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Abstract. The goal of motion tomography is to recover a description of a vec-

tor flow field using measurements along the trajectory of a sensing unit. In this
paper, we develop a predictor corrector algorithm designed to recover vector

flow fields from trajectory data with the use of occupation kernels developed

by Rosenfeld et al. [9, 10]. Specifically, we use the occupation kernels as an
adaptive basis; that is, the trajectories defining our occupation kernels are iter-

atively updated to improve the estimation in the next stage. Initial estimates

are established, then under mild assumptions, such as relatively straight tra-
jectories, convergence is proven using the Contraction Mapping Theorem. We

then compare the developed method with the established method by Chang et

al. [5] by defining a set of error metrics. We found that for simulated data,
where a ground truth is available, our method offers a marked improvement

over [5]. For a real-world example, where ground truth is not available, our

results are similar results to the established method.

1. Introduction. Over the past decade, unmanned aircraft and underwater sys-
tems have evolved significantly and are on the verge of becoming a ubiquitous part
of urban and littoral landscape. To compensate for the lack of access to the global
positioning system (GPS), unmanned underwater vehicles (UUVs) often rely on the
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knowledge of the flow field to improve localization [8]. Similarly, accurate estima-
tion of urban wind fields is widely acknowledged to be a significant challenge for
implementation of traffic control systems (such as [2]) for unmanned air vehicles
(UAVs) [11]. While it is possible to model air flow fields and ocean currents us-
ing measurements from on-board sensors, lack of accurate localization (in the case
if UUVs) and vechicle-induced noise (in the case of UAVs, especially multi-rotor
UAVs), creates significant challenges in acquisition and processing of the data gen-
erated by on-board sensors. The aforementioned challenges, along with the payload
reduction associated with removing flow sensors, motivates the development of es-
timation techniques that rely only on the effect of the flow field on the motion of
UAVs and UUVs, and not on direct measurements of the flow velocities.

Motion tomography refers to the reconstruction of a vector field using its ac-
cumulated effects on mobile sensing units as they travel through the field [14, 5].
Motion tomography allows for the use of low cost mobile underwater/air vehicles
as sensors to accumulate sufficient data for estimation of vector fields resulting
from wind and ocean currents. As a result, military applications such as ocean
current mapping for effective navigation of mine countermeasure UUVs in littoral
environments, commercial applications such as wind field mapping for navigation of
small package delivery UAVs, and disaster response applications such as wind field
mapping for the prediction of flame front propagation and smoke spread, stand to
benefit from fast and accurate motion tomography. In this paper we propose an
algorithm for motion tomography based on occupation kernels developed in [9, 10].
We provide a proof of convergence via the contraction mapping theorem.

The developed approach to motion tomography has several advantages over exist-
ing techniques such as [5]. The flow field is approximated here using the occupation
kernels as basis functions for approximation, whereas [5] requires a piecewise con-
stant description of the flow field or a parameterization with respect to Gaussian
RBFs. Moreover, [5] employs a renormalization routine which imposes limitations
on the motion of the mobile sensors. The proposed occupation kernel method avoids
the renormalization and does not add further restrictions on the motion. Finally,
the representation of the flow field with respect to the occupation kernel basis allows
for the application of the approximation abilities of RKHSs, which are exploited in
the convergence analysis.

2. Tools.

Definition 2.1. A reproducing kernel Hilbert space (RKHS), H, over a set X is
a Hilbert space of real valued functions over the set X such that for all x ∈ X the
evaluation functional Exg := g(x) is bounded.

Remark 1. Since the evaluation functional is bounded (hence continuous) over a
reproducing kernel Hilbert space, the Riesz representation theorem guarantees, for
all x ∈ X, the existence of a function Kx ∈ H such that 〈g,Kx〉H = g(x), where
〈·, ·〉H is the inner product for H [7, Chapter 1]. The function Kx is called the
reproducing kernel function at x, and Ky(x) = K(x, y) = 〈Ky,Kx〉H .

Remark 2. Unless indicated otherwise all inner products are taken to be the
Hilbert space inner product, i.e. 〈·, ·〉 = 〈·, ·〉H . The same is not true for norms, and
differing norms will be indicated by subscripts.

Remark 3. Most of this paper is agnostic to the selection of a kernel. By Moore –
Aronszajn Theorem (cf. [1]) there is a one to one correspondence between symmetric
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positive semi-definite kernels and reproducing kernel Hilbert spaces. Much of the
analysis of the paper and the algorithm will work with any kernel. The two primary

examples used in the experiments are the Gaussian Kernels, K(x, y) = e−
1
µ‖x−y‖2 ,

and exponential dot product kernels, K(x, y) = e
x·y
µ , in which µ ∈ R is a tunable

hyperparameter often called the “kernel width” in the case of Gaussians. Only for
estimates involving the Gram matrices do we specify to Gaussian kernels, where
many results from scattered data interpolation are leveraged (cf. [13]).

Definition 2.2. Let X ⊂ Rn be compact, H be a RKHS of continuous functions
over X, and γ : [0, T ] → X be a bounded measurable trajectory. The functional

g 7→
∫ T

0
g(γ(τ))dτ is bounded, and may be respresented as

∫ T
0
g(γ(τ))dτ = 〈g,Γγ〉H ,

for some Γγ ∈ H by the Riesz representation theorem. The function Γγ is called
the occupation kernel corresponding to γ in H.

