢(x)xo\q, (%) + h(x)xa, (%) € Kg(p, h). Indeed,
since ¢ € W*P(Q), it suffices to show that u — ¢ = (h — ¢)xq, € 0°P(Q). To that end, let

€ C%1(Qy) such that ||h — ¢ — ¢nllLr(0e) — 0 as n — oo. Now there exists §p > 0 such
that dist(x,0€) > ¢ for all x € Qg and so for some positive constant C,

d+ps

\h—¢— Sﬁn”mw <C5 Hh—(b—CanLp(QO)—)Q as n — 00,

where extending by 0 outside {2y, we assume that ¢, € C’co’l(Q). It is also clear that the
set Ky(p, h) is a convex and closed subset of 20%P(€2). Notice that by the trace theorem,
since ps > 1, any function in Ky4(p, h) has a well defined trace that agrees with that of the
trace of ¢. Another ingredient we need for the coercicity of the energy E is the nonlocal
Poincaré-type inequality that will be established in Proposition 5.2. The Poincaré-type
inequality extends a result stated in [42] and also fills in a gap in the proof presented there.
In particular, special treatment near the boundary of €2 is needed for the type of nonlocal
kernel with heterogeneous localization on the boundary. As an application of the direct
method of calculus of variations, using the Poincaré-type inequality, we have the following
existence result.

Theorem 1.3. Let Q C R? be a bounded Lipschitz domain. For 1 < p < co and s € (0,1)
such that ps > 1, fir ¢ € W*P(Q) and 0 < h € LP(Q) \ W¥P(Q) and f € [W*P(Q)]*, the
dual space of W*P(QY). Then, there is a u € Ky(p, h) such that

E(u) = (fiu) = _inf  (E(v) = (f,v)).

vEKy(p,h)
where E is the energy functional defined in (3) and (f,u) is the action of f on w.

In the special case of p = 2 and F(t) = t2, the minimizer solves a linear variational
inequality.

Corollary 1.4. Let ) C R be a bounded Lipschitz domain. For p =2, let s € (0,1) such
that 25 > 1, fit p € W%(Q), 0 < h € L2(Q) \ W*%(Q) and f € [W5*(Q)]*. Then, there is
a unique minimizer u € Ky(2, h) defined by

E(u) = (fiu) = _inf  (E(v) = (f,u))

U€K¢(2,h)

where E is the energy functional defined in (3) with p = 2. Moreover, u satisfies the
variational inequality

(5) B(u,v—u) > (f,v—u), Yve Ky42,h),
for the bilinear form B(u,v) defined by

(6) B / / G(x,y)( —u(y))(v(x) —v(y))dydx, for all u,v € WH(Q).
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and

B X B (x)(0) (x-y) XBs(y)(0) (x-y)
G(x,y) = A(x,y) < ST g(y)dHS

This paper is organized as follows. In Section 2, we present some preliminary results
collecting estimates that will be used through out the paper. Some properties of the space
25%P(Q) will be proved. In Section 3, the nonlocal Hardy-type inequality for a stripe and
half space will be proved. This result will be used in Section 4 to establish the trace theorem
for functions defined on stripes and a half space. The main theorem on the trace of functions
on a bounded Lipschitz domain is proved in Section 5 together with a proof of the nonlocal
Hardy-type inequality and Poincaré-type inequality on such general domains. The proofs
of Theorem 1.3 and Corollary 1.4 are presented in Section 6. Finally, concluding remarks
are given at the end.

2. SOME DEFINITIONS AND PRELIMINARY ESTIMATES

In this section we present some elementary estimates that will be frequently cited through-
out the paper. The proof of the trace theorem also requires us to introduce the parametrized
space of functions 2057 (). Given s € (0,1], 1 < p < oo, a number ¢ € (0,1] and for any
u € LP(Q), let us introduce the notation |u|ms,p(9) defined as

wlP . // _U(X)’ —— ~ dydx
[ulayo - wa( Iz

where 5( ) = dist(x,09). As before, if Q is the special unbounded sets, either the half
space R+, or the stripe Rﬁl\ﬁ := R x (0, M], then the boundary 9 is R%~! x {0} and
5(x',xqy) = x4. Tt is clear that |u|m§,p(9) defines a seminorm. We now define the function
space 205"(Q) to be the completion of C%1(Q) with respect to the norm

1/p
- gy = (I 10 +1 - Bgoy)

We observe that if ]u\é’ns,p(m = 0, then u is a constant on any connected component of (2.
9

Indeed, for any D compactly contained in a connected component of €2, for any x € D,
d(x) > dist(D,09) = €. Then we have

0=|ul? . // wx)P” ——— 7 dydx
[elaye — wa( i

from which we have u(y) = u(x) for all y € By.(x). By covering a chain of intersecting
balls, we have that u is constant in D and therefore constant in the connected component
of 2 to which D belongs. By introducing the symmetrized kernel

XBysx (0) (x—y) XBysy)(0) (x—-y)
7 P (x y) = Boseo ®)
(@) % ¥) = 550 96T

we can write the seminorm as
gy =5 [ [ e yluly) = ux)dyax.

For ¥ = 1, we use the notation -, and 20°P(Q) instead of 7p and 2077 (Q2) respectively. By
definition, the function space 205" () is a Banach space with respect to the norm ||- ng,p(ﬂ).
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In addition, using the isometric mapping
g :QBZ’p(Q) — LP(Q) x LP(2 x Q)
Gu = (u, (uly) — u(x)) {/7) (x,¥))

it follows that for 1 < p < co, 2057 (€) is a reflexive Banach space [3, Proposition 3.20]. See
the proof of [3, Proposition 8.1] for the argument. In particular for p = 2, it is a Hilbert
space with the inner product

(1, 0) = /Q u(x)o(x)dx + /Q /Q 2% — y)(uly) — ux))(v(y) - v(x)dydx.

Notice that since [x —y| < 94(x) for all y € QN Bysx)(x), we have 196 (x)| (7)<

Ix — y|7*P%) and as a consequence, W*P(Q) C 057(Q2) for any 0 < s < 1, p > 1 and
9 € (0,1].
We will prove some properties of the space ‘,Zﬂ;;’p (Q) that we need.

Lemma 2.1. Let 1 < p < oo and s € (0,1]. Suppose that Q is an open set with smooth
boundary and ¢ € C1(Q), 0 < ¢ < 1. Then if u € WEP(Q), then u € WP (Q) with the
estimate

[utdllawsr () < Cllullanse )
where C' depends on 19, s, p, and 1.

Proof. Tt suffices to estimate the seminorm [Q,Z)u]w;p(m for u € C%1(Q). Notice that 1 is
bounded and Lipschitz, then we have

[Y(y)uly) — ¥ x)ux)] < [P(y)(uly) —u(x))| + [ux)(@(y) = »&))];
< 1l o @) (luly) = u(x)[ + [uG)|(T Ay —x]))

similar to [20, Lemma 3.64 (ii)]. Using the above estimate, we have

[Y(y)uly) — v(x)u(x)
[l o / /B . 08(x )) dydx
o u(y) - ) NP ALy )
=2l Ce( </ /Bﬁd(X)(x 195( d ’ +//Bﬂa(x)(x (90(x))" e >

P11 1P ul? ()P (1 A D5(x))P «
<27 9l <| L. //BMX)(X L dd.)