The value of an inner product against an occupation kernel in a RKHS can be
approximated by leveraging quadrature techniques for integration. The numerical
experiments described below utilize Simpson’s rule when computing inner products
involving occupation kernels and their associated Gram matrices, pivotal in the
analysis contained in Theorem 4.1. We present Theorem 2.3 which shows conver-
gence with Simpson’s Rule. Moreover, the occupation kernels themselves can be
expressed as an integral against the kernel function in a RKHS as demonstrated
in Proposition 1. Theorem 2.3 and Proposition 1 originally appear in [10], but are
reproduced below for completeness.

Proposition 1. Let H be a RKHS over a compact set X consisting of continuous
functions with kernel K(x,y) and let γ : [0, T ]→ X be a continuous trajectory as in
Definition 2.2. The occupation kernel corresponding to γ in H, Γγ , may be expressed
as

Γγ(x) =

∫ T

0

K(x, γ(t))dt. (1)

Proof. Note that Γγ(x) = 〈Γγ ,K(·, x)〉H , by the reproducing property of K. Con-
sequently,

Γγ(x) = 〈Γγ ,K(·, x)〉H = 〈K(·, x),Γγ〉H =

∫ T

0

K(γ(t), x)dt =

∫ T

0

K(x, γ(t))dt,

which establishes the result.

Leveraging Proposition 1, quadrature techniques can be demonstrated to give
not only pointwise convergence but also norm convergence in the RKHS, which is
a strictly stronger result.

Theorem 2.3. Under the hypothesis of Proposition 1, let t0 = 0 < t1 < t2 <
. . . < tF = T (with F even and ti evenly spaced), suppose that γ is a fourth order
continuously differentiable trajectory and H is composed of fourth order continuously
differentiable functions. Set h to satisfy ti = t0 + ih, and consider

Γ̂γ(x) :=
h

3

K(x, γ(t0)) + 4

F
2∑
i=1

K(x, γ(t2·i−1)) + 2

F
2
−1∑

i=1

K(x, γ(t2·i)) +K(x, γ(tF ))

 .

(2)

The norm distance is bounded as ‖Γγ − Γ̂γ‖2H = O(h4).
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Proof. Consider ‖Γγ − Γ̂γ‖2H = 〈Γγ ,Γγ〉H + 〈Γ̂γ , Γ̂γ〉H − 2〈Γγ , Γ̂γ〉H . The term

〈Γ̂γ , Γ̂γ〉H is an implementation of the two-dimensional Simpson’s rule (cf. [4])

while 〈Γγ ,Γγ〉H is the double integral
∫ T

0

∫ T
0
K(γ(t), γ(τ))dtdτ. Thus,

〈Γ̂γ , Γ̂γ〉H = 〈Γγ ,Γγ〉H +O(h4).

Similarly, 〈Γγ , Γ̂γ〉H integrates in one variable while implementing Simpson’s rule
in the other. Consequently,

〈Γγ , Γ̂γ〉H = 〈Γγ ,Γγ〉H +O(h4).

The conclusion of the theorem follows.

It should be noted that the above convergence rate is for norm convergence and
point-wise convergence can be demonstrated to be faster [10].

3. Problem Setup and Developed Algorithm. Let r : [0, T ]→ R2 represent a
continuous trajectory for a mobile sensor attempting to travel in a straight line, but
subject to an unknown flow field, F : X ⊂ R2 → R2, where X is a compact subset

of the plane. Let ṙ = s
(
cos(θ) sin(θ)

)T
+F (r), for a positive constant s, represent

the true dynamics induced by the flow field. We will assume F : X → R2 is locally
Lipschitz in order to assure uniqueness of the solutions [12]. As the flow field is

unknown, the anticipated dynamics are given as ˙̃r = s
(
cos(θ) sin(θ)

)T
. After a

mobile sensor has traveled through the flow field over a time period [0, T ], during
which there is limited to no knowledge of the mobile sensor’s position, the difference
between the actual location of the mobile sensor, r(T ), and the anticipated location,
r̃(T ), is given as

D = r(T )− r̃(T ) =

∫ T

0

(
ṙ(t)− ˙̃r(t)

)
dt =

∫ T

0

F (r(t))dt

Hence, D = 〈F,Γr〉H and the difference between the final locations of the mobile
sensor describes the integral of the flow field along the trajectory r. This integral
provides a type of tomographic sample of F . As the trajectory r is treated as
unknown, an approximation of F using the sample generated by Γr is difficult to
assess directly. This motivates the developed iterative algorithm to determine the
flow field, F , as well as the true trajectories, r. On each iteration, we use the
current approximation to calculate a simulated trajectory. The difference between
the end points of the simulated and the real trajectory is then used to update our
vector-field through solving a matrix equation. Using notation to be established
below: For each i = 1, . . . , s,

w1,n

∫ T

0

Γr̃1,n(r̃i,n(t))dt+ · · ·+ ws,n

∫ T

0

Γr̃s,n(r̃i,n(t))dt = Di,n +

∫ T

0

F̂n(r̃i,n(t))dt.

In this form, we see that the Di,n acts as a correction term.
Let {si}Mi=1 and {θi}Mi=1 be a collection of speeds and angles used to generate

a collection of anticipated trajectories, i.e. trajectories governed by the dynamics
˙̃r = si

(
cos(θi) sin(θi)

)>
. Moreover, let {pi}Mi=1 ⊂ R2 represent the starting point

of the trajectories.
Significantly, after the initial data collection period, no further experiments are

necessary to approximate the flow field. Specifically, Algorithm 1 only needs to
produce new simulations of the approximate trajectories which ultimately converge
to the true trajectories from the initial experiment.



MOTION TOMOGRAPHY VIA OCCUPATION KERNELS 5

Algorithm 1 Iterative Motion Tomography Algorithm

Define N as the number of iterates
Input: Samples ri(T ) i ∈ {1, . . . , s}
Set Di,0 = ri(T )− r̃i,0(T ) i ∈ {1, . . . , s}
Set F̂0 = 0
for n ∈ {0, . . . , N} do

for i ∈ {1, . . . , s} do
Generate, via a numerical method, r̃i,n : [0, 1]→ X as the unique solution to

ṗ = si
(
cos(θi) sin(θi)

)>
+ F̂n(p), p(0) = pi.

end for
Set Di,n = ri(T )− r̃i,n(T ) i ∈ {1, . . . , s}
for i ∈ {1, . . . , s} do

Compute {wi,n+1}si=1 by solving

(
〈Γr̃i,n ,Γr̃j,n〉

)s,s
i,j=1

w1,n+1

...
ws,n+1

 =

D1,n + 〈F̂n,Γr̃1,n〉
...

DM,n + 〈F̂n,Γr̃s,n〉

 .

end for
Output F̂n+1 =

∑s
i=1 wi,n+1Γr̃i,n

end for

4. Convergence of Algorithm. This section is devoted to establishing sufficient
conditions for the above algorithm to converge. The main theoretical crux will be
the contraction mapping theorem. Let X ⊂ R2 be compact, F : X → R2 a Lipschitz
continuous vector field, let {ri}∞i=1 be a countable set of trajectories, ri : [0, T ]→ X,
satisfying

ṗ = si
(
cos(θi) sin(θi)

)>
+ F (p), p(0) = pi

for some countable collection of (si, θi) ⊂ R×[0, 2π), and countable set {pi}∞i=1 ⊂ X.
Let H(X) be a reproducing kernel Hilbert space of R2 valued functions.

Theorem 4.1. Let Ω ⊂ H(X) be the subset of φ(x) =
(
φ1(x) φ2(x)

)>
with

φi(x) =
∑s
j=1 w

i
j,φΓrj,φ(x) for i = 1, 2. We define A : Ω ⊂ H(X) → H(X) as

follows: Given, φ ∈ Ω define r̂j,φ to be the solution to

ṗ = sj
(
cos(θj) sin(θj)

)>
+ φ(p) p(0) = pj .

Moreover, define Di
j,φ := rij(T )− r̂ij,φ(T ) for i = 1, 2. Then

A(φ)i :=
s∑
j=1

ŵij,φΓr̂j,φ(x)

where ŵij,φ are defined so that A(φ)i satisfies

〈A(φ)i,Γr̂j,φ〉H = Di
j,φ + 〈φ,Γr̂j,φ〉H

for i = 1, 2. Under the set of assumptions, (1) – (2), listed in following section
there exists a closed finite diameter subspace E ⊂ Ω such that A|E is a contraction
mapping and thus extends to a contraction mapping on H(X).
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We note that Hilbert spaces have the Lipschitz extension property [3], i.e. a Ba-
nach space E has the Lipschitz (Contraction) extension property if every Lipschitz
map on a subset of E extended to all of E with the same Lipschitz constant. We
will be proving that the mapping described above is a contraction in some ball of
diameter less than one containing the solution and applying a version of Contrac-
tion Mapping Theorem (cf. [6]) to prove convergence. Furthermore, we will also
be suppressing the index i = 1, 2 and the use of operator valued kernels to facili-
tate the simplicity of presentation, and it should be noted that the proof extends
to any finite dimension. The operator valued kernels being used are of the form
K(x, y) = diag(K(x, y)).

Theorem 4.2 (Contraction Mapping Theorem). Let X be a complete metric space
and let S0 be a closed subset of X of finite diameter. Let P : S0 → S0 be a
contraction mapping. Then the sequence of iterates {xk} produced by successive
iterations xk+1 = P (xk) converges to x = P (x), the unique fixed point of P in S0

for any x0 in S0.

Remark 4. The contraction mapping theorem guarantees convergence in the met-
ric. As the metric space is a reproducing kernel Hilbert space the metric is given
as a norm difference. Hence, the convergence is in terms of the norm, which for
reproducing kernel Hilbert spaces also gives point-wise convergence.

To prove Theorem 4.1 we establish several propositions that give inequalities
relating norms to the norms of the flow fields.

Proposition 2. Let H(X) be the reproducing kernel Hilbert space described above.
For φ, ψ ∈ H(X), if rφ and rψ are the unique solutions to the initial value problems

ṗ = s
(
cos(θ) sin(θ)

)>
+ φ(p), p(0) = p

ṗ = s
(
cos(θ) sin(θ)

)>
+ ψ(p), p(0) = p ∈ X

respectively, then

|rφ(t)− rψ(t)| ≤M‖φ− ψ‖H
for some constant M .

Proof. We have that

|ṙφ − ṙψ| = |φ(rφ(t))− ψ(rψ(t))| ≤ |φ(rφ(t))− φ(rψ(t))|+ |φ(rψ(t))− ψ(rψ(t))|
≤ ‖∇φ‖∞ · |rφ(t)− rψ(t)|

+ ‖φ− ψ‖H
√
K(rψ(t), rψ(t))

by an application of mean value theorem. Note that ‖ · ‖∞ denotes the sup-norm.
It follows that,

|rφ(t)− rψ(t)| ≤ exp(‖∇φ‖∞)|rφ(0)− rψ(0)|+ ‖φ− ψ‖H ·M = ‖φ− ψ‖H ·M
for M = maxxK(x, x) which exists by compactness of the region.

The proof of the following proposition can be found in [10], but is presented here
for clarity.