§0<|u|m§p / lu(x |p )75 A S(x )<1—S>P) dx.>

for some constant C' that depends on ¥,p, s and 1. Notice the last term is bounded by
|lu||z» since 0 < s < 1. This completes the proof. O

The following technical lemma will be very useful in the proofs of the Hardy-type in-
equality and the trace theorem for functions defined on stripes. It quantifies the continuous
embedding of one space into another and gives a precise comparison estimate between semi-
norms of the parametrized nonlocal spaces. Moreover, the lemma specifies the constants
involved because we will need it later to clearly identify how the constant C' in Theorem
3.5 depends on .
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Lemma 2.2. Letp>1,d > 1, s € (0,1] and ps > 1. Then for any any M € (0,00], for
0
any Oy € (0,1) and any ¥ € <0, ﬁ] , we have QU%"”(R?MQ - Qﬁ;&p(Rﬁ/ﬁ). Moreover, if
—bo
u € Qﬁ;’p(Rﬁ/ﬁ), then

p 1—p —ps p
g e ) < 2B OB ((1 — B0)M] Pl s

[ 6 "7
d+p py—H 0 PS—p|,, P
+297P(1 + 60)"6, <1 — 90> v ‘“’wg’p(ﬂ&;ﬁ)’

Proof. Given 6y € (0,1), p > 1 and d > 1 and u € QU“;S”(R?MQ, We may first consider

u € C’B’l(RﬁlM ) so that all the norms and seminorm in the above inequality are finite. Then

by the density argument, we can extend the desired result to Qﬁg’p (Rﬁ/ﬁ). To that end, we
begin by rewriting the integral on the left hand side as

— p
9“ p o — |U(y) U( )| dvd
0 |U|Qﬂ96 (Rj/[+) /Rd /Bﬂozd X)ﬂR |Id|# y x

(1— 90)M+

o o) ~uGl
Ri-1 ./ (1-00) M J By, ()R, |zal”

We will estimate the two terms in the right hand side of (8) We will start with the second term.
Using the change of variables y = 0pz4z + x we may write as

uly) —ulx
/ / / X dM+( )| ( ) u( )| 3
Rd=1 J(1—00)M J By, (x) |$d|

— p
/ / / XRrd (Boxqz + x) [u(ozaz + %) — u(x)] (HOxd)ddzdx
Ra-1 J(1—00)M J By (0

|za "

(8)

< 02[(1 — 0o) M) 7Pe / / / Xrd (Bozqz + x)|u(Bozqz + x) — u(x)|Pdxdz
Bl Rd-1 J (1—60) M

< 27[B,(0)][(1 ~ 6)M psnunm(w :

where we have applied Fubini’s theorem. We now estimate the first term of the right hand side of
(8). Let us denote it by I(fy) and write it in a slightly different way as

— p
1(6o) = / ux +8) = ull i
Begzd (0)

R?1*90)M+ |xd|#

Notice that for any x € REIPGO)NH and s € By, (0), we have x +s € R},.. Now for each
s € Bp,s,(0) and n € N we write the difference as the telescoping sum of differences given by

n

ul+ ) —u() = 32 fulet Ls) —ulx+ te)] = D ulais) — ulx)]

i=1 =1

where {x; = x s}t Since (Z ) <nP! Z |a;|” holds for all 1 < p < oo, we obtain

i=1

that
, -
1(8y) < nP~! Z ubet 59) uix T fax
RE g ym+ Y Boowy(0) |l
1
< pp- Z |u(x; + ) - u(xq) [P dsdx.
i=1 (1 00) M+ Boga4(0) |xd|
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Notice that the d-component [x;]4 satisfies the inequality that (1 — 0g)xg < [x;]a < (1 + 0p)xq for
i =1,...,n, therefore we have

o lgy P
I(6) < mP~! Z/ / lulxs + 5) — ubx) dsdx
Boga, (0) |zal*

(1— 90)M+

u(x; + 38) — u(xi)|”
Ja |[xi]al*

<np11—|—6‘0 Z

i=1 (1 0g)M+

dsdx.

Is|<

Since x € Rl(il—e())M+ and [s|] < fpz4, we have

L0(1— )M = (1 — )1+ (n— 1) )M = g1

for each ¢ = 1,--- ,n. Notice that 8, = (1 —6p)(1 + (n — 1)8p/n) < (1 —6p)(1 +6p) < 1. Making
the change of variable x; — x in the outer integral we obtain that

xila < (1 — 00)M + —

+1lg)— P
(6‘0) < np 14+ 90 / / |U x S) U(X)| dsdx.
RS | |zalH
By a change of variables — — s in the inner integral and letting 6,, = ﬁ, we get that
n n — Up
P
1(80) < n+P(1 + 65) / / ux+8) = w1
]RZ jpn n|s|< |xd|'u
1 u(x +s) — u(x)|P
=nPTH(1+0 dsd
=nPT1 + 0) 1_90 /Rd / O] sdx

Bn M+

p
— PP (1 4 G / / X“LS) v s ax
1 — 6‘0 Rd ls|]< 2 90 Zd |9n$d|“

d+p _ P
=00 P(1+6p)" ( % ) / / [ulx + 5) — u(x)] dsdx
1=0o Rgnl\/1+ [s|<Onza |9"Id|#

Notice that for x € R%nM+ and |s| < 6,z4, we have

2
n 2
Therefore, we conclude that for each n € N, there exists a constant C' = C(6p) such that

o) oy scoer [ f G e

|9n$d|‘u

6‘0 d+p
where C'(6p) = (1 + 6p)* ( ) .
1— 0,

Now given ¥ € (0 we can choose n € N such that 6,41 < ¥ < 6,. This is possible since

0
) 1— 90]7
6o € (0,1). Then, apply the inequality (9) first for n + 1, and then later for n, we obtain that

T(86) < C(60) By )P / /B [u(y) —u@)P

g GONRL | |0y 124|"

— p
< C(00) (07 <—"+1) / / LZRlL3 L
n 4 JBoa,orre . Onal”

< C(600)(0,)P7P <n 41 > d+P/ /Bﬁxd(x)mR (y|)19;d1|LpEX)|p dydx

d-+ s—
< Ol




FRACTIONAL HARDY-TYPE AND TRACE THEOREMS FOR NONLOCAL FUNCTION SPACES 9

where in the last inequality we used the fact that n > 1 and ps — p < 0. That completes the proof
of the lemma. O

3. NONLOCAL HARDY-TYPE INEQUALITIES

We begin establishing a Hardy-type inequality for functions define on a line segment in
one dimension. The result will also be used later to prove the trace theorem in for general
domains. We start with the following basic estimates that follows from convexity of the
map t— ¥, 1 < p < oo.

Lemma 3.1. The following estimates hold.
(1) Suppose that 1 < p < co. For any € > 0, there exists C = C(e,p) > 1 such that for
any £ 20, & — (1+¢) < ClE -1
bl — qd

(2) Forany0<a<b<1, and any 1l < q < oo, wehaveﬁ<1.
qlb—a

Proof. Indeed, (2) follows from the intermediate value theorem, since there exists ¢ € (a,b)
such that ,
q _ 44 1
bl—at _ / 11 = L < 1.
gb—a) b—al,
Meanwhile, for any « € (0, 1), o = a({—1)+(1—a) 0 fa’ s0 aPEP < a(é—1)P+(1—a)'PaP,

that is, €7 < a'™P(¢6 —1)? + (1 — a)'7P. For p = 1, this implies (1). For p > 1 and any
€ > 0, we can choose @ = 1 — (1 +¢)/7P) and get the constant C in (1) accordingly. [

Proposition 3.2. Let 0 < a<b<1,1<p< oo, and s € (0,1] such that sp > 1. Then
there exists C(s,p,a,b) > 0 such that for any M > 0 and v € C%1([0, M]) with u(0) = 0

we have u ,
|u(z / /w lu(y (z)|P
/ |w|sp =C v

Proof. The proof is similar to the p = 2 case shown in [44]. Given any z,y € (0, M) and
e > 0, by Lemma 3.1, there exists a constant C(e,p) > 1 such that

u(z)[” < Cle, p)lufz) — u(y)[” + (1 + )fu(y)”.