Proposition 3. Suppose H is a RKHS over a set X consisting of continuous
functions and let γ1(t) and γ2(t) be two trajectories with homotopy {γw(t)}. The
map w 7→ Γγw is continuous.
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Proof. As [0, T ] × [0, 1] is compact, the map (t, w) 7→ γw(t) is uniformly continu-
ous. That is for every ε > 0 there exists a δ > 0 such that whenever ‖(t1, w1) −
(t2, w2)‖2 < δ, ‖γw1

(t1)− γw2
(t2)‖2 < ε. Moreover, as K(·, ·) is continuous, and the

image of γw(t) is compact, the map (w1, t, w2, τ) 7→ K(γw1
(t), γw2

(τ)) is uniformly
continuous.

Fix ε > 0 and select δ > 0 such that

|K(γw1
(t), γw1

(τ))−K(γw2
(t), γw1

(τ))| < ε

2T 2
and

|K(γw2
(t), γw2

(τ))−K(γw2
(t), γw1

(τ))| < ε

2T 2

whenever |w1 − w2| < δ. Select w1, w2 such that |w1 − w2| < δ, then

‖Γw1
− Γw2

‖2H = 〈Γw1
,Γw1

〉+ 〈Γw2
,Γw2

〉 − 2〈Γw1
,Γw2

〉 (3)

=

∫ T

0

∫ T

0

(K(γw1(t), γw1(τ))−K(γw2(t), γw1(τ))dtdτ

+

∫ T

0

∫ T

0

K(γw2(t), γw2(τ))−K(γw2(t), γw1(τ)))dtdτ,

Note that Equation (3) is positive and bounded by ε by construction. Hence, the
map w 7→ Γw is continuous.

Corollary 1. Following the notational convention defined in Proposition 3, if

|rφ(t) − rψ(t)| ≤ M‖φ − ψ‖H for some M then ‖Γrφ − Γrψ‖H ≤
√
CT‖φ − ψ‖1/2H

for some constant C independent of T .

Proof.

‖Γrφ − Γrψ‖2H = 〈Γrφ ,Γrφ〉+ 〈Γrψ ,Γrψ 〉 − 2〈Γrφ ,Γrψ 〉 (4)

=

∫ T

0

∫ T

0

K(rφ(t), rφ(τ))−K(rψ(t), rφ(τ)) dt dτ

+

∫ T

0

∫ T

0

K(rψ(t), rψ(τ))−K(rψ(t), rφ(τ)) dt dτ

≤
∫ T

0

∫ T

0

(|∇yK(rφ(t), ξψ)|) · |rφ(τ)− rψ(τ)| dt dτ

+

∫ T

0

∫ T

0

(|∇yK(rψ(t), ξφ)|) · |rφ(τ)− rψ(τ)| dt dτ

≤ CT 2‖φ− ψ‖H .

The last two inequalities are due to an application of mean value theorem and
proposition 2.

In order to talk about the stability of the interpolation process we define the
following:

Definition 4.3. The trajectory separation distance is given by

qX,T :=
1

2
min
j 6=k

t,τ∈[0,T ]

‖γj(t)− γk(τ)‖2

This is the maximum radius such that all “tubes” centered on the trajectories are
disjoint.



8 RUSSO, KAMALAPURKAR, CHANG, ROSENFELD

The next theorem will be a trajectory variant of a theorem found in Wendland
[13]. In Wendland, a bound for the minimum eigenvalue is obtained by expressing
the kernel function Φ(x− y) in terms of its Fourier transform and comparing with
an intermediate radial functions ΨM based on characteristic functions for balls of
radius M . This comparison is given in terms of the separation distance between
centers. By defining the trajectory separation distance as above the inequalities
found in Wendland remain valid since the points in the image of each trajectory are
separated by at least qX,T .

In the following theorem let GΓ be the Occupation kernel Grammian, i.e. for a
set of trajectories, ri : [0, T ]→ R2, with 1 ≤ i ≤ N

GΓ :=
(
〈Γrj ,Γrk〉

)N
j,k=1

=

∫ T

0

∫ T

0

(K(rj(t), rk(τ)))
N
j,k=1 dt dτ.

We also need the following definition found in [13]:

Definition 4.4. We say a function f is slowly increasing if there exists a constant
m ∈ N0 such that f(x) = O(‖x‖m2 ) for ‖x‖2 →∞.

Remark 5. Essentially a function is “slowly increasing” if it is polynomially bounded
for large x. As Gaussians decay to zero as ‖x‖2 →∞, Gaussians are bounded by a
constant and fall under this category.

Theorem 4.5. With Φ(‖x − y‖2) = K(x, y) = exp(−µ‖x − y‖22) the minimal
eigenvalue of the Occupation kernel Grammian is bounded by

λmin(GΓ) ≥
C2

2µ

exp(−M2
2 /(q

2
X,Tµ))T 2

q2
X,T

with M2 = 12 3
√

π
9 and C2 = M2

16 .

Proof. Let Φ : Rd → C be any radial, continuous, and slowly increasing func-
tion possessing a non-negative generalized Fourier transform linearity, for α =
(α1, . . . , αs)

>, given,

α>GΦ(r)α =

s∑
j,k=1

αjαkΦ(rj(t)− rk(τ)) =

∫
Rd

s∑
j,k=1

αjαke
iω>(rj(t)−rk(t))Φ̂(ω) dω

by linearity an application of Fubini we have,

α>GΓα =

∫ T

0

∫ T

0

α>GΦ(r)αdt dτ (5)

=

∫ T

0

∫ T

0

∫
Rd

s∑
j,k=1

αjαke
iω>(rj(t)−rk(τ))Φ̂(ω) dω

=

∫
Rd

∣∣∣∣∣∣
s∑
j=1

αj

∫ T

0

eiω
>rj(t) dt

∣∣∣∣∣∣
2

Φ̂(ω) dω

where (5) is valid whenever Φ : Rd → C is a continuous and slowly increasing
function possessing a non-negative generalized Fourier transform. Define,

ψM2
(x) =

ϕ0(M2)Γ
(
d
2 + 1

)
2d/2

‖x‖−d2 J2
d/2(M2‖x‖2)
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where Jν is the Bessel function of the first kind and

ϕ0(M2) = inf
‖ω‖2≤2M2

Φ̂(ω).

In Wendland [13] it is established that for a collection of points xi, i = 1, . . . s,∫
Rd

s∑
j,k=1

αjαke
iω>(xj−xk)ψ̂M2

(ω) dω =
s∑

j,k=1

αjαkψM2
(xj − xk)

≥ ‖α‖22

ψM2
(0)− max

1≤j≤s

s∑
k=1,k 6=j

|ψM2
(xj − xk)|


and that for the given value of M2,

max
1≤j≤s

s∑
k=1,k 6=j

|ψM2
(xj − xk)| ≤ 1

2
ψM2(0).

Thus, for the stated value of M2 we have that,
s∑

j,k=1

αjαkψM2
(xj − xk) ≥ ‖α‖22

ψM2(0)

2
. (6)

Now, the key insight is that the establishment of (6) is unaffected by letting xj =
rj(t), xk = rk(τ) for t, τ ∈ [0, T ] by replacing the standard separation distance qX
with qX,T and that this holds over [0, T ].

Our auxiliary function ψM2
is designed so that ψ̂M2

(ω) ≤ Φ̂(ω), giving us∫
Rd

∣∣∣∣∣∣
s∑
j=1

αj

∫ T

0

eiω
>rj(t) dt

∣∣∣∣∣∣
2

Φ̂(ω) dω ≥
∫
Rd

∣∣∣∣∣∣
s∑
j=1

αj

∫ T

0

eiω
>rj(t) dt

∣∣∣∣∣∣
2

ψ̂M2
(ω) dω.

(7)
By combining equations, (5), (5), (6), and (7) we get

α>GΓα =

∫ T

0

∫ T

0

α>GΦ(r)αdt dτ =

∫ T

0

∫ T

0

∫
Rd

s∑
j,k=1

αjαke
iω>(rj(t)−rk(τ))Φ̂(ω) dω

≥
∫ T

0

∫ T

0

‖α‖22
ψM2

(0)

2
dt dτ.

Finally,

λmin(GΓ) = inf
α>GΓα

‖α‖22
≥ C2

2µ

exp(−M2
2 /(q

2
X,Tµ))T 2

q2
X,T

with M2 = 12 3
√

π
9 and C2 =

M2
2

16 and using the bounds for ψM (0) established in
[13].

As a corollary to the above analysis we show that the condition number of the
interpolation matrices is at least as good as the standard Gaussian kernels.

Corollary 2. If

GΓ =
(
〈Γrj ,Γrk〉

)s,s
j,k=1

=

∫ T

0

∫ T

0

(K(rj(t), rk(τ)))
s,s
j,k=1 dt dτ,

then
λmax(GΓ) ≤ sT 2Φ(0)
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where Φ(‖xi − xj‖2) = K(xj , xi).

Proof. By a standard application of Gershgorin’s circle theorem on eigenvalues,

λmax(GΓ) ≤ s max
i,j=1,...s

|Φ(rj(t)− rk(τ))| ≤ s
∫ T

0

∫ T

0

|Φ(0)| dt dτ = sT 2|Φ(0)|

where the above is due to the properties of positive semi-definite functions.

Since the condition number of an interpolation matrix A is given by the ratio
of the maximum and minimum eigenvalues, the presence of the T 2 in the above
inequality nullifies the 1/T 2 appearing in estimate for the minimal eigenvalue. In
essence, this shows that we can take the minimal distance between trajectories as
a measurement of how good our approximations will be.

4.1. Main Inequalities. Following the notion established in statement of Theorem
4.1 consider the following,

‖A(φ)−A(ψ)‖H =

∥∥∥∥∥∥
s∑
j=1

ŵj,φΓr̂j,φ(x)−
s∑
j=1

ŵj,ψΓr̂j,ψ (x)

∥∥∥∥∥∥
H

≤
s∑
j=1

|ŵj,φ|‖Γr̂j,φ − Γr̂j,ψ‖H +

s∑
j=1

|ŵj,φ − ŵj,ψ|‖Γr̂j,ψ‖H (8)

To proceed forward, we will need to establish control on terms above in as a function

of ‖φ− ψ‖H . Note by definition
(
ŵ1,φ · · · ŵs,φ

)>
satisfies 〈Γr̂1,φ ,Γr̂1,φ〉 · · · 〈Γr̂s,φ ,Γr̂1,φ〉

...
. . .

...
〈Γr̂1,φ ,Γr̂M,φ〉 · · · 〈Γr̂M,φ ,Γr̂M,φ〉


ŵ1,φ

...
ŵs,φ

 =

D1,φ + 〈φ,Γr̂1,φ〉
...

Ds,φ + 〈φ,Γr̂s,φ〉

 . (9)

For notational convenience, given a φ ∈ H(X) let

Gφ =

〈Γr̂1,φ ,Γr̂1,φ〉 · · · 〈Γr̂s,φ ,Γr̂1,φ〉...
. . .