This is possible by taking £ = i , when u(y) # 0 in Lemma 3.1. Clearly the estimate is

lu(y)|

also true when u(y) = 0 since C' > 1. Integrating the above inequality in y in the interval
(ax,bx) and then integrating in z from 0 to M, we get

M p bx P bz
[ [ [t g e [ 0
0 |1L"|Sp b—a |$|serl b—a az |!13|51”Jrl

=1+ Is.

I is clearly in the right form, what remains is to estimate I. Since u € C%'(Q) and
u(0) = 0, we can use Fubini’s theorem and change the order of integration to get

1+e¢ bz ‘u 1+e€ bM  pmin{y/a,M} ‘u(y)’p
2 S+1 = S_Hdl‘dy.
b—a azx ‘x’p b—a 0 y/b ‘x’p

Now, using the fact that 0 < a < b < 1, we obtain that

1+e / / y/a lu(y) (14 ¢)(bP — a®P) /M lu(y) P
< y < dy
S u/b \x!S”“ sp(b— a) o |yl
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Again we use item (2) of Lemma 3.1 for ¢ = sp > 1 to choose € small that
(14 €)(b°P — a®P)
sp(b—a)
Combining the above estimates we have

M P
(1—6)/0 [ul) dr < I,

[P

=:c< 1.

and the proposition is shown.
O

Now that the one dimensional nonlocal Hardy-type inequality is established, it is natural
to expect similar result holds true for higher-space dimensions as well. In fact, one expects
the existence of a constant C' depending only on s,p and d such that for any M > 0 and
x = (X', 14),

(10) /R ) "xd’ps <C /R ) / (Y)’g;ﬁ(x)’pdydx.

M+ﬂBxd

for any u € C’O’l( ) NWP(RY,,) and u(x’,0) = 0 for x' € R*™!. This is a special case
of Theorem 3.5 Wlth 9 =1

Let us begin the proof by making use of the one dimensional Hardy-type inequality in
Proposition 3.2 on the function u(x’,-) for each x’ € R, Indeed, for any 0 < a < b < 1
there exists a constant C' depending only on a,b,p,s and d such that

Mlu(x!, zq)P
/ I / / 10 Ta)E g
R, del Rd-1 |zl

baq lu(x, yq) — u(x’, xq)|P
<C dyqdxqdx’,
/]Rd 1/ / ‘.Z'd’1+ps Ydax qax

where we used the fact that, for each x’ € R4, the function u(x',-) € C1[0, M], u(x’,0) =
0, and x = (x',24) € Rﬁ/ﬁ. To complete the proof of (10) we only need to appropriately
estimate the integral on the right hand side of the above inequality. To that end, we follow
[44] and observe that the integral involves weighted variations of the function u in the dth
variable. We first present a definition on the nonlocal analog of norms of nonlocal directional
derivatives, which is an extension to similar concepts first introduced in [44] for p = 2.

(11)

Definition 3.3. Suppose 0 < a < b <1 and k,9 € (0,1] are given. On the horizontal stripe
Rﬁl\ﬁ, we define in the following two directional nonlocal seminorms [|, and [-]¢, standing

for normal and tangential directions respectively with reference to the boundary segment
I =R x {0},

b.CBd / P
(12) ul?, _/ ][ |u( x/ Z/dl9 1;(SX,$d)| dyddznddx/
R? | V4]
—u(x P
(13) / ][ uly’s 2a) = wl 2)l? o i
R? S By (x!) [PzqlP

where ][ denotes the average integral.

In the definition, the two seminorms depend on a, b, x and 9. To eliminate the prolifera-
tion of messy notation, we suppress the dependence on the these constants. We now have
the control on these seminorms.
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Lemma 3.4. Let 9,s € (0,1], p > 1, such that sp > 1. Then there exist constants C, a,b,
and K with the property that 0 <a<b<1,0<k <1 and (a — 1)2 + k2 < 92 such that

(14) [uln < Clulygsrga ), and  [u]s < Clulygsrga )
for any u € Qﬁ;’p(R%Q. The constants depend on 9, p, s, and d.

Proof. It suffices to prove the lemma for the class C’B’l(RﬁlM +), and then take the com-
pletion with respect to the 205P(R%,,) norm. To prove the two inequalities in (14) for

any CO1(R? ), it is sufficient to show the following two inequalities instead : there exists
constants 7 and 7 such that for any u measurable in R‘Ji\ﬁ,

(1) wr<niprcf |/ Ju(y) — u(x)P”

p
dydx
4 NBya,x) VTl
(16)

_ p
ulf < mlulf +C / / July) = uGP ) e
R: . JRY By, () [ q|H

ulf, [ulf and fulyys

where the product 77 < 1. Notice that for u € CO(R? ), [u] wr (RY )
> M
are all finite. We now focus on establishing (15) and (16). For any z4,yq € (0, M), and

x',y' € R we may write

u(x',ya) — u(x', xq) = w(x', yq) — uly’,ya) + u(y’, va) — u(x', 2q).

PELL LT oS
“-‘ u,y

i ! /
BuydX§ x {wa} .. X2%0) (y7a)

By Fox {ya} Xobdg)... abd)

“ *
.'.. .“‘
AT TR L A

R4 % {0}

FIGURE 1. Depiction of geometry used in the proof of Lemma 3.4.

Now given any any € > 0, we may apply Lemma 3.1 to obtain C, > 1 such that
(X', ya) — u(x',2q) P < (1 + €)|u(x’,ya) — w(y', ya) P + Celu(y’, ya) — u(x’, zq) [

We fix constants 0 < a < b < 1 and k € (0,1) to be determined shortly. Integrating on
both sides of the above inequality with respect to y’ over the ball By, (x'), we obtain that
u(x', ya) — u(x', z4) [P

<(1+0 f (', ya) — u(y’, y)Pdy’ + C. iy’ ya) — u(x, za) Py’
Bf'iyd (x') Bf'iyd (x")
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We then integrate in the y, variable over the interval (axg, bzy) both sides of the above to
obtain

b(Ed b.CBd
L o)~ u P < (10 f ][ )ty )Py g
a B“yd x’)

Tq

bxy
+0][ ][ u(y’, ya) — u(x', 2q)|Pdy’ dyq
B

'Wd

Dividing both sides of the inequality by |J24|P°, and integrating over Rﬁl\ﬁ, we obtain that

bxy _ p
/ / ][ ) =IO it = 4
Rd—1 |9z q|Ps

bxg X / p
s Yd) — (y 7yd)‘ ’ ’
(1+e€) / / ][ ][ dy' dyqdx4dx
Rd 1 Bmyd(x ’ﬂxd‘ps

b.CBd /
u(y’, ya) —u(x'szd)P ., ’
Jo = C, / / ][ ][ dy'dyqdxqdx’.
Rd-1 By, (%) |19$d|p8