...
〈Γr̂1,φ ,Γr̂s,φ〉 · · · 〈Γr̂s,φ ,Γr̂s,φ〉


Now,∥∥∥∥∥∥∥
ŵ1,φ

...
ŵs,φ

−
ŵ1,ψ

...
ŵs,ψ


∥∥∥∥∥∥∥

2

≤ ‖G−1
φ ‖op

∥∥∥∥∥∥∥
D1,φ −D1,ψ + 〈φ,Γr̂1,φ〉 − 〈ψ,Γr̂1,ψ 〉

...
Ds,φ −Ds,ψ + 〈φ,Γr̂s,φ〉 − 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥

2
(10)

+ ‖G−1
φ −G

−1
ψ ‖op

∥∥∥∥∥∥∥
D1,ψ + 〈ψ,Γr̂1,ψ 〉

...
Ds,ψ + 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥

2

, (11)

where ‖ · ‖op denotes the operator norm induced by the 2-norm. A portion of the
proof for Theorem 4.1 will be on establishing suitable control over of the norms in
(10), and (11). Before proceeding, we will need the following lemma.
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Lemma 4.6. Given a φ, ψ ∈ H(X), then

‖Gφ −Gψ‖op ≤ ST 2‖φ− ψ‖1/2H

for a constant S ∝ s and independent of T

Proof. Similar to the analysis in corollary 2

λmax(Gφ −Gψ) ≤ s max
i,j=1,...s

|〈Γr̂i,φ − Γr̂i,ψ ,Γr̂j,φ − Γr̂j,ψ 〉|

≤ s max
i,j=1,...,s

‖Γr̂i,φ − Γr̂i,ψ‖H · ‖Γr̂j,φ − Γr̂j,ψ‖H

≤ sCT 2‖φ− ψ‖H .

Hence, by an application of corollary 1 we have

λmax(Gφ −Gψ) ≤ sCT 2‖φ− ψ‖1/2H .

Letting S = sC completes our proof.

Analysis of the upper bounds: Given that by definition

|Dj,φ −Dj,ψ| = |r̂j,φ(T )− r̂j,ψ(T )| ≤M · ‖φ− ψ‖H

by Proposition 2 and

|〈φ,Γr̂j,φ〉 − 〈ψ,Γr̂j,ψ 〉| ≤ ‖φ‖H‖Γr̂j,φ − Γr̂j,ψ‖H + ‖φ− ψ‖H · ‖Γr̂j,ψ‖H .

Note that,∥∥∥∥∥∥∥
D1,φ −D1,ψ + 〈φ,Γr̂1,φ〉 − 〈ψ,Γr̂1,ψ 〉

...
Ds,φ −Ds,ψ + 〈φ,Γr̂s,φ〉 − 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥
2

2

≤
s∑
j=1

|Dj,φ−Dj,ψ|2+|〈φ,Γr̂j,φ〉−〈ψ,Γr̂j,ψ 〉|
2.

Hence,∥∥∥∥∥∥∥
D1,φ −D1,ψ + 〈φ,Γr̂1,φ〉 − 〈ψ,Γr̂1,ψ 〉

...
Ds,φ −Ds,ψ + 〈φ,Γr̂s,φ〉 − 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥
2

≤
s∑
j=1

|Dj,φ −Dj,ψ|+ |〈φ,Γr̂j,φ〉 − 〈ψ,Γr̂j,ψ 〉|

since for positive quanities xi,
√∑

i x
2
i ≤

∑
i |xi|.

From inequality (10)

‖G−1
φ ‖op

∥∥∥∥∥∥∥
D1,φ −D1,ψ + 〈φ,Γr̂1,φ〉 − 〈ψ,Γr̂1,ψ 〉

...
Ds,φ −Ds,ψ + 〈φ,Γr̂s,φ〉 − 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥

2

≤ 2µ

C2

q2
X,T,φ

exp(−M2
2 /(q

2
X,T,φµ))T 2

·

s
[
M‖φ− ψ‖H + ‖φ‖H

√
CT‖φ− ψ‖1/2H + max ‖Γj,ψ‖H‖φ− ψ‖H

]
, (12)

by an application of Corollary 1 and Theorem 4.5. Here we have used qX,T,φ to
denote the separation distance for the φ-related trajectories.
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Turning our attention to inequality (11),

‖G−1
φ −G

−1
ψ ‖op

∥∥∥∥∥∥∥
D1,ψ + 〈ψ,Γr̂1,ψ 〉

...
Ds,ψ + 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥

2

≤‖Gφ‖−1
op ‖Gφ −Gψ‖op‖Gψ‖−1

op ·

∥∥∥∥∥∥∥
D1,ψ + 〈ψ,Γr̂1,ψ 〉

...
Ds,ψ + 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥

2

≤4µ2

C2
2

q2
X,T,φq

2
X,T,ψ

exp(−((M2
2 /q

2
X,T,φµ) + (M2

2 /q
2
X,T,ψµ))T 4

·

sCT 2‖φ− ψ‖H

∥∥∥∥∥∥∥
D1,ψ + 〈ψ,Γr̂1,ψ 〉

...
Ds,ψ + 〈ψ,Γr̂s,ψ 〉


∥∥∥∥∥∥∥

2

. (13)

Sufficient conditions for convergence: In order to prove convergence of our
algorithm we will make some assumptions. Let 1 > ε > 0, we will first assume that
our iterative procedure starts reasonably close to the true solution F . In terms of
the above, we are going to make the assumption that for both φ and ψ we have
‖φ−F‖H ≤ ε/2, ‖ψ−F‖H ≤ ε/2 and ‖φ−ψ‖H ≤ ε < 1. This in turn gives us that
|Dj,φ|, |Dj,ψ| < Mε. We will also make an assumption on our underlying vector
field. We are going to assume that the vector field F has at-least the smoothness
conditions stated in section 3 and is not overly powerful in comparison to the mobile
sensor engines. In terms of the above, given the differential equation

ṗ = sj
(
cos(θj) sin(θj)

)>
+ F (p) p(0) = pj

with solution rF (t), we will assume ‖ΓrF − ΓΥ‖H < ε where Υ(t) is the straight
line solution to the differential equation above without the F -term, and that ‖ΓΥ‖
is bounded by some constant independent of T . The latter assumption is not un-
reasonable, as ‖ΓΥ‖ would be bounded by the norm of an occupation kernel for the
straight line trajectory spanning the diameter of our feature space. With these as-
sumptions, we have ‖Γj,φ‖H , ‖Γj,ψ‖H ≤ ‖ΓΥ‖H + ε. Moreover, by Cauchy Schwarz

on |〈φ,Γr̂j,φ〉| we have
∥∥∥(D1,φ + 〈φ,Γr̂1,φ〉, · · · , Ds,ψ + 〈φ,Γr̂s,φ〉

)>∥∥∥
2

is bounded by

some constant L. This above discussion culminates in the following assumptions
and lemma.

Assumptions 1. Let F be the true vector field. We make the following assump-
tions:

1) The functions φ and ψ as they appear in the above sections satisfy ‖φ−F‖H ≤
ε/2 and ‖ψ − F‖H ≤ ε/2 for some 1 > ε > 0

2) If rF (t) is a trajectory given by the true vector field F , then ‖ΓrF − ΓΥ‖ < ε
where ΓΥ is the occupation kernel for the straight line trajectory Υ(t) starting
at the same point as rF (t).

3) For all straight line trajectories, Υ(t), the norm ‖ΓΥ‖ is bounded by some con-
stant independent of T .
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Lemma 4.7. With the above assumptions,∥∥∥∥∥∥∥
ŵ1,φ

...
ŵs,φ


∥∥∥∥∥∥∥

2

≤ ‖G−1
φ ‖op

∥∥∥∥∥∥∥
D1,φ + 〈φ,Γr̂1,φ〉

...
Ds,φ + 〈φ,Γr̂s,φ〉


∥∥∥∥∥∥∥

2

≤ L · 2µ

C2

q2
X,T,φ

exp(−M2
2 /(q

2
X,T,φµ))T 2

where L is independent of T .

Assumptions 2. Our final assumption is that

‖Γrφ − Γrψ‖H ≤ CT‖φ− ψ‖H

for some constant C independent of T .

This is an assumption on the regularity on the solutions to the differential equa-
tions stated in terms of the occupation kernels. While more work is needed, we
postulate that this condition could be stated in terms of Frechet differentiability.

Proof of Theorem 4.1:

Proof. Consider,

‖A(φ)−A(ψ)‖H =

∥∥∥∥∥∥
s∑
j=1

ŵj,φΓr̂j,φ(x)−
s∑
j=1

ŵj,ψΓr̂j,ψ (x)

∥∥∥∥∥∥
H

≤
s∑
j=1

|ŵj,φ|‖Γr̂j,φ − Γr̂j,ψ‖H +

s∑
j=1

|ŵj,φ − ŵj,ψ|‖Γr̂j,ψ‖H

By our assumptions and Lemma 4.7 we have that the first term is proportional to
1
T ‖φ−ψ‖H . By inequalities (10), (11) and a reevaluation of our estimates (12) and
(13) given the assumptions, the second term in the above is also proportional to
1
T ‖φ− ψ‖H . Thus for a suitable T it is a contraction mapping and by Contraction
Mapping Theorem convergence of Algorithm 1 is established.

Remark 6. The inequalities above are also dependent on the number of trajectories
and the path separation distance. Specifically, inspection of the above inequalities
shows that they are propositional to sq2

X,T . However, the main point of the theorem

is that assuming those quantities are fixed and/or bounded then if enough data are
collected, i.e. for a sufficient amount of time the algorithm is guaranteed to converge.
It should be noted that this is a sufficient condition and other conditions may exist
in which the algorithm converges.

Remark 7. By default, occupation kernels are universal if the kernels of the RKHS
are universal. If γ(t) = y for all t ∈ [0, T ] we note that Γγ(x) = TK(x, y). Hence,
the set of occupation kernels contains the set of kernels.

5. Numerical Experiments. In Experiment 1, we generated a flow field F (x)
using a linear combination of Gaussian kernels and generated a set of random points
and angles to serve as our anticipated dynamics using unit speed. The flow field is
given by

F (x) =
1

8

(
f1(x)
f2(x)

)
, (14)
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where

f1(x) = 5 exp

(
−2

∥∥∥∥x− [.25
.25

]∥∥∥∥2
)
− .2 exp

(
−
∥∥∥∥x− [.25

.75

]∥∥∥∥2
)

+ 2 exp

(
−
∥∥∥∥x− [.75

.75

]∥∥∥∥2
)
− 5 exp

(
−2

∥∥∥∥x− [.75
.25

]∥∥∥∥2
)
,

and

f2(x) = 3 exp

(
−
∥∥∥∥x− [.25

.25

]∥∥∥∥2
)

+ exp

(
−
∥∥∥∥x− [.25

.75

]∥∥∥∥2
)

− 3 exp

(
−3

∥∥∥∥x− [.75
.75

]∥∥∥∥2
)

+ exp

(
−
∥∥∥∥x− [.75

.25

]∥∥∥∥2
)
.

The results of Experiment 1 are summarized in Figure 1.
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(a) True vector field and trajectories.
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1
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(b) Results of Experiment 1.