The integral J1 can be estimated as follows using Fubini’s theorem and a change of variables:

bxg _ / P
Rd 1 B/de (X ‘01’[1’10

1 ! p
Rd 1 yd Bmyd (X ‘0md’ps

In the last integral we iterate the integrals first in x4 to obtain

1+e¢) bsl’ - aSP w(x',yq) — u(y’, ya)?
Jl S ( /Rd 1/ ][B ( yCl|?L9yd|piy yd)| dy/dyddx/
KYq X

where

and

1+ e)(bSp —aP
= [U]t
sp(b— a)
Next we bound Jo. Clearly, since axq < yq < bxq, we have that measure of the ball By, d(x’)
in R%! can be estimated in terms of a and Tq as

bxq _ / P
Y, ya) —u(x',zq)|
i . Wzgp dy’ dyqdzxgdx’
myd
Cﬁd b lu(y’, ya) — u(x', zq)|?
< dy'dygdx  dx’.
(b— a)[ral®™ 1/Rd / / /B [ alF Y Watacx

Hyd
Now for any y = (y',ya) € By, (x') x (a:nd,bznd) and x = (x',24) € Rﬁ/ﬁ, we have that
y € Rﬁl\/ﬁ and
¥ X = (g 20y — X < (0 1%+ 520203 < ((a— 1)? + 203 < 923

where we have chosen a and k in such a way that (a— 1)2 +k? < 92, which is always possible
to do. It follows then that

. / / u(y) — u(x)|P
J. —d dx.
2= (b—a)|raldT fpa NBys,(x) [0zl Y

Mt M+

/\
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Putting together, we have just demonstrated that

lu(y) — u(x)[? . (1+¢)(bF —a®™)
p < - = .
[ulp < 7[ulf + C/]Rd /]Rd . Tz dydx, with 7 sp(b—a)

M+ M+

We next estimate [u]}. Following the same procedure as above given any € > 0 we can find
C, such that

b.CBd _ / P
Rd—1 B"“”d |Q93§‘d|p

b:cd p
Rd-1 Bray(x') Jaz ’ﬂxd‘p

=Js+ Jy.

Using Fubini’s theorem and the observation that y' € B, (x) if and only if x" € By, (y'),
J3 can be rewritten as

bx g u T /7 P
J3=(1+¢) /]Rd 1/ ]{3 » ][ [u(y’, C‘lﬁxd’p(sy Ya)| dyqdy’ dzgdx’
kg x') Jazg
b u(y’, xq) — uly’, ya) P
(I+e€ / / ][ ][ : dyqdx'dy’dxy
Rd—1 B"“”d(y |’L9;17d|175

bTa u(y’, xq) — u(y’, ya) [P
(1 ’ dygdy'd
“/ /R 7[ Tza yady dra

= (14 €)[u]

The integral J; can be controlled the same as Jo before as follows

b uy’, yq) — u(x', zq)|P , )
b —a /Rd 1 / ]{B </ /a Vg ps+1 dyqdy’ dxgdx
ncvd(

d _ P
_ lfw / / (y)ﬂ LI,
—a Jrd R? . NByg, (x) |9 4]

M+

Jy <

provided that (a — 1)* 4 x? < 9¥2. We thus have

_ p
(17) [ul) < mo[ulf + C’/ / Mdydx, with 75 = (1 + €)
R By, () [UTal
. (b%P — a®P)
Now, since sp > 1, by Lemma 3.1, we have C ] < 1. Therefore we can find € small
sp(b—a
such that
1 2(1KSp _ ,SP
7’17’2:( +E) (b a4 )<1.
sp(b—a)
In the event that both [u]} and [u]?, are finite, we obtain (14). O

We are now in a position to prove the Hardy-type inequality for functions defined on the
stripe Rﬁl\ﬁ that uses the seminorm | - ’m}fﬁ’ ®? ) A special case of this theorem is stated
M

in Remark 3.7 for the half space.

Theorem 3.5 (Hardy-type inequality). Suppose that p > 1, s € (0,1] such that sp > 1.
Let also ¢ € (0,1]. There exists a constant C = C(d,p, s,9) such that for any M > 0 if
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we CONRE NYNWSP(RE, ) and uly,—o = 0, then
M+ 9 M d

1/p
p
(/ \T;(X‘ZJ‘ dx) < Clulgyssas ).
Rd d M
M+

Proof. Recall from (11) that, given any 0 < a < b < 1, there exists a positive constant C,
depending on ¥, p, s,and d such that

b(Ed
/ WO 4y < ¢ / / ][ wlooyt) = W, 74) gy igaxt
Rd |74l Rd-1 |z4]
— ol

where the equality is by definition of the directional derivative. We can now apply the

Lemma 3.4 and choose a and b such that the latter can be bounded by the seminorm

|u|ms9,p (e b0 prove the theorem. O
M

The dependence of the constant C' in Theorem 3.5 on the parameter ¥ can be made
explicit by using the LP-norm in the right hand side.

Corollary 3.6. Suppose that ¥ € (0,1], p > 1, s € (0,1) such that sp > 1. Then there exists

a constant C = C(d, p, s) but independent of 9 such that for any u € Co’l(Rﬁl\/H)ﬂﬁﬁfg’p(Rﬁ/ﬁ)
and ulz,—0 =0,

|u(x)[? - -
< PS—P |, |P ps p .
/]R}lﬁ ’xd’ps x “\? ‘u’mgyp(R}ixﬁ) M HUHLP(Riﬂr)

Proof. We apply the Theorem 3.5 corresponding to ¢ = 1/2 to get a constant C; such that

u u(y p
[ e[ ) — uGV
Rd . |l Ry, JRYNBy, () |32a|*P

for any u € Co’l(Rﬁl\/H) ﬂﬁﬁfg’p(RMQ and u|y,—0 = 0. Next apply Lemma 2.2 corresponding
to 0o = 1/2 to obtain a constant C' independent of ¢ such that

|u(x) / / [u(y) —u(x)P
< (] —dydx
/ |:Ed|ps led x)NRY fll’d‘dﬂs

_ P
< PP / / —(Y) )P gyix 4+ cor-tyve / () |Pdx
Bz, (x |19xd|ﬂ R(zixﬂ
for any 9 € (0,1], and any u € CO’I(R]\/H) N ‘,ZBZ’p(R?WQ and u|z,—o = 0. O

Remark 3.7. A simple consequence Corollary 3.6 is that by letting M — oo, we get a
constant C = C(d,p, s) such that for any ¥ € (0,1]

[ Mﬂﬁi<mwp/!/ luty) P
RY [alP? By, (x) Wﬂfdf”

19acd

for any u € CXY(RL), and thus for any u € Qﬁﬁ’p(Ri) by completion.

4. TRACE THEOREMS ON STRIPE DOMAINS

In this section we prove trace theorems for functions defined on stripes. We begin esti-
mating norm of the trace of C'! functions in terms of the Qﬁg’p -norm on Rﬁl\ﬁ. More precisely
we have the following.
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Theorem 4.1. Letp > 1, s € (0,1] such that sp > 1. There exists a constant C = C(s,p,d)
such that for any u € C’O’I(Rﬁl\/ﬁ) N %Z’p(R%Q and for any 9 € (0,1] we have

< -1 p ps—p a rps—1 . )
e R e s T
Moreover,

Lly—— (M—m”uufzp([&iﬁ) + 79ps—p‘u,§n§yp(R%)> :

where ]-]stl/p,p(r) is the usual fractional Sobolev norm on the hypersurface I' = R4~ x {0}.

Remark 4.2. It will be clear in the proof that in the event that Q = R, the inequalities
in the theorem can be combined to yield the inequality that

||u‘|%/s—1/p,p(p) < C(p.d,s) <Hu”§1’(Rd) + 9P Pluly Sp(R?vH)) '

Proof. Since u € Co’l(]R‘Ji\ﬁ), pointwise evaluation on the boundary is well defined. For any
xq > 0, we have that

lu(x',0) P < 2P~ (ju(xX', ) [P + [u(X', £4) — u(x',0)[P, for all x’ € R4L.