Figure 1. Algorithm 1, used for estimation of the vector field in
(14). The true trajectories are calculated via RK4 over the time
frame [0, 1]. Using Gaussian RBFs with a kernel width of 1, we
performed 10 iterations of Algorithm 1.

For Experiment 2, summarized in Figures 2a,2b,2c, and 2d, we used the Glider-
palooza 2013 data first presented in [5]. The data were for 31 sequential trajectory
segments and contained the initial positions, the true final positions, dead-reckoned
final positions, speeds, and dead-reckoning times. For the experiments, the authors
of [5] used averaged speeds and an average dead-reckoning time of 3.5 hours.

Algorithm 1 is designed to work on multiple trajectories necessitating some prior
calculations. The data were scaled by a factor of 10−4, then the provided initial
positions and dead-reckoned final positions were used to calculate the initial direc-
tions along with calculated speeds using their averaged dead-reckoning time of 3.5
hours. The sequential trajectory data were broken in to 31 separate trajectories.
Using exponential kernels, we performed 5, 10, and 20 iterations of Algorithm 1
using a kernel width of µ = 1/170 for the 5 iteration run and a kernel width of
µ = 1/10, 000 for the 10 and 20 iteration runs. The kernel widths for each of these
runs were selected to produce well conditioned Gram matrices.
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(a) Initial trajectories.
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(b) Approximated field and trajectories after
5 iterations.
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(c) Approximate field and trajectories with
10 iterations
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(d) Approximate field and trajectories with
20 iterations

Figure 2. Calculated initial trajectories and output of Algorithm
1 for 5, 10, and 20 iterations on Gliderpalooza data.

6. Discussion. This approach to motion tomography has several advantages over
that of [5]. In the context of this aim, the flow field is approximated using the
occupation kernels as basis functions for approximation, whereas [5] requires a piece-
wise constant description of the flow field or a parameterization with respect to
Gaussian RBFs. Moreover, [5] renormalizes the integral by multiplying and dividing

by ‖ ˙̃r(t)‖2 to artificially convert the integrals to line integrals. The renormalization
may ultimately produce divide by zero errors that lead to stronger assumptions on
the dynamical systems. The occupation kernel method avoids the renormalization
and does not add further restrictions on the dynamics. Finally, the representation of
the flow field with respect to the occupation kernel basis allows for the application
of the approximation powers of RKHSs. It should also be noted that although
the applications of this technique apply mainly to R2 valued functions, there is
no inherent reason to limit to R2. That is, this technique extends to Rd valued
functions.

Figure 3 compares the output of Algorithm 1 with the method in [5] for estimation
of the flow field in Experiment 1. Figures 3a, 3b are the plots of the difference
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(a) Difference between the true and ap-
proximate field given by the method in [5]
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(b) Difference between the true and ap-
proximate field given by Algorithm 1.

Figure 3. A comparison of Algorithm 1 and the method of [5] for
estimation of the vector field in (14).

between the true vector field and the approximated vector fields for both methods.

Due to its structure for spatial representation of the flow-field, the method in [5]
leads to poor performance for the region where sufficient trajectory information is
not available. Quantitatively, given a sample of vectors {V (x1, y1), . . . , V (xn, yn)}
and {W (x1, y1), . . . ,W (xn, yn)} from two vector fields V (x, y) and W (x, y), we can
define the max error (relative to V ) as

Max Error = max
i
{‖V (xi, yi)−W (xi, yi)‖/‖V (xi, yi)‖} (15)

and the mean error (relative to V ) as

Mean Error = Mean{‖V (xi, yi)−W (xi, yi)‖/‖V (xi, yi)‖}. (16)

Let V (x, y) represent the true vector field and let W (x, y) denote the estimated
vector field. Given the samples shown above, the max and mean errors for both
methods are summarized in Table 1.

Method in [5] Algorithm 1

Max Error 1.1849 0.25321

Mean Error 0.51549 0.025642

Table 1. Algorithm 1, along with the technique in [5] are used
to estimate the vector field in (14). The table shows the maxi-
mum and the average estimation error, as defined in (15) and (16),
respectively, for the two methods.

Figure 4 shows the the Mean Error as a function of the number of iterations
for three different vector fields. The first vector field is the one used in the first
experiment, the second is a linear vector field (f1(x) = x2, f2(x) = −0.2x1) that
corresponds to a flow that spirals inwards towards the origin, and the third is a
constant vector field (f1(x) = 0.2, f2(x) = 0.1). None of the three vector fields are
in the span of the occupation kernels. The results in Figure 4 demonstrate that the
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Figure 4. To demonstrate universality of the occupation kernel
basis, Algorithm 1 is used to estimate three different flow fields.
The flow field in (14) (Flow field 1), a linear flow field (Flow field 2),
and a constant flow field (Flow field 3). The plot shows the average
estimation error, as defined in 16, plotted against the number of
iterates of Algorithm 1 for the three flow fields.
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Figure 5. Simultaneous plots for estimation of the unknown flow
field in the Gliderpalooza experiment using Algorithm 1 (green
arrows) and the method of [5] (blue arrows).

developed algorithm can estimate a variety of flow fields, not necessarily in the span
of the occupation kernels. In the absence of ground truth in Experiment 2 we show
a simultaneous plot of approximated fields from both Algorithm 1 and the method
in [5] in Figure 5. For the set of samples depicted in Figure 5, we calculated the
maximum norm difference, the mean norm difference, and the variance of the norm
differences between the two fields. The results of this comparison are summarized
in Table 2.
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max norm difference 0.14877

mean norm difference 0.0088628

variance 0.0001869

Table 2. Norm difference statistics between estimates of the Glid-
erpalooza flow field, approximated using Algorithm 1 and the
method in [5].
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