Taking the average in x4 over the interval [0, M] first and then integrating in x" over RI-L,
we obtain that

/ lu(x',0)|Pdx’ < 2P~! < / / w(x', xq)[Pdxgdx’
Rd-1 Rd-1

M / P
e [ f u(x' 20 _u(x.0) dxddx/>.
R

We note that for each x’ € R4"! the function zq — u(x’, z4) — u(x’,0) is in C%1[0, M] and
vanishes on the hyperplane x4 = 0. We may then apply the one space dimension Hardy’s
inequality Proposition 3.2 to obtain that given any a, b such that 0 < a < b < 1, there exists
a corresponding constant C' > 0 such that

/M ’U(X/,xd) — U(X O d < C’/ /bxd ‘U X yd _ U(X/ xd)’pdyddxd
0

|zq[Ps |2 q[Pstt

/ fbmd |'LLX yd —'LL(X ':Ud)| dyddw‘d

|zq|Ps

(18)

We integrate the x’ variables on R%"! and rewrite it to obtain

Rd-1 |$d|ps

_ b g _
Rd-1 wd\ps

The integral in the right hand side is precisely [u]? corresponding to ¥ = 1/2. We now

n
apply Lemma 3.4 to conclude that there exists constants a, b, and C such that

/ /M ’uX T4 —u(x O)’pd ddx,<C/ / Mdydx,
Rd—1 ’xd‘ps a R?\l/ﬁ B%z(s(x)ﬁRd ’%xd’d'f‘PS

M+
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Lemma 2.2 in turn guarantees the existence of a constant C' independent of ¥ such that

M _ p
/ / lu(x/, zq) — u(x',0)] dr !
Rd-1 |zalP®

uy) — ux)[” -
< pS—p W) T DS ||, ||P
C <19 / /B y Tyt Ml g )

vzq (ONRY, |

for all ¥ € (0,1]. Together with the inequality (18), we obtain that

NP dx! < —1,,||P ps—p 7 gps—1|, |P
/Rd1 |u(0,x")|Pdx’ < C <M HUHLP(R‘L )+19 MP*™ u) faI;w(Riﬁ)) ;

which proves the first inequality of the theorem. Let us prove the second inequality. By
definition the seminorm |u|y 1 /pep(T) is given by

'0) — ,0)|P
Si_p(l“ Rd-1 JRd-1 |X—Y|+p5

We divide the domain of integration as follows

WP ki1 By () \X—y,ﬂ’s

0 — ".0)|P
Ri-1 By (x —y'|#rps

:II+I27

Jul?

where Bum (X/)C represents the complement of By (x'). Estimating I5 is relatively simple
2 2

Ri~1 By (x)C ’X—Y\ers

/ / P
X‘ 0 d()(s—gy70)‘ dxldy/
{ly’|>A} Jrd-1 ly’[4+P

_ 1
<2, )|, /{ gy T S OOl

< Clp, s,d) M P+ |u(0,)]7,

since

where we have used the assumption that ps > 1 that will imply the finiteness of the integral.
Let us estimate the first term I;.
The idea is again to split the left-hand side into three parts that can be controlled by the
right hand side. As shown in Figure 2, we choose (x',z4), (%, y4) € € and rewrite

u(y’,0) = u(y’,0) — u(y', ya) +u(y’, ya)
w(x’,0) = u(x',0) — u(x', zq) + u(x’, 2q) .

Notice that the blue solid horizontal line and the red horizontal dashed line in Figure 2
show the possible positions of (x’,z4) and (y’,vyq) respectively. The key is to determine
the end points of these lines so that any (y’,y4) over the blue solid line should stand in
the effective neighborhood (shown as red solid circle) of any (x’,z4) on the red horizontal
dashed line, in particular, the bottom end point whose effective neighborhood is given by
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~tx {0}

FIGURE 2. Depiction of geometry used in the proof of Theorem 4.1.

the dashed purple circle. Note that for any yq, 24 € (0, M), we can write
u(x',0) — u(y’, 0)”
< 3p—1 (|U(X/, 0) - u(xl7 xd)|p + |U(y/, yd) - u(xlv $d)|p + |U(y/, yd) - u(ylv 0)|p) :

Let us denote h := x' —y’. For 1 < a < 8 < 2 to be determined later, integrating first in
yq in the interval (a|h|, 5|h|), and then in the x4 variable over the interval (a|hl, 5|h|), we
obtain that

Blh| B|hl
317Plu(x’,0) — u(y’,0)|P < ][ lu(x',0) — u(x', zq)[Pdrq + ][ lu(y’, ya) — u(y’, 0)[Pdyq
alh| alh|
B|h| 5\h|
Y ya) — u(X', zq) Pdygdzq.
alh|  Jalh]|

It follows then that

Blh| ' 0) — u(x' P
31 p[l / ][ ‘U(X 70) U(X 7xd)’ dxddy,dxl
Rd-1 %(x’ a

Ih| ‘X’ _ y/’d+ps—2

Blh| — 0P
ri=1 By () Jalni \X—Y\ ps=

Blh| Bl _ / P
/ /, 7[ f o) S by sy ax
re-1 /By () Ja| Jajny |x" —y'|d+P

It is not difficult to see that the first two integrals are equal after a change of variables.
Therefore after rewriting it as Iy < I;1 + I12, we only need to estimate I1; and I;5 which

are given by
Alh| ,0) —
Ii=2 / / ][ Ju Z(f L)
Ri-1 /By () Jafh) ’X — |4t

Blh| Bl / _ / P
Ri-1J B, (x') Jalh| Jaln| x" — y'|d+P
2

and
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To estimate I11, we first change the integration with respect to y’ to that with respect to
h = x’ — y’ and obtain that

Aln |ux ajd ) —u(x',0)P
I = 2/d 1/ ][ EpwTET dxqdy’ dx’
R BM alh| y

Blh| _ / P
/ / / ‘”(X’xd)d - u_(f’o)’ dzgdhdx’.
B —a Jga-1 % 0") Jaln| |h|d+ps

Integrating the latter using polar coordinates and letting h = |h|, we obtain that and then
iterating the integrals by change of variables, we obtain that

2H I~ 2(Sd 2 Bhu(x, 2q) — w(x',0)[P 4 o
I = h — / /
11 P /Rd ) / /a (B [dToeT dzqdh | dy'dx

d

er 2 Sd 2 o pd-2
S [T ) 1) — w0 sty

B
Hd2Sd2 Ps — qP%) M, 2q) — w(x,0)|P
( B / / ‘ d s( )’ dlEddX/.
ps(B — Rd—1 |zalP
Now a combination of Lemma 3.2 and Lemma 2.2 implies that there exists a constant C
independent of 1} such that

/ /M’UX , Tq —U(X/70)’pdxddxf
Rd—1 |zq|Ps

u(x)[”
< ps—p ps .
C <Q9 Ad \/;%Cd ’ﬂwd‘d-i-ps — a4 dX+M HuHLp(Rd )

Combining the above estimates, we obtain the desired estimate for I;;. Next we estimate
I5. Turns out that we will impose conditions on « and S to get a control of I15. To that
end, recalling h =x" —y/, we have

Bl Bk h, ' p
(B8 — )2 Jga Bu2(0) Jah| Jah |h| P
d+ps Sa| - rAlh| h, / P
Ri-1J By (00 Jafh| Jafh| |33d|

where we used the fact that the integration the x4 variable ranges from alh| to §|h|, and
B < 2. Using polar coordinates for the integration on the d — 1 dimensional ball B (0'),
2

we obtain that

d+ps Bh "4 h _ / P
112 >~ B / / / / / |’LL(X + v, yd) U(X ’Id)| hd*Qdyddxddh deiQ(V)dX/
Rd—1 J§d—2 ah Jah |xd|d+ps

By iterating the integrals and using Fubini, we have that

d+ps M Bh h . ’ p
.[12 > ﬁ / / / / / |U X + V7yd3 ’LL(X 7‘Td)| hd_2dyddh de_2(V)d(EddXI
Rd—1 Jgd—2 711 |Id| +ps
d+ps M Bh h _ / P
= ﬁ / / / / / b’ + hv,ya) = w2l paa g anayt=2(0) ) dwgdx
Rd—1 gd-2 Jzd |J?d|d+pS
d+ps M Bly'—x'| / _ / p
ﬁ / / / / [y, ya) du(x )| dyqdy’ | dzgdx’.
Ré-1 Zd Ly’ —x/|<Zd Jaly' —x/| |'rd| tps

B
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Now for x = (x',24),y = (y',yq) € R?, with the property that yq € [a]y’ — x|, Bly’ — ¥/[]

2
— 1
and |y’ — x'| € [ﬂ, xd} we have that, for 3 = %
b8 « «@

B\? 1 a\? 1
Iy—XI2Z(xd—yd)2+l>7’—><’l2émaX{<1—a 3 1—5 + xy < 05y

1
since a < . Note that for all 1 < a < 8 < 2, the quantity 98 € (5, 2). We further choose

9

1
« and 8 such that 9(2] € (5, 1), which is possible, for example with f =2 and o = g Using

5
these values of a and 3, we get 98 =9 and we can estimate [1o as

I <C(d d dx.
12 <C(d,p,s / / ‘xd’d—i-ps

]\/I+ Goxd )

We now apply Lemma 2.2 corresponding to 6y = 1/5/9 to conclude that

Iy < C 191”51”/ / “()|ddx+MPSu
N < Bﬁzd(x) |Q9xd|d+ps ” H IJF)

for any ¢ € (0, 1]. That completes the proof. O

5. RESULTS ON LIPSCHITZ DOMAINS

5.1. Trace theorem for Lipschitz domains. The aim of this subsection is the proof of
Theorem 1.1. The proof follows classical arguments. We use the trace theorems on half
space and stripes proved in the previous section to prove it for Lipschitz hypographs and
then for bounded domains with Lipschitz boundary. To be precise, following [29], we say
that Q ¢ R? is a Lipschitz hypograph if there exists a Lipschitz function ¢ : R™! — R and
L > 0 such that |V(]||p~ < L,

Q={x=x, zq) €RY:2q>((X)}, and 90 = {x = (¥, z4) € R : 24 = ¢(x)}.

We say that an open subset €2 is of R? is a Lipschitz domain if its boundary 99 is compact
and there exists two families of sets {O;} and {€2;} with properties:

(1) for each j, O; is bounded and the family {O;} is an open cover of €,

(2) each €2 can be transformed to a Lipschitz hypograph by a a change of coordinates
(rigid motion), and

(3) the set (2 satisfies the property that QN O; = Q; N O; for all j.

Proof of Theorem 1.1. We use standard procedures to prove the theorem. First, since
CY%1(Q) is dense in W*P(Q) it suffices to demonstrate that the linear operator T' satis-
fies (1) over C%1(Q). Second, noticing that we have already proved the inequality (1) when
Q= Ri, we begin by showing the validity of the theorem for Lipschitz hypographs, and
finally using partition of unity and flattening argument we prove it for general Lipschitz
domains.

Step 1. We prove the statement when 2 is a Lipschitz hypograph. Let ¢ be the
associated Lipschitz function as above. Then the surface measure do on 0f) is given by,

[29]7
= 1+ V() Pdx’
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By definition u € WS_%’p((?Q) if and only if u € LP(Z?Q do) and

x)[P
el W B (99) /ag /ag Ix — Y|d+ps Tx — y[rpez 0 (o (y) < oo

/

Now making the change of variables x — x = (x/,((x')) and y — ¥ = (y/,((y’)) and using

uc(x) == u(x’,{(x')), we have that

4 p

ul” :// uely) P V1T VORI VCy )Py
wertea) - Mrd-1z (X -y P4 [0y) — )P

Notice that for any x',y’ € R~}

X =¥ < VIK =y PHICE) - )P < VI Ly ~

and 1 < \/1+ |[V((x)]2 < V14 L2 As a consequence, there is a constant C' = C(d, L)
such that

— <
‘ [y Pog) = < luclyes, P(Rd-1) = C’u‘ws*%*’(aﬂ)
We conclude that u € Ws_F’p((‘)Q) if and only if u¢ € WS_%’p(]Rd_l) and we may take the
the norm [jul| 1 = lJue|l 1, .
W PP (09) W7 PR (R

Now given u € C21(Q), let us introduce the function Geu(x', z4) := u(x', 24 + ((x')) for
all (x',x4) € Ri. Then notice that G¢u has a compact support. Moreover, as a composition
of Lipschitz functions, Gecu € C(R%) and that

1Gcullzp gay = /Rdl /0 [u(x', zq + C(x))[Pdx'dzq = [|ull}, g

We next show that there exists a o € (0,1] and a positive constant C, depending only on
the Lipschitz constant L, d,p, s such that |G<u|ws,p(Rd < C|U|Qﬂs,p ). That is,

p p
/ [l Gy [ [ )
B"'zd |O-‘,Ed|/J Bg(x) (x) |5 )|'u

where 0(x) = dlst(x 0R2). To that end, for a o to be determined, we estimate that

p
/ / Geuly) — Geu(x)| dydx
Burzy () o al*

- / / lu(y’, ya + C(y')) — u(x',zq + C(x))[P
Bo.ay (%' ,24))

o - wg|r
/ p
// \u (7 zd u(w;wd)] d2 dzgdw
» (w) (wgq — C(w'))[~
where

Ho(w) = {(2,20) € Q: |2/ = W[ + |24 — wa — (((W) = ((2)* < (o(wa — C(W)))*}.
Note that using the fact that (w',((w')) € 99, we have
(19) dist(w, 9Q) < Jwg — ¢(W)| < Kidist(w,99Q)

for some constant K7 that depends only on the Lipschitz character of 2. Indeed, the
quantity x4 — ((x') is represented in Figure 3 below as the length of the read dashed line.
In Figure 3, w = (W', wy) is a point in  and (w',{(w’)) is a point on dQ. The Lipschitz
graph ¢ always remains outside the double cone centered at (w’,{(w')). It is obvious from
Figure 3 that dist(w, 02) is greater than or equal to the length of black dashed line, which

dy’ dyqdx
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represents the distance of w to the edge of the cone. Therefore, dist(w, 9Q) > c(wy—((W'))
where ¢ > 0 is a constant that only depends on L.

slope = L

[%9]

slope = —L

> /
> W

FIGURE 3. The Lipschitz graph ¢ remains outside the double cone centered at
(w',¢{(w")). The double cone is generated by the blue lines with axis parallel to
the wg-axis. The red dashed line represents wg — ((w') and the black dashed line
represents the distance of (W', w,) to the edge of the cone.

Moreover, for any z € H,(w), we have
|z —w|? < 2(|za — wq — (C(W') = ((2)* + [¢(W') = ¢(2)°) + [w' — 2/
< (o Kodist(w, 0Q))?,

where K5 is another universal constant depending only on the Lipschitz constant. We
choose o € (0,1) small so that 0Ky < 1. With this choice of o we have H, (W) C Bj(w)(W).
It then follows that there exists a constant C' such that

)P
// !ch y) — Geulx \ddx<0// lu(z) —u(w)P
Bs. “"”d |O- $d|u Bg(w) VV)|/J

Applying Remark 4.2 with 9 = o, there exists a constant C' = C(d, p, s) such that

s Geu( Geu(x)|P
17Gell .y <0<\|G<u||Lp(Rd oo / / Geuly) — Geul) dydx)

‘O’ a:d]“

B,. zg(x)

<C | ull?, g // Ju(z) —uW)I” i) = Cllal o
<H ”L B(;(w) ) |5 )| ” Hgn, (Q)

We finally observe that TGeu(-) = Geu(-,0) = uc(-), therefore,

[ Tull” a1 = [Juc|” a1
W™ P (092) WP (Rd-1
Step 2. Assume now that Q is a Lipschitz domain. Let the family of sets {Q;}Y.; and
{Oi}f\il are as given at the beginning of the section. We introduce a partition of unity
{¢;} subordinate to {O;})Y,. By Lemma 2.1 and the property that QN O; = Q; N O;, the
functions u; = ¢;u, after extending by 0, are in CO1(Q;) for all i = 1,2,...,N and that
there exists a constant C' such that

— p p
=Gl Ly < Ol

(20) HUZHQBSp < CHUHmsp ), fOI" all Z — 1,2,...,N.
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It is also clear that
N N
Tu(€) =u(@) = > wi(§) = T'u(), forall{edQ.

Here we are the using the notation T%u;(¢) = Tu;(€)xa0,na0(€), the restriction of the trace

map T on 9€;NAN. Notice that for each i supp(T%u;) C dQNsupp(¢;) and as a consequence
for each i

(21) dist(supp (T u;), 0Q \ 9;) > 0
Now we may write

N
(22) D D L e
For each i,

ZUZ( )P
TP :/ Tiu;(€)|Pdo (€ / / do(&)do(w
T W 0] e w,dﬂps W to€)aotu)

Tui(&) — Tuw)? )
p
§C</891 Tui(©)Fdo () /69 /69 = w’d—i—ps 5—do(§)do(w)

W PP (80;)

where we used the observation in (21) about the support of T'u; and its a positive distance
away from the boundary 9 \ 09;. Since we know that 9€2; is a hypograph, up to a rigid
transformation, we can apply Step 1, to write the estimate that there exists a constant C
such that for allt =1,2,..., N

(23) Ty gy < Clltliaseocay
We finally get the inequality after we put together and (20), (22) and (23). That completes
the proof. O

5.2. Hardy-type inequality for Lipschitz domains. We now show the proof of The-
orem 1.2. The theorem is an immediate consequence of two results that we prove below.
The first result establishes equation (2) with a right hand side that is a norm instead of the
seminorm. This result is then used to show a nonlocal Poincaré-type inequality (Proposition
5.2). Propositions 5.1 and 5.2 together imply Theorem 1.2.

Proposition 5.1. Let 1 < p < o0, s € (0,1] and ps > 1. Assume that Q is a bounded
Lipschitz domain in RY(d > 2). Then there exists a constant C > 0 such that for any
u € WP*(Q)

[u(@))?
(24) /Q Ty < Clullysa)

Proof. Without loss of generality we assume that v € C%1(Q). Following the proof of
Theorem 1.1, we show (24) in two steps.

Step 1. We prove the statement when Q is a Lipschitz hypograph, i.e, Q = {(x/,z4) :
xq > ((x')} for a Lipschitz function ¢ : R~! — R with Lipschitz constant L. Introduce
the function Geu(x',zq) = u(x',zq4 + ((x")) for all (x',z4) € Ri as before. Then Geu €
C’co’l(R‘i) and applying Remark 3.7, for any o € (0, 1], we have

[l < ciga,
R4

|zq|P* Wo' (RY)?



FRACTIONAL HARDY-TYPE AND TRACE THEOREMS FOR NONLOCAL FUNCTION SPACES 23

where C'is a constant depending only on d, p, s and o. From Step 1 in the proof of Theorem
L1 that |Geulggs» &) < Clulgys.»(q) for some o € (0,1], and so we have

(25) / de < C|Geuly,
Rd

‘xd‘ps < O|u|msp

(Sj,p (Rd

Now by change of variables we can see

Geutol [ P
/Ri jar /Q\:cd—qx/)\ps T

Using the inequality (19), see also Figure 3, we then have

GaulP [ JuGoP L ubop
(26) /Ri = [ et 2 e

By combining (25) and (26), we have shown (24) for 2 being a Lipschitz hypograph.

Step 2. Assume now that Q is a Lipschitz domain. Let the family of sets {€;}Y; and
{0}, are as given at the beginning of the section. Notice that Q N O; = Q; N O; and
each Q; (i € {1,--- ,N}) can be transformed to a Lipschitz hypograph by rigid motion. In
addition, we define an open set Oy C Q such that {O;} is an open cover of Q. Without loss
of generality, we assume that dist(Og,9) = ¢* > 0. Similarly, we introduce a partition of
unity {¢;}¥, for Q subordinate to {O;} . Therefore, for any x € Q, u(x) = zi]io((biu) (x).
We also define u; = ¢;u and assume a zero extension of u; outside O; when it is necessary.
Then

|u(x)[? p1 / |ui (%) [P
(27) /Q |dist(x, 8Q)lp5d (N +1) Z ano, |dist(x, 082)[ps dx
Notice that on Ogp we have
|uo (x)[P - /
PR B S B < *\—Pps P < p .
(28) |, e < € [ o0 < Clull g,

Forany x € O; (i € {1,--- , N}), we could assume without loss of generality that dist(x, 0) =
dist(x, 99;) (which is true by choosing small enough sets {O;}Y.;). Then fori € {1,--- , N},

|us (x)|P / |us (x)|P
2 — = (dx < — = dx i [oyrs,
29) /Qo distlox, 007 ™ = o, Taistx, o0 > = oo
where we have used Step 1 on €2, since it is a Lipschitz hypograph up to a rigid transforma-

tion. By combining equations (20), (27), (28), and (29), we have shown (24) for a general
Lipschitz domain €2. O

5.3. A Poincaré-type inequality for Lipschitz domains.

Proposition 5.2 (Poincaré-type inequality). Let 1 < p < oo, s € (0,1] and ps > 1. Assume
that Q0 is a bounded Lipschitz domain in Rd(d > 2). There exists a constant Cp > 0 such
that

ullr ) < Crlulsgs» (o)
for all u € W*P()

Proof. Suppose the inequality is false. Then there exists a sequence {u,} € 20%7(Q)) such
that [[u,[|Lr = 1 for all n and [uy|gys»() — 0 as n — oo. Since {u,} is a bounded sequence

in Q0P (Q), we have a weakly convergent subsequence with a limit u € DIy (©). Moreover,
this u is also an LP weak limit of {u,} since LP(2) is a subset of the dual of 20°P(Q).
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The seminorm | - ]@S’p(ﬂ) , being convex and (strongly) continuous , is thus weakly lower
semicontinuous. Therefore we have
|ulager () < liminf fuy |ogsp () = 0

As a consequence, u is a constant on each connected component of 2. In particular, u = 0
since the only (piecewise) constant in 20%7(Q2) is 0. Our next goal is to show that u, — 0
strongly in LP(Q) (up to a subsequence). To show this let € > 0 be fixed. Let Y =

min{m,~,}, where m > 0 and ~, = ’y; is defined by (7) with ¥ = 1. Then

‘ 1 m
j(x) = 5/ Yy (x,y)dy
Q
has a minimum ¢ > 0 on Q. = {x € Q : dist(x,09) > €}. It then follows from the
symmetricity 7, and the algebraic inequality [b” > |a|P 4 p|a|P~2a(b — a), which holds true
for p > 1, that
1
ey =5 [ [ 03 0) = () Py

1 m »
3 [ eyl — ualy) Payax
1

5 ([ rreeyiay) lmoorix =5 [ ([ xpocyiu iy ) 6o

[ 60l =5 [ Ko (o () 1

€

v

v

v

where the linear operator K on LP(Q) is given by Ku(x) = / T, (x,y)u(y)dy. Now by
Q

restricting the first integral in the right hand side on 2. we have for each n

[unliggenay = lunlia — g /Q Kot () |t (%) [P~ 2110 () ..
We note that the integral operator K on LP(f2) is generated by the kernel Y}'(x,y) with
finite double-norm in LP(12), i.e. the map x — / T (%, y)|IP'dy € LP(Q) where p' is the
Hoélder conjugate of p. Such types of operators are known to be compact operators on
LP(Q) [21, 28]. As a consequence, since we have show that u,, — 0, weakly in L”(2), then

Ku, — 0 strongly in LP(Q). Moreover, since {|u,[P~2u,} is a bounded sequence in L¥ (),
we have

/ K, (%) [t (%) [P~ (x)dx — 0, as n — oo.
Q
Therefore we have
. L.
lim sup [Jun || zr(0.) < —= imsup [un|ggsr ) = 0.
n—00 {'/E n—00

We next study the behavior of the sequence on near the boundary on Q2 \ .. To that end,
for any = € Q\ Q,, dist(z,092) < e and so applying Proposition 5.1 we have for a uniform
positive constant C' > 0
1 Uy (X)|P
L s [
€ps O\ Qe QO dlSt(X, 8Q)p5

Combining the estimates on €2 and Q\Q, we have

dx < CHUHH%W(Q).

lim sup [|un || Lr ) < C€®
n—o0
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for any € > 0. Thus limsup [|u,| z») = 0, which is the contradiction we were looking
n—oo

for. O

We note that the Poincaré-type inequality showing here extends a result stated in [42]
for the case of p = 2 and s = 1 and also fills in a gap in the proof presented there.

6. APPLICATION: A VARIATIONAL PROBLEM

In this section and as we discussed in the introduction, we present an application of the
trace theorem that study the problem of minimizing an energy functional defined over a
convex and closed subset of 20°?(€2). The main objective of this section is proving Theorem
1.3. The proof is based on the direct method of calculus of variation [41, Theorem 1.2].
From the fact that 20°P(Q) is a reflexive Banach space, as mentioned in Section 2, we
know that 205P(Q) C 20°P(Q) is also a reflexive Banach space. As a consequence, energy
functionals on 20%P(Q) will attain their minimum in a weakly closed subset provided they
are coercive and (sequentially) weakly lower semi-continuous on such a subset with respect
0 M°7(0).

Proof of Theorem 1.3 and Corollary 1.4. We first observe that for f € [20%P(Q)]*, if u is a
minimizer of E(v)—(f,v) in K4(p, h), then w = u— ¢ is a minimizer of E(u+¢)—(f,u+¢)
in Ko(p,h — ¢) and vice versa. So we will focus on the latter energy. Observe that since
Ko(p,h — ¢) is convex and closed in the strong topology, then it is a weakly closed subset
of W*P(Q). Now for f € [W*P()]*, consider the functional

Ef(u) = E(u+¢) — (fu+9).

where F is as given by (3). Let us show this functional is weakly lower semicontinuous.
Since u — (f,u + ¢) is weakly continuous, it suffices to show that E(- + ¢) is weakly lower
semicontinuous. Suppose that u,, — u weakly in 20°7(Q). Using the inequality

F(r)—F(t) > F'(t)(r —t), forallt,7 €R

which follows from the convexity of F', we have the inequality
(30)
E(up,+¢)—E(u+9¢) > /Q/Q /35((2)3:) F'(ug(x) —ug(y)) (un(y) —un(x) — (u(y) —u(x)))dydx

where ug = u + ¢ € WP(QQ). The expression in the right hand side can be rewritten as
the action of the functional ®(u) on the difference u,, —u where for v € 20°P() functional
®(u) on W*P(Q) is defined as

@)= [ [ 2 ) = ualy))(03) — vy

®(u) is in fact in the dual space of 20°P(Q2). Indeed, we only check its boundedness. For
any v € 20°P(2), by the bound on the growth of F’ in (4) and Hélder’s inequality we have
we have

@l < [ [ 56 — us)l oty) - o6y

-1
< 1luglyge ) [V laper () -
Thus we can write (30) as

E(un) — E(u)

IV
s
&
=
3
£
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Now taking the liminf on both sides of the equation and using the weak convergence of u,,
to u in WP (Q) we have that

E(u) < liminf E(uy,).

n—o0

Moreover, Ey is coercive over 20°?(2). In fact, from duality and the bound for F from (4)
we have that for any u € 20°P(Q),

Ef( u) > a1c1]u¢\%5p Hf” (2057 ()] *”UHmw Q) T (f,®)

Now using the trivial inequality [u[y;.., @ < 2P~ 1]u¢\%s ) T + 2P~ 1\¢]w5 »(q) the Poincaré-
type inequality, and Young’s inequality for products

1)
Ef(u) > cl|ulliyeq) — Clotnr—Cellf [fasbar — llulliages + (f )

Let € = ¢/2 in the above, we have
Ey(u) > & Julfypi) ~ C

where the constants ¢ and C' are independent of u. Therefore, [41, Theorem 1.2] is applicable
to conclude that E; has attains its minimum in Ko(p, h — ¢).

The proof of Corollary 1.4 follows from the above and the theorem of Stampacchia [3,
Theorem 5.6]. In particular, corresponding to f € [2%%(2)]*, a unique solution u € Ky4(2, h)
exists satisfying the inequality (5). g

7. CONCLUSION

This work is a continuation of earlier studies on nonlocal models involving nonlocal in-
teractions with a varying horizon. A major contribution is to extend existing results to
more general and non-Hilbert space settings. This can be very useful in treating nonlinear
problems as illustrated here through an application to nonlinear obstacle problem. The
theory can also be useful in the design and analysis of numerical approximations of the
variational problems [45]. The main results here provide another demonstration to the reg-
ularity pick-up due to the vanishing nonlocal horizon so that local boundary conditions can
be imposed for nonlocal variational problems. We anticipate that further extensions can be
explored, such as analogous results for spaces involving more general localization strategies
(instead of having the horizon parameter linearly proportional to the distance function to
the boundary). For applications in mechanics, we may extend the study to spaces of vector
fields, for example, by introducing heterogeneous localizations to spaces studied in [30, 31]
and nonlocal analog of spaces with only control of local divergence rather than full gradi-
ent. Moreover, it is interesting to explore systematically how the possibly heterogeneous
spatial nonlocal interactions over a given domain can induce the effective interactions over
a (possibly lower dimensional) subset. The latter can lead to more mathematical studies as
well as practical applications.

Acknowledgement. The authors would like to thank the referees for their careful
reading of the manuscript and their constructive comments that helped improving the pre-
sentation of the work.
